]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/hugetlb.c
Merge branch 'dice-driver-playback-only' of git://git.alsa-project.org/alsa-kprivate...
[karo-tx-linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52  * free_huge_pages, and surplus_huge_pages.
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(file_inode(vma->vm_file));
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation_mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 long seg_from;
277                 long seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << huge_page_shift(hstate);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440 {
441         VM_BUG_ON(!is_vm_hugetlb_page(vma));
442         if (!(vma->vm_flags & VM_MAYSHARE))
443                 vma->vm_private_data = (void *)0;
444 }
445
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448 {
449         if (vma->vm_flags & VM_NORESERVE) {
450                 /*
451                  * This address is already reserved by other process(chg == 0),
452                  * so, we should decrement reserved count. Without decrementing,
453                  * reserve count remains after releasing inode, because this
454                  * allocated page will go into page cache and is regarded as
455                  * coming from reserved pool in releasing step.  Currently, we
456                  * don't have any other solution to deal with this situation
457                  * properly, so add work-around here.
458                  */
459                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460                         return 1;
461                 else
462                         return 0;
463         }
464
465         /* Shared mappings always use reserves */
466         if (vma->vm_flags & VM_MAYSHARE)
467                 return 1;
468
469         /*
470          * Only the process that called mmap() has reserves for
471          * private mappings.
472          */
473         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474                 return 1;
475
476         return 0;
477 }
478
479 static void copy_gigantic_page(struct page *dst, struct page *src)
480 {
481         int i;
482         struct hstate *h = page_hstate(src);
483         struct page *dst_base = dst;
484         struct page *src_base = src;
485
486         for (i = 0; i < pages_per_huge_page(h); ) {
487                 cond_resched();
488                 copy_highpage(dst, src);
489
490                 i++;
491                 dst = mem_map_next(dst, dst_base, i);
492                 src = mem_map_next(src, src_base, i);
493         }
494 }
495
496 void copy_huge_page(struct page *dst, struct page *src)
497 {
498         int i;
499         struct hstate *h = page_hstate(src);
500
501         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
502                 copy_gigantic_page(dst, src);
503                 return;
504         }
505
506         might_sleep();
507         for (i = 0; i < pages_per_huge_page(h); i++) {
508                 cond_resched();
509                 copy_highpage(dst + i, src + i);
510         }
511 }
512
513 static void enqueue_huge_page(struct hstate *h, struct page *page)
514 {
515         int nid = page_to_nid(page);
516         list_move(&page->lru, &h->hugepage_freelists[nid]);
517         h->free_huge_pages++;
518         h->free_huge_pages_node[nid]++;
519 }
520
521 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
522 {
523         struct page *page;
524
525         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
526                 if (!is_migrate_isolate_page(page))
527                         break;
528         /*
529          * if 'non-isolated free hugepage' not found on the list,
530          * the allocation fails.
531          */
532         if (&h->hugepage_freelists[nid] == &page->lru)
533                 return NULL;
534         list_move(&page->lru, &h->hugepage_activelist);
535         set_page_refcounted(page);
536         h->free_huge_pages--;
537         h->free_huge_pages_node[nid]--;
538         return page;
539 }
540
541 /* Movability of hugepages depends on migration support. */
542 static inline gfp_t htlb_alloc_mask(struct hstate *h)
543 {
544         if (hugepages_treat_as_movable || hugepage_migration_support(h))
545                 return GFP_HIGHUSER_MOVABLE;
546         else
547                 return GFP_HIGHUSER;
548 }
549
550 static struct page *dequeue_huge_page_vma(struct hstate *h,
551                                 struct vm_area_struct *vma,
552                                 unsigned long address, int avoid_reserve,
553                                 long chg)
554 {
555         struct page *page = NULL;
556         struct mempolicy *mpol;
557         nodemask_t *nodemask;
558         struct zonelist *zonelist;
559         struct zone *zone;
560         struct zoneref *z;
561         unsigned int cpuset_mems_cookie;
562
563         /*
564          * A child process with MAP_PRIVATE mappings created by their parent
565          * have no page reserves. This check ensures that reservations are
566          * not "stolen". The child may still get SIGKILLed
567          */
568         if (!vma_has_reserves(vma, chg) &&
569                         h->free_huge_pages - h->resv_huge_pages == 0)
570                 goto err;
571
572         /* If reserves cannot be used, ensure enough pages are in the pool */
573         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
574                 goto err;
575
576 retry_cpuset:
577         cpuset_mems_cookie = get_mems_allowed();
578         zonelist = huge_zonelist(vma, address,
579                                         htlb_alloc_mask(h), &mpol, &nodemask);
580
581         for_each_zone_zonelist_nodemask(zone, z, zonelist,
582                                                 MAX_NR_ZONES - 1, nodemask) {
583                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
584                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
585                         if (page) {
586                                 if (avoid_reserve)
587                                         break;
588                                 if (!vma_has_reserves(vma, chg))
589                                         break;
590
591                                 SetPagePrivate(page);
592                                 h->resv_huge_pages--;
593                                 break;
594                         }
595                 }
596         }
597
598         mpol_cond_put(mpol);
599         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
600                 goto retry_cpuset;
601         return page;
602
603 err:
604         return NULL;
605 }
606
607 static void update_and_free_page(struct hstate *h, struct page *page)
608 {
609         int i;
610
611         VM_BUG_ON(h->order >= MAX_ORDER);
612
613         h->nr_huge_pages--;
614         h->nr_huge_pages_node[page_to_nid(page)]--;
615         for (i = 0; i < pages_per_huge_page(h); i++) {
616                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
617                                 1 << PG_referenced | 1 << PG_dirty |
618                                 1 << PG_active | 1 << PG_reserved |
619                                 1 << PG_private | 1 << PG_writeback);
620         }
621         VM_BUG_ON(hugetlb_cgroup_from_page(page));
622         set_compound_page_dtor(page, NULL);
623         set_page_refcounted(page);
624         arch_release_hugepage(page);
625         __free_pages(page, huge_page_order(h));
626 }
627
628 struct hstate *size_to_hstate(unsigned long size)
629 {
630         struct hstate *h;
631
632         for_each_hstate(h) {
633                 if (huge_page_size(h) == size)
634                         return h;
635         }
636         return NULL;
637 }
638
639 static void free_huge_page(struct page *page)
640 {
641         /*
642          * Can't pass hstate in here because it is called from the
643          * compound page destructor.
644          */
645         struct hstate *h = page_hstate(page);
646         int nid = page_to_nid(page);
647         struct hugepage_subpool *spool =
648                 (struct hugepage_subpool *)page_private(page);
649         bool restore_reserve;
650
651         set_page_private(page, 0);
652         page->mapping = NULL;
653         BUG_ON(page_count(page));
654         BUG_ON(page_mapcount(page));
655         restore_reserve = PagePrivate(page);
656
657         spin_lock(&hugetlb_lock);
658         hugetlb_cgroup_uncharge_page(hstate_index(h),
659                                      pages_per_huge_page(h), page);
660         if (restore_reserve)
661                 h->resv_huge_pages++;
662
663         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
664                 /* remove the page from active list */
665                 list_del(&page->lru);
666                 update_and_free_page(h, page);
667                 h->surplus_huge_pages--;
668                 h->surplus_huge_pages_node[nid]--;
669         } else {
670                 arch_clear_hugepage_flags(page);
671                 enqueue_huge_page(h, page);
672         }
673         spin_unlock(&hugetlb_lock);
674         hugepage_subpool_put_pages(spool, 1);
675 }
676
677 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
678 {
679         INIT_LIST_HEAD(&page->lru);
680         set_compound_page_dtor(page, free_huge_page);
681         spin_lock(&hugetlb_lock);
682         set_hugetlb_cgroup(page, NULL);
683         h->nr_huge_pages++;
684         h->nr_huge_pages_node[nid]++;
685         spin_unlock(&hugetlb_lock);
686         put_page(page); /* free it into the hugepage allocator */
687 }
688
689 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
690 {
691         int i;
692         int nr_pages = 1 << order;
693         struct page *p = page + 1;
694
695         /* we rely on prep_new_huge_page to set the destructor */
696         set_compound_order(page, order);
697         __SetPageHead(page);
698         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
699                 __SetPageTail(p);
700                 set_page_count(p, 0);
701                 p->first_page = page;
702         }
703 }
704
705 /*
706  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
707  * transparent huge pages.  See the PageTransHuge() documentation for more
708  * details.
709  */
710 int PageHuge(struct page *page)
711 {
712         compound_page_dtor *dtor;
713
714         if (!PageCompound(page))
715                 return 0;
716
717         page = compound_head(page);
718         dtor = get_compound_page_dtor(page);
719
720         return dtor == free_huge_page;
721 }
722 EXPORT_SYMBOL_GPL(PageHuge);
723
724 pgoff_t __basepage_index(struct page *page)
725 {
726         struct page *page_head = compound_head(page);
727         pgoff_t index = page_index(page_head);
728         unsigned long compound_idx;
729
730         if (!PageHuge(page_head))
731                 return page_index(page);
732
733         if (compound_order(page_head) >= MAX_ORDER)
734                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
735         else
736                 compound_idx = page - page_head;
737
738         return (index << compound_order(page_head)) + compound_idx;
739 }
740
741 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
742 {
743         struct page *page;
744
745         if (h->order >= MAX_ORDER)
746                 return NULL;
747
748         page = alloc_pages_exact_node(nid,
749                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
750                                                 __GFP_REPEAT|__GFP_NOWARN,
751                 huge_page_order(h));
752         if (page) {
753                 if (arch_prepare_hugepage(page)) {
754                         __free_pages(page, huge_page_order(h));
755                         return NULL;
756                 }
757                 prep_new_huge_page(h, page, nid);
758         }
759
760         return page;
761 }
762
763 /*
764  * common helper functions for hstate_next_node_to_{alloc|free}.
765  * We may have allocated or freed a huge page based on a different
766  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
767  * be outside of *nodes_allowed.  Ensure that we use an allowed
768  * node for alloc or free.
769  */
770 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
771 {
772         nid = next_node(nid, *nodes_allowed);
773         if (nid == MAX_NUMNODES)
774                 nid = first_node(*nodes_allowed);
775         VM_BUG_ON(nid >= MAX_NUMNODES);
776
777         return nid;
778 }
779
780 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
781 {
782         if (!node_isset(nid, *nodes_allowed))
783                 nid = next_node_allowed(nid, nodes_allowed);
784         return nid;
785 }
786
787 /*
788  * returns the previously saved node ["this node"] from which to
789  * allocate a persistent huge page for the pool and advance the
790  * next node from which to allocate, handling wrap at end of node
791  * mask.
792  */
793 static int hstate_next_node_to_alloc(struct hstate *h,
794                                         nodemask_t *nodes_allowed)
795 {
796         int nid;
797
798         VM_BUG_ON(!nodes_allowed);
799
800         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
801         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
802
803         return nid;
804 }
805
806 /*
807  * helper for free_pool_huge_page() - return the previously saved
808  * node ["this node"] from which to free a huge page.  Advance the
809  * next node id whether or not we find a free huge page to free so
810  * that the next attempt to free addresses the next node.
811  */
812 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
813 {
814         int nid;
815
816         VM_BUG_ON(!nodes_allowed);
817
818         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
819         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
820
821         return nid;
822 }
823
824 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
825         for (nr_nodes = nodes_weight(*mask);                            \
826                 nr_nodes > 0 &&                                         \
827                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
828                 nr_nodes--)
829
830 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
831         for (nr_nodes = nodes_weight(*mask);                            \
832                 nr_nodes > 0 &&                                         \
833                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
834                 nr_nodes--)
835
836 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
837 {
838         struct page *page;
839         int nr_nodes, node;
840         int ret = 0;
841
842         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
843                 page = alloc_fresh_huge_page_node(h, node);
844                 if (page) {
845                         ret = 1;
846                         break;
847                 }
848         }
849
850         if (ret)
851                 count_vm_event(HTLB_BUDDY_PGALLOC);
852         else
853                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
854
855         return ret;
856 }
857
858 /*
859  * Free huge page from pool from next node to free.
