]> git.karo-electronics.de Git - karo-tx-linux.git/blob - mm/swap.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / mm / swap.c
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 #include <linux/hugetlb.h>
35
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/pagemap.h>
40
41 /* How many pages do we try to swap or page in/out together? */
42 int page_cluster;
43
44 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
45 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
46 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
47
48 /*
49  * This path almost never happens for VM activity - pages are normally
50  * freed via pagevecs.  But it gets used by networking.
51  */
52 static void __page_cache_release(struct page *page)
53 {
54         if (PageLRU(page)) {
55                 struct zone *zone = page_zone(page);
56                 struct lruvec *lruvec;
57                 unsigned long flags;
58
59                 spin_lock_irqsave(&zone->lru_lock, flags);
60                 lruvec = mem_cgroup_page_lruvec(page, zone);
61                 VM_BUG_ON(!PageLRU(page));
62                 __ClearPageLRU(page);
63                 del_page_from_lru_list(page, lruvec, page_off_lru(page));
64                 spin_unlock_irqrestore(&zone->lru_lock, flags);
65         }
66 }
67
68 static void __put_single_page(struct page *page)
69 {
70         __page_cache_release(page);
71         free_hot_cold_page(page, 0);
72 }
73
74 static void __put_compound_page(struct page *page)
75 {
76         compound_page_dtor *dtor;
77
78         __page_cache_release(page);
79         dtor = get_compound_page_dtor(page);
80         (*dtor)(page);
81 }
82
83 static void put_compound_page(struct page *page)
84 {
85         /*
86          * hugetlbfs pages cannot be split from under us.  If this is a
87          * hugetlbfs page, check refcount on head page and release the page if
88          * the refcount becomes zero.
89          */
90         if (PageHuge(page)) {
91                 page = compound_head(page);
92                 if (put_page_testzero(page))
93                         __put_compound_page(page);
94
95                 return;
96         }
97
98         if (unlikely(PageTail(page))) {
99                 /* __split_huge_page_refcount can run under us */
100                 struct page *page_head = compound_trans_head(page);
101
102                 if (likely(page != page_head &&
103                            get_page_unless_zero(page_head))) {
104                         unsigned long flags;
105
106                         /*
107                          * THP can not break up slab pages so avoid taking
108                          * compound_lock().  Slab performs non-atomic bit ops
109                          * on page->flags for better performance.  In particular
110                          * slab_unlock() in slub used to be a hot path.  It is
111                          * still hot on arches that do not support
112                          * this_cpu_cmpxchg_double().
113                          */
114                         if (PageSlab(page_head)) {
115                                 if (PageTail(page)) {
116                                         if (put_page_testzero(page_head))
117                                                 VM_BUG_ON(1);
118
119                                         atomic_dec(&page->_mapcount);
120                                         goto skip_lock_tail;
121                                 } else
122                                         goto skip_lock;
123                         }
124                         /*
125                          * page_head wasn't a dangling pointer but it
126                          * may not be a head page anymore by the time
127                          * we obtain the lock. That is ok as long as it
128                          * can't be freed from under us.
129                          */
130                         flags = compound_lock_irqsave(page_head);
131                         if (unlikely(!PageTail(page))) {
132                                 /* __split_huge_page_refcount run before us */
133                                 compound_unlock_irqrestore(page_head, flags);
134 skip_lock:
135                                 if (put_page_testzero(page_head))
136                                         __put_single_page(page_head);
137 out_put_single:
138                                 if (put_page_testzero(page))
139                                         __put_single_page(page);
140                                 return;
141                         }
142                         VM_BUG_ON(page_head != page->first_page);
143                         /*
144                          * We can release the refcount taken by
145                          * get_page_unless_zero() now that
146                          * __split_huge_page_refcount() is blocked on
147                          * the compound_lock.
