]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/core/dev.c
bridge: switchdev: Add forward mark support for stacked devices
[karo-tx-linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
144
145 #include "net-sysfs.h"
146
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;       /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161                                          struct net_device *dev,
162                                          struct netdev_notifier_info *info);
163
164 /*
165  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166  * semaphore.
167  *
168  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169  *
170  * Writers must hold the rtnl semaphore while they loop through the
171  * dev_base_head list, and hold dev_base_lock for writing when they do the
172  * actual updates.  This allows pure readers to access the list even
173  * while a writer is preparing to update it.
174  *
175  * To put it another way, dev_base_lock is held for writing only to
176  * protect against pure readers; the rtnl semaphore provides the
177  * protection against other writers.
178  *
179  * See, for example usages, register_netdevice() and
180  * unregister_netdevice(), which must be called with the rtnl
181  * semaphore held.
182  */
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
185
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
188
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191
192 static seqcount_t devnet_rename_seq;
193
194 static inline void dev_base_seq_inc(struct net *net)
195 {
196         while (++net->dev_base_seq == 0);
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214         spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228         struct net *net = dev_net(dev);
229
230         ASSERT_RTNL();
231
232         write_lock_bh(&dev_base_lock);
233         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235         hlist_add_head_rcu(&dev->index_hlist,
236                            dev_index_hash(net, dev->ifindex));
237         write_unlock_bh(&dev_base_lock);
238
239         dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247         ASSERT_RTNL();
248
249         /* Unlink dev from the device chain */
250         write_lock_bh(&dev_base_lock);
251         list_del_rcu(&dev->dev_list);
252         hlist_del_rcu(&dev->name_hlist);
253         hlist_del_rcu(&dev->index_hlist);
254         write_unlock_bh(&dev_base_lock);
255
256         dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260  *      Our notifier list
261  */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266  *      Device drivers call our routines to queue packets here. We empty the
267  *      queue in the local softnet handler.
268  */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276  * according to dev->type
277  */
278 static const unsigned short netdev_lock_type[] =
279         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317         int i;
318
319         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320                 if (netdev_lock_type[i] == dev_type)
321                         return i;
322         /* the last key is used by default */
323         return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327                                                  unsigned short dev_type)
328 {
329         int i;
330
331         i = netdev_lock_pos(dev_type);
332         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333                                    netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338         int i;
339
340         i = netdev_lock_pos(dev->type);
341         lockdep_set_class_and_name(&dev->addr_list_lock,
342                                    &netdev_addr_lock_key[i],
343                                    netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347                                                  unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357                 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362  *      Add a protocol ID to the list. Now that the input handler is
363  *      smarter we can dispense with all the messy stuff that used to be
364  *      here.
365  *
366  *      BEWARE!!! Protocol handlers, mangling input packets,
367  *      MUST BE last in hash buckets and checking protocol handlers
368  *      MUST start from promiscuous ptype_all chain in net_bh.
369  *      It is true now, do not change it.
370  *      Explanation follows: if protocol handler, mangling packet, will
371  *      be the first on list, it is not able to sense, that packet
372  *      is cloned and should be copied-on-write, so that it will
373  *      change it and subsequent readers will get broken packet.
374  *                                                      --ANK (980803)
375  */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379         if (pt->type == htons(ETH_P_ALL))
380                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381         else
382                 return pt->dev ? &pt->dev->ptype_specific :
383                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387  *      dev_add_pack - add packet handler
388  *      @pt: packet type declaration
389  *
390  *      Add a protocol handler to the networking stack. The passed &packet_type
391  *      is linked into kernel lists and may not be freed until it has been
392  *      removed from the kernel lists.
393  *
394  *      This call does not sleep therefore it can not
395  *      guarantee all CPU's that are in middle of receiving packets
396  *      will see the new packet type (until the next received packet).
397  */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401         struct list_head *head = ptype_head(pt);
402
403         spin_lock(&ptype_lock);
404         list_add_rcu(&pt->list, head);
405         spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410  *      __dev_remove_pack        - remove packet handler
411  *      @pt: packet type declaration
412  *
413  *      Remove a protocol handler that was previously added to the kernel
414  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
415  *      from the kernel lists and can be freed or reused once this function
416  *      returns.
417  *
418  *      The packet type might still be in use by receivers
419  *      and must not be freed until after all the CPU's have gone
420  *      through a quiescent state.
421  */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424         struct list_head *head = ptype_head(pt);
425         struct packet_type *pt1;
426
427         spin_lock(&ptype_lock);
428
429         list_for_each_entry(pt1, head, list) {
430                 if (pt == pt1) {
431                         list_del_rcu(&pt->list);
432                         goto out;
433                 }
434         }
435
436         pr_warn("dev_remove_pack: %p not found\n", pt);
437 out:
438         spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443  *      dev_remove_pack  - remove packet handler
444  *      @pt: packet type declaration
445  *
446  *      Remove a protocol handler that was previously added to the kernel
447  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
448  *      from the kernel lists and can be freed or reused once this function
449  *      returns.
450  *
451  *      This call sleeps to guarantee that no CPU is looking at the packet
452  *      type after return.
453  */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456         __dev_remove_pack(pt);
457
458         synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462
463 /**
464  *      dev_add_offload - register offload handlers
465  *      @po: protocol offload declaration
466  *
467  *      Add protocol offload handlers to the networking stack. The passed
468  *      &proto_offload is linked into kernel lists and may not be freed until
469  *      it has been removed from the kernel lists.
470  *
471  *      This call does not sleep therefore it can not
472  *      guarantee all CPU's that are in middle of receiving packets
473  *      will see the new offload handlers (until the next received packet).
474  */
475 void dev_add_offload(struct packet_offload *po)
476 {
477         struct packet_offload *elem;
478
479         spin_lock(&offload_lock);
480         list_for_each_entry(elem, &offload_base, list) {
481                 if (po->priority < elem->priority)
482                         break;
483         }
484         list_add_rcu(&po->list, elem->list.prev);
485         spin_unlock(&offload_lock);
486 }
487 EXPORT_SYMBOL(dev_add_offload);
488
489 /**
490  *      __dev_remove_offload     - remove offload handler
491  *      @po: packet offload declaration
492  *
493  *      Remove a protocol offload handler that was previously added to the
494  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
495  *      is removed from the kernel lists and can be freed or reused once this
496  *      function returns.
497  *
498  *      The packet type might still be in use by receivers
499  *      and must not be freed until after all the CPU's have gone
500  *      through a quiescent state.
501  */
502 static void __dev_remove_offload(struct packet_offload *po)
503 {
504         struct list_head *head = &offload_base;
505         struct packet_offload *po1;
506
507         spin_lock(&offload_lock);
508
509         list_for_each_entry(po1, head, list) {
510                 if (po == po1) {
511                         list_del_rcu(&po->list);
512                         goto out;
513                 }
514         }
515
516         pr_warn("dev_remove_offload: %p not found\n", po);
517 out:
518         spin_unlock(&offload_lock);
519 }
520
521 /**
522  *      dev_remove_offload       - remove packet offload handler
523  *      @po: packet offload declaration
524  *
525  *      Remove a packet offload handler that was previously added to the kernel
526  *      offload handlers by dev_add_offload(). The passed &offload_type is
527  *      removed from the kernel lists and can be freed or reused once this
528  *      function returns.
529  *
530  *      This call sleeps to guarantee that no CPU is looking at the packet
531  *      type after return.
532  */
533 void dev_remove_offload(struct packet_offload *po)
534 {
535         __dev_remove_offload(po);
536
537         synchronize_net();
538 }
539 EXPORT_SYMBOL(dev_remove_offload);
540
541 /******************************************************************************
542
543                       Device Boot-time Settings Routines
544
545 *******************************************************************************/
546
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550 /**
551  *      netdev_boot_setup_add   - add new setup entry
552  *      @name: name of the device
553  *      @map: configured settings for the device
554  *
555  *      Adds new setup entry to the dev_boot_setup list.  The function
556  *      returns 0 on error and 1 on success.  This is a generic routine to
557  *      all netdevices.
558  */
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 {
561         struct netdev_boot_setup *s;
562         int i;
563
564         s = dev_boot_setup;
565         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567                         memset(s[i].name, 0, sizeof(s[i].name));
568                         strlcpy(s[i].name, name, IFNAMSIZ);
569                         memcpy(&s[i].map, map, sizeof(s[i].map));
570                         break;
571                 }
572         }
573
574         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575 }
576
577 /**
578  *      netdev_boot_setup_check - check boot time settings
579  *      @dev: the netdevice
580  *
581  *      Check boot time settings for the device.
582  *      The found settings are set for the device to be used
583  *      later in the device probing.
584  *      Returns 0 if no settings found, 1 if they are.
585  */
586 int netdev_boot_setup_check(struct net_device *dev)
587 {
588         struct netdev_boot_setup *s = dev_boot_setup;
589         int i;
590
591         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593                     !strcmp(dev->name, s[i].name)) {
594                         dev->irq        = s[i].map.irq;
595                         dev->base_addr  = s[i].map.base_addr;
596                         dev->mem_start  = s[i].map.mem_start;
597                         dev->mem_end    = s[i].map.mem_end;
598                         return 1;
599                 }
600         }
601         return 0;
602 }
603 EXPORT_SYMBOL(netdev_boot_setup_check);
604
605
606 /**
607  *      netdev_boot_base        - get address from boot time settings
608  *      @prefix: prefix for network device
609  *      @unit: id for network device
610  *
611  *      Check boot time settings for the base address of device.
612  *      The found settings are set for the device to be used
613  *      later in the device probing.
614  *      Returns 0 if no settings found.
615  */
616 unsigned long netdev_boot_base(const char *prefix, int unit)
617 {
618         const struct netdev_boot_setup *s = dev_boot_setup;
619         char name[IFNAMSIZ];
620         int i;
621
622         sprintf(name, "%s%d", prefix, unit);
623
624         /*
625          * If device already registered then return base of 1
626          * to indicate not to probe for this interface
627          */
628         if (__dev_get_by_name(&init_net, name))
629                 return 1;
630
631         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632                 if (!strcmp(name, s[i].name))
633                         return s[i].map.base_addr;
634         return 0;
635 }
636
637 /*
638  * Saves at boot time configured settings for any netdevice.