860  * Attempt to keep persistent huge pages more or less
861  * balanced over allowed nodes.
862  * Called with hugetlb_lock locked.
863  */
864 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
865                                                          bool acct_surplus)
866 {
867         int nr_nodes, node;
868         int ret = 0;
869
870         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
871                 /*
872                  * If we're returning unused surplus pages, only examine
873                  * nodes with surplus pages.
874                  */
875                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
876                     !list_empty(&h->hugepage_freelists[node])) {
877                         struct page *page =
878                                 list_entry(h->hugepage_freelists[node].next,
879                                           struct page, lru);
880                         list_del(&page->lru);
881                         h->free_huge_pages--;
882                         h->free_huge_pages_node[node]--;
883                         if (acct_surplus) {
884                                 h->surplus_huge_pages--;
885                                 h->surplus_huge_pages_node[node]--;
886                         }
887                         update_and_free_page(h, page);
888                         ret = 1;
889                         break;
890                 }
891         }
892
893         return ret;
894 }
895
896 /*
897  * Dissolve a given free hugepage into free buddy pages. This function does
898  * nothing for in-use (including surplus) hugepages.
899  */
900 static void dissolve_free_huge_page(struct page *page)
901 {
902         spin_lock(&hugetlb_lock);
903         if (PageHuge(page) && !page_count(page)) {
904                 struct hstate *h = page_hstate(page);
905                 int nid = page_to_nid(page);
906                 list_del(&page->lru);
907                 h->free_huge_pages--;
908                 h->free_huge_pages_node[nid]--;
909                 update_and_free_page(h, page);
910         }
911         spin_unlock(&hugetlb_lock);
912 }
913
914 /*
915  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
916  * make specified memory blocks removable from the system.
917  * Note that start_pfn should aligned with (minimum) hugepage size.
918  */
919 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
920 {
921         unsigned int order = 8 * sizeof(void *);
922         unsigned long pfn;
923         struct hstate *h;
924
925         /* Set scan step to minimum hugepage size */
926         for_each_hstate(h)
927                 if (order > huge_page_order(h))
928                         order = huge_page_order(h);
929         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
930         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
931                 dissolve_free_huge_page(pfn_to_page(pfn));
932 }
933
934 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
935 {
936         struct page *page;
937         unsigned int r_nid;
938
939         if (h->order >= MAX_ORDER)
940                 return NULL;
941
942         /*
943          * Assume we will successfully allocate the surplus page to
944          * prevent racing processes from causing the surplus to exceed
945          * overcommit
946          *
947          * This however introduces a different race, where a process B
948          * tries to grow the static hugepage pool while alloc_pages() is
949          * called by process A. B will only examine the per-node
950          * counters in determining if surplus huge pages can be
951          * converted to normal huge pages in adjust_pool_surplus(). A
952          * won't be able to increment the per-node counter, until the
953          * lock is dropped by B, but B doesn't drop hugetlb_lock until
954          * no more huge pages can be converted from surplus to normal
955          * state (and doesn't try to convert again). Thus, we have a
956          * case where a surplus huge page exists, the pool is grown, and
957          * the surplus huge page still exists after, even though it
958          * should just have been converted to a normal huge page. This
959          * does not leak memory, though, as the hugepage will be freed
960          * once it is out of use. It also does not allow the counters to
961          * go out of whack in adjust_pool_surplus() as we don't modify
962          * the node values until we've gotten the hugepage and only the
963          * per-node value is checked there.
964          */
965         spin_lock(&hugetlb_lock);
966         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
967                 spin_unlock(&hugetlb_lock);
968                 return NULL;
969         } else {
970                 h->nr_huge_pages++;
971                 h->surplus_huge_pages++;
972         }
973         spin_unlock(&hugetlb_lock);
974
975         if (nid == NUMA_NO_NODE)
976                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
977                                    __GFP_REPEAT|__GFP_NOWARN,
978                                    huge_page_order(h));
979         else
980                 page = alloc_pages_exact_node(nid,
981                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
982                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
983
984         if (page && arch_prepare_hugepage(page)) {
985                 __free_pages(page, huge_page_order(h));
986                 page = NULL;
987         }
988
989         spin_lock(&hugetlb_lock);
990         if (page) {
991                 INIT_LIST_HEAD(&page->lru);
992                 r_nid = page_to_nid(page);
993                 set_compound_page_dtor(page, free_huge_page);
994                 set_hugetlb_cgroup(page, NULL);
995                 /*
996                  * We incremented the global counters already
997                  */
998                 h->nr_huge_pages_node[r_nid]++;
999                 h->surplus_huge_pages_node[r_nid]++;
1000                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1001         } else {
1002                 h->nr_huge_pages--;
1003                 h->surplus_huge_pages--;
1004                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1005         }
1006         spin_unlock(&hugetlb_lock);
1007
1008         return page;
1009 }
1010
1011 /*
1012  * This allocation function is useful in the context where vma is irrelevant.
1013  * E.g. soft-offlining uses this function because it only cares physical
1014  * address of error page.
1015  */
1016 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1017 {
1018         struct page *page = NULL;
1019
1020         spin_lock(&hugetlb_lock);
1021         if (h->free_huge_pages - h->resv_huge_pages > 0)
1022                 page = dequeue_huge_page_node(h, nid);
1023         spin_unlock(&hugetlb_lock);
1024
1025         if (!page)
1026                 page = alloc_buddy_huge_page(h, nid);
1027
1028         return page;
1029 }
1030
1031 /*
1032  * Increase the hugetlb pool such that it can accommodate a reservation
1033  * of size 'delta'.
1034  */
1035 static int gather_surplus_pages(struct hstate *h, int delta)
1036 {
1037         struct list_head surplus_list;
1038         struct page *page, *tmp;
1039         int ret, i;
1040         int needed, allocated;
1041         bool alloc_ok = true;
1042
1043         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1044         if (needed <= 0) {
1045                 h->resv_huge_pages += delta;
1046                 return 0;
1047         }
1048
1049         allocated = 0;
1050         INIT_LIST_HEAD(&surplus_list);
1051
1052         ret = -ENOMEM;
1053 retry:
1054         spin_unlock(&hugetlb_lock);
1055         for (i = 0; i < needed; i++) {
1056                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1057                 if (!page) {
1058                         alloc_ok = false;
1059                         break;
1060                 }
1061                 list_add(&page->lru, &surplus_list);
1062         }
1063         allocated += i;
1064
1065         /*
1066          * After retaking hugetlb_lock, we need to recalculate 'needed'
1067          * because either resv_huge_pages or free_huge_pages may have changed.
1068          */
1069         spin_lock(&hugetlb_lock);
1070         needed = (h->resv_huge_pages + delta) -
1071                         (h->free_huge_pages + allocated);
1072         if (needed > 0) {
1073                 if (alloc_ok)
1074                         goto retry;
1075                 /*
1076                  * We were not able to allocate enough pages to
1077                  * satisfy the entire reservation so we free what
1078                  * we've allocated so far.
1079                  */
1080                 goto free;
1081         }
1082         /*
1083          * The surplus_list now contains _at_least_ the number of extra pages
1084          * needed to accommodate the reservation.  Add the appropriate number
1085          * of pages to the hugetlb pool and free the extras back to the buddy
1086          * allocator.  Commit the entire reservation here to prevent another
1087          * process from stealing the pages as they are added to the pool but
1088          * before they are reserved.
1089          */
1090         needed += allocated;
1091         h->resv_huge_pages += delta;
1092         ret = 0;
1093
1094         /* Free the needed pages to the hugetlb pool */
1095         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1096                 if ((--needed) < 0)
1097                         break;
1098                 /*
1099                  * This page is now managed by the hugetlb allocator and has
1100                  * no users -- drop the buddy allocator's reference.
1101                  */
1102                 put_page_testzero(page);
1103                 VM_BUG_ON(page_count(page));
1104                 enqueue_huge_page(h, page);
1105         }
1106 free:
1107         spin_unlock(&hugetlb_lock);
1108
1109         /* Free unnecessary surplus pages to the buddy allocator */
1110         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1111                 put_page(page);
1112         spin_lock(&hugetlb_lock);
1113
1114         return ret;
1115 }
1116
1117 /*
1118  * When releasing a hugetlb pool reservation, any surplus pages that were
1119  * allocated to satisfy the reservation must be explicitly freed if they were
1120  * never used.
1121  * Called with hugetlb_lock held.
1122  */
1123 static void return_unused_surplus_pages(struct hstate *h,
1124                                         unsigned long unused_resv_pages)
1125 {
1126         unsigned long nr_pages;
1127
1128         /* Uncommit the reservation */
1129         h->resv_huge_pages -= unused_resv_pages;
1130
1131         /* Cannot return gigantic pages currently */
1132         if (h->order >= MAX_ORDER)
1133                 return;
1134
1135         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1136
1137         /*
1138          * We want to release as many surplus pages as possible, spread
1139          * evenly across all nodes with memory. Iterate across these nodes
1140          * until we can no longer free unreserved surplus pages. This occurs
1141          * when the nodes with surplus pages have no free pages.
1142          * free_pool_huge_page() will balance the the freed pages across the
1143          * on-line nodes with memory and will handle the hstate accounting.
1144          */
1145         while (nr_pages--) {
1146                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1147                         break;
1148         }
1149 }
1150
1151 /*
1152  * Determine if the huge page at addr within the vma has an associated
1153  * reservation.  Where it does not we will need to logically increase
1154  * reservation and actually increase subpool usage before an allocation
1155  * can occur.  Where any new reservation would be required the
1156  * reservation change is prepared, but not committed.  Once the page
1157  * has been allocated from the subpool and instantiated the change should
1158  * be committed via vma_commit_reservation.  No action is required on
1159  * failure.
1160  */
1161 static long vma_needs_reservation(struct hstate *h,
1162                         struct vm_area_struct *vma, unsigned long addr)
1163 {
1164         struct address_space *mapping = vma->vm_file->f_mapping;
1165         struct inode *inode = mapping->host;
1166
1167         if (vma->vm_flags & VM_MAYSHARE) {
1168                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1169                 return region_chg(&inode->i_mapping->private_list,
1170                                                         idx, idx + 1);
1171
1172         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1173                 return 1;
1174
1175         } else  {
1176                 long err;
1177                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1178                 struct resv_map *resv = vma_resv_map(vma);
1179
1180                 err = region_chg(&resv->regions, idx, idx + 1);
1181                 if (err < 0)
1182                         return err;
1183                 return 0;
1184         }
1185 }
1186 static void vma_commit_reservation(struct hstate *h,
1187                         struct vm_area_struct *vma, unsigned long addr)
1188 {
1189         struct address_space *mapping = vma->vm_file->f_mapping;
1190         struct inode *inode = mapping->host;
1191
1192         if (vma->vm_flags & VM_MAYSHARE) {
1193                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1194                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1195
1196         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1197                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1198                 struct resv_map *resv = vma_resv_map(vma);
1199
1200                 /* Mark this page used in the map. */
1201                 region_add(&resv->regions, idx, idx + 1);
1202         }
1203 }
1204
1205 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1206                                     unsigned long addr, int avoid_reserve)
1207 {
1208         struct hugepage_subpool *spool = subpool_vma(vma);
1209         struct hstate *h = hstate_vma(vma);
1210         struct page *page;
1211         long chg;
1212         int ret, idx;
1213         struct hugetlb_cgroup *h_cg;
1214
1215         idx = hstate_index(h);
1216         /*
1217          * Processes that did not create the mapping will have no
1218          * reserves and will not have accounted against subpool
1219          * limit. Check that the subpool limit can be made before
1220          * satisfying the allocation MAP_NORESERVE mappings may also
1221          * need pages and subpool limit allocated allocated if no reserve
1222          * mapping overlaps.