148                          */
149                         if (put_page_testzero(page_head))
150                                 VM_BUG_ON(1);
151                         /* __split_huge_page_refcount will wait now */
152                         VM_BUG_ON(page_mapcount(page) <= 0);
153                         atomic_dec(&page->_mapcount);
154                         VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
155                         VM_BUG_ON(atomic_read(&page->_count) != 0);
156                         compound_unlock_irqrestore(page_head, flags);
157
158 skip_lock_tail:
159                         if (put_page_testzero(page_head)) {
160                                 if (PageHead(page_head))
161                                         __put_compound_page(page_head);
162                                 else
163                                         __put_single_page(page_head);
164                         }
165                 } else {
166                         /* page_head is a dangling pointer */
167                         VM_BUG_ON(PageTail(page));
168                         goto out_put_single;
169                 }
170         } else if (put_page_testzero(page)) {
171                 if (PageHead(page))
172                         __put_compound_page(page);
173                 else
174                         __put_single_page(page);
175         }
176 }
177
178 void put_page(struct page *page)
179 {
180         if (unlikely(PageCompound(page)))
181                 put_compound_page(page);
182         else if (put_page_testzero(page))
183                 __put_single_page(page);
184 }
185 EXPORT_SYMBOL(put_page);
186
187 /*
188  * This function is exported but must not be called by anything other
189  * than get_page(). It implements the slow path of get_page().
190  */
191 bool __get_page_tail(struct page *page)
192 {
193         /*
194          * This takes care of get_page() if run on a tail page
195          * returned by one of the get_user_pages/follow_page variants.
196          * get_user_pages/follow_page itself doesn't need the compound
197          * lock because it runs __get_page_tail_foll() under the
198          * proper PT lock that already serializes against
199          * split_huge_page().
200          */
201         bool got = false;
202         struct page *page_head;
203
204         /*
205          * If this is a hugetlbfs page it cannot be split under us.  Simply
206          * increment refcount for the head page.
207          */
208         if (PageHuge(page)) {
209                 page_head = compound_head(page);
210                 atomic_inc(&page_head->_count);
211                 got = true;
212         } else {
213                 unsigned long flags;
214
215                 page_head = compound_trans_head(page);
216                 if (likely(page != page_head &&
217                                         get_page_unless_zero(page_head))) {
218
219                         /* Ref to put_compound_page() comment. */
220                         if (PageSlab(page_head)) {
221                                 if (likely(PageTail(page))) {
222                                         __get_page_tail_foll(page, false);
223                                         return true;
224                                 } else {
225                                         put_page(page_head);
226                                         return false;
227                                 }
228                         }
229
230                         /*
231                          * page_head wasn't a dangling pointer but it
232                          * may not be a head page anymore by the time
233                          * we obtain the lock. That is ok as long as it
234                          * can't be freed from under us.
235                          */
236                         flags = compound_lock_irqsave(page_head);
237                         /* here __split_huge_page_refcount won't run anymore */
238                         if (likely(PageTail(page))) {
239                                 __get_page_tail_foll(page, false);
240                                 got = true;
241                         }
242                         compound_unlock_irqrestore(page_head, flags);
243                         if (unlikely(!got))
244                                 put_page(page_head);
245                 }
246         }
247         return got;
248 }
249 EXPORT_SYMBOL(__get_page_tail);
250
251 /**
252  * put_pages_list() - release a list of pages
253  * @pages: list of pages threaded on page->lru
254  *
255  * Release a list of pages which are strung together on page.lru.  Currently
256  * used by read_cache_pages() and related error recovery code.
257  */
258 void put_pages_list(struct list_head *pages)
259 {
260         while (!list_empty(pages)) {
261                 struct page *victim;
262
263                 victim = list_entry(pages->prev, struct page, lru);
264                 list_del(&victim->lru);
265                 page_cache_release(victim);
266         }
267 }
268 EXPORT_SYMBOL(put_pages_list);
269
270 /*
271  * get_kernel_pages() - pin kernel pages in memory
272  * @kiov:       An array of struct kvec structures
273  * @nr_segs:    number of segments to pin
274  * @write:      pinning for read/write, currently ignored
275  * @pages:      array that receives pointers to the pages pinned.
276  *              Should be at least nr_segs long.
277  *
278  * Returns number of pages pinned. This may be fewer than the number
279  * requested. If nr_pages is 0 or negative, returns 0. If no pages
280  * were pinned, returns -errno. Each page returned must be released
281  * with a put_page() call when it is finished with.