639  */
640 int __init netdev_boot_setup(char *str)
641 {
642         int ints[5];
643         struct ifmap map;
644
645         str = get_options(str, ARRAY_SIZE(ints), ints);
646         if (!str || !*str)
647                 return 0;
648
649         /* Save settings */
650         memset(&map, 0, sizeof(map));
651         if (ints[0] > 0)
652                 map.irq = ints[1];
653         if (ints[0] > 1)
654                 map.base_addr = ints[2];
655         if (ints[0] > 2)
656                 map.mem_start = ints[3];
657         if (ints[0] > 3)
658                 map.mem_end = ints[4];
659
660         /* Add new entry to the list */
661         return netdev_boot_setup_add(str, &map);
662 }
663
664 __setup("netdev=", netdev_boot_setup);
665
666 /*******************************************************************************
667
668                             Device Interface Subroutines
669
670 *******************************************************************************/
671
672 /**
673  *      dev_get_iflink  - get 'iflink' value of a interface
674  *      @dev: targeted interface
675  *
676  *      Indicates the ifindex the interface is linked to.
677  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
678  */
679
680 int dev_get_iflink(const struct net_device *dev)
681 {
682         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683                 return dev->netdev_ops->ndo_get_iflink(dev);
684
685         return dev->ifindex;
686 }
687 EXPORT_SYMBOL(dev_get_iflink);
688
689 /**
690  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
691  *      @dev: targeted interface
692  *      @skb: The packet.
693  *
694  *      For better visibility of tunnel traffic OVS needs to retrieve
695  *      egress tunnel information for a packet. Following API allows
696  *      user to get this info.
697  */
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 {
700         struct ip_tunnel_info *info;
701
702         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
703                 return -EINVAL;
704
705         info = skb_tunnel_info_unclone(skb);
706         if (!info)
707                 return -ENOMEM;
708         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709                 return -EINVAL;
710
711         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 }
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
715 /**
716  *      __dev_get_by_name       - find a device by its name
717  *      @net: the applicable net namespace
718  *      @name: name to find
719  *
720  *      Find an interface by name. Must be called under RTNL semaphore
721  *      or @dev_base_lock. If the name is found a pointer to the device
722  *      is returned. If the name is not found then %NULL is returned. The
723  *      reference counters are not incremented so the caller must be
724  *      careful with locks.
725  */
726
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 {
729         struct net_device *dev;
730         struct hlist_head *head = dev_name_hash(net, name);
731
732         hlist_for_each_entry(dev, head, name_hlist)
733                 if (!strncmp(dev->name, name, IFNAMSIZ))
734                         return dev;
735
736         return NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739
740 /**
741  *      dev_get_by_name_rcu     - find a device by its name
742  *      @net: the applicable net namespace
743  *      @name: name to find
744  *
745  *      Find an interface by name.
746  *      If the name is found a pointer to the device is returned.
747  *      If the name is not found then %NULL is returned.
748  *      The reference counters are not incremented so the caller must be
749  *      careful with locks. The caller must hold RCU lock.
750  */
751
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754         struct net_device *dev;
755         struct hlist_head *head = dev_name_hash(net, name);
756
757         hlist_for_each_entry_rcu(dev, head, name_hlist)
758                 if (!strncmp(dev->name, name, IFNAMSIZ))
759                         return dev;
760
761         return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
764
765 /**
766  *      dev_get_by_name         - find a device by its name
767  *      @net: the applicable net namespace
768  *      @name: name to find
769  *
770  *      Find an interface by name. This can be called from any
771  *      context and does its own locking. The returned handle has
772  *      the usage count incremented and the caller must use dev_put() to
773  *      release it when it is no longer needed. %NULL is returned if no
774  *      matching device is found.
775  */
776
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 {
779         struct net_device *dev;
780
781         rcu_read_lock();
782         dev = dev_get_by_name_rcu(net, name);
783         if (dev)
784                 dev_hold(dev);
785         rcu_read_unlock();
786         return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_name);
789
790 /**
791  *      __dev_get_by_index - find a device by its ifindex
792  *      @net: the applicable net namespace
793  *      @ifindex: index of device
794  *
795  *      Search for an interface by index. Returns %NULL if the device
796  *      is not found or a pointer to the device. The device has not
797  *      had its reference counter increased so the caller must be careful
798  *      about locking. The caller must hold either the RTNL semaphore
799  *      or @dev_base_lock.
800  */
801
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 {
804         struct net_device *dev;
805         struct hlist_head *head = dev_index_hash(net, ifindex);
806
807         hlist_for_each_entry(dev, head, index_hlist)
808                 if (dev->ifindex == ifindex)
809                         return dev;
810
811         return NULL;
812 }
813 EXPORT_SYMBOL(__dev_get_by_index);
814
815 /**
816  *      dev_get_by_index_rcu - find a device by its ifindex
817  *      @net: the applicable net namespace
818  *      @ifindex: index of device
819  *
820  *      Search for an interface by index. Returns %NULL if the device
821  *      is not found or a pointer to the device. The device has not
822  *      had its reference counter increased so the caller must be careful
823  *      about locking. The caller must hold RCU lock.
824  */
825
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 {
828         struct net_device *dev;
829         struct hlist_head *head = dev_index_hash(net, ifindex);
830
831         hlist_for_each_entry_rcu(dev, head, index_hlist)
832                 if (dev->ifindex == ifindex)
833                         return dev;
834
835         return NULL;
836 }
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
838
839
840 /**
841  *      dev_get_by_index - find a device by its ifindex
842  *      @net: the applicable net namespace
843  *      @ifindex: index of device
844  *
845  *      Search for an interface by index. Returns NULL if the device
846  *      is not found or a pointer to the device. The device returned has
847  *      had a reference added and the pointer is safe until the user calls
848  *      dev_put to indicate they have finished with it.
849  */
850
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 {
853         struct net_device *dev;
854
855         rcu_read_lock();
856         dev = dev_get_by_index_rcu(net, ifindex);
857         if (dev)
858                 dev_hold(dev);
859         rcu_read_unlock();
860         return dev;
861 }
862 EXPORT_SYMBOL(dev_get_by_index);
863
864 /**
865  *      netdev_get_name - get a netdevice name, knowing its ifindex.
866  *      @net: network namespace
867  *      @name: a pointer to the buffer where the name will be stored.
868  *      @ifindex: the ifindex of the interface to get the name from.
869  *
870  *      The use of raw_seqcount_begin() and cond_resched() before
871  *      retrying is required as we want to give the writers a chance
872  *      to complete when CONFIG_PREEMPT is not set.
873  */
874 int netdev_get_name(struct net *net, char *name, int ifindex)
875 {
876         struct net_device *dev;
877         unsigned int seq;
878
879 retry:
880         seq = raw_seqcount_begin(&devnet_rename_seq);
881         rcu_read_lock();
882         dev = dev_get_by_index_rcu(net, ifindex);
883         if (!dev) {
884                 rcu_read_unlock();
885                 return -ENODEV;
886         }
887
888         strcpy(name, dev->name);
889         rcu_read_unlock();
890         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891                 cond_resched();
892                 goto retry;
893         }
894
895         return 0;
896 }
897
898 /**
899  *      dev_getbyhwaddr_rcu - find a device by its hardware address
900  *      @net: the applicable net namespace
901  *      @type: media type of device
902  *      @ha: hardware address
903  *
904  *      Search for an interface by MAC address. Returns NULL if the device
905  *      is not found or a pointer to the device.
906  *      The caller must hold RCU or RTNL.
907  *      The returned device has not had its ref count increased
908  *      and the caller must therefore be careful about locking
909  *
910  */
911
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913                                        const char *ha)
914 {
915         struct net_device *dev;
916
917         for_each_netdev_rcu(net, dev)
918                 if (dev->type == type &&
919                     !memcmp(dev->dev_addr, ha, dev->addr_len))
920                         return dev;
921
922         return NULL;
923 }
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 {
928         struct net_device *dev;
929
930         ASSERT_RTNL();
931         for_each_netdev(net, dev)
932                 if (dev->type == type)
933                         return dev;
934
935         return NULL;
936 }
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941         struct net_device *dev, *ret = NULL;
942
943         rcu_read_lock();
944         for_each_netdev_rcu(net, dev)
945                 if (dev->type == type) {
946                         dev_hold(dev);
947                         ret = dev;
948                         break;
949                 }
950         rcu_read_unlock();
951         return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955 /**
956  *      __dev_get_by_flags - find any device with given flags
957  *      @net: the applicable net namespace
958  *      @if_flags: IFF_* values
959  *      @mask: bitmask of bits in if_flags to check
960  *
961  *      Search for any interface with the given flags. Returns NULL if a device
962  *      is not found or a pointer to the device. Must be called inside
963  *      rtnl_lock(), and result refcount is unchanged.
964  */
965
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967                                       unsigned short mask)
968 {
969         struct net_device *dev, *ret;
970
971         ASSERT_RTNL();
972
973         ret = NULL;
974         for_each_netdev(net, dev) {
975                 if (((dev->flags ^ if_flags) & mask) == 0) {
976                         ret = dev;
977                         break;
978                 }
979         }
980         return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983
984 /**
985  *      dev_valid_name - check if name is okay for network device
986  *      @name: name string
987  *
988  *      Network device names need to be valid file names to
989  *      to allow sysfs to work.  We also disallow any kind of
990  *      whitespace.
991  */
992 bool dev_valid_name(const char *name)
993 {
994         if (*name == '\0')
995                 return false;
996         if (strlen(name) >= IFNAMSIZ)
997                 return false;
998         if (!strcmp(name, ".") || !strcmp(name, ".."))
999                 return false;
1000
1001         while (*name) {
1002                 if (*name == '/' || *name == ':' || isspace(*name))
1003                         return false;
1004                 name++;
1005         }
1006         return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009
1010 /**
1011  *      __dev_alloc_name - allocate a name for a device
1012  *      @net: network namespace to allocate the device name in
1013  *      @name: name format string
1014  *      @buf:  scratch buffer and result name string
1015  *
1016  *      Passed a format string - eg "lt%d" it will try and find a suitable
1017  *      id. It scans list of devices to build up a free map, then chooses
1018  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1019  *      while allocating the name and adding the device in order to avoid
1020  *      duplicates.