1223          */
1224         chg = vma_needs_reservation(h, vma, addr);
1225         if (chg < 0)
1226                 return ERR_PTR(-ENOMEM);
1227         if (chg || avoid_reserve)
1228                 if (hugepage_subpool_get_pages(spool, 1))
1229                         return ERR_PTR(-ENOSPC);
1230
1231         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1232         if (ret) {
1233                 if (chg || avoid_reserve)
1234                         hugepage_subpool_put_pages(spool, 1);
1235                 return ERR_PTR(-ENOSPC);
1236         }
1237         spin_lock(&hugetlb_lock);
1238         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1239         if (!page) {
1240                 spin_unlock(&hugetlb_lock);
1241                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1242                 if (!page) {
1243                         hugetlb_cgroup_uncharge_cgroup(idx,
1244                                                        pages_per_huge_page(h),
1245                                                        h_cg);
1246                         if (chg || avoid_reserve)
1247                                 hugepage_subpool_put_pages(spool, 1);
1248                         return ERR_PTR(-ENOSPC);
1249                 }
1250                 spin_lock(&hugetlb_lock);
1251                 list_move(&page->lru, &h->hugepage_activelist);
1252                 /* Fall through */
1253         }
1254         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1255         spin_unlock(&hugetlb_lock);
1256
1257         set_page_private(page, (unsigned long)spool);
1258
1259         vma_commit_reservation(h, vma, addr);
1260         return page;
1261 }
1262
1263 /*
1264  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1265  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1266  * where no ERR_VALUE is expected to be returned.
1267  */
1268 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1269                                 unsigned long addr, int avoid_reserve)
1270 {
1271         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1272         if (IS_ERR(page))
1273                 page = NULL;
1274         return page;
1275 }
1276
1277 int __weak alloc_bootmem_huge_page(struct hstate *h)
1278 {
1279         struct huge_bootmem_page *m;
1280         int nr_nodes, node;
1281
1282         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1283                 void *addr;
1284
1285                 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1286                                 huge_page_size(h), huge_page_size(h), 0);
1287
1288                 if (addr) {
1289                         /*
1290                          * Use the beginning of the huge page to store the
1291                          * huge_bootmem_page struct (until gather_bootmem
1292                          * puts them into the mem_map).
1293                          */
1294                         m = addr;
1295                         goto found;
1296                 }
1297         }
1298         return 0;
1299
1300 found:
1301         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1302         /* Put them into a private list first because mem_map is not up yet */
1303         list_add(&m->list, &huge_boot_pages);
1304         m->hstate = h;
1305         return 1;
1306 }
1307
1308 static void prep_compound_huge_page(struct page *page, int order)
1309 {
1310         if (unlikely(order > (MAX_ORDER - 1)))
1311                 prep_compound_gigantic_page(page, order);
1312         else
1313                 prep_compound_page(page, order);
1314 }
1315
1316 /* Put bootmem huge pages into the standard lists after mem_map is up */
1317 static void __init gather_bootmem_prealloc(void)
1318 {
1319         struct huge_bootmem_page *m;
1320
1321         list_for_each_entry(m, &huge_boot_pages, list) {
1322                 struct hstate *h = m->hstate;
1323                 struct page *page;
1324
1325 #ifdef CONFIG_HIGHMEM
1326                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1327                 free_bootmem_late((unsigned long)m,
1328                                   sizeof(struct huge_bootmem_page));
1329 #else
1330                 page = virt_to_page(m);
1331 #endif
1332                 __ClearPageReserved(page);
1333                 WARN_ON(page_count(page) != 1);
1334                 prep_compound_huge_page(page, h->order);
1335                 prep_new_huge_page(h, page, page_to_nid(page));
1336                 /*
1337                  * If we had gigantic hugepages allocated at boot time, we need
1338                  * to restore the 'stolen' pages to totalram_pages in order to
1339                  * fix confusing memory reports from free(1) and another
1340                  * side-effects, like CommitLimit going negative.
1341                  */
1342                 if (h->order > (MAX_ORDER - 1))
1343                         adjust_managed_page_count(page, 1 << h->order);
1344         }
1345 }
1346
1347 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1348 {
1349         unsigned long i;
1350
1351         for (i = 0; i < h->max_huge_pages; ++i) {
1352                 if (h->order >= MAX_ORDER) {
1353                         if (!alloc_bootmem_huge_page(h))
1354                                 break;
1355                 } else if (!alloc_fresh_huge_page(h,
1356                                          &node_states[N_MEMORY]))
1357                         break;
1358         }
1359         h->max_huge_pages = i;
1360 }
1361
1362 static void __init hugetlb_init_hstates(void)
1363 {
1364         struct hstate *h;
1365
1366         for_each_hstate(h) {
1367                 /* oversize hugepages were init'ed in early boot */
1368                 if (h->order < MAX_ORDER)
1369                         hugetlb_hstate_alloc_pages(h);
1370         }
1371 }
1372
1373 static char * __init memfmt(char *buf, unsigned long n)
1374 {
1375         if (n >= (1UL << 30))
1376                 sprintf(buf, "%lu GB", n >> 30);
1377         else if (n >= (1UL << 20))
1378                 sprintf(buf, "%lu MB", n >> 20);
1379         else
1380                 sprintf(buf, "%lu KB", n >> 10);
1381         return buf;
1382 }
1383
1384 static void __init report_hugepages(void)
1385 {
1386         struct hstate *h;
1387
1388         for_each_hstate(h) {
1389                 char buf[32];
1390                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1391                         memfmt(buf, huge_page_size(h)),
1392                         h->free_huge_pages);
1393         }
1394 }
1395
1396 #ifdef CONFIG_HIGHMEM
1397 static void try_to_free_low(struct hstate *h, unsigned long count,
1398                                                 nodemask_t *nodes_allowed)
1399 {
1400         int i;
1401
1402         if (h->order >= MAX_ORDER)
1403                 return;
1404
1405         for_each_node_mask(i, *nodes_allowed) {
1406                 struct page *page, *next;
1407                 struct list_head *freel = &h->hugepage_freelists[i];
1408                 list_for_each_entry_safe(page, next, freel, lru) {
1409                         if (count >= h->nr_huge_pages)
1410                                 return;
1411                         if (PageHighMem(page))
1412                                 continue;
1413                         list_del(&page->lru);
1414                         update_and_free_page(h, page);
1415                         h->free_huge_pages--;
1416                         h->free_huge_pages_node[page_to_nid(page)]--;
1417                 }
1418         }
1419 }
1420 #else
1421 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1422                                                 nodemask_t *nodes_allowed)
1423 {
1424 }
1425 #endif
1426
1427 /*
1428  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1429  * balanced by operating on them in a round-robin fashion.
1430  * Returns 1 if an adjustment was made.
1431  */
1432 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1433                                 int delta)
1434 {
1435         int nr_nodes, node;
1436
1437         VM_BUG_ON(delta != -1 && delta != 1);
1438
1439         if (delta < 0) {
1440                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1441                         if (h->surplus_huge_pages_node[node])
1442                                 goto found;
1443                 }
1444         } else {
1445                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1446                         if (h->surplus_huge_pages_node[node] <
1447                                         h->nr_huge_pages_node[node])
1448                                 goto found;
1449                 }
1450         }
1451         return 0;
1452
1453 found:
1454         h->surplus_huge_pages += delta;
1455         h->surplus_huge_pages_node[node] += delta;
1456         return 1;
1457 }
1458
1459 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1460 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1461                                                 nodemask_t *nodes_allowed)
1462 {
1463         unsigned long min_count, ret;
1464
1465         if (h->order >= MAX_ORDER)
1466                 return h->max_huge_pages;
1467
1468         /*
1469          * Increase the pool size
1470          * First take pages out of surplus state.  Then make up the
1471          * remaining difference by allocating fresh huge pages.
1472          *
1473          * We might race with alloc_buddy_huge_page() here and be unable
1474          * to convert a surplus huge page to a normal huge page. That is
1475          * not critical, though, it just means the overall size of the
1476          * pool might be one hugepage larger than it needs to be, but
1477          * within all the constraints specified by the sysctls.
1478          */
1479         spin_lock(&hugetlb_lock);
1480         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1481                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1482                         break;
1483         }
1484
1485         while (count > persistent_huge_pages(h)) {
1486                 /*
1487                  * If this allocation races such that we no longer need the
1488                  * page, free_huge_page will handle it by freeing the page
1489                  * and reducing the surplus.
1490                  */
1491                 spin_unlock(&hugetlb_lock);
1492                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1493                 spin_lock(&hugetlb_lock);
1494                 if (!ret)
1495                         goto out;
1496
1497                 /* Bail for signals. Probably ctrl-c from user */
1498                 if (signal_pending(current))
1499                         goto out;
1500         }
1501
1502         /*
1503          * Decrease the pool size
1504          * First return free pages to the buddy allocator (being careful
1505          * to keep enough around to satisfy reservations).  Then place
1506          * pages into surplus state as needed so the pool will shrink
1507          * to the desired size as pages become free.
1508          *
1509          * By placing pages into the surplus state independent of the
1510          * overcommit value, we are allowing the surplus pool size to
1511          * exceed overcommit. There are few sane options here. Since
1512          * alloc_buddy_huge_page() is checking the global counter,
1513          * though, we'll note that we're not allowed to exceed surplus
1514          * and won't grow the pool anywhere else. Not until one of the
1515          * sysctls are changed, or the surplus pages go out of use.
1516          */
1517         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1518         min_count = max(count, min_count);
1519         try_to_free_low(h, min_count, nodes_allowed);
1520         while (min_count < persistent_huge_pages(h)) {
1521                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1522                         break;
1523         }
1524         while (count < persistent_huge_pages(h)) {
1525                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1526                         break;
1527         }
1528 out:
1529         ret = persistent_huge_pages(h);
1530         spin_unlock(&hugetlb_lock);
1531         return ret;
1532 }
1533
1534 #define HSTATE_ATTR_RO(_name) \
1535         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1536
1537 #define HSTATE_ATTR(_name) \
1538         static struct kobj_attribute _name##_attr = \
1539                 __ATTR(_name, 0644, _name##_show, _name##_store)
1540
1541 static struct kobject *hugepages_kobj;
1542 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1543
1544 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1545
1546 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1547 {
1548         int i;
1549
1550         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1551                 if (hstate_kobjs[i] == kobj) {
1552                         if (nidp)
1553                                 *nidp = NUMA_NO_NODE;
1554                         return &hstates[i];
1555                 }
1556
1557         return kobj_to_node_hstate(kobj, nidp);
1558 }
1559
1560 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1561                                         struct kobj_attribute *attr, char *buf)
1562 {
1563         struct hstate *h;
1564         unsigned long nr_huge_pages;
1565         int nid;
1566
1567         h = kobj_to_hstate(kobj, &nid);
1568         if (nid == NUMA_NO_NODE)
1569                 nr_huge_pages = h->nr_huge_pages;
1570         else
1571                 nr_huge_pages = h->nr_huge_pages_node[nid];
1572
1573         return sprintf(buf, "%lu\n", nr_huge_pages);
1574 }
1575
1576 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1577                         struct kobject *kobj, struct kobj_attribute *attr,
1578                         const char *buf, size_t len)
1579 {
1580         int err;
1581         int nid;
1582         unsigned long count;
1583         struct hstate *h;
1584         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1585
1586         err = kstrtoul(buf, 10, &count);
1587         if (err)
1588                 goto out;
1589
1590         h = kobj_to_hstate(kobj, &nid);
1591         if (h->order >= MAX_ORDER) {
1592                 err = -EINVAL;
1593                 goto out;
1594         }
1595
1596         if (nid == NUMA_NO_NODE) {
1597                 /*
1598                  * global hstate attribute
1599                  */
1600                 if (!(obey_mempolicy &&
1601                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1602                         NODEMASK_FREE(nodes_allowed);
1603                         nodes_allowed = &node_states[N_MEMORY];
1604                 }
1605         } else if (nodes_allowed) {
1606                 /*
1607                  * per node hstate attribute: adjust count to global,
1608                  * but restrict alloc/free to the specified node.