282  */
283 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
284                 struct page **pages)
285 {
286         int seg;
287
288         for (seg = 0; seg < nr_segs; seg++) {
289                 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
290                         return seg;
291
292                 pages[seg] = kmap_to_page(kiov[seg].iov_base);
293                 page_cache_get(pages[seg]);
294         }
295
296         return seg;
297 }
298 EXPORT_SYMBOL_GPL(get_kernel_pages);
299
300 /*
301  * get_kernel_page() - pin a kernel page in memory
302  * @start:      starting kernel address
303  * @write:      pinning for read/write, currently ignored
304  * @pages:      array that receives pointer to the page pinned.
305  *              Must be at least nr_segs long.
306  *
307  * Returns 1 if page is pinned. If the page was not pinned, returns
308  * -errno. The page returned must be released with a put_page() call
309  * when it is finished with.
310  */
311 int get_kernel_page(unsigned long start, int write, struct page **pages)
312 {
313         const struct kvec kiov = {
314                 .iov_base = (void *)start,
315                 .iov_len = PAGE_SIZE
316         };
317
318         return get_kernel_pages(&kiov, 1, write, pages);
319 }
320 EXPORT_SYMBOL_GPL(get_kernel_page);
321
322 static void pagevec_lru_move_fn(struct pagevec *pvec,
323         void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
324         void *arg)
325 {
326         int i;
327         struct zone *zone = NULL;
328         struct lruvec *lruvec;
329         unsigned long flags = 0;
330
331         for (i = 0; i < pagevec_count(pvec); i++) {
332                 struct page *page = pvec->pages[i];
333                 struct zone *pagezone = page_zone(page);
334
335                 if (pagezone != zone) {
336                         if (zone)
337                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
338                         zone = pagezone;
339                         spin_lock_irqsave(&zone->lru_lock, flags);
340                 }
341
342                 lruvec = mem_cgroup_page_lruvec(page, zone);
343                 (*move_fn)(page, lruvec, arg);
344         }
345         if (zone)
346                 spin_unlock_irqrestore(&zone->lru_lock, flags);
347         release_pages(pvec->pages, pvec->nr, pvec->cold);
348         pagevec_reinit(pvec);
349 }
350
351 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
352                                  void *arg)
353 {
354         int *pgmoved = arg;
355
356         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
357                 enum lru_list lru = page_lru_base_type(page);
358                 list_move_tail(&page->lru, &lruvec->lists[lru]);
359                 (*pgmoved)++;
360         }
361 }
362
363 /*
364  * pagevec_move_tail() must be called with IRQ disabled.
365  * Otherwise this may cause nasty races.
366  */
367 static void pagevec_move_tail(struct pagevec *pvec)
368 {
369         int pgmoved = 0;
370
371         pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
372         __count_vm_events(PGROTATED, pgmoved);
373 }
374
375 /*
376  * Writeback is about to end against a page which has been marked for immediate
377  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
378  * inactive list.