1021  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022  *      Returns the number of the unit assigned or a negative errno code.
1023  */
1024
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027         int i = 0;
1028         const char *p;
1029         const int max_netdevices = 8*PAGE_SIZE;
1030         unsigned long *inuse;
1031         struct net_device *d;
1032
1033         p = strnchr(name, IFNAMSIZ-1, '%');
1034         if (p) {
1035                 /*
1036                  * Verify the string as this thing may have come from
1037                  * the user.  There must be either one "%d" and no other "%"
1038                  * characters.
1039                  */
1040                 if (p[1] != 'd' || strchr(p + 2, '%'))
1041                         return -EINVAL;
1042
1043                 /* Use one page as a bit array of possible slots */
1044                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1045                 if (!inuse)
1046                         return -ENOMEM;
1047
1048                 for_each_netdev(net, d) {
1049                         if (!sscanf(d->name, name, &i))
1050                                 continue;
1051                         if (i < 0 || i >= max_netdevices)
1052                                 continue;
1053
1054                         /*  avoid cases where sscanf is not exact inverse of printf */
1055                         snprintf(buf, IFNAMSIZ, name, i);
1056                         if (!strncmp(buf, d->name, IFNAMSIZ))
1057                                 set_bit(i, inuse);
1058                 }
1059
1060                 i = find_first_zero_bit(inuse, max_netdevices);
1061                 free_page((unsigned long) inuse);
1062         }
1063
1064         if (buf != name)
1065                 snprintf(buf, IFNAMSIZ, name, i);
1066         if (!__dev_get_by_name(net, buf))
1067                 return i;
1068
1069         /* It is possible to run out of possible slots
1070          * when the name is long and there isn't enough space left
1071          * for the digits, or if all bits are used.
1072          */
1073         return -ENFILE;
1074 }
1075
1076 /**
1077  *      dev_alloc_name - allocate a name for a device
1078  *      @dev: device
1079  *      @name: name format string
1080  *
1081  *      Passed a format string - eg "lt%d" it will try and find a suitable
1082  *      id. It scans list of devices to build up a free map, then chooses
1083  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1084  *      while allocating the name and adding the device in order to avoid
1085  *      duplicates.
1086  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087  *      Returns the number of the unit assigned or a negative errno code.
1088  */
1089
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1091 {
1092         char buf[IFNAMSIZ];
1093         struct net *net;
1094         int ret;
1095
1096         BUG_ON(!dev_net(dev));
1097         net = dev_net(dev);
1098         ret = __dev_alloc_name(net, name, buf);
1099         if (ret >= 0)
1100                 strlcpy(dev->name, buf, IFNAMSIZ);
1101         return ret;
1102 }
1103 EXPORT_SYMBOL(dev_alloc_name);
1104
1105 static int dev_alloc_name_ns(struct net *net,
1106                              struct net_device *dev,
1107                              const char *name)
1108 {
1109         char buf[IFNAMSIZ];
1110         int ret;
1111
1112         ret = __dev_alloc_name(net, name, buf);
1113         if (ret >= 0)
1114                 strlcpy(dev->name, buf, IFNAMSIZ);
1115         return ret;
1116 }
1117
1118 static int dev_get_valid_name(struct net *net,
1119                               struct net_device *dev,
1120                               const char *name)
1121 {
1122         BUG_ON(!net);
1123
1124         if (!dev_valid_name(name))
1125                 return -EINVAL;
1126
1127         if (strchr(name, '%'))
1128                 return dev_alloc_name_ns(net, dev, name);
1129         else if (__dev_get_by_name(net, name))
1130                 return -EEXIST;
1131         else if (dev->name != name)
1132                 strlcpy(dev->name, name, IFNAMSIZ);
1133
1134         return 0;
1135 }
1136
1137 /**
1138  *      dev_change_name - change name of a device
1139  *      @dev: device
1140  *      @newname: name (or format string) must be at least IFNAMSIZ
1141  *
1142  *      Change name of a device, can pass format strings "eth%d".
1143  *      for wildcarding.
1144  */
1145 int dev_change_name(struct net_device *dev, const char *newname)
1146 {
1147         unsigned char old_assign_type;
1148         char oldname[IFNAMSIZ];
1149         int err = 0;
1150         int ret;
1151         struct net *net;
1152
1153         ASSERT_RTNL();
1154         BUG_ON(!dev_net(dev));
1155
1156         net = dev_net(dev);
1157         if (dev->flags & IFF_UP)
1158                 return -EBUSY;
1159
1160         write_seqcount_begin(&devnet_rename_seq);
1161
1162         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163                 write_seqcount_end(&devnet_rename_seq);
1164                 return 0;
1165         }
1166
1167         memcpy(oldname, dev->name, IFNAMSIZ);
1168
1169         err = dev_get_valid_name(net, dev, newname);
1170         if (err < 0) {
1171                 write_seqcount_end(&devnet_rename_seq);
1172                 return err;
1173         }
1174
1175         if (oldname[0] && !strchr(oldname, '%'))
1176                 netdev_info(dev, "renamed from %s\n", oldname);
1177
1178         old_assign_type = dev->name_assign_type;
1179         dev->name_assign_type = NET_NAME_RENAMED;
1180
1181 rollback:
1182         ret = device_rename(&dev->dev, dev->name);
1183         if (ret) {
1184                 memcpy(dev->name, oldname, IFNAMSIZ);
1185                 dev->name_assign_type = old_assign_type;
1186                 write_seqcount_end(&devnet_rename_seq);
1187                 return ret;
1188         }
1189
1190         write_seqcount_end(&devnet_rename_seq);
1191
1192         netdev_adjacent_rename_links(dev, oldname);
1193
1194         write_lock_bh(&dev_base_lock);
1195         hlist_del_rcu(&dev->name_hlist);
1196         write_unlock_bh(&dev_base_lock);
1197
1198         synchronize_rcu();
1199
1200         write_lock_bh(&dev_base_lock);
1201         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202         write_unlock_bh(&dev_base_lock);
1203
1204         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205         ret = notifier_to_errno(ret);
1206
1207         if (ret) {
1208                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209                 if (err >= 0) {
1210                         err = ret;
1211                         write_seqcount_begin(&devnet_rename_seq);
1212                         memcpy(dev->name, oldname, IFNAMSIZ);
1213                         memcpy(oldname, newname, IFNAMSIZ);
1214                         dev->name_assign_type = old_assign_type;
1215                         old_assign_type = NET_NAME_RENAMED;
1216                         goto rollback;
1217                 } else {
1218                         pr_err("%s: name change rollback failed: %d\n",
1219                                dev->name, ret);
1220                 }
1221         }
1222
1223         return err;
1224 }
1225
1226 /**
1227  *      dev_set_alias - change ifalias of a device
1228  *      @dev: device
1229  *      @alias: name up to IFALIASZ
1230  *      @len: limit of bytes to copy from info
1231  *
1232  *      Set ifalias for a device,
1233  */
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 {
1236         char *new_ifalias;
1237
1238         ASSERT_RTNL();
1239
1240         if (len >= IFALIASZ)
1241                 return -EINVAL;
1242
1243         if (!len) {
1244                 kfree(dev->ifalias);
1245                 dev->ifalias = NULL;
1246                 return 0;
1247         }
1248
1249         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250         if (!new_ifalias)
1251                 return -ENOMEM;
1252         dev->ifalias = new_ifalias;
1253
1254         strlcpy(dev->ifalias, alias, len+1);
1255         return len;
1256 }
1257
1258
1259 /**
1260  *      netdev_features_change - device changes features
1261  *      @dev: device to cause notification
1262  *
1263  *      Called to indicate a device has changed features.
1264  */
1265 void netdev_features_change(struct net_device *dev)
1266 {
1267         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 }
1269 EXPORT_SYMBOL(netdev_features_change);
1270
1271 /**
1272  *      netdev_state_change - device changes state
1273  *      @dev: device to cause notification
1274  *
1275  *      Called to indicate a device has changed state. This function calls
1276  *      the notifier chains for netdev_chain and sends a NEWLINK message
1277  *      to the routing socket.
1278  */
1279 void netdev_state_change(struct net_device *dev)
1280 {
1281         if (dev->flags & IFF_UP) {
1282                 struct netdev_notifier_change_info change_info;
1283
1284                 change_info.flags_changed = 0;
1285                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286                                               &change_info.info);
1287                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288         }
1289 }
1290 EXPORT_SYMBOL(netdev_state_change);
1291
1292 /**
1293  *      netdev_notify_peers - notify network peers about existence of @dev
1294  *      @dev: network device
1295  *
1296  * Generate traffic such that interested network peers are aware of
1297  * @dev, such as by generating a gratuitous ARP. This may be used when
1298  * a device wants to inform the rest of the network about some sort of
1299  * reconfiguration such as a failover event or virtual machine
1300  * migration.
1301  */
1302 void netdev_notify_peers(struct net_device *dev)
1303 {
1304         rtnl_lock();
1305         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306         rtnl_unlock();
1307 }
1308 EXPORT_SYMBOL(netdev_notify_peers);
1309
1310 static int __dev_open(struct net_device *dev)
1311 {
1312         const struct net_device_ops *ops = dev->netdev_ops;
1313         int ret;
1314
1315         ASSERT_RTNL();
1316
1317         if (!netif_device_present(dev))
1318                 return -ENODEV;
1319
1320         /* Block netpoll from trying to do any rx path servicing.
1321          * If we don't do this there is a chance ndo_poll_controller
1322          * or ndo_poll may be running while we open the device
1323          */
1324         netpoll_poll_disable(dev);
1325
1326         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327         ret = notifier_to_errno(ret);
1328         if (ret)
1329                 return ret;
1330
1331         set_bit(__LINK_STATE_START, &dev->state);
1332
1333         if (ops->ndo_validate_addr)
1334                 ret = ops->ndo_validate_addr(dev);
1335
1336         if (!ret && ops->ndo_open)
1337                 ret = ops->ndo_open(dev);
1338
1339         netpoll_poll_enable(dev);
1340
1341         if (ret)
1342                 clear_bit(__LINK_STATE_START, &dev->state);
1343         else {
1344                 dev->flags |= IFF_UP;
1345                 dev_set_rx_mode(dev);
1346                 dev_activate(dev);
1347                 add_device_randomness(dev->dev_addr, dev->addr_len);
1348         }
1349
1350         return ret;
1351 }
1352
1353 /**
1354  *      dev_open        - prepare an interface for use.