1609                  */
1610                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1611                 init_nodemask_of_node(nodes_allowed, nid);
1612         } else
1613                 nodes_allowed = &node_states[N_MEMORY];
1614
1615         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1616
1617         if (nodes_allowed != &node_states[N_MEMORY])
1618                 NODEMASK_FREE(nodes_allowed);
1619
1620         return len;
1621 out:
1622         NODEMASK_FREE(nodes_allowed);
1623         return err;
1624 }
1625
1626 static ssize_t nr_hugepages_show(struct kobject *kobj,
1627                                        struct kobj_attribute *attr, char *buf)
1628 {
1629         return nr_hugepages_show_common(kobj, attr, buf);
1630 }
1631
1632 static ssize_t nr_hugepages_store(struct kobject *kobj,
1633                struct kobj_attribute *attr, const char *buf, size_t len)
1634 {
1635         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1636 }
1637 HSTATE_ATTR(nr_hugepages);
1638
1639 #ifdef CONFIG_NUMA
1640
1641 /*
1642  * hstate attribute for optionally mempolicy-based constraint on persistent
1643  * huge page alloc/free.
1644  */
1645 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1646                                        struct kobj_attribute *attr, char *buf)
1647 {
1648         return nr_hugepages_show_common(kobj, attr, buf);
1649 }
1650
1651 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1652                struct kobj_attribute *attr, const char *buf, size_t len)
1653 {
1654         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1655 }
1656 HSTATE_ATTR(nr_hugepages_mempolicy);
1657 #endif
1658
1659
1660 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1661                                         struct kobj_attribute *attr, char *buf)
1662 {
1663         struct hstate *h = kobj_to_hstate(kobj, NULL);
1664         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1665 }
1666
1667 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1668                 struct kobj_attribute *attr, const char *buf, size_t count)
1669 {
1670         int err;
1671         unsigned long input;
1672         struct hstate *h = kobj_to_hstate(kobj, NULL);
1673
1674         if (h->order >= MAX_ORDER)
1675                 return -EINVAL;
1676
1677         err = kstrtoul(buf, 10, &input);
1678         if (err)
1679                 return err;
1680
1681         spin_lock(&hugetlb_lock);
1682         h->nr_overcommit_huge_pages = input;
1683         spin_unlock(&hugetlb_lock);
1684
1685         return count;
1686 }
1687 HSTATE_ATTR(nr_overcommit_hugepages);
1688
1689 static ssize_t free_hugepages_show(struct kobject *kobj,
1690                                         struct kobj_attribute *attr, char *buf)
1691 {
1692         struct hstate *h;
1693         unsigned long free_huge_pages;
1694         int nid;
1695
1696         h = kobj_to_hstate(kobj, &nid);
1697         if (nid == NUMA_NO_NODE)
1698                 free_huge_pages = h->free_huge_pages;
1699         else
1700                 free_huge_pages = h->free_huge_pages_node[nid];
1701
1702         return sprintf(buf, "%lu\n", free_huge_pages);
1703 }
1704 HSTATE_ATTR_RO(free_hugepages);
1705
1706 static ssize_t resv_hugepages_show(struct kobject *kobj,
1707                                         struct kobj_attribute *attr, char *buf)
1708 {
1709         struct hstate *h = kobj_to_hstate(kobj, NULL);
1710         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1711 }
1712 HSTATE_ATTR_RO(resv_hugepages);
1713
1714 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1715                                         struct kobj_attribute *attr, char *buf)
1716 {
1717         struct hstate *h;
1718         unsigned long surplus_huge_pages;
1719         int nid;
1720
1721         h = kobj_to_hstate(kobj, &nid);
1722         if (nid == NUMA_NO_NODE)
1723                 surplus_huge_pages = h->surplus_huge_pages;
1724         else
1725                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1726
1727         return sprintf(buf, "%lu\n", surplus_huge_pages);
1728 }
1729 HSTATE_ATTR_RO(surplus_hugepages);
1730
1731 static struct attribute *hstate_attrs[] = {
1732         &nr_hugepages_attr.attr,
1733         &nr_overcommit_hugepages_attr.attr,
1734         &free_hugepages_attr.attr,
1735         &resv_hugepages_attr.attr,
1736         &surplus_hugepages_attr.attr,
1737 #ifdef CONFIG_NUMA
1738         &nr_hugepages_mempolicy_attr.attr,
1739 #endif
1740         NULL,
1741 };
1742
1743 static struct attribute_group hstate_attr_group = {
1744         .attrs = hstate_attrs,
1745 };
1746
1747 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1748                                     struct kobject **hstate_kobjs,
1749                                     struct attribute_group *hstate_attr_group)
1750 {
1751         int retval;
1752         int hi = hstate_index(h);
1753
1754         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1755         if (!hstate_kobjs[hi])
1756                 return -ENOMEM;
1757
1758         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1759         if (retval)
1760                 kobject_put(hstate_kobjs[hi]);
1761
1762         return retval;
1763 }
1764
1765 static void __init hugetlb_sysfs_init(void)
1766 {
1767         struct hstate *h;
1768         int err;
1769
1770         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1771         if (!hugepages_kobj)
1772                 return;
1773
1774         for_each_hstate(h) {
1775                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1776                                          hstate_kobjs, &hstate_attr_group);
1777                 if (err)
1778                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1779         }
1780 }
1781
1782 #ifdef CONFIG_NUMA
1783
1784 /*
1785  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1786  * with node devices in node_devices[] using a parallel array.  The array
1787  * index of a node device or _hstate == node id.
1788  * This is here to avoid any static dependency of the node device driver, in
1789  * the base kernel, on the hugetlb module.
1790  */
1791 struct node_hstate {
1792         struct kobject          *hugepages_kobj;
1793         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1794 };
1795 struct node_hstate node_hstates[MAX_NUMNODES];
1796
1797 /*
1798  * A subset of global hstate attributes for node devices
1799  */
1800 static struct attribute *per_node_hstate_attrs[] = {
1801         &nr_hugepages_attr.attr,
1802         &free_hugepages_attr.attr,
1803         &surplus_hugepages_attr.attr,
1804         NULL,
1805 };
1806
1807 static struct attribute_group per_node_hstate_attr_group = {
1808         .attrs = per_node_hstate_attrs,
1809 };
1810
1811 /*
1812  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1813  * Returns node id via non-NULL nidp.
1814  */
1815 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1816 {
1817         int nid;
1818
1819         for (nid = 0; nid < nr_node_ids; nid++) {
1820                 struct node_hstate *nhs = &node_hstates[nid];
1821                 int i;
1822                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1823                         if (nhs->hstate_kobjs[i] == kobj) {
1824                                 if (nidp)
1825                                         *nidp = nid;
1826                                 return &hstates[i];
1827                         }
1828         }
1829
1830         BUG();
1831         return NULL;
1832 }
1833
1834 /*
1835  * Unregister hstate attributes from a single node device.
1836  * No-op if no hstate attributes attached.
1837  */
1838 static void hugetlb_unregister_node(struct node *node)
1839 {
1840         struct hstate *h;
1841         struct node_hstate *nhs = &node_hstates[node->dev.id];
1842
1843         if (!nhs->hugepages_kobj)
1844                 return;         /* no hstate attributes */
1845
1846         for_each_hstate(h) {
1847                 int idx = hstate_index(h);
1848                 if (nhs->hstate_kobjs[idx]) {
1849                         kobject_put(nhs->hstate_kobjs[idx]);
1850                         nhs->hstate_kobjs[idx] = NULL;
1851                 }
1852         }
1853
1854         kobject_put(nhs->hugepages_kobj);
1855         nhs->hugepages_kobj = NULL;
1856 }
1857
1858 /*
1859  * hugetlb module exit:  unregister hstate attributes from node devices
1860  * that have them.
1861  */
1862 static void hugetlb_unregister_all_nodes(void)
1863 {
1864         int nid;
1865
1866         /*
1867          * disable node device registrations.
1868          */
1869         register_hugetlbfs_with_node(NULL, NULL);
1870
1871         /*
1872          * remove hstate attributes from any nodes that have them.
1873          */
1874         for (nid = 0; nid < nr_node_ids; nid++)
1875                 hugetlb_unregister_node(node_devices[nid]);
1876 }
1877
1878 /*
1879  * Register hstate attributes for a single node device.
1880  * No-op if attributes already registered.
1881  */
1882 static void hugetlb_register_node(struct node *node)
1883 {
1884         struct hstate *h;
1885         struct node_hstate *nhs = &node_hstates[node->dev.id];
1886         int err;
1887
1888         if (nhs->hugepages_kobj)
1889                 return;         /* already allocated */
1890
1891         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1892                                                         &node->dev.kobj);
1893         if (!nhs->hugepages_kobj)
1894                 return;
1895
1896         for_each_hstate(h) {
1897                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1898                                                 nhs->hstate_kobjs,
1899                                                 &per_node_hstate_attr_group);
1900                 if (err) {
1901                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1902                                 h->name, node->dev.id);
1903                         hugetlb_unregister_node(node);
1904                         break;
1905                 }
1906         }
1907 }
1908
1909 /*
1910  * hugetlb init time:  register hstate attributes for all registered node
1911  * devices of nodes that have memory.  All on-line nodes should have
1912  * registered their associated device by this time.
1913  */
1914 static void hugetlb_register_all_nodes(void)
1915 {
1916         int nid;
1917
1918         for_each_node_state(nid, N_MEMORY) {
1919                 struct node *node = node_devices[nid];
1920                 if (node->dev.id == nid)
1921                         hugetlb_register_node(node);
1922         }
1923
1924         /*
1925          * Let the node device driver know we're here so it can
1926          * [un]register hstate attributes on node hotplug.
1927          */
1928         register_hugetlbfs_with_node(hugetlb_register_node,
1929                                      hugetlb_unregister_node);
1930 }
1931 #else   /* !CONFIG_NUMA */
1932
1933 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1934 {
1935         BUG();
1936         if (nidp)
1937                 *nidp = -1;
1938         return NULL;
1939 }
1940
1941 static void hugetlb_unregister_all_nodes(void) { }
1942
1943 static void hugetlb_register_all_nodes(void) { }
1944
1945 #endif
1946
1947 static void __exit hugetlb_exit(void)
1948 {
1949         struct hstate *h;
1950
1951         hugetlb_unregister_all_nodes();
1952
1953         for_each_hstate(h) {
1954                 kobject_put(hstate_kobjs[hstate_index(h)]);
1955         }
1956
1957         kobject_put(hugepages_kobj);
1958 }
1959 module_exit(hugetlb_exit);
1960
1961 static int __init hugetlb_init(void)
1962 {
1963         /* Some platform decide whether they support huge pages at boot
1964          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1965          * there is no such support
1966          */
1967         if (HPAGE_SHIFT == 0)
1968                 return 0;
1969
1970         if (!size_to_hstate(default_hstate_size)) {
1971                 default_hstate_size = HPAGE_SIZE;
1972                 if (!size_to_hstate(default_hstate_size))
1973                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1974         }
1975         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1976         if (default_hstate_max_huge_pages)
1977                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1978
1979         hugetlb_init_hstates();
1980         gather_bootmem_prealloc();
1981         report_hugepages();
1982
1983         hugetlb_sysfs_init();
1984         hugetlb_register_all_nodes();
1985         hugetlb_cgroup_file_init();
1986
1987         return 0;
1988 }
1989 module_init(hugetlb_init);
1990
1991 /* Should be called on processing a hugepagesz=... option */
1992 void __init hugetlb_add_hstate(unsigned order)
1993 {
1994         struct hstate *h;
1995         unsigned long i;
1996
1997         if (size_to_hstate(PAGE_SIZE << order)) {
1998                 pr_warning("hugepagesz= specified twice, ignoring\n");
1999                 return;
2000         }
2001         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2002         BUG_ON(order == 0);
2003         h = &hstates[hugetlb_max_hstate++];
2004         h->order = order;
2005         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2006         h->nr_huge_pages = 0;
2007         h->free_huge_pages = 0;
2008         for (i = 0; i < MAX_NUMNODES; ++i)
2009                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2010         INIT_LIST_HEAD(&h->hugepage_activelist);
2011         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2012         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2013         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2014                                         huge_page_size(h)/1024);
2015
2016         parsed_hstate = h;
2017 }
2018
2019 static int __init hugetlb_nrpages_setup(char *s)
2020 {
2021         unsigned long *mhp;
2022         static unsigned long *last_mhp;
2023
2024         /*
2025          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2026          * so this hugepages= parameter goes to the "default hstate".