379  */
380 void rotate_reclaimable_page(struct page *page)
381 {
382         if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
383             !PageUnevictable(page) && PageLRU(page)) {
384                 struct pagevec *pvec;
385                 unsigned long flags;
386
387                 page_cache_get(page);
388                 local_irq_save(flags);
389                 pvec = &__get_cpu_var(lru_rotate_pvecs);
390                 if (!pagevec_add(pvec, page))
391                         pagevec_move_tail(pvec);
392                 local_irq_restore(flags);
393         }
394 }
395
396 static void update_page_reclaim_stat(struct lruvec *lruvec,
397                                      int file, int rotated)
398 {
399         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
400
401         reclaim_stat->recent_scanned[file]++;
402         if (rotated)
403                 reclaim_stat->recent_rotated[file]++;
404 }
405
406 static void __activate_page(struct page *page, struct lruvec *lruvec,
407                             void *arg)
408 {
409         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
410                 int file = page_is_file_cache(page);
411                 int lru = page_lru_base_type(page);
412
413                 del_page_from_lru_list(page, lruvec, lru);
414                 SetPageActive(page);
415                 lru += LRU_ACTIVE;
416                 add_page_to_lru_list(page, lruvec, lru);
417                 trace_mm_lru_activate(page, page_to_pfn(page));
418
419                 __count_vm_event(PGACTIVATE);
420                 update_page_reclaim_stat(lruvec, file, 1);
421         }
422 }
423
424 #ifdef CONFIG_SMP
425 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
426
427 static void activate_page_drain(int cpu)
428 {
429         struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
430
431         if (pagevec_count(pvec))
432                 pagevec_lru_move_fn(pvec, __activate_page, NULL);
433 }
434
435 static bool need_activate_page_drain(int cpu)
436 {
437         return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
438 }
439
440 void activate_page(struct page *page)
441 {
442         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
443                 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
444
445                 page_cache_get(page);
446                 if (!pagevec_add(pvec, page))
447                         pagevec_lru_move_fn(pvec, __activate_page, NULL);
448                 put_cpu_var(activate_page_pvecs);
449         }
450 }
451
452 #else
453 static inline void activate_page_drain(int cpu)
454 {
455 }
456
457 static bool need_activate_page_drain(int cpu)
458 {
459         return false;
460 }
461
462 void activate_page(struct page *page)
463 {
464         struct zone *zone = page_zone(page);
465
466         spin_lock_irq(&zone->lru_lock);
467         __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
468         spin_unlock_irq(&zone->lru_lock);
469 }
470 #endif
471
472 static void __lru_cache_activate_page(struct page *page)
473 {
474         struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
475         int i;
476
477         /*
478          * Search backwards on the optimistic assumption that the page being
479          * activated has just been added to this pagevec. Note that only
480          * the local pagevec is examined as a !PageLRU page could be in the
481          * process of being released, reclaimed, migrated or on a remote
482          * pagevec that is currently being drained. Furthermore, marking
483          * a remote pagevec's page PageActive potentially hits a race where
484          * a page is marked PageActive just after it is added to the inactive
485          * list causing accounting errors and BUG_ON checks to trigger.
486          */
487         for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
488                 struct page *pagevec_page = pvec->pages[i];
489
490                 if (pagevec_page == page) {
491                         SetPageActive(page);
492                         break;
493                 }
494         }
495
496         put_cpu_var(lru_add_pvec);
497 }
498
499 /*
500  * Mark a page as having seen activity.
501  *
502  * inactive,unreferenced        ->      inactive,referenced
503  * inactive,referenced          ->      active,unreferenced
504  * active,unreferenced          ->      active,referenced
505  */
506 void mark_page_accessed(struct page *page)
507 {
508         if (!PageActive(page) && !PageUnevictable(page) &&
509                         PageReferenced(page)) {
510
511                 /*
512                  * If the page is on the LRU, queue it for activation via
513                  * activate_page_pvecs. Otherwise, assume the page is on a
514                  * pagevec, mark it active and it'll be moved to the active
515                  * LRU on the next drain.
516                  */
517                 if (PageLRU(page))
518                         activate_page(page);
519                 else
520                         __lru_cache_activate_page(page);
521                 ClearPageReferenced(page);
522         } else if (!PageReferenced(page)) {
523                 SetPageReferenced(page);
524         }
525 }
526 EXPORT_SYMBOL(mark_page_accessed);
527
528 /*
529  * Queue the page for addition to the LRU via pagevec. The decision on whether
530  * to add the page to the [in]active [file|anon] list is deferred until the
531  * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
532  * have the page added to the active list using mark_page_accessed().
533  */
534 void __lru_cache_add(struct page *page)
535 {
536         struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
537
538         page_cache_get(page);
539         if (!pagevec_space(pvec))
540                 __pagevec_lru_add(pvec);
541         pagevec_add(pvec, page);
542         put_cpu_var(lru_add_pvec);
543 }
544 EXPORT_SYMBOL(__lru_cache_add);
545
546 /**
547  * lru_cache_add - add a page to a page list
548  * @page: the page to be added to the LRU.
