]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/wait.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / kernel / wait.c
1 /*
2  * Generic waiting primitives.
3  *
4  * (C) 2004 Nadia Yvette Chambers, Oracle
5  */
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/wait.h>
11 #include <linux/hash.h>
12
13 void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
14 {
15         spin_lock_init(&q->lock);
16         lockdep_set_class_and_name(&q->lock, key, name);
17         INIT_LIST_HEAD(&q->task_list);
18 }
19
20 EXPORT_SYMBOL(__init_waitqueue_head);
21
22 void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
23 {
24         unsigned long flags;
25
26         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
27         spin_lock_irqsave(&q->lock, flags);
28         __add_wait_queue(q, wait);
29         spin_unlock_irqrestore(&q->lock, flags);
30 }
31 EXPORT_SYMBOL(add_wait_queue);
32
33 void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
34 {
35         unsigned long flags;
36
37         wait->flags |= WQ_FLAG_EXCLUSIVE;
38         spin_lock_irqsave(&q->lock, flags);
39         __add_wait_queue_tail(q, wait);
40         spin_unlock_irqrestore(&q->lock, flags);
41 }
42 EXPORT_SYMBOL(add_wait_queue_exclusive);
43
44 void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
45 {
46         unsigned long flags;
47
48         spin_lock_irqsave(&q->lock, flags);
49         __remove_wait_queue(q, wait);
50         spin_unlock_irqrestore(&q->lock, flags);
51 }
52 EXPORT_SYMBOL(remove_wait_queue);
53
54
55 /*
56  * Note: we use "set_current_state()" _after_ the wait-queue add,
57  * because we need a memory barrier there on SMP, so that any
58  * wake-function that tests for the wait-queue being active
59  * will be guaranteed to see waitqueue addition _or_ subsequent
60  * tests in this thread will see the wakeup having taken place.
61  *
62  * The spin_unlock() itself is semi-permeable and only protects
63  * one way (it only protects stuff inside the critical region and
64  * stops them from bleeding out - it would still allow subsequent
65  * loads to move into the critical region).
66  */
67 void
68 prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
69 {
70         unsigned long flags;
71
72         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
73         spin_lock_irqsave(&q->lock, flags);
74         if (list_empty(&wait->task_list))
75                 __add_wait_queue(q, wait);
76         set_current_state(state);
77         spin_unlock_irqrestore(&q->lock, flags);
78 }
79 EXPORT_SYMBOL(prepare_to_wait);
80
81 void
82 prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
83 {
84         unsigned long flags;
85
86         wait->flags |= WQ_FLAG_EXCLUSIVE;
87         spin_lock_irqsave(&q->lock, flags);
88         if (list_empty(&wait->task_list))
89                 __add_wait_queue_tail(q, wait);
90         set_current_state(state);
91         spin_unlock_irqrestore(&q->lock, flags);
92 }
93 EXPORT_SYMBOL(prepare_to_wait_exclusive);
94
95 long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
96 {
97         unsigned long flags;
98
99         if (signal_pending_state(state, current))
100                 return -ERESTARTSYS;
101
102         wait->private = current;
103         wait->func = autoremove_wake_function;
104
105         spin_lock_irqsave(&q->lock, flags);
106         if (list_empty(&wait->task_list)) {
107                 if (wait->flags & WQ_FLAG_EXCLUSIVE)
108                         __add_wait_queue_tail(q, wait);
109                 else
110                         __add_wait_queue(q, wait);
111         }
112         set_current_state(state);
113         spin_unlock_irqrestore(&q->lock, flags);
114
115         return 0;
116 }
117 EXPORT_SYMBOL(prepare_to_wait_event);
118
119 /**
120  * finish_wait - clean up after waiting in a queue
121  * @q: waitqueue waited on
122  * @wait: wait descriptor
123  *
124  * Sets current thread back to running state and removes
125  * the wait descriptor from the given waitqueue if still
126  * queued.
127  */
128 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
129 {
130         unsigned long flags;
131
132         __set_current_state(TASK_RUNNING);
133         /*
134          * We can check for list emptiness outside the lock
135          * IFF:
136          *  - we use the "careful" check that verifies both
137          *    the next and prev pointers, so that there cannot
138          *    be any half-pending updates in progress on other
139          *    CPU's that we haven't seen yet (and that might
140          *    still change the stack area.
141          * and
142          *  - all other users take the lock (ie we can only
143          *    have _one_ other CPU that looks at or modifies
144          *    the list).