2027          */
2028         if (!hugetlb_max_hstate)
2029                 mhp = &default_hstate_max_huge_pages;
2030         else
2031                 mhp = &parsed_hstate->max_huge_pages;
2032
2033         if (mhp == last_mhp) {
2034                 pr_warning("hugepages= specified twice without "
2035                            "interleaving hugepagesz=, ignoring\n");
2036                 return 1;
2037         }
2038
2039         if (sscanf(s, "%lu", mhp) <= 0)
2040                 *mhp = 0;
2041
2042         /*
2043          * Global state is always initialized later in hugetlb_init.
2044          * But we need to allocate >= MAX_ORDER hstates here early to still
2045          * use the bootmem allocator.
2046          */
2047         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2048                 hugetlb_hstate_alloc_pages(parsed_hstate);
2049
2050         last_mhp = mhp;
2051
2052         return 1;
2053 }
2054 __setup("hugepages=", hugetlb_nrpages_setup);
2055
2056 static int __init hugetlb_default_setup(char *s)
2057 {
2058         default_hstate_size = memparse(s, &s);
2059         return 1;
2060 }
2061 __setup("default_hugepagesz=", hugetlb_default_setup);
2062
2063 static unsigned int cpuset_mems_nr(unsigned int *array)
2064 {
2065         int node;
2066         unsigned int nr = 0;
2067
2068         for_each_node_mask(node, cpuset_current_mems_allowed)
2069                 nr += array[node];
2070
2071         return nr;
2072 }
2073
2074 #ifdef CONFIG_SYSCTL
2075 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2076                          struct ctl_table *table, int write,
2077                          void __user *buffer, size_t *length, loff_t *ppos)
2078 {
2079         struct hstate *h = &default_hstate;
2080         unsigned long tmp;
2081         int ret;
2082
2083         tmp = h->max_huge_pages;
2084
2085         if (write && h->order >= MAX_ORDER)
2086                 return -EINVAL;
2087
2088         table->data = &tmp;
2089         table->maxlen = sizeof(unsigned long);
2090         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2091         if (ret)
2092                 goto out;
2093
2094         if (write) {
2095                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2096                                                 GFP_KERNEL | __GFP_NORETRY);
2097                 if (!(obey_mempolicy &&
2098                                init_nodemask_of_mempolicy(nodes_allowed))) {
2099                         NODEMASK_FREE(nodes_allowed);
2100                         nodes_allowed = &node_states[N_MEMORY];
2101                 }
2102                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2103
2104                 if (nodes_allowed != &node_states[N_MEMORY])
2105                         NODEMASK_FREE(nodes_allowed);
2106         }
2107 out:
2108         return ret;
2109 }
2110
2111 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2112                           void __user *buffer, size_t *length, loff_t *ppos)
2113 {
2114
2115         return hugetlb_sysctl_handler_common(false, table, write,
2116                                                         buffer, length, ppos);
2117 }
2118
2119 #ifdef CONFIG_NUMA
2120 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2121                           void __user *buffer, size_t *length, loff_t *ppos)
2122 {
2123         return hugetlb_sysctl_handler_common(true, table, write,
2124                                                         buffer, length, ppos);
2125 }
2126 #endif /* CONFIG_NUMA */
2127
2128 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2129                         void __user *buffer,
2130                         size_t *length, loff_t *ppos)
2131 {
2132         struct hstate *h = &default_hstate;
2133         unsigned long tmp;
2134         int ret;
2135
2136         tmp = h->nr_overcommit_huge_pages;
2137
2138         if (write && h->order >= MAX_ORDER)
2139                 return -EINVAL;
2140
2141         table->data = &tmp;
2142         table->maxlen = sizeof(unsigned long);
2143         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2144         if (ret)
2145                 goto out;
2146
2147         if (write) {
2148                 spin_lock(&hugetlb_lock);
2149                 h->nr_overcommit_huge_pages = tmp;
2150                 spin_unlock(&hugetlb_lock);
2151         }
2152 out:
2153         return ret;
2154 }
2155
2156 #endif /* CONFIG_SYSCTL */
2157
2158 void hugetlb_report_meminfo(struct seq_file *m)
2159 {
2160         struct hstate *h = &default_hstate;
2161         seq_printf(m,
2162                         "HugePages_Total:   %5lu\n"
2163                         "HugePages_Free:    %5lu\n"
2164                         "HugePages_Rsvd:    %5lu\n"
2165                         "HugePages_Surp:    %5lu\n"
2166                         "Hugepagesize:   %8lu kB\n",
2167                         h->nr_huge_pages,
2168                         h->free_huge_pages,
2169                         h->resv_huge_pages,
2170                         h->surplus_huge_pages,
2171                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2172 }
2173
2174 int hugetlb_report_node_meminfo(int nid, char *buf)
2175 {
2176         struct hstate *h = &default_hstate;
2177         return sprintf(buf,
2178                 "Node %d HugePages_Total: %5u\n"
2179                 "Node %d HugePages_Free:  %5u\n"
2180                 "Node %d HugePages_Surp:  %5u\n",
2181                 nid, h->nr_huge_pages_node[nid],
2182                 nid, h->free_huge_pages_node[nid],
2183                 nid, h->surplus_huge_pages_node[nid]);
2184 }
2185
2186 void hugetlb_show_meminfo(void)
2187 {
2188         struct hstate *h;
2189         int nid;
2190
2191         for_each_node_state(nid, N_MEMORY)
2192                 for_each_hstate(h)
2193                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2194                                 nid,
2195                                 h->nr_huge_pages_node[nid],
2196                                 h->free_huge_pages_node[nid],
2197                                 h->surplus_huge_pages_node[nid],
2198                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2199 }
2200
2201 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2202 unsigned long hugetlb_total_pages(void)
2203 {
2204         struct hstate *h;
2205         unsigned long nr_total_pages = 0;
2206
2207         for_each_hstate(h)
2208                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2209         return nr_total_pages;
2210 }
2211
2212 static int hugetlb_acct_memory(struct hstate *h, long delta)
2213 {
2214         int ret = -ENOMEM;
2215
2216         spin_lock(&hugetlb_lock);
2217         /*
2218          * When cpuset is configured, it breaks the strict hugetlb page
2219          * reservation as the accounting is done on a global variable. Such
2220          * reservation is completely rubbish in the presence of cpuset because
2221          * the reservation is not checked against page availability for the
2222          * current cpuset. Application can still potentially OOM'ed by kernel
2223          * with lack of free htlb page in cpuset that the task is in.
2224          * Attempt to enforce strict accounting with cpuset is almost
2225          * impossible (or too ugly) because cpuset is too fluid that
2226          * task or memory node can be dynamically moved between cpusets.
2227          *
2228          * The change of semantics for shared hugetlb mapping with cpuset is
2229          * undesirable. However, in order to preserve some of the semantics,
2230          * we fall back to check against current free page availability as
2231          * a best attempt and hopefully to minimize the impact of changing
2232          * semantics that cpuset has.
2233          */
2234         if (delta > 0) {
2235                 if (gather_surplus_pages(h, delta) < 0)
2236                         goto out;
2237
2238                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2239                         return_unused_surplus_pages(h, delta);
2240                         goto out;
2241                 }
2242         }
2243
2244         ret = 0;
2245         if (delta < 0)
2246                 return_unused_surplus_pages(h, (unsigned long) -delta);
2247
2248 out:
2249         spin_unlock(&hugetlb_lock);
2250         return ret;
2251 }
2252
2253 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2254 {
2255         struct resv_map *resv = vma_resv_map(vma);
2256
2257         /*
2258          * This new VMA should share its siblings reservation map if present.
2259          * The VMA will only ever have a valid reservation map pointer where
2260          * it is being copied for another still existing VMA.  As that VMA
2261          * has a reference to the reservation map it cannot disappear until
2262          * after this open call completes.  It is therefore safe to take a
2263          * new reference here without additional locking.
2264          */
2265         if (resv)
2266                 kref_get(&resv->refs);
2267 }
2268
2269 static void resv_map_put(struct vm_area_struct *vma)
2270 {
2271         struct resv_map *resv = vma_resv_map(vma);
2272
2273         if (!resv)
2274                 return;
2275         kref_put(&resv->refs, resv_map_release);
2276 }
2277
2278 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2279 {
2280         struct hstate *h = hstate_vma(vma);
2281         struct resv_map *resv = vma_resv_map(vma);
2282         struct hugepage_subpool *spool = subpool_vma(vma);
2283         unsigned long reserve;
2284         unsigned long start;
2285         unsigned long end;
2286
2287         if (resv) {
2288                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2289                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2290
2291                 reserve = (end - start) -
2292                         region_count(&resv->regions, start, end);
2293
2294                 resv_map_put(vma);
2295
2296                 if (reserve) {
2297                         hugetlb_acct_memory(h, -reserve);
2298                         hugepage_subpool_put_pages(spool, reserve);
2299                 }
2300         }
2301 }
2302
2303 /*
2304  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2305  * handle_mm_fault() to try to instantiate regular-sized pages in the
2306  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2307  * this far.
2308  */
2309 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2310 {
2311         BUG();
2312         return 0;
2313 }
2314
2315 const struct vm_operations_struct hugetlb_vm_ops = {
2316         .fault = hugetlb_vm_op_fault,
2317         .open = hugetlb_vm_op_open,
2318         .close = hugetlb_vm_op_close,
2319 };
2320
2321 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2322                                 int writable)
2323 {
2324         pte_t entry;
2325
2326         if (writable) {
2327                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2328                                          vma->vm_page_prot)));
2329         } else {
2330                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2331                                            vma->vm_page_prot));
2332         }
2333         entry = pte_mkyoung(entry);
2334         entry = pte_mkhuge(entry);
2335         entry = arch_make_huge_pte(entry, vma, page, writable);
2336
2337         return entry;
2338 }
2339
2340 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2341                                    unsigned long address, pte_t *ptep)
2342 {
2343         pte_t entry;
2344
2345         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2346         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2347                 update_mmu_cache(vma, address, ptep);
2348 }
2349
2350
2351 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2352                             struct vm_area_struct *vma)
2353 {
2354         pte_t *src_pte, *dst_pte, entry;
2355         struct page *ptepage;
2356         unsigned long addr;
2357         int cow;
2358         struct hstate *h = hstate_vma(vma);
2359         unsigned long sz = huge_page_size(h);
2360
2361         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2362
2363         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2364                 src_pte = huge_pte_offset(src, addr);
2365                 if (!src_pte)
2366                         continue;
2367                 dst_pte = huge_pte_alloc(dst, addr, sz);
2368                 if (!dst_pte)
2369                         goto nomem;
2370
2371                 /* If the pagetables are shared don't copy or take references */
2372                 if (dst_pte == src_pte)
2373                         continue;
2374
2375                 spin_lock(&dst->page_table_lock);
2376                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2377                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2378                         if (cow)
2379                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2380                         entry = huge_ptep_get(src_pte);
2381                         ptepage = pte_page(entry);
2382                         get_page(ptepage);
2383                         page_dup_rmap(ptepage);
2384                         set_huge_pte_at(dst, addr, dst_pte, entry);
2385                 }
2386                 spin_unlock(&src->page_table_lock);
2387                 spin_unlock(&dst->page_table_lock);
2388         }
2389         return 0;
2390
2391 nomem:
2392         return -ENOMEM;
2393 }
2394
2395 static int is_hugetlb_entry_migration(pte_t pte)
2396 {
2397         swp_entry_t swp;
2398
2399         if (huge_pte_none(pte) || pte_present(pte))
2400                 return 0;
2401         swp = pte_to_swp_entry(pte);
2402         if (non_swap_entry(swp) && is_migration_entry(swp))
2403                 return 1;
2404         else
2405                 return 0;
2406 }
2407
2408 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2409 {
2410         swp_entry_t swp;
2411
2412         if (huge_pte_none(pte) || pte_present(pte))
2413                 return 0;
2414         swp = pte_to_swp_entry(pte);
2415         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2416                 return 1;
2417         else
2418                 return 0;
2419 }
2420
2421 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2422                             unsigned long start, unsigned long end,
2423                             struct page *ref_page)
2424 {
2425         int force_flush = 0;
2426         struct mm_struct *mm = vma->vm_mm;
2427         unsigned long address;
2428         pte_t *ptep;
2429         pte_t pte;
2430         struct page *page;
2431         struct hstate *h = hstate_vma(vma);
2432         unsigned long sz = huge_page_size(h);
2433         const unsigned long mmun_start = start; /* For mmu_notifiers */
2434         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2435
2436         WARN_ON(!is_vm_hugetlb_page(vma));
2437         BUG_ON(start & ~huge_page_mask(h));
2438         BUG_ON(end & ~huge_page_mask(h));
2439
2440         tlb_start_vma(tlb, vma);
2441         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2442 again:
2443         spin_lock(&mm->page_table_lock);
2444         for (address = start; address < end; address += sz) {
2445                 ptep = huge_pte_offset(mm, address);
2446                 if (!ptep)
2447                         continue;
2448
2449                 if (huge_pmd_unshare(mm, &address, ptep))
2450                         continue;
2451
2452                 pte = huge_ptep_get(ptep);
2453                 if (huge_pte_none(pte))
2454                         continue;
2455
2456                 /*
2457                  * HWPoisoned hugepage is already unmapped and dropped reference
2458                  */
2459                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2460                         huge_pte_clear(mm, address, ptep);
2461                         continue;
2462                 }
2463
2464                 page = pte_page(pte);
2465                 /*
2466                  * If a reference page is supplied, it is because a specific
2467                  * page is being unmapped, not a range. Ensure the page we
2468                  * are about to unmap is the actual page of interest.