1355  *      @dev:   device to open
1356  *
1357  *      Takes a device from down to up state. The device's private open
1358  *      function is invoked and then the multicast lists are loaded. Finally
1359  *      the device is moved into the up state and a %NETDEV_UP message is
1360  *      sent to the netdev notifier chain.
1361  *
1362  *      Calling this function on an active interface is a nop. On a failure
1363  *      a negative errno code is returned.
1364  */
1365 int dev_open(struct net_device *dev)
1366 {
1367         int ret;
1368
1369         if (dev->flags & IFF_UP)
1370                 return 0;
1371
1372         ret = __dev_open(dev);
1373         if (ret < 0)
1374                 return ret;
1375
1376         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377         call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379         return ret;
1380 }
1381 EXPORT_SYMBOL(dev_open);
1382
1383 static int __dev_close_many(struct list_head *head)
1384 {
1385         struct net_device *dev;
1386
1387         ASSERT_RTNL();
1388         might_sleep();
1389
1390         list_for_each_entry(dev, head, close_list) {
1391                 /* Temporarily disable netpoll until the interface is down */
1392                 netpoll_poll_disable(dev);
1393
1394                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395
1396                 clear_bit(__LINK_STATE_START, &dev->state);
1397
1398                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399                  * can be even on different cpu. So just clear netif_running().
1400                  *
1401                  * dev->stop() will invoke napi_disable() on all of it's
1402                  * napi_struct instances on this device.
1403                  */
1404                 smp_mb__after_atomic(); /* Commit netif_running(). */
1405         }
1406
1407         dev_deactivate_many(head);
1408
1409         list_for_each_entry(dev, head, close_list) {
1410                 const struct net_device_ops *ops = dev->netdev_ops;
1411
1412                 /*
1413                  *      Call the device specific close. This cannot fail.
1414                  *      Only if device is UP
1415                  *
1416                  *      We allow it to be called even after a DETACH hot-plug
1417                  *      event.
1418                  */
1419                 if (ops->ndo_stop)
1420                         ops->ndo_stop(dev);
1421
1422                 dev->flags &= ~IFF_UP;
1423                 netpoll_poll_enable(dev);
1424         }
1425
1426         return 0;
1427 }
1428
1429 static int __dev_close(struct net_device *dev)
1430 {
1431         int retval;
1432         LIST_HEAD(single);
1433
1434         list_add(&dev->close_list, &single);
1435         retval = __dev_close_many(&single);
1436         list_del(&single);
1437
1438         return retval;
1439 }
1440
1441 int dev_close_many(struct list_head *head, bool unlink)
1442 {
1443         struct net_device *dev, *tmp;
1444
1445         /* Remove the devices that don't need to be closed */
1446         list_for_each_entry_safe(dev, tmp, head, close_list)
1447                 if (!(dev->flags & IFF_UP))
1448                         list_del_init(&dev->close_list);
1449
1450         __dev_close_many(head);
1451
1452         list_for_each_entry_safe(dev, tmp, head, close_list) {
1453                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1455                 if (unlink)
1456                         list_del_init(&dev->close_list);
1457         }
1458
1459         return 0;
1460 }
1461 EXPORT_SYMBOL(dev_close_many);
1462
1463 /**
1464  *      dev_close - shutdown an interface.
1465  *      @dev: device to shutdown
1466  *
1467  *      This function moves an active device into down state. A
1468  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470  *      chain.
1471  */
1472 int dev_close(struct net_device *dev)
1473 {
1474         if (dev->flags & IFF_UP) {
1475                 LIST_HEAD(single);
1476
1477                 list_add(&dev->close_list, &single);
1478                 dev_close_many(&single, true);
1479                 list_del(&single);
1480         }
1481         return 0;
1482 }
1483 EXPORT_SYMBOL(dev_close);
1484
1485
1486 /**
1487  *      dev_disable_lro - disable Large Receive Offload on a device
1488  *      @dev: device
1489  *
1490  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1491  *      called under RTNL.  This is needed if received packets may be
1492  *      forwarded to another interface.
1493  */
1494 void dev_disable_lro(struct net_device *dev)
1495 {
1496         struct net_device *lower_dev;
1497         struct list_head *iter;
1498
1499         dev->wanted_features &= ~NETIF_F_LRO;
1500         netdev_update_features(dev);
1501
1502         if (unlikely(dev->features & NETIF_F_LRO))
1503                 netdev_WARN(dev, "failed to disable LRO!\n");
1504
1505         netdev_for_each_lower_dev(dev, lower_dev, iter)
1506                 dev_disable_lro(lower_dev);
1507 }
1508 EXPORT_SYMBOL(dev_disable_lro);
1509
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511                                    struct net_device *dev)
1512 {
1513         struct netdev_notifier_info info;
1514
1515         netdev_notifier_info_init(&info, dev);
1516         return nb->notifier_call(nb, val, &info);
1517 }
1518
1519 static int dev_boot_phase = 1;
1520
1521 /**
1522  *      register_netdevice_notifier - register a network notifier block
1523  *      @nb: notifier
1524  *
1525  *      Register a notifier to be called when network device events occur.
1526  *      The notifier passed is linked into the kernel structures and must
1527  *      not be reused until it has been unregistered. A negative errno code
1528  *      is returned on a failure.
1529  *
1530  *      When registered all registration and up events are replayed
1531  *      to the new notifier to allow device to have a race free
1532  *      view of the network device list.
1533  */
1534
1535 int register_netdevice_notifier(struct notifier_block *nb)
1536 {
1537         struct net_device *dev;
1538         struct net_device *last;
1539         struct net *net;
1540         int err;
1541
1542         rtnl_lock();
1543         err = raw_notifier_chain_register(&netdev_chain, nb);
1544         if (err)
1545                 goto unlock;
1546         if (dev_boot_phase)
1547                 goto unlock;
1548         for_each_net(net) {
1549                 for_each_netdev(net, dev) {
1550                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551                         err = notifier_to_errno(err);
1552                         if (err)
1553                                 goto rollback;
1554
1555                         if (!(dev->flags & IFF_UP))
1556                                 continue;
1557
1558                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1559                 }
1560         }
1561
1562 unlock:
1563         rtnl_unlock();
1564         return err;
1565
1566 rollback:
1567         last = dev;
1568         for_each_net(net) {
1569                 for_each_netdev(net, dev) {
1570                         if (dev == last)
1571                                 goto outroll;
1572
1573                         if (dev->flags & IFF_UP) {
1574                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575                                                         dev);
1576                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577                         }
1578                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1579                 }
1580         }
1581
1582 outroll:
1583         raw_notifier_chain_unregister(&netdev_chain, nb);
1584         goto unlock;
1585 }
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1587
1588 /**
1589  *      unregister_netdevice_notifier - unregister a network notifier block
1590  *      @nb: notifier
1591  *
1592  *      Unregister a notifier previously registered by
1593  *      register_netdevice_notifier(). The notifier is unlinked into the
1594  *      kernel structures and may then be reused. A negative errno code
1595  *      is returned on a failure.
1596  *
1597  *      After unregistering unregister and down device events are synthesized
1598  *      for all devices on the device list to the removed notifier to remove
1599  *      the need for special case cleanup code.
1600  */
1601
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 {
1604         struct net_device *dev;
1605         struct net *net;
1606         int err;
1607
1608         rtnl_lock();
1609         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1610         if (err)
1611                 goto unlock;
1612
1613         for_each_net(net) {
1614                 for_each_netdev(net, dev) {
1615                         if (dev->flags & IFF_UP) {
1616                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617                                                         dev);
1618                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619                         }
1620                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621                 }
1622         }
1623 unlock:
1624         rtnl_unlock();
1625         return err;
1626 }
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628
1629 /**
1630  *      call_netdevice_notifiers_info - call all network notifier blocks
1631  *      @val: value passed unmodified to notifier function
1632  *      @dev: net_device pointer passed unmodified to notifier function
1633  *      @info: notifier information data
1634  *
1635  *      Call all network notifier blocks.  Parameters and return value
1636  *      are as for raw_notifier_call_chain().
1637  */
1638
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640                                          struct net_device *dev,
1641                                          struct netdev_notifier_info *info)
1642 {
1643         ASSERT_RTNL();
1644         netdev_notifier_info_init(info, dev);
1645         return raw_notifier_call_chain(&netdev_chain, val, info);
1646 }
1647
1648 /**
1649  *      call_netdevice_notifiers - call all network notifier blocks
1650  *      @val: value passed unmodified to notifier function
1651  *      @dev: net_device pointer passed unmodified to notifier function
1652  *
1653  *      Call all network notifier blocks.  Parameters and return value
1654  *      are as for raw_notifier_call_chain().
1655  */
1656
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 {
1659         struct netdev_notifier_info info;
1660
1661         return call_netdevice_notifiers_info(val, dev, &info);
1662 }
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1664
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1667
1668 void net_inc_ingress_queue(void)
1669 {
1670         static_key_slow_inc(&ingress_needed);
1671 }
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674 void net_dec_ingress_queue(void)
1675 {
1676         static_key_slow_dec(&ingress_needed);
1677 }
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #endif
1680
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1683
1684 void net_inc_egress_queue(void)
1685 {
1686         static_key_slow_inc(&egress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690 void net_dec_egress_queue(void)
1691 {
1692         static_key_slow_dec(&egress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 #endif
1696
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700  * If net_disable_timestamp() is called from irq context, defer the
1701  * static_key_slow_dec() calls.