549  */
550 void lru_cache_add(struct page *page)
551 {
552         VM_BUG_ON(PageActive(page) && PageUnevictable(page));
553         VM_BUG_ON(PageLRU(page));
554         __lru_cache_add(page);
555 }
556
557 /**
558  * add_page_to_unevictable_list - add a page to the unevictable list
559  * @page:  the page to be added to the unevictable list
560  *
561  * Add page directly to its zone's unevictable list.  To avoid races with
562  * tasks that might be making the page evictable, through eg. munlock,
563  * munmap or exit, while it's not on the lru, we want to add the page
564  * while it's locked or otherwise "invisible" to other tasks.  This is
565  * difficult to do when using the pagevec cache, so bypass that.
566  */
567 void add_page_to_unevictable_list(struct page *page)
568 {
569         struct zone *zone = page_zone(page);
570         struct lruvec *lruvec;
571
572         spin_lock_irq(&zone->lru_lock);
573         lruvec = mem_cgroup_page_lruvec(page, zone);
574         ClearPageActive(page);
575         SetPageUnevictable(page);
576         SetPageLRU(page);
577         add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
578         spin_unlock_irq(&zone->lru_lock);
579 }
580
581 /*
582  * If the page can not be invalidated, it is moved to the
583  * inactive list to speed up its reclaim.  It is moved to the
584  * head of the list, rather than the tail, to give the flusher
585  * threads some time to write it out, as this is much more
586  * effective than the single-page writeout from reclaim.
587  *
588  * If the page isn't page_mapped and dirty/writeback, the page
589  * could reclaim asap using PG_reclaim.
590  *
591  * 1. active, mapped page -> none
592  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
593  * 3. inactive, mapped page -> none
594  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
595  * 5. inactive, clean -> inactive, tail
596  * 6. Others -> none
597  *
598  * In 4, why it moves inactive's head, the VM expects the page would
599  * be write it out by flusher threads as this is much more effective
600  * than the single-page writeout from reclaim.
601  */
602 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
603                               void *arg)
604 {
605         int lru, file;
606         bool active;
607
608         if (!PageLRU(page))
609                 return;
610
611         if (PageUnevictable(page))
612                 return;
613
614         /* Some processes are using the page */
615         if (page_mapped(page))
616                 return;
617
618         active = PageActive(page);
619         file = page_is_file_cache(page);
620         lru = page_lru_base_type(page);
621
622         del_page_from_lru_list(page, lruvec, lru + active);
623         ClearPageActive(page);
624         ClearPageReferenced(page);
625         add_page_to_lru_list(page, lruvec, lru);
626
627         if (PageWriteback(page) || PageDirty(page)) {
628                 /*
629                  * PG_reclaim could be raced with end_page_writeback
630                  * It can make readahead confusing.  But race window
631                  * is _really_ small and  it's non-critical problem.
632                  */
633                 SetPageReclaim(page);
634         } else {
635                 /*
636                  * The page's writeback ends up during pagevec
637                  * We moves tha page into tail of inactive.
638                  */
639                 list_move_tail(&page->lru, &lruvec->lists[lru]);
640                 __count_vm_event(PGROTATED);
641         }
642
643         if (active)
644                 __count_vm_event(PGDEACTIVATE);
645         update_page_reclaim_stat(lruvec, file, 0);
646 }
647
648 /*
649  * Drain pages out of the cpu's pagevecs.
650  * Either "cpu" is the current CPU, and preemption has already been
651  * disabled; or "cpu" is being hot-unplugged, and is already dead.
652  */
653 void lru_add_drain_cpu(int cpu)
654 {
655         struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
656
657         if (pagevec_count(pvec))
658                 __pagevec_lru_add(pvec);
659
660         pvec = &per_cpu(lru_rotate_pvecs, cpu);
661         if (pagevec_count(pvec)) {
662                 unsigned long flags;
663
664                 /* No harm done if a racing interrupt already did this */
665                 local_irq_save(flags);
666                 pagevec_move_tail(pvec);
667                 local_irq_restore(flags);
668         }
669
670         pvec = &per_cpu(lru_deactivate_pvecs, cpu);
671         if (pagevec_count(pvec))
672                 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
673
674         activate_page_drain(cpu);
675 }
676
677 /**
678  * deactivate_page - forcefully deactivate a page
679  * @page: page to deactivate
680  *
681  * This function hints the VM that @page is a good reclaim candidate,
682  * for example if its invalidation fails due to the page being dirty
683  * or under writeback.