2469                  */
2470                 if (ref_page) {
2471                         if (page != ref_page)
2472                                 continue;
2473
2474                         /*
2475                          * Mark the VMA as having unmapped its page so that
2476                          * future faults in this VMA will fail rather than
2477                          * looking like data was lost
2478                          */
2479                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2480                 }
2481
2482                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2483                 tlb_remove_tlb_entry(tlb, ptep, address);
2484                 if (huge_pte_dirty(pte))
2485                         set_page_dirty(page);
2486
2487                 page_remove_rmap(page);
2488                 force_flush = !__tlb_remove_page(tlb, page);
2489                 if (force_flush)
2490                         break;
2491                 /* Bail out after unmapping reference page if supplied */
2492                 if (ref_page)
2493                         break;
2494         }
2495         spin_unlock(&mm->page_table_lock);
2496         /*
2497          * mmu_gather ran out of room to batch pages, we break out of
2498          * the PTE lock to avoid doing the potential expensive TLB invalidate
2499          * and page-free while holding it.
2500          */
2501         if (force_flush) {
2502                 force_flush = 0;
2503                 tlb_flush_mmu(tlb);
2504                 if (address < end && !ref_page)
2505                         goto again;
2506         }
2507         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2508         tlb_end_vma(tlb, vma);
2509 }
2510
2511 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2512                           struct vm_area_struct *vma, unsigned long start,
2513                           unsigned long end, struct page *ref_page)
2514 {
2515         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2516
2517         /*
2518          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2519          * test will fail on a vma being torn down, and not grab a page table
2520          * on its way out.  We're lucky that the flag has such an appropriate
2521          * name, and can in fact be safely cleared here. We could clear it
2522          * before the __unmap_hugepage_range above, but all that's necessary
2523          * is to clear it before releasing the i_mmap_mutex. This works
2524          * because in the context this is called, the VMA is about to be
2525          * destroyed and the i_mmap_mutex is held.
2526          */
2527         vma->vm_flags &= ~VM_MAYSHARE;
2528 }
2529
2530 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2531                           unsigned long end, struct page *ref_page)
2532 {
2533         struct mm_struct *mm;
2534         struct mmu_gather tlb;
2535
2536         mm = vma->vm_mm;
2537
2538         tlb_gather_mmu(&tlb, mm, start, end);
2539         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2540         tlb_finish_mmu(&tlb, start, end);
2541 }
2542
2543 /*
2544  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2545  * mappping it owns the reserve page for. The intention is to unmap the page
2546  * from other VMAs and let the children be SIGKILLed if they are faulting the
2547  * same region.
2548  */
2549 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2550                                 struct page *page, unsigned long address)
2551 {
2552         struct hstate *h = hstate_vma(vma);
2553         struct vm_area_struct *iter_vma;
2554         struct address_space *mapping;
2555         pgoff_t pgoff;
2556
2557         /*
2558          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2559          * from page cache lookup which is in HPAGE_SIZE units.
2560          */
2561         address = address & huge_page_mask(h);
2562         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2563                         vma->vm_pgoff;
2564         mapping = file_inode(vma->vm_file)->i_mapping;
2565
2566         /*
2567          * Take the mapping lock for the duration of the table walk. As
2568          * this mapping should be shared between all the VMAs,
2569          * __unmap_hugepage_range() is called as the lock is already held
2570          */
2571         mutex_lock(&mapping->i_mmap_mutex);
2572         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2573                 /* Do not unmap the current VMA */
2574                 if (iter_vma == vma)
2575                         continue;
2576
2577                 /*
2578                  * Unmap the page from other VMAs without their own reserves.
2579                  * They get marked to be SIGKILLed if they fault in these
2580                  * areas. This is because a future no-page fault on this VMA
2581                  * could insert a zeroed page instead of the data existing
2582                  * from the time of fork. This would look like data corruption
2583                  */
2584                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2585                         unmap_hugepage_range(iter_vma, address,
2586                                              address + huge_page_size(h), page);
2587         }
2588         mutex_unlock(&mapping->i_mmap_mutex);
2589
2590         return 1;
2591 }
2592
2593 /*
2594  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2595  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2596  * cannot race with other handlers or page migration.
2597  * Keep the pte_same checks anyway to make transition from the mutex easier.
2598  */
2599 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2600                         unsigned long address, pte_t *ptep, pte_t pte,
2601                         struct page *pagecache_page)
2602 {
2603         struct hstate *h = hstate_vma(vma);
2604         struct page *old_page, *new_page;
2605         int outside_reserve = 0;
2606         unsigned long mmun_start;       /* For mmu_notifiers */
2607         unsigned long mmun_end;         /* For mmu_notifiers */
2608
2609         old_page = pte_page(pte);
2610
2611 retry_avoidcopy:
2612         /* If no-one else is actually using this page, avoid the copy
2613          * and just make the page writable */
2614         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2615                 page_move_anon_rmap(old_page, vma, address);
2616                 set_huge_ptep_writable(vma, address, ptep);
2617                 return 0;
2618         }
2619
2620         /*
2621          * If the process that created a MAP_PRIVATE mapping is about to
2622          * perform a COW due to a shared page count, attempt to satisfy
2623          * the allocation without using the existing reserves. The pagecache
2624          * page is used to determine if the reserve at this address was
2625          * consumed or not. If reserves were used, a partial faulted mapping
2626          * at the time of fork() could consume its reserves on COW instead
2627          * of the full address range.
2628          */
2629         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2630                         old_page != pagecache_page)
2631                 outside_reserve = 1;
2632
2633         page_cache_get(old_page);
2634
2635         /* Drop page_table_lock as buddy allocator may be called */
2636         spin_unlock(&mm->page_table_lock);
2637         new_page = alloc_huge_page(vma, address, outside_reserve);
2638
2639         if (IS_ERR(new_page)) {
2640                 long err = PTR_ERR(new_page);
2641                 page_cache_release(old_page);
2642
2643                 /*
2644                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2645                  * it is due to references held by a child and an insufficient
2646                  * huge page pool. To guarantee the original mappers
2647                  * reliability, unmap the page from child processes. The child
2648                  * may get SIGKILLed if it later faults.
2649                  */
2650                 if (outside_reserve) {
2651                         BUG_ON(huge_pte_none(pte));
2652                         if (unmap_ref_private(mm, vma, old_page, address)) {
2653                                 BUG_ON(huge_pte_none(pte));
2654                                 spin_lock(&mm->page_table_lock);
2655                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2656                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2657                                         goto retry_avoidcopy;
2658                                 /*
2659                                  * race occurs while re-acquiring page_table_lock, and
2660                                  * our job is done.
2661                                  */
2662                                 return 0;
2663                         }
2664                         WARN_ON_ONCE(1);
2665                 }
2666
2667                 /* Caller expects lock to be held */
2668                 spin_lock(&mm->page_table_lock);
2669                 if (err == -ENOMEM)
2670                         return VM_FAULT_OOM;
2671                 else
2672                         return VM_FAULT_SIGBUS;
2673         }
2674
2675         /*
2676          * When the original hugepage is shared one, it does not have
2677          * anon_vma prepared.
2678          */
2679         if (unlikely(anon_vma_prepare(vma))) {
2680                 page_cache_release(new_page);
2681                 page_cache_release(old_page);
2682                 /* Caller expects lock to be held */
2683                 spin_lock(&mm->page_table_lock);
2684                 return VM_FAULT_OOM;
2685         }
2686
2687         copy_user_huge_page(new_page, old_page, address, vma,
2688                             pages_per_huge_page(h));
2689         __SetPageUptodate(new_page);
2690
2691         mmun_start = address & huge_page_mask(h);
2692         mmun_end = mmun_start + huge_page_size(h);
2693         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2694         /*
2695          * Retake the page_table_lock to check for racing updates
2696          * before the page tables are altered
2697          */
2698         spin_lock(&mm->page_table_lock);
2699         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2700         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2701                 ClearPagePrivate(new_page);
2702
2703                 /* Break COW */
2704                 huge_ptep_clear_flush(vma, address, ptep);
2705                 set_huge_pte_at(mm, address, ptep,
2706                                 make_huge_pte(vma, new_page, 1));
2707                 page_remove_rmap(old_page);
2708                 hugepage_add_new_anon_rmap(new_page, vma, address);
2709                 /* Make the old page be freed below */
2710                 new_page = old_page;
2711         }
2712         spin_unlock(&mm->page_table_lock);
2713         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2714         page_cache_release(new_page);
2715         page_cache_release(old_page);
2716
2717         /* Caller expects lock to be held */
2718         spin_lock(&mm->page_table_lock);
2719         return 0;
2720 }
2721
2722 /* Return the pagecache page at a given address within a VMA */
2723 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2724                         struct vm_area_struct *vma, unsigned long address)
2725 {
2726         struct address_space *mapping;
2727         pgoff_t idx;
2728
2729         mapping = vma->vm_file->f_mapping;
2730         idx = vma_hugecache_offset(h, vma, address);
2731
2732         return find_lock_page(mapping, idx);
2733 }
2734
2735 /*
2736  * Return whether there is a pagecache page to back given address within VMA.