1702  */
1703 static atomic_t netstamp_needed_deferred;
1704 #endif
1705
1706 void net_enable_timestamp(void)
1707 {
1708 #ifdef HAVE_JUMP_LABEL
1709         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711         if (deferred) {
1712                 while (--deferred)
1713                         static_key_slow_dec(&netstamp_needed);
1714                 return;
1715         }
1716 #endif
1717         static_key_slow_inc(&netstamp_needed);
1718 }
1719 EXPORT_SYMBOL(net_enable_timestamp);
1720
1721 void net_disable_timestamp(void)
1722 {
1723 #ifdef HAVE_JUMP_LABEL
1724         if (in_interrupt()) {
1725                 atomic_inc(&netstamp_needed_deferred);
1726                 return;
1727         }
1728 #endif
1729         static_key_slow_dec(&netstamp_needed);
1730 }
1731 EXPORT_SYMBOL(net_disable_timestamp);
1732
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1734 {
1735         skb->tstamp.tv64 = 0;
1736         if (static_key_false(&netstamp_needed))
1737                 __net_timestamp(skb);
1738 }
1739
1740 #define net_timestamp_check(COND, SKB)                  \
1741         if (static_key_false(&netstamp_needed)) {               \
1742                 if ((COND) && !(SKB)->tstamp.tv64)      \
1743                         __net_timestamp(SKB);           \
1744         }                                               \
1745
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 {
1748         unsigned int len;
1749
1750         if (!(dev->flags & IFF_UP))
1751                 return false;
1752
1753         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754         if (skb->len <= len)
1755                 return true;
1756
1757         /* if TSO is enabled, we don't care about the length as the packet
1758          * could be forwarded without being segmented before
1759          */
1760         if (skb_is_gso(skb))
1761                 return true;
1762
1763         return false;
1764 }
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770             unlikely(!is_skb_forwardable(dev, skb))) {
1771                 atomic_long_inc(&dev->rx_dropped);
1772                 kfree_skb(skb);
1773                 return NET_RX_DROP;
1774         }
1775
1776         skb_scrub_packet(skb, true);
1777         skb->priority = 0;
1778         skb->protocol = eth_type_trans(skb, dev);
1779         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1780
1781         return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784
1785 /**
1786  * dev_forward_skb - loopback an skb to another netif
1787  *
1788  * @dev: destination network device
1789  * @skb: buffer to forward
1790  *
1791  * return values:
1792  *      NET_RX_SUCCESS  (no congestion)
1793  *      NET_RX_DROP     (packet was dropped, but freed)
1794  *
1795  * dev_forward_skb can be used for injecting an skb from the
1796  * start_xmit function of one device into the receive queue
1797  * of another device.
1798  *
1799  * The receiving device may be in another namespace, so
1800  * we have to clear all information in the skb that could
1801  * impact namespace isolation.
1802  */
1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804 {
1805         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1806 }
1807 EXPORT_SYMBOL_GPL(dev_forward_skb);
1808
1809 static inline int deliver_skb(struct sk_buff *skb,
1810                               struct packet_type *pt_prev,
1811                               struct net_device *orig_dev)
1812 {
1813         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814                 return -ENOMEM;
1815         atomic_inc(&skb->users);
1816         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817 }
1818
1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820                                           struct packet_type **pt,
1821                                           struct net_device *orig_dev,
1822                                           __be16 type,
1823                                           struct list_head *ptype_list)
1824 {
1825         struct packet_type *ptype, *pt_prev = *pt;
1826
1827         list_for_each_entry_rcu(ptype, ptype_list, list) {
1828                 if (ptype->type != type)
1829                         continue;
1830                 if (pt_prev)
1831                         deliver_skb(skb, pt_prev, orig_dev);
1832                 pt_prev = ptype;
1833         }
1834         *pt = pt_prev;
1835 }
1836
1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838 {
1839         if (!ptype->af_packet_priv || !skb->sk)
1840                 return false;
1841
1842         if (ptype->id_match)
1843                 return ptype->id_match(ptype, skb->sk);
1844         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845                 return true;
1846
1847         return false;
1848 }
1849
1850 /*
1851  *      Support routine. Sends outgoing frames to any network
1852  *      taps currently in use.
1853  */
1854
1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1856 {
1857         struct packet_type *ptype;
1858         struct sk_buff *skb2 = NULL;
1859         struct packet_type *pt_prev = NULL;
1860         struct list_head *ptype_list = &ptype_all;
1861
1862         rcu_read_lock();
1863 again:
1864         list_for_each_entry_rcu(ptype, ptype_list, list) {
1865                 /* Never send packets back to the socket
1866                  * they originated from - MvS (miquels@drinkel.ow.org)
1867                  */
1868                 if (skb_loop_sk(ptype, skb))
1869                         continue;
1870
1871                 if (pt_prev) {
1872                         deliver_skb(skb2, pt_prev, skb->dev);
1873                         pt_prev = ptype;
1874                         continue;
1875                 }
1876
1877                 /* need to clone skb, done only once */
1878                 skb2 = skb_clone(skb, GFP_ATOMIC);
1879                 if (!skb2)
1880                         goto out_unlock;
1881
1882                 net_timestamp_set(skb2);
1883
1884                 /* skb->nh should be correctly
1885                  * set by sender, so that the second statement is
1886                  * just protection against buggy protocols.
1887                  */
1888                 skb_reset_mac_header(skb2);
1889
1890                 if (skb_network_header(skb2) < skb2->data ||
1891                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893                                              ntohs(skb2->protocol),
1894                                              dev->name);
1895                         skb_reset_network_header(skb2);
1896                 }
1897
1898                 skb2->transport_header = skb2->network_header;
1899                 skb2->pkt_type = PACKET_OUTGOING;
1900                 pt_prev = ptype;
1901         }
1902
1903         if (ptype_list == &ptype_all) {
1904                 ptype_list = &dev->ptype_all;
1905                 goto again;
1906         }
1907 out_unlock:
1908         if (pt_prev)
1909                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1910         rcu_read_unlock();
1911 }
1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1913
1914 /**
1915  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1916  * @dev: Network device
1917  * @txq: number of queues available
1918  *
1919  * If real_num_tx_queues is changed the tc mappings may no longer be
1920  * valid. To resolve this verify the tc mapping remains valid and if
1921  * not NULL the mapping. With no priorities mapping to this
1922  * offset/count pair it will no longer be used. In the worst case TC0
1923  * is invalid nothing can be done so disable priority mappings. If is
1924  * expected that drivers will fix this mapping if they can before
1925  * calling netif_set_real_num_tx_queues.
1926  */
1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1928 {
1929         int i;
1930         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931
1932         /* If TC0 is invalidated disable TC mapping */
1933         if (tc->offset + tc->count > txq) {
1934                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1935                 dev->num_tc = 0;
1936                 return;
1937         }
1938
1939         /* Invalidated prio to tc mappings set to TC0 */
1940         for (i = 1; i < TC_BITMASK + 1; i++) {
1941                 int q = netdev_get_prio_tc_map(dev, i);
1942
1943                 tc = &dev->tc_to_txq[q];
1944                 if (tc->offset + tc->count > txq) {
1945                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946                                 i, q);
1947                         netdev_set_prio_tc_map(dev, i, 0);
1948                 }
1949         }
1950 }
1951
1952 #ifdef CONFIG_XPS
1953 static DEFINE_MUTEX(xps_map_mutex);
1954 #define xmap_dereference(P)             \
1955         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956
1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958                                         int cpu, u16 index)
1959 {
1960         struct xps_map *map = NULL;
1961         int pos;
1962
1963         if (dev_maps)
1964                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1965
1966         for (pos = 0; map && pos < map->len; pos++) {
1967                 if (map->queues[pos] == index) {
1968                         if (map->len > 1) {
1969                                 map->queues[pos] = map->queues[--map->len];
1970                         } else {
1971                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1972                                 kfree_rcu(map, rcu);
1973                                 map = NULL;
1974                         }
1975                         break;
1976                 }
1977         }
1978
1979         return map;
1980 }
1981
1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1983 {
1984         struct xps_dev_maps *dev_maps;
1985         int cpu, i;
1986         bool active = false;
1987
1988         mutex_lock(&xps_map_mutex);
1989         dev_maps = xmap_dereference(dev->xps_maps);
1990
1991         if (!dev_maps)
1992                 goto out_no_maps;
1993
1994         for_each_possible_cpu(cpu) {
1995                 for (i = index; i < dev->num_tx_queues; i++) {
1996                         if (!remove_xps_queue(dev_maps, cpu, i))
1997                                 break;
1998                 }
1999                 if (i == dev->num_tx_queues)
2000                         active = true;
2001         }
2002
2003         if (!active) {
2004                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005                 kfree_rcu(dev_maps, rcu);
2006         }
2007
2008         for (i = index; i < dev->num_tx_queues; i++)
2009                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010                                              NUMA_NO_NODE);
2011
2012 out_no_maps:
2013         mutex_unlock(&xps_map_mutex);
2014 }
2015
2016 static struct xps_map *expand_xps_map(struct xps_map *map,
2017                                       int cpu, u16 index)
2018 {
2019         struct xps_map *new_map;
2020         int alloc_len = XPS_MIN_MAP_ALLOC;
2021         int i, pos;
2022
2023         for (pos = 0; map && pos < map->len; pos++) {
2024                 if (map->queues[pos] != index)
2025                         continue;
2026                 return map;
2027         }
2028
2029         /* Need to add queue to this CPU's existing map */
2030         if (map) {
2031                 if (pos < map->alloc_len)
2032                         return map;
2033
2034                 alloc_len = map->alloc_len * 2;
2035         }
2036
2037         /* Need to allocate new map to store queue on this CPU's map */
2038         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039                                cpu_to_node(cpu));
2040         if (!new_map)
2041                 return NULL;
2042
2043         for (i = 0; i < pos; i++)
2044                 new_map->queues[i] = map->queues[i];
2045         new_map->alloc_len = alloc_len;
2046         new_map->len = pos;
2047
2048         return new_map;
2049 }
2050
2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052                         u16 index)
2053 {
2054         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2055         struct xps_map *map, *new_map;
2056         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2057         int cpu, numa_node_id = -2;
2058         bool active = false;
2059
2060         mutex_lock(&xps_map_mutex);
2061
2062         dev_maps = xmap_dereference(dev->xps_maps);
2063
2064         /* allocate memory for queue storage */
2065         for_each_online_cpu(cpu) {