684  */
685 void deactivate_page(struct page *page)
686 {
687         /*
688          * In a workload with many unevictable page such as mprotect, unevictable
689          * page deactivation for accelerating reclaim is pointless.
690          */
691         if (PageUnevictable(page))
692                 return;
693
694         if (likely(get_page_unless_zero(page))) {
695                 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
696
697                 if (!pagevec_add(pvec, page))
698                         pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
699                 put_cpu_var(lru_deactivate_pvecs);
700         }
701 }
702
703 void lru_add_drain(void)
704 {
705         lru_add_drain_cpu(get_cpu());
706         put_cpu();
707 }
708
709 static void lru_add_drain_per_cpu(struct work_struct *dummy)
710 {
711         lru_add_drain();
712 }
713
714 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
715
716 void lru_add_drain_all(void)
717 {
718         static DEFINE_MUTEX(lock);
719         static struct cpumask has_work;
720         int cpu;
721
722         mutex_lock(&lock);
723         get_online_cpus();
724         cpumask_clear(&has_work);
725
726         for_each_online_cpu(cpu) {
727                 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
728
729                 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
730                     pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
731                     pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
732                     need_activate_page_drain(cpu)) {
733                         INIT_WORK(work, lru_add_drain_per_cpu);
734                         schedule_work_on(cpu, work);
735                         cpumask_set_cpu(cpu, &has_work);
736                 }
737         }
738
739         for_each_cpu(cpu, &has_work)
740                 flush_work(&per_cpu(lru_add_drain_work, cpu));
741
742         put_online_cpus();
743         mutex_unlock(&lock);
744 }
745
746 /*
747  * Batched page_cache_release().  Decrement the reference count on all the
748  * passed pages.  If it fell to zero then remove the page from the LRU and
749  * free it.
750  *
751  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
752  * for the remainder of the operation.
753  *
754  * The locking in this function is against shrink_inactive_list(): we recheck
755  * the page count inside the lock to see whether shrink_inactive_list()
756  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
757  * will free it.
758  */
759 void release_pages(struct page **pages, int nr, int cold)
760 {
761         int i;
762         LIST_HEAD(pages_to_free);
763         struct zone *zone = NULL;
764         struct lruvec *lruvec;
765         unsigned long uninitialized_var(flags);
766
767         for (i = 0; i < nr; i++) {
768                 struct page *page = pages[i];
769
770                 if (unlikely(PageCompound(page))) {
771                         if (zone) {
772                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
773                                 zone = NULL;
774                         }
775                         put_compound_page(page);
776                         continue;
777                 }
778
779                 if (!put_page_testzero(page))
780                         continue;
781
782                 if (PageLRU(page)) {
783                         struct zone *pagezone = page_zone(page);
784
785                         if (pagezone != zone) {
786                                 if (zone)
787                                         spin_unlock_irqrestore(&zone->lru_lock,
788                                                                         flags);
789                                 zone = pagezone;
790                                 spin_lock_irqsave(&zone->lru_lock, flags);
791                         }
792
793                         lruvec = mem_cgroup_page_lruvec(page, zone);
794                         VM_BUG_ON(!PageLRU(page));
795                         __ClearPageLRU(page);
796                         del_page_from_lru_list(page, lruvec, page_off_lru(page));
797                 }
798
799                 /* Clear Active bit in case of parallel mark_page_accessed */
800                 ClearPageActive(page);
801
802                 list_add(&page->lru, &pages_to_free);
803         }
804         if (zone)
805                 spin_unlock_irqrestore(&zone->lru_lock, flags);
806
807         free_hot_cold_page_list(&pages_to_free, cold);
808 }
809 EXPORT_SYMBOL(release_pages);
810
811 /*
812  * The pages which we're about to release may be in the deferred lru-addition
813  * queues.  That would prevent them from really being freed right now.  That's
814  * OK from a correctness point of view but is inefficient - those pages may be
815  * cache-warm and we want to give them back to the page allocator ASAP.
816  *
817  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
818  * and __pagevec_lru_add_active() call release_pages() directly to avoid
819  * mutual recursion.