2737  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2738  */
2739 static bool hugetlbfs_pagecache_present(struct hstate *h,
2740                         struct vm_area_struct *vma, unsigned long address)
2741 {
2742         struct address_space *mapping;
2743         pgoff_t idx;
2744         struct page *page;
2745
2746         mapping = vma->vm_file->f_mapping;
2747         idx = vma_hugecache_offset(h, vma, address);
2748
2749         page = find_get_page(mapping, idx);
2750         if (page)
2751                 put_page(page);
2752         return page != NULL;
2753 }
2754
2755 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2756                         unsigned long address, pte_t *ptep, unsigned int flags)
2757 {
2758         struct hstate *h = hstate_vma(vma);
2759         int ret = VM_FAULT_SIGBUS;
2760         int anon_rmap = 0;
2761         pgoff_t idx;
2762         unsigned long size;
2763         struct page *page;
2764         struct address_space *mapping;
2765         pte_t new_pte;
2766
2767         /*
2768          * Currently, we are forced to kill the process in the event the
2769          * original mapper has unmapped pages from the child due to a failed
2770          * COW. Warn that such a situation has occurred as it may not be obvious
2771          */
2772         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2773                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2774                            current->pid);
2775                 return ret;
2776         }
2777
2778         mapping = vma->vm_file->f_mapping;
2779         idx = vma_hugecache_offset(h, vma, address);
2780
2781         /*
2782          * Use page lock to guard against racing truncation
2783          * before we get page_table_lock.
2784          */
2785 retry:
2786         page = find_lock_page(mapping, idx);
2787         if (!page) {
2788                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2789                 if (idx >= size)
2790                         goto out;
2791                 page = alloc_huge_page(vma, address, 0);
2792                 if (IS_ERR(page)) {
2793                         ret = PTR_ERR(page);
2794                         if (ret == -ENOMEM)
2795                                 ret = VM_FAULT_OOM;
2796                         else
2797                                 ret = VM_FAULT_SIGBUS;
2798                         goto out;
2799                 }
2800                 clear_huge_page(page, address, pages_per_huge_page(h));
2801                 __SetPageUptodate(page);
2802
2803                 if (vma->vm_flags & VM_MAYSHARE) {
2804                         int err;
2805                         struct inode *inode = mapping->host;
2806
2807                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2808                         if (err) {
2809                                 put_page(page);
2810                                 if (err == -EEXIST)
2811                                         goto retry;
2812                                 goto out;
2813                         }
2814                         ClearPagePrivate(page);
2815
2816                         spin_lock(&inode->i_lock);
2817                         inode->i_blocks += blocks_per_huge_page(h);
2818                         spin_unlock(&inode->i_lock);
2819                 } else {
2820                         lock_page(page);
2821                         if (unlikely(anon_vma_prepare(vma))) {
2822                                 ret = VM_FAULT_OOM;
2823                                 goto backout_unlocked;
2824                         }
2825                         anon_rmap = 1;
2826                 }
2827         } else {
2828                 /*
2829                  * If memory error occurs between mmap() and fault, some process
2830                  * don't have hwpoisoned swap entry for errored virtual address.
2831                  * So we need to block hugepage fault by PG_hwpoison bit check.
2832                  */
2833                 if (unlikely(PageHWPoison(page))) {
2834                         ret = VM_FAULT_HWPOISON |
2835                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2836                         goto backout_unlocked;
2837                 }
2838         }
2839
2840         /*
2841          * If we are going to COW a private mapping later, we examine the
2842          * pending reservations for this page now. This will ensure that
2843          * any allocations necessary to record that reservation occur outside
2844          * the spinlock.
2845          */
2846         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2847                 if (vma_needs_reservation(h, vma, address) < 0) {
2848                         ret = VM_FAULT_OOM;
2849                         goto backout_unlocked;
2850                 }
2851
2852         spin_lock(&mm->page_table_lock);
2853         size = i_size_read(mapping->host) >> huge_page_shift(h);
2854         if (idx >= size)
2855                 goto backout;
2856
2857         ret = 0;
2858         if (!huge_pte_none(huge_ptep_get(ptep)))
2859                 goto backout;
2860
2861         if (anon_rmap) {
2862                 ClearPagePrivate(page);
2863                 hugepage_add_new_anon_rmap(page, vma, address);
2864         }
2865         else
2866                 page_dup_rmap(page);
2867         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2868                                 && (vma->vm_flags & VM_SHARED)));
2869         set_huge_pte_at(mm, address, ptep, new_pte);
2870
2871         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2872                 /* Optimization, do the COW without a second fault */
2873                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2874         }
2875
2876         spin_unlock(&mm->page_table_lock);
2877         unlock_page(page);
2878 out:
2879         return ret;
2880
2881 backout:
2882         spin_unlock(&mm->page_table_lock);
2883 backout_unlocked:
2884         unlock_page(page);
2885         put_page(page);
2886         goto out;
2887 }
2888
2889 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2890                         unsigned long address, unsigned int flags)
2891 {
2892         pte_t *ptep;
2893         pte_t entry;
2894         int ret;
2895         struct page *page = NULL;
2896         struct page *pagecache_page = NULL;
2897         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2898         struct hstate *h = hstate_vma(vma);
2899
2900         address &= huge_page_mask(h);
2901
2902         ptep = huge_pte_offset(mm, address);
2903         if (ptep) {
2904                 entry = huge_ptep_get(ptep);
2905                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2906                         migration_entry_wait_huge(mm, ptep);
2907                         return 0;
2908                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2909                         return VM_FAULT_HWPOISON_LARGE |
2910                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2911         }
2912
2913         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2914         if (!ptep)
2915                 return VM_FAULT_OOM;
2916
2917         /*
2918          * Serialize hugepage allocation and instantiation, so that we don't
2919          * get spurious allocation failures if two CPUs race to instantiate
2920          * the same page in the page cache.
2921          */
2922         mutex_lock(&hugetlb_instantiation_mutex);
2923         entry = huge_ptep_get(ptep);
2924         if (huge_pte_none(entry)) {
2925                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2926                 goto out_mutex;
2927         }
2928
2929         ret = 0;
2930
2931         /*
2932          * If we are going to COW the mapping later, we examine the pending
2933          * reservations for this page now. This will ensure that any
2934          * allocations necessary to record that reservation occur outside the
2935          * spinlock. For private mappings, we also lookup the pagecache
2936          * page now as it is used to determine if a reservation has been
2937          * consumed.
2938          */
2939         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2940                 if (vma_needs_reservation(h, vma, address) < 0) {
2941                         ret = VM_FAULT_OOM;
2942                         goto out_mutex;
2943                 }
2944
2945                 if (!(vma->vm_flags & VM_MAYSHARE))
2946                         pagecache_page = hugetlbfs_pagecache_page(h,
2947                                                                 vma, address);
2948         }
2949
2950         /*
2951          * hugetlb_cow() requires page locks of pte_page(entry) and
2952          * pagecache_page, so here we need take the former one
2953          * when page != pagecache_page or !pagecache_page.
2954          * Note that locking order is always pagecache_page -> page,
2955          * so no worry about deadlock.
2956          */
2957         page = pte_page(entry);
2958         get_page(page);
2959         if (page != pagecache_page)
2960                 lock_page(page);
2961
2962         spin_lock(&mm->page_table_lock);
2963         /* Check for a racing update before calling hugetlb_cow */
2964         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2965                 goto out_page_table_lock;
2966
2967
2968         if (flags & FAULT_FLAG_WRITE) {
2969                 if (!huge_pte_write(entry)) {
2970                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2971                                                         pagecache_page);
2972                         goto out_page_table_lock;
2973                 }
2974                 entry = huge_pte_mkdirty(entry);
2975         }
2976         entry = pte_mkyoung(entry);
2977         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2978                                                 flags & FAULT_FLAG_WRITE))
2979                 update_mmu_cache(vma, address, ptep);
2980
2981 out_page_table_lock:
2982         spin_unlock(&mm->page_table_lock);
2983
2984         if (pagecache_page) {
2985                 unlock_page(pagecache_page);
2986                 put_page(pagecache_page);
2987         }
2988         if (page != pagecache_page)
2989                 unlock_page(page);
2990         put_page(page);
2991
2992 out_mutex:
2993         mutex_unlock(&hugetlb_instantiation_mutex);
2994
2995         return ret;
2996 }
2997
2998 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2999                          struct page **pages, struct vm_area_struct **vmas,
3000                          unsigned long *position, unsigned long *nr_pages,
3001                          long i, unsigned int flags)
3002 {
3003         unsigned long pfn_offset;
3004         unsigned long vaddr = *position;
3005         unsigned long remainder = *nr_pages;
3006         struct hstate *h = hstate_vma(vma);
3007
3008         spin_lock(&mm->page_table_lock);
3009         while (vaddr < vma->vm_end && remainder) {
3010                 pte_t *pte;
3011                 int absent;
3012                 struct page *page;
3013
3014                 /*
3015                  * Some archs (sparc64, sh*) have multiple pte_ts to
3016                  * each hugepage.  We have to make sure we get the
3017                  * first, for the page indexing below to work.
3018                  */
3019                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3020                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3021
3022                 /*
3023                  * When coredumping, it suits get_dump_page if we just return
3024                  * an error where there's an empty slot with no huge pagecache
3025                  * to back it.  This way, we avoid allocating a hugepage, and
3026                  * the sparse dumpfile avoids allocating disk blocks, but its
3027                  * huge holes still show up with zeroes where they need to be.
3028                  */
3029                 if (absent && (flags & FOLL_DUMP) &&
3030                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3031                         remainder = 0;
3032                         break;
3033                 }
3034
3035                 /*
3036                  * We need call hugetlb_fault for both hugepages under migration
3037                  * (in which case hugetlb_fault waits for the migration,) and
3038                  * hwpoisoned hugepages (in which case we need to prevent the
3039                  * caller from accessing to them.) In order to do this, we use
3040                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3041                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3042                  * both cases, and because we can't follow correct pages
3043                  * directly from any kind of swap entries.
3044                  */
3045                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3046                     ((flags & FOLL_WRITE) &&
3047                       !huge_pte_write(huge_ptep_get(pte)))) {
3048                         int ret;
3049
3050                         spin_unlock(&mm->page_table_lock);
3051                         ret = hugetlb_fault(mm, vma, vaddr,
3052                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3053                         spin_lock(&mm->page_table_lock);
3054                         if (!(ret & VM_FAULT_ERROR))
3055                                 continue;
3056
3057                         remainder = 0;
3058                         break;
3059                 }
3060
3061                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3062                 page = pte_page(huge_ptep_get(pte));
3063 same_page:
3064                 if (pages) {
3065                         pages[i] = mem_map_offset(page, pfn_offset);
3066                         get_page(pages[i]);
3067                 }
3068
3069                 if (vmas)
3070                         vmas[i] = vma;
3071
3072                 vaddr += PAGE_SIZE;
3073                 ++pfn_offset;
3074                 --remainder;
3075                 ++i;
3076                 if (vaddr < vma->vm_end && remainder &&
3077                                 pfn_offset < pages_per_huge_page(h)) {
3078                         /*
3079                          * We use pfn_offset to avoid touching the pageframes
3080                          * of this compound page.
3081                          */
3082                         goto same_page;
3083                 }
3084         }
3085         spin_unlock(&mm->page_table_lock);
3086         *nr_pages = remainder;
3087         *position = vaddr;
3088
3089         return i ? i : -EFAULT;
3090 }
3091
3092 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3093                 unsigned long address, unsigned long end, pgprot_t newprot)
3094 {
3095         struct mm_struct *mm = vma->vm_mm;
3096         unsigned long start = address;
3097         pte_t *ptep;
3098         pte_t pte;
3099         struct hstate *h = hstate_vma(vma);
3100         unsigned long pages = 0;
3101
3102         BUG_ON(address >= end);
3103         flush_cache_range(vma, address, end);
3104
3105         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3106         spin_lock(&mm->page_table_lock);
3107         for (; address < end; address += huge_page_size(h)) {
3108                 ptep = huge_pte_offset(mm, address);
3109                 if (!ptep)
3110                         continue;
3111                 if (huge_pmd_unshare(mm, &address, ptep)) {
3112                         pages++;
3113                         continue;
3114                 }
3115                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3116                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3117                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3118                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3119                         set_huge_pte_at(mm, address, ptep, pte);
3120                         pages++;
3121                 }
3122         }
3123         spin_unlock(&mm->page_table_lock);
3124         /*
3125          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3126          * may have cleared our pud entry and done put_page on the page table:
3127          * once we release i_mmap_mutex, another task can do the final put_page
3128          * and that page table be reused and filled with junk.