2066                 if (!cpumask_test_cpu(cpu, mask))
2067                         continue;
2068
2069                 if (!new_dev_maps)
2070                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2071                 if (!new_dev_maps) {
2072                         mutex_unlock(&xps_map_mutex);
2073                         return -ENOMEM;
2074                 }
2075
2076                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077                                  NULL;
2078
2079                 map = expand_xps_map(map, cpu, index);
2080                 if (!map)
2081                         goto error;
2082
2083                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084         }
2085
2086         if (!new_dev_maps)
2087                 goto out_no_new_maps;
2088
2089         for_each_possible_cpu(cpu) {
2090                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091                         /* add queue to CPU maps */
2092                         int pos = 0;
2093
2094                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095                         while ((pos < map->len) && (map->queues[pos] != index))
2096                                 pos++;
2097
2098                         if (pos == map->len)
2099                                 map->queues[map->len++] = index;
2100 #ifdef CONFIG_NUMA
2101                         if (numa_node_id == -2)
2102                                 numa_node_id = cpu_to_node(cpu);
2103                         else if (numa_node_id != cpu_to_node(cpu))
2104                                 numa_node_id = -1;
2105 #endif
2106                 } else if (dev_maps) {
2107                         /* fill in the new device map from the old device map */
2108                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2110                 }
2111
2112         }
2113
2114         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115
2116         /* Cleanup old maps */
2117         if (dev_maps) {
2118                 for_each_possible_cpu(cpu) {
2119                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121                         if (map && map != new_map)
2122                                 kfree_rcu(map, rcu);
2123                 }
2124
2125                 kfree_rcu(dev_maps, rcu);
2126         }
2127
2128         dev_maps = new_dev_maps;
2129         active = true;
2130
2131 out_no_new_maps:
2132         /* update Tx queue numa node */
2133         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134                                      (numa_node_id >= 0) ? numa_node_id :
2135                                      NUMA_NO_NODE);
2136
2137         if (!dev_maps)
2138                 goto out_no_maps;
2139
2140         /* removes queue from unused CPUs */
2141         for_each_possible_cpu(cpu) {
2142                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143                         continue;
2144
2145                 if (remove_xps_queue(dev_maps, cpu, index))
2146                         active = true;
2147         }
2148
2149         /* free map if not active */
2150         if (!active) {
2151                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152                 kfree_rcu(dev_maps, rcu);
2153         }
2154
2155 out_no_maps:
2156         mutex_unlock(&xps_map_mutex);
2157
2158         return 0;
2159 error:
2160         /* remove any maps that we added */
2161         for_each_possible_cpu(cpu) {
2162                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164                                  NULL;
2165                 if (new_map && new_map != map)
2166                         kfree(new_map);
2167         }
2168
2169         mutex_unlock(&xps_map_mutex);
2170
2171         kfree(new_dev_maps);
2172         return -ENOMEM;
2173 }
2174 EXPORT_SYMBOL(netif_set_xps_queue);
2175
2176 #endif
2177 /*
2178  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180  */
2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2182 {
2183         int rc;
2184
2185         if (txq < 1 || txq > dev->num_tx_queues)
2186                 return -EINVAL;
2187
2188         if (dev->reg_state == NETREG_REGISTERED ||
2189             dev->reg_state == NETREG_UNREGISTERING) {
2190                 ASSERT_RTNL();
2191
2192                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193                                                   txq);
2194                 if (rc)
2195                         return rc;
2196
2197                 if (dev->num_tc)
2198                         netif_setup_tc(dev, txq);
2199
2200                 if (txq < dev->real_num_tx_queues) {
2201                         qdisc_reset_all_tx_gt(dev, txq);
2202 #ifdef CONFIG_XPS
2203                         netif_reset_xps_queues_gt(dev, txq);
2204 #endif
2205                 }
2206         }
2207
2208         dev->real_num_tx_queues = txq;
2209         return 0;
2210 }
2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2212
2213 #ifdef CONFIG_SYSFS
2214 /**
2215  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2216  *      @dev: Network device
2217  *      @rxq: Actual number of RX queues
2218  *
2219  *      This must be called either with the rtnl_lock held or before
2220  *      registration of the net device.  Returns 0 on success, or a
2221  *      negative error code.  If called before registration, it always
2222  *      succeeds.
2223  */
2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225 {
2226         int rc;
2227
2228         if (rxq < 1 || rxq > dev->num_rx_queues)
2229                 return -EINVAL;
2230
2231         if (dev->reg_state == NETREG_REGISTERED) {
2232                 ASSERT_RTNL();
2233
2234                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235                                                   rxq);
2236                 if (rc)
2237                         return rc;
2238         }
2239
2240         dev->real_num_rx_queues = rxq;
2241         return 0;
2242 }
2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244 #endif
2245
2246 /**
2247  * netif_get_num_default_rss_queues - default number of RSS queues
2248  *
2249  * This routine should set an upper limit on the number of RSS queues
2250  * used by default by multiqueue devices.
2251  */
2252 int netif_get_num_default_rss_queues(void)
2253 {
2254         return is_kdump_kernel() ?
2255                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2256 }
2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
2259 static void __netif_reschedule(struct Qdisc *q)
2260 {
2261         struct softnet_data *sd;
2262         unsigned long flags;
2263
2264         local_irq_save(flags);
2265         sd = this_cpu_ptr(&softnet_data);
2266         q->next_sched = NULL;
2267         *sd->output_queue_tailp = q;
2268         sd->output_queue_tailp = &q->next_sched;
2269         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270         local_irq_restore(flags);
2271 }
2272
2273 void __netif_schedule(struct Qdisc *q)
2274 {
2275         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276                 __netif_reschedule(q);
2277 }
2278 EXPORT_SYMBOL(__netif_schedule);
2279
2280 struct dev_kfree_skb_cb {
2281         enum skb_free_reason reason;
2282 };
2283
2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2285 {
2286         return (struct dev_kfree_skb_cb *)skb->cb;
2287 }
2288
2289 void netif_schedule_queue(struct netdev_queue *txq)
2290 {
2291         rcu_read_lock();
2292         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295                 __netif_schedule(q);
2296         }
2297         rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL(netif_schedule_queue);
2300
2301 /**
2302  *      netif_wake_subqueue - allow sending packets on subqueue
2303  *      @dev: network device
2304  *      @queue_index: sub queue index
2305  *
2306  * Resume individual transmit queue of a device with multiple transmit queues.
2307  */
2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313                 struct Qdisc *q;
2314
2315                 rcu_read_lock();
2316                 q = rcu_dereference(txq->qdisc);
2317                 __netif_schedule(q);
2318                 rcu_read_unlock();
2319         }
2320 }
2321 EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324 {
2325         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326                 struct Qdisc *q;
2327
2328                 rcu_read_lock();
2329                 q = rcu_dereference(dev_queue->qdisc);
2330                 __netif_schedule(q);
2331                 rcu_read_unlock();
2332         }
2333 }
2334 EXPORT_SYMBOL(netif_tx_wake_queue);
2335
2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2337 {
2338         unsigned long flags;
2339
2340         if (likely(atomic_read(&skb->users) == 1)) {
2341                 smp_rmb();
2342                 atomic_set(&skb->users, 0);
2343         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344                 return;
2345         }
2346         get_kfree_skb_cb(skb)->reason = reason;
2347         local_irq_save(flags);
2348         skb->next = __this_cpu_read(softnet_data.completion_queue);
2349         __this_cpu_write(softnet_data.completion_queue, skb);
2350         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351         local_irq_restore(flags);
2352 }
2353 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2354
2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2356 {
2357         if (in_irq() || irqs_disabled())
2358                 __dev_kfree_skb_irq(skb, reason);
2359         else
2360                 dev_kfree_skb(skb);
2361 }
2362 EXPORT_SYMBOL(__dev_kfree_skb_any);
2363
2364
2365 /**
2366  * netif_device_detach - mark device as removed
2367  * @dev: network device
2368  *
2369  * Mark device as removed from system and therefore no longer available.
2370  */
2371 void netif_device_detach(struct net_device *dev)
2372 {
2373         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374             netif_running(dev)) {
2375                 netif_tx_stop_all_queues(dev);
2376         }
2377 }
2378 EXPORT_SYMBOL(netif_device_detach);
2379
2380 /**
2381  * netif_device_attach - mark device as attached
2382  * @dev: network device
2383  *
2384  * Mark device as attached from system and restart if needed.
2385  */
2386 void netif_device_attach(struct net_device *dev)
2387 {
2388         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389             netif_running(dev)) {
2390                 netif_tx_wake_all_queues(dev);
2391                 __netdev_watchdog_up(dev);
2392         }
2393 }
2394 EXPORT_SYMBOL(netif_device_attach);
2395
2396 /*
2397  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398  * to be used as a distribution range.
2399  */
2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401                   unsigned int num_tx_queues)
2402 {
2403         u32 hash;
2404         u16 qoffset = 0;
2405         u16 qcount = num_tx_queues;
2406
2407         if (skb_rx_queue_recorded(skb)) {
2408                 hash = skb_get_rx_queue(skb);
2409                 while (unlikely(hash >= num_tx_queues))
2410                         hash -= num_tx_queues;
2411                 return hash;
2412         }
2413
2414         if (dev->num_tc) {
2415                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416                 qoffset = dev->tc_to_txq[tc].offset;
2417                 qcount = dev->tc_to_txq[tc].count;
2418         }
2419
2420         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421 }
2422 EXPORT_SYMBOL(__skb_tx_hash);
2423
2424 static void skb_warn_bad_offload(const struct sk_buff *skb)
2425 {
2426         static const netdev_features_t null_features;
2427         struct net_device *dev = skb->dev;
2428         const char *name = "";
2429
2430         if (!net_ratelimit())
2431                 return;
2432
2433         if (dev) {
2434                 if (dev->dev.parent)
2435                         name = dev_driver_string(dev->dev.parent);
2436                 else
2437                         name = netdev_name(dev);
2438         }
2439         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440              "gso_type=%d ip_summed=%d\n",
2441              name, dev ? &dev->features : &null_features,
2442              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2443              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444              skb_shinfo(skb)->gso_type, skb->ip_summed);
2445 }
2446
2447 /*
2448  * Invalidate hardware checksum when packet is to be mangled, and
2449  * complete checksum manually on outgoing path.