820  */
821 void __pagevec_release(struct pagevec *pvec)
822 {
823         lru_add_drain();
824         release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
825         pagevec_reinit(pvec);
826 }
827 EXPORT_SYMBOL(__pagevec_release);
828
829 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
830 /* used by __split_huge_page_refcount() */
831 void lru_add_page_tail(struct page *page, struct page *page_tail,
832                        struct lruvec *lruvec, struct list_head *list)
833 {
834         const int file = 0;
835
836         VM_BUG_ON(!PageHead(page));
837         VM_BUG_ON(PageCompound(page_tail));
838         VM_BUG_ON(PageLRU(page_tail));
839         VM_BUG_ON(NR_CPUS != 1 &&
840                   !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
841
842         if (!list)
843                 SetPageLRU(page_tail);
844
845         if (likely(PageLRU(page)))
846                 list_add_tail(&page_tail->lru, &page->lru);
847         else if (list) {
848                 /* page reclaim is reclaiming a huge page */
849                 get_page(page_tail);
850                 list_add_tail(&page_tail->lru, list);
851         } else {
852                 struct list_head *list_head;
853                 /*
854                  * Head page has not yet been counted, as an hpage,
855                  * so we must account for each subpage individually.
856                  *
857                  * Use the standard add function to put page_tail on the list,
858                  * but then correct its position so they all end up in order.
859                  */
860                 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
861                 list_head = page_tail->lru.prev;
862                 list_move_tail(&page_tail->lru, list_head);
863         }
864
865         if (!PageUnevictable(page))
866                 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
867 }
868 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
869
870 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
871                                  void *arg)
872 {
873         int file = page_is_file_cache(page);
874         int active = PageActive(page);
875         enum lru_list lru = page_lru(page);
876
877         VM_BUG_ON(PageLRU(page));
878
879         SetPageLRU(page);
880         add_page_to_lru_list(page, lruvec, lru);
881         update_page_reclaim_stat(lruvec, file, active);
882         trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
883 }
884
885 /*
886  * Add the passed pages to the LRU, then drop the caller's refcount
887  * on them.  Reinitialises the caller's pagevec.
888  */
889 void __pagevec_lru_add(struct pagevec *pvec)
890 {
891         pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
892 }
893 EXPORT_SYMBOL(__pagevec_lru_add);
894
895 /**
896  * pagevec_lookup - gang pagecache lookup
897  * @pvec:       Where the resulting pages are placed
898  * @mapping:    The address_space to search
899  * @start:      The starting page index
900  * @nr_pages:   The maximum number of pages
901  *
902  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
903  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
904  * reference against the pages in @pvec.
905  *
906  * The search returns a group of mapping-contiguous pages with ascending
907  * indexes.  There may be holes in the indices due to not-present pages.
908  *
909  * pagevec_lookup() returns the number of pages which were found.
910  */
911 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
912                 pgoff_t start, unsigned nr_pages)
913 {
914         pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
915         return pagevec_count(pvec);
916 }
917 EXPORT_SYMBOL(pagevec_lookup);
918
919 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
920                 pgoff_t *index, int tag, unsigned nr_pages)
921 {
922         pvec->nr = find_get_pages_tag(mapping, index, tag,
923                                         nr_pages, pvec->pages);
924         return pagevec_count(pvec);
925 }
926 EXPORT_SYMBOL(pagevec_lookup_tag);
927
928 /*
929  * Perform any setup for the swap system
930  */
931 void __init swap_setup(void)
932 {
933         unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
934 #ifdef CONFIG_SWAP
935         int i;
936
937         if (bdi_init(swapper_spaces[0].backing_dev_info))
938                 panic("Failed to init swap bdi");
939         for (i = 0; i < MAX_SWAPFILES; i++) {
940                 spin_lock_init(&swapper_spaces[i].tree_lock);
941                 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
942         }
943 #endif
944
945         /* Use a smaller cluster for small-memory machines */
946         if (megs < 16)
947                 page_cluster = 2;
948         else
949                 page_cluster = 3;
950         /*
951          * Right now other parts of the system means that we
952          * _really_ don't want to cluster much more
953          */
954 }