3129          */
3130         flush_tlb_range(vma, start, end);
3131         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3132
3133         return pages << h->order;
3134 }
3135
3136 int hugetlb_reserve_pages(struct inode *inode,
3137                                         long from, long to,
3138                                         struct vm_area_struct *vma,
3139                                         vm_flags_t vm_flags)
3140 {
3141         long ret, chg;
3142         struct hstate *h = hstate_inode(inode);
3143         struct hugepage_subpool *spool = subpool_inode(inode);
3144
3145         /*
3146          * Only apply hugepage reservation if asked. At fault time, an
3147          * attempt will be made for VM_NORESERVE to allocate a page
3148          * without using reserves
3149          */
3150         if (vm_flags & VM_NORESERVE)
3151                 return 0;
3152
3153         /*
3154          * Shared mappings base their reservation on the number of pages that
3155          * are already allocated on behalf of the file. Private mappings need
3156          * to reserve the full area even if read-only as mprotect() may be
3157          * called to make the mapping read-write. Assume !vma is a shm mapping
3158          */
3159         if (!vma || vma->vm_flags & VM_MAYSHARE)
3160                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3161         else {
3162                 struct resv_map *resv_map = resv_map_alloc();
3163                 if (!resv_map)
3164                         return -ENOMEM;
3165
3166                 chg = to - from;
3167
3168                 set_vma_resv_map(vma, resv_map);
3169                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3170         }
3171
3172         if (chg < 0) {
3173                 ret = chg;
3174                 goto out_err;
3175         }
3176
3177         /* There must be enough pages in the subpool for the mapping */
3178         if (hugepage_subpool_get_pages(spool, chg)) {
3179                 ret = -ENOSPC;
3180                 goto out_err;
3181         }
3182
3183         /*
3184          * Check enough hugepages are available for the reservation.
3185          * Hand the pages back to the subpool if there are not
3186          */
3187         ret = hugetlb_acct_memory(h, chg);
3188         if (ret < 0) {
3189                 hugepage_subpool_put_pages(spool, chg);
3190                 goto out_err;
3191         }
3192
3193         /*
3194          * Account for the reservations made. Shared mappings record regions
3195          * that have reservations as they are shared by multiple VMAs.
3196          * When the last VMA disappears, the region map says how much
3197          * the reservation was and the page cache tells how much of
3198          * the reservation was consumed. Private mappings are per-VMA and
3199          * only the consumed reservations are tracked. When the VMA
3200          * disappears, the original reservation is the VMA size and the
3201          * consumed reservations are stored in the map. Hence, nothing
3202          * else has to be done for private mappings here
3203          */
3204         if (!vma || vma->vm_flags & VM_MAYSHARE)
3205                 region_add(&inode->i_mapping->private_list, from, to);
3206         return 0;
3207 out_err:
3208         if (vma)
3209                 resv_map_put(vma);
3210         return ret;
3211 }
3212
3213 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3214 {
3215         struct hstate *h = hstate_inode(inode);
3216         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3217         struct hugepage_subpool *spool = subpool_inode(inode);
3218
3219         spin_lock(&inode->i_lock);
3220         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3221         spin_unlock(&inode->i_lock);
3222
3223         hugepage_subpool_put_pages(spool, (chg - freed));
3224         hugetlb_acct_memory(h, -(chg - freed));
3225 }
3226
3227 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3228 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3229                                 struct vm_area_struct *vma,
3230                                 unsigned long addr, pgoff_t idx)
3231 {
3232         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3233                                 svma->vm_start;
3234         unsigned long sbase = saddr & PUD_MASK;
3235         unsigned long s_end = sbase + PUD_SIZE;
3236
3237         /* Allow segments to share if only one is marked locked */
3238         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3239         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3240
3241         /*
3242          * match the virtual addresses, permission and the alignment of the
3243          * page table page.
3244          */
3245         if (pmd_index(addr) != pmd_index(saddr) ||
3246             vm_flags != svm_flags ||
3247             sbase < svma->vm_start || svma->vm_end < s_end)
3248                 return 0;
3249
3250         return saddr;
3251 }
3252
3253 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3254 {
3255         unsigned long base = addr & PUD_MASK;
3256         unsigned long end = base + PUD_SIZE;
3257
3258         /*
3259          * check on proper vm_flags and page table alignment
3260          */
3261         if (vma->vm_flags & VM_MAYSHARE &&
3262             vma->vm_start <= base && end <= vma->vm_end)
3263                 return 1;
3264         return 0;
3265 }
3266
3267 /*
3268  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3269  * and returns the corresponding pte. While this is not necessary for the
3270  * !shared pmd case because we can allocate the pmd later as well, it makes the
3271  * code much cleaner. pmd allocation is essential for the shared case because
3272  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3273  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3274  * bad pmd for sharing.
3275  */
3276 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3277 {
3278         struct vm_area_struct *vma = find_vma(mm, addr);
3279         struct address_space *mapping = vma->vm_file->f_mapping;
3280         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3281                         vma->vm_pgoff;
3282         struct vm_area_struct *svma;
3283         unsigned long saddr;
3284         pte_t *spte = NULL;
3285         pte_t *pte;
3286
3287         if (!vma_shareable(vma, addr))
3288                 return (pte_t *)pmd_alloc(mm, pud, addr);
3289
3290         mutex_lock(&mapping->i_mmap_mutex);
3291         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3292                 if (svma == vma)
3293                         continue;
3294
3295                 saddr = page_table_shareable(svma, vma, addr, idx);
3296                 if (saddr) {
3297                         spte = huge_pte_offset(svma->vm_mm, saddr);
3298                         if (spte) {
3299                                 get_page(virt_to_page(spte));
3300                                 break;
3301                         }
3302                 }
3303         }
3304
3305         if (!spte)
3306                 goto out;
3307
3308         spin_lock(&mm->page_table_lock);
3309         if (pud_none(*pud))
3310                 pud_populate(mm, pud,
3311                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3312         else
3313                 put_page(virt_to_page(spte));
3314         spin_unlock(&mm->page_table_lock);
3315 out:
3316         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3317         mutex_unlock(&mapping->i_mmap_mutex);
3318         return pte;
3319 }
3320
3321 /*
3322  * unmap huge page backed by shared pte.
3323  *
3324  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3325  * indicated by page_count > 1, unmap is achieved by clearing pud and
3326  * decrementing the ref count. If count == 1, the pte page is not shared.
3327  *
3328  * called with vma->vm_mm->page_table_lock held.
3329  *
3330  * returns: 1 successfully unmapped a shared pte page
3331  *          0 the underlying pte page is not shared, or it is the last user
3332  */
3333 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3334 {
3335         pgd_t *pgd = pgd_offset(mm, *addr);
3336         pud_t *pud = pud_offset(pgd, *addr);
3337
3338         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3339         if (page_count(virt_to_page(ptep)) == 1)
3340                 return 0;
3341
3342         pud_clear(pud);
3343         put_page(virt_to_page(ptep));
3344         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3345         return 1;
3346 }
3347 #define want_pmd_share()        (1)
3348 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3349 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3350 {
3351         return NULL;
3352 }
3353 #define want_pmd_share()        (0)
3354 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3355
3356 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3357 pte_t *huge_pte_alloc(struct mm_struct *mm,
3358                         unsigned long addr, unsigned long sz)
3359 {
3360         pgd_t *pgd;
3361         pud_t *pud;
3362         pte_t *pte = NULL;
3363
3364         pgd = pgd_offset(mm, addr);
3365         pud = pud_alloc(mm, pgd, addr);
3366         if (pud) {
3367                 if (sz == PUD_SIZE) {
3368                         pte = (pte_t *)pud;
3369                 } else {
3370                         BUG_ON(sz != PMD_SIZE);
3371                         if (want_pmd_share() && pud_none(*pud))
3372                                 pte = huge_pmd_share(mm, addr, pud);
3373                         else
3374                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3375                 }
3376         }
3377         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3378
3379         return pte;
3380 }
3381
3382 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3383 {
3384         pgd_t *pgd;
3385         pud_t *pud;
3386         pmd_t *pmd = NULL;
3387
3388         pgd = pgd_offset(mm, addr);
3389         if (pgd_present(*pgd)) {
3390                 pud = pud_offset(pgd, addr);
3391                 if (pud_present(*pud)) {
3392                         if (pud_huge(*pud))
3393                                 return (pte_t *)pud;
3394                         pmd = pmd_offset(pud, addr);
3395                 }
3396         }
3397         return (pte_t *) pmd;
3398 }
3399
3400 struct page *
3401 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3402                 pmd_t *pmd, int write)
3403 {
3404         struct page *page;
3405
3406         page = pte_page(*(pte_t *)pmd);
3407         if (page)
3408                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3409         return page;
3410 }
3411
3412 struct page *
3413 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3414                 pud_t *pud, int write)
3415 {
3416         struct page *page;
3417
3418         page = pte_page(*(pte_t *)pud);
3419         if (page)
3420                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3421         return page;
3422 }
3423
3424 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3425
3426 /* Can be overriden by architectures */
3427 __attribute__((weak)) struct page *
3428 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3429                pud_t *pud, int write)
3430 {
3431         BUG();
3432         return NULL;
3433 }
3434
3435 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3436
3437 #ifdef CONFIG_MEMORY_FAILURE
3438
3439 /* Should be called in hugetlb_lock */
3440 static int is_hugepage_on_freelist(struct page *hpage)
3441 {
3442         struct page *page;
3443         struct page *tmp;
3444         struct hstate *h = page_hstate(hpage);
3445         int nid = page_to_nid(hpage);
3446
3447         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3448                 if (page == hpage)
3449                         return 1;
3450         return 0;
3451 }
3452
3453 /*
3454  * This function is called from memory failure code.
3455  * Assume the caller holds page lock of the head page.
3456  */
3457 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3458 {
3459         struct hstate *h = page_hstate(hpage);
3460         int nid = page_to_nid(hpage);
3461         int ret = -EBUSY;
3462
3463         spin_lock(&hugetlb_lock);
3464         if (is_hugepage_on_freelist(hpage)) {
3465                 /*
3466                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3467                  * but dangling hpage->lru can trigger list-debug warnings
3468                  * (this happens when we call unpoison_memory() on it),
3469                  * so let it point to itself with list_del_init().
3470                  */
3471                 list_del_init(&hpage->lru);
3472                 set_page_refcounted(hpage);
3473                 h->free_huge_pages--;
3474                 h->free_huge_pages_node[nid]--;
3475                 ret = 0;
3476         }
3477         spin_unlock(&hugetlb_lock);
3478         return ret;
3479 }
3480 #endif
3481
3482 bool isolate_huge_page(struct page *page, struct list_head *list)
3483 {
3484         VM_BUG_ON(!PageHead(page));
3485         if (!get_page_unless_zero(page))
3486                 return false;
3487         spin_lock(&hugetlb_lock);
3488         list_move_tail(&page->lru, list);
3489         spin_unlock(&hugetlb_lock);
3490         return true;
3491 }
3492
3493 void putback_active_hugepage(struct page *page)
3494 {
3495         VM_BUG_ON(!PageHead(page));
3496         spin_lock(&hugetlb_lock);
3497         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3498         spin_unlock(&hugetlb_lock);
3499         put_page(page);
3500 }
3501
3502 bool is_hugepage_active(struct page *page)
3503 {
3504         VM_BUG_ON(!PageHuge(page));
3505         /*
3506          * This function can be called for a tail page because the caller,
3507          * scan_movable_pages, scans through a given pfn-range which typically
3508          * covers one memory block. In systems using gigantic hugepage (1GB
3509          * for x86_64,) a hugepage is larger than a memory block, and we don't
3510          * support migrating such large hugepages for now, so return false
3511          * when called for tail pages.
3512          */
3513         if (PageTail(page))
3514                 return false;
3515         /*
3516          * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3517          * so we should return false for them.
3518          */
3519         if (unlikely(PageHWPoison(page)))
3520                 return false;
3521         return page_count(page) > 0;
3522 }