2450  */
2451 int skb_checksum_help(struct sk_buff *skb)
2452 {
2453         __wsum csum;
2454         int ret = 0, offset;
2455
2456         if (skb->ip_summed == CHECKSUM_COMPLETE)
2457                 goto out_set_summed;
2458
2459         if (unlikely(skb_shinfo(skb)->gso_size)) {
2460                 skb_warn_bad_offload(skb);
2461                 return -EINVAL;
2462         }
2463
2464         /* Before computing a checksum, we should make sure no frag could
2465          * be modified by an external entity : checksum could be wrong.
2466          */
2467         if (skb_has_shared_frag(skb)) {
2468                 ret = __skb_linearize(skb);
2469                 if (ret)
2470                         goto out;
2471         }
2472
2473         offset = skb_checksum_start_offset(skb);
2474         BUG_ON(offset >= skb_headlen(skb));
2475         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477         offset += skb->csum_offset;
2478         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480         if (skb_cloned(skb) &&
2481             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2482                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483                 if (ret)
2484                         goto out;
2485         }
2486
2487         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2488 out_set_summed:
2489         skb->ip_summed = CHECKSUM_NONE;
2490 out:
2491         return ret;
2492 }
2493 EXPORT_SYMBOL(skb_checksum_help);
2494
2495 /* skb_csum_offload_check - Driver helper function to determine if a device
2496  * with limited checksum offload capabilities is able to offload the checksum
2497  * for a given packet.
2498  *
2499  * Arguments:
2500  *   skb - sk_buff for the packet in question
2501  *   spec - contains the description of what device can offload
2502  *   csum_encapped - returns true if the checksum being offloaded is
2503  *            encpasulated. That is it is checksum for the transport header
2504  *            in the inner headers.
2505  *   checksum_help - when set indicates that helper function should
2506  *            call skb_checksum_help if offload checks fail
2507  *
2508  * Returns:
2509  *   true: Packet has passed the checksum checks and should be offloadable to
2510  *         the device (a driver may still need to check for additional
2511  *         restrictions of its device)
2512  *   false: Checksum is not offloadable. If checksum_help was set then
2513  *         skb_checksum_help was called to resolve checksum for non-GSO
2514  *         packets and when IP protocol is not SCTP
2515  */
2516 bool __skb_csum_offload_chk(struct sk_buff *skb,
2517                             const struct skb_csum_offl_spec *spec,
2518                             bool *csum_encapped,
2519                             bool csum_help)
2520 {
2521         struct iphdr *iph;
2522         struct ipv6hdr *ipv6;
2523         void *nhdr;
2524         int protocol;
2525         u8 ip_proto;
2526
2527         if (skb->protocol == htons(ETH_P_8021Q) ||
2528             skb->protocol == htons(ETH_P_8021AD)) {
2529                 if (!spec->vlan_okay)
2530                         goto need_help;
2531         }
2532
2533         /* We check whether the checksum refers to a transport layer checksum in
2534          * the outermost header or an encapsulated transport layer checksum that
2535          * corresponds to the inner headers of the skb. If the checksum is for
2536          * something else in the packet we need help.
2537          */
2538         if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539                 /* Non-encapsulated checksum */
2540                 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541                 nhdr = skb_network_header(skb);
2542                 *csum_encapped = false;
2543                 if (spec->no_not_encapped)
2544                         goto need_help;
2545         } else if (skb->encapsulation && spec->encap_okay &&
2546                    skb_checksum_start_offset(skb) ==
2547                    skb_inner_transport_offset(skb)) {
2548                 /* Encapsulated checksum */
2549                 *csum_encapped = true;
2550                 switch (skb->inner_protocol_type) {
2551                 case ENCAP_TYPE_ETHER:
2552                         protocol = eproto_to_ipproto(skb->inner_protocol);
2553                         break;
2554                 case ENCAP_TYPE_IPPROTO:
2555                         protocol = skb->inner_protocol;
2556                         break;
2557                 }
2558                 nhdr = skb_inner_network_header(skb);
2559         } else {
2560                 goto need_help;
2561         }
2562
2563         switch (protocol) {
2564         case IPPROTO_IP:
2565                 if (!spec->ipv4_okay)
2566                         goto need_help;
2567                 iph = nhdr;
2568                 ip_proto = iph->protocol;
2569                 if (iph->ihl != 5 && !spec->ip_options_okay)
2570                         goto need_help;
2571                 break;
2572         case IPPROTO_IPV6:
2573                 if (!spec->ipv6_okay)
2574                         goto need_help;
2575                 if (spec->no_encapped_ipv6 && *csum_encapped)
2576                         goto need_help;
2577                 ipv6 = nhdr;
2578                 nhdr += sizeof(*ipv6);
2579                 ip_proto = ipv6->nexthdr;
2580                 break;
2581         default:
2582                 goto need_help;
2583         }
2584
2585 ip_proto_again:
2586         switch (ip_proto) {
2587         case IPPROTO_TCP:
2588                 if (!spec->tcp_okay ||
2589                     skb->csum_offset != offsetof(struct tcphdr, check))
2590                         goto need_help;
2591                 break;
2592         case IPPROTO_UDP:
2593                 if (!spec->udp_okay ||
2594                     skb->csum_offset != offsetof(struct udphdr, check))
2595                         goto need_help;
2596                 break;
2597         case IPPROTO_SCTP:
2598                 if (!spec->sctp_okay ||
2599                     skb->csum_offset != offsetof(struct sctphdr, checksum))
2600                         goto cant_help;
2601                 break;
2602         case NEXTHDR_HOP:
2603         case NEXTHDR_ROUTING:
2604         case NEXTHDR_DEST: {
2605                 u8 *opthdr = nhdr;
2606
2607                 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608                         goto need_help;
2609
2610                 ip_proto = opthdr[0];
2611                 nhdr += (opthdr[1] + 1) << 3;
2612
2613                 goto ip_proto_again;
2614         }
2615         default:
2616                 goto need_help;
2617         }
2618
2619         /* Passed the tests for offloading checksum */
2620         return true;
2621
2622 need_help:
2623         if (csum_help && !skb_shinfo(skb)->gso_size)
2624                 skb_checksum_help(skb);
2625 cant_help:
2626         return false;
2627 }
2628 EXPORT_SYMBOL(__skb_csum_offload_chk);
2629
2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2631 {
2632         __be16 type = skb->protocol;
2633
2634         /* Tunnel gso handlers can set protocol to ethernet. */
2635         if (type == htons(ETH_P_TEB)) {
2636                 struct ethhdr *eth;
2637
2638                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639                         return 0;
2640
2641                 eth = (struct ethhdr *)skb_mac_header(skb);
2642                 type = eth->h_proto;
2643         }
2644
2645         return __vlan_get_protocol(skb, type, depth);
2646 }
2647
2648 /**
2649  *      skb_mac_gso_segment - mac layer segmentation handler.
2650  *      @skb: buffer to segment
2651  *      @features: features for the output path (see dev->features)
2652  */
2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654                                     netdev_features_t features)
2655 {
2656         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657         struct packet_offload *ptype;
2658         int vlan_depth = skb->mac_len;
2659         __be16 type = skb_network_protocol(skb, &vlan_depth);
2660
2661         if (unlikely(!type))
2662                 return ERR_PTR(-EINVAL);
2663
2664         __skb_pull(skb, vlan_depth);
2665
2666         rcu_read_lock();
2667         list_for_each_entry_rcu(ptype, &offload_base, list) {
2668                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2669                         segs = ptype->callbacks.gso_segment(skb, features);
2670                         break;
2671                 }
2672         }
2673         rcu_read_unlock();
2674
2675         __skb_push(skb, skb->data - skb_mac_header(skb));
2676
2677         return segs;
2678 }
2679 EXPORT_SYMBOL(skb_mac_gso_segment);
2680
2681
2682 /* openvswitch calls this on rx path, so we need a different check.
2683  */
2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685 {
2686         if (tx_path)
2687                 return skb->ip_summed != CHECKSUM_PARTIAL;
2688         else
2689                 return skb->ip_summed == CHECKSUM_NONE;
2690 }
2691
2692 /**
2693  *      __skb_gso_segment - Perform segmentation on skb.
2694  *      @skb: buffer to segment
2695  *      @features: features for the output path (see dev->features)
2696  *      @tx_path: whether it is called in TX path
2697  *
2698  *      This function segments the given skb and returns a list of segments.
2699  *
2700  *      It may return NULL if the skb requires no segmentation.  This is
2701  *      only possible when GSO is used for verifying header integrity.
2702  *
2703  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2704  */
2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706                                   netdev_features_t features, bool tx_path)
2707 {
2708         if (unlikely(skb_needs_check(skb, tx_path))) {
2709                 int err;
2710
2711                 skb_warn_bad_offload(skb);
2712
2713                 err = skb_cow_head(skb, 0);
2714                 if (err < 0)
2715                         return ERR_PTR(err);
2716         }
2717
2718         /* Only report GSO partial support if it will enable us to
2719          * support segmentation on this frame without needing additional
2720          * work.
2721          */
2722         if (features & NETIF_F_GSO_PARTIAL) {
2723                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724                 struct net_device *dev = skb->dev;
2725
2726                 partial_features |= dev->features & dev->gso_partial_features;
2727                 if (!skb_gso_ok(skb, features | partial_features))
2728                         features &= ~NETIF_F_GSO_PARTIAL;
2729         }
2730
2731         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733
2734         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2735         SKB_GSO_CB(skb)->encap_level = 0;
2736
2737         skb_reset_mac_header(skb);
2738         skb_reset_mac_len(skb);
2739
2740         return skb_mac_gso_segment(skb, features);
2741 }
2742 EXPORT_SYMBOL(__skb_gso_segment);
2743
2744 /* Take action when hardware reception checksum errors are detected. */
2745 #ifdef CONFIG_BUG
2746 void netdev_rx_csum_fault(struct net_device *dev)
2747 {
2748         if (net_ratelimit()) {
2749                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2750                 dump_stack();
2751         }
2752 }
2753 EXPORT_SYMBOL(netdev_rx_csum_fault);
2754 #endif
2755
2756 /* Actually, we should eliminate this check as soon as we know, that:
2757  * 1. IOMMU is present and allows to map all the memory.