145          */
146         if (!list_empty_careful(&wait->task_list)) {
147                 spin_lock_irqsave(&q->lock, flags);
148                 list_del_init(&wait->task_list);
149                 spin_unlock_irqrestore(&q->lock, flags);
150         }
151 }
152 EXPORT_SYMBOL(finish_wait);
153
154 /**
155  * abort_exclusive_wait - abort exclusive waiting in a queue
156  * @q: waitqueue waited on
157  * @wait: wait descriptor
158  * @mode: runstate of the waiter to be woken
159  * @key: key to identify a wait bit queue or %NULL
160  *
161  * Sets current thread back to running state and removes
162  * the wait descriptor from the given waitqueue if still
163  * queued.
164  *
165  * Wakes up the next waiter if the caller is concurrently
166  * woken up through the queue.
167  *
168  * This prevents waiter starvation where an exclusive waiter
169  * aborts and is woken up concurrently and no one wakes up
170  * the next waiter.
171  */
172 void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait,
173                         unsigned int mode, void *key)
174 {
175         unsigned long flags;
176
177         __set_current_state(TASK_RUNNING);
178         spin_lock_irqsave(&q->lock, flags);
179         if (!list_empty(&wait->task_list))
180                 list_del_init(&wait->task_list);
181         else if (waitqueue_active(q))
182                 __wake_up_locked_key(q, mode, key);
183         spin_unlock_irqrestore(&q->lock, flags);
184 }
185 EXPORT_SYMBOL(abort_exclusive_wait);
186
187 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
188 {
189         int ret = default_wake_function(wait, mode, sync, key);
190
191         if (ret)
192                 list_del_init(&wait->task_list);
193         return ret;
194 }
195 EXPORT_SYMBOL(autoremove_wake_function);
196
197 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
198 {
199         struct wait_bit_key *key = arg;
200         struct wait_bit_queue *wait_bit
201                 = container_of(wait, struct wait_bit_queue, wait);
202
203         if (wait_bit->key.flags != key->flags ||
204                         wait_bit->key.bit_nr != key->bit_nr ||
205                         test_bit(key->bit_nr, key->flags))
206                 return 0;
207         else
208                 return autoremove_wake_function(wait, mode, sync, key);
209 }
210 EXPORT_SYMBOL(wake_bit_function);
211
212 /*
213  * To allow interruptible waiting and asynchronous (i.e. nonblocking)
214  * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
215  * permitted return codes. Nonzero return codes halt waiting and return.
216  */
217 int __sched
218 __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
219                         int (*action)(void *), unsigned mode)
220 {
221         int ret = 0;
222
223         do {
224                 prepare_to_wait(wq, &q->wait, mode);
225                 if (test_bit(q->key.bit_nr, q->key.flags))
226                         ret = (*action)(q->key.flags);
227         } while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
228         finish_wait(wq, &q->wait);
229         return ret;
230 }
231 EXPORT_SYMBOL(__wait_on_bit);
232
233 int __sched out_of_line_wait_on_bit(void *word, int bit,
234                                         int (*action)(void *), unsigned mode)
235 {
236         wait_queue_head_t *wq = bit_waitqueue(word, bit);
237         DEFINE_WAIT_BIT(wait, word, bit);
238
239         return __wait_on_bit(wq, &wait, action, mode);
240 }
241 EXPORT_SYMBOL(out_of_line_wait_on_bit);
242
243 int __sched
244 __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
245                         int (*action)(void *), unsigned mode)
246 {
247         do {
248                 int ret;
249
250                 prepare_to_wait_exclusive(wq, &q->wait, mode);
251                 if (!test_bit(q->key.bit_nr, q->key.flags))
252                         continue;
253                 ret = action(q->key.flags);
254                 if (!ret)
255                         continue;
256                 abort_exclusive_wait(wq, &q->wait, mode, &q->key);
257                 return ret;
258         } while (test_and_set_bit(q->key.bit_nr, q->key.flags));
259         finish_wait(wq, &q->wait);
260         return 0;
261 }
262 EXPORT_SYMBOL(__wait_on_bit_lock);
263
264 int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
265                                         int (*action)(void *), unsigned mode)
266 {
267         wait_queue_head_t *wq = bit_waitqueue(word, bit);
268         DEFINE_WAIT_BIT(wait, word, bit);
269
270         return __wait_on_bit_lock(wq, &wait, action, mode);
271 }
272 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
273
274 void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
275 {
276         struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
277         if (waitqueue_active(wq))
278                 __wake_up(wq, TASK_NORMAL, 1, &key);
279 }
280 EXPORT_SYMBOL(__wake_up_bit);
281
282 /**
283  * wake_up_bit - wake up a waiter on a bit
284  * @word: the word being waited on, a kernel virtual address
285  * @bit: the bit of the word being waited on
286  *
287  * There is a standard hashed waitqueue table for generic use. This
288  * is the part of the hashtable's accessor API that wakes up waiters
289  * on a bit. For instance, if one were to have waiters on a bitflag,
290  * one would call wake_up_bit() after clearing the bit.