2758  * 2. No high memory really exists on this machine.
2759  */
2760
2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2762 {
2763 #ifdef CONFIG_HIGHMEM
2764         int i;
2765         if (!(dev->features & NETIF_F_HIGHDMA)) {
2766                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768                         if (PageHighMem(skb_frag_page(frag)))
2769                                 return 1;
2770                 }
2771         }
2772
2773         if (PCI_DMA_BUS_IS_PHYS) {
2774                 struct device *pdev = dev->dev.parent;
2775
2776                 if (!pdev)
2777                         return 0;
2778                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2781                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782                                 return 1;
2783                 }
2784         }
2785 #endif
2786         return 0;
2787 }
2788
2789 /* If MPLS offload request, verify we are testing hardware MPLS features
2790  * instead of standard features for the netdev.
2791  */
2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2793 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794                                            netdev_features_t features,
2795                                            __be16 type)
2796 {
2797         if (eth_p_mpls(type))
2798                 features &= skb->dev->mpls_features;
2799
2800         return features;
2801 }
2802 #else
2803 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804                                            netdev_features_t features,
2805                                            __be16 type)
2806 {
2807         return features;
2808 }
2809 #endif
2810
2811 static netdev_features_t harmonize_features(struct sk_buff *skb,
2812         netdev_features_t features)
2813 {
2814         int tmp;
2815         __be16 type;
2816
2817         type = skb_network_protocol(skb, &tmp);
2818         features = net_mpls_features(skb, features, type);
2819
2820         if (skb->ip_summed != CHECKSUM_NONE &&
2821             !can_checksum_protocol(features, type)) {
2822                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2823         } else if (illegal_highdma(skb->dev, skb)) {
2824                 features &= ~NETIF_F_SG;
2825         }
2826
2827         return features;
2828 }
2829
2830 netdev_features_t passthru_features_check(struct sk_buff *skb,
2831                                           struct net_device *dev,
2832                                           netdev_features_t features)
2833 {
2834         return features;
2835 }
2836 EXPORT_SYMBOL(passthru_features_check);
2837
2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839                                              struct net_device *dev,
2840                                              netdev_features_t features)
2841 {
2842         return vlan_features_check(skb, features);
2843 }
2844
2845 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846                                             struct net_device *dev,
2847                                             netdev_features_t features)
2848 {
2849         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850
2851         if (gso_segs > dev->gso_max_segs)
2852                 return features & ~NETIF_F_GSO_MASK;
2853
2854         /* Support for GSO partial features requires software
2855          * intervention before we can actually process the packets
2856          * so we need to strip support for any partial features now
2857          * and we can pull them back in after we have partially
2858          * segmented the frame.
2859          */
2860         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861                 features &= ~dev->gso_partial_features;
2862
2863         /* Make sure to clear the IPv4 ID mangling feature if the
2864          * IPv4 header has the potential to be fragmented.
2865          */
2866         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867                 struct iphdr *iph = skb->encapsulation ?
2868                                     inner_ip_hdr(skb) : ip_hdr(skb);
2869
2870                 if (!(iph->frag_off & htons(IP_DF)))
2871                         features &= ~NETIF_F_TSO_MANGLEID;
2872         }
2873
2874         return features;
2875 }
2876
2877 netdev_features_t netif_skb_features(struct sk_buff *skb)
2878 {
2879         struct net_device *dev = skb->dev;
2880         netdev_features_t features = dev->features;
2881
2882         if (skb_is_gso(skb))
2883                 features = gso_features_check(skb, dev, features);
2884
2885         /* If encapsulation offload request, verify we are testing
2886          * hardware encapsulation features instead of standard
2887          * features for the netdev
2888          */
2889         if (skb->encapsulation)
2890                 features &= dev->hw_enc_features;
2891
2892         if (skb_vlan_tagged(skb))
2893                 features = netdev_intersect_features(features,
2894                                                      dev->vlan_features |
2895                                                      NETIF_F_HW_VLAN_CTAG_TX |
2896                                                      NETIF_F_HW_VLAN_STAG_TX);
2897
2898         if (dev->netdev_ops->ndo_features_check)
2899                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900                                                                 features);
2901         else
2902                 features &= dflt_features_check(skb, dev, features);
2903
2904         return harmonize_features(skb, features);
2905 }
2906 EXPORT_SYMBOL(netif_skb_features);
2907
2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2909                     struct netdev_queue *txq, bool more)
2910 {
2911         unsigned int len;
2912         int rc;
2913
2914         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2915                 dev_queue_xmit_nit(skb, dev);
2916
2917         len = skb->len;
2918         trace_net_dev_start_xmit(skb, dev);
2919         rc = netdev_start_xmit(skb, dev, txq, more);
2920         trace_net_dev_xmit(skb, rc, dev, len);
2921
2922         return rc;
2923 }
2924
2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926                                     struct netdev_queue *txq, int *ret)
2927 {
2928         struct sk_buff *skb = first;
2929         int rc = NETDEV_TX_OK;
2930
2931         while (skb) {
2932                 struct sk_buff *next = skb->next;
2933
2934                 skb->next = NULL;
2935                 rc = xmit_one(skb, dev, txq, next != NULL);
2936                 if (unlikely(!dev_xmit_complete(rc))) {
2937                         skb->next = next;
2938                         goto out;
2939                 }
2940
2941                 skb = next;
2942                 if (netif_xmit_stopped(txq) && skb) {
2943                         rc = NETDEV_TX_BUSY;
2944                         break;
2945                 }
2946         }
2947
2948 out:
2949         *ret = rc;
2950         return skb;
2951 }
2952
2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954                                           netdev_features_t features)
2955 {
2956         if (skb_vlan_tag_present(skb) &&
2957             !vlan_hw_offload_capable(features, skb->vlan_proto))
2958                 skb = __vlan_hwaccel_push_inside(skb);
2959         return skb;
2960 }
2961
2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2963 {
2964         netdev_features_t features;
2965
2966         features = netif_skb_features(skb);
2967         skb = validate_xmit_vlan(skb, features);
2968         if (unlikely(!skb))
2969                 goto out_null;
2970
2971         if (netif_needs_gso(skb, features)) {
2972                 struct sk_buff *segs;
2973
2974                 segs = skb_gso_segment(skb, features);
2975                 if (IS_ERR(segs)) {
2976                         goto out_kfree_skb;
2977                 } else if (segs) {
2978                         consume_skb(skb);
2979                         skb = segs;
2980                 }
2981         } else {
2982                 if (skb_needs_linearize(skb, features) &&
2983                     __skb_linearize(skb))
2984                         goto out_kfree_skb;
2985
2986                 /* If packet is not checksummed and device does not
2987                  * support checksumming for this protocol, complete
2988                  * checksumming here.
2989                  */
2990                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991                         if (skb->encapsulation)
2992                                 skb_set_inner_transport_header(skb,
2993                                                                skb_checksum_start_offset(skb));
2994                         else
2995                                 skb_set_transport_header(skb,
2996                                                          skb_checksum_start_offset(skb));
2997                         if (!(features & NETIF_F_CSUM_MASK) &&
2998                             skb_checksum_help(skb))
2999                                 goto out_kfree_skb;
3000                 }
3001         }
3002
3003         return skb;
3004
3005 out_kfree_skb:
3006         kfree_skb(skb);
3007 out_null:
3008         atomic_long_inc(&dev->tx_dropped);
3009         return NULL;
3010 }
3011
3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013 {
3014         struct sk_buff *next, *head = NULL, *tail;
3015
3016         for (; skb != NULL; skb = next) {
3017                 next = skb->next;
3018                 skb->next = NULL;
3019
3020                 /* in case skb wont be segmented, point to itself */
3021                 skb->prev = skb;
3022
3023                 skb = validate_xmit_skb(skb, dev);
3024                 if (!skb)
3025                         continue;
3026
3027                 if (!head)
3028                         head = skb;
3029                 else
3030                         tail->next = skb;
3031                 /* If skb was segmented, skb->prev points to
3032                  * the last segment. If not, it still contains skb.
3033                  */
3034                 tail = skb->prev;
3035         }
3036         return head;
3037 }
3038
3039 static void qdisc_pkt_len_init(struct sk_buff *skb)
3040 {
3041         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042
3043         qdisc_skb_cb(skb)->pkt_len = skb->len;
3044
3045         /* To get more precise estimation of bytes sent on wire,
3046          * we add to pkt_len the headers size of all segments
3047          */
3048         if (shinfo->gso_size)  {
3049                 unsigned int hdr_len;
3050                 u16 gso_segs = shinfo->gso_segs;
3051
3052                 /* mac layer + network layer */
3053                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054
3055                 /* + transport layer */
3056                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057                         hdr_len += tcp_hdrlen(skb);
3058                 else
3059                         hdr_len += sizeof(struct udphdr);
3060
3061                 if (shinfo->gso_type & SKB_GSO_DODGY)
3062                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063                                                 shinfo->gso_size);
3064
3065                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3066         }
3067 }
3068
3069 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070                                  struct net_device *dev,
3071                                  struct netdev_queue *txq)
3072 {
3073         spinlock_t *root_lock = qdisc_lock(q);
3074         struct sk_buff *to_free = NULL;
3075         bool contended;
3076         int rc;
3077
3078         qdisc_calculate_pkt_len(skb, q);
3079         /*
3080          * Heuristic to force contended enqueues to serialize on a
3081          * separate lock before trying to get qdisc main lock.
3082          * This permits qdisc->running owner to get the lock more
3083          * often and dequeue packets faster.
3084          */
3085         contended = qdisc_is_running(q);
3086         if (unlikely(contended))
3087                 spin_lock(&q->busylock);
3088
3089         spin_lock(root_lock);
3090         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3091                 __qdisc_drop(skb, &to_free);
3092                 rc = NET_XMIT_DROP;
3093         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3094                    qdisc_run_begin(q)) {
3095                 /*
3096                  * This is a work-conserving queue; there are no old skbs
3097                  * waiting to be sent out; and the qdisc is not running -
3098                  * xmit the skb directly.
3099                  */
3100
3101                 qdisc