291  *
292  * In order for this to function properly, as it uses waitqueue_active()
293  * internally, some kind of memory barrier must be done prior to calling
294  * this. Typically, this will be smp_mb__after_clear_bit(), but in some
295  * cases where bitflags are manipulated non-atomically under a lock, one
296  * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
297  * because spin_unlock() does not guarantee a memory barrier.
298  */
299 void wake_up_bit(void *word, int bit)
300 {
301         __wake_up_bit(bit_waitqueue(word, bit), word, bit);
302 }
303 EXPORT_SYMBOL(wake_up_bit);
304
305 wait_queue_head_t *bit_waitqueue(void *word, int bit)
306 {
307         const int shift = BITS_PER_LONG == 32 ? 5 : 6;
308         const struct zone *zone = page_zone(virt_to_page(word));
309         unsigned long val = (unsigned long)word << shift | bit;
310
311         return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
312 }
313 EXPORT_SYMBOL(bit_waitqueue);
314
315 /*
316  * Manipulate the atomic_t address to produce a better bit waitqueue table hash
317  * index (we're keying off bit -1, but that would produce a horrible hash
318  * value).
319  */
320 static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
321 {
322         if (BITS_PER_LONG == 64) {
323                 unsigned long q = (unsigned long)p;
324                 return bit_waitqueue((void *)(q & ~1), q & 1);
325         }
326         return bit_waitqueue(p, 0);
327 }
328
329 static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
330                                   void *arg)
331 {
332         struct wait_bit_key *key = arg;
333         struct wait_bit_queue *wait_bit
334                 = container_of(wait, struct wait_bit_queue, wait);
335         atomic_t *val = key->flags;
336
337         if (wait_bit->key.flags != key->flags ||
338             wait_bit->key.bit_nr != key->bit_nr ||
339             atomic_read(val) != 0)
340                 return 0;
341         return autoremove_wake_function(wait, mode, sync, key);
342 }
343
344 /*
345  * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
346  * the actions of __wait_on_atomic_t() are permitted return codes.  Nonzero
347  * return codes halt waiting and return.
348  */
349 static __sched
350 int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
351                        int (*action)(atomic_t *), unsigned mode)
352 {
353         atomic_t *val;
354         int ret = 0;
355
356         do {
357                 prepare_to_wait(wq, &q->wait, mode);
358                 val = q->key.flags;
359                 if (atomic_read(val) == 0)
360                         break;
361                 ret = (*action)(val);
362         } while (!ret && atomic_read(val) != 0);
363         finish_wait(wq, &q->wait);
364         return ret;
365 }
366
367 #define DEFINE_WAIT_ATOMIC_T(name, p)                                   \
368         struct wait_bit_queue name = {                                  \
369                 .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p),              \
370                 .wait   = {                                             \
371                         .private        = current,                      \
372                         .func           = wake_atomic_t_function,       \
373                         .task_list      =                               \
374                                 LIST_HEAD_INIT((name).wait.task_list),  \
375                 },                                                      \
376         }
377
378 __sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
379                                          unsigned mode)
380 {
381         wait_queue_head_t *wq = atomic_t_waitqueue(p);
382         DEFINE_WAIT_ATOMIC_T(wait, p);
383
384         return __wait_on_atomic_t(wq, &wait, action, mode);
385 }
386 EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
387
388 /**
389  * wake_up_atomic_t - Wake up a waiter on a atomic_t
390  * @p: The atomic_t being waited on, a kernel virtual address
391  *
392  * Wake up anyone waiting for the atomic_t to go to zero.
393  *
394  * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
395  * check is done by the waiter's wake function, not the by the waker itself).
396  */
397 void wake_up_atomic_t(atomic_t *p)
398 {
399         __wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
400 }
401 EXPORT_SYMBOL(wake_up_atomic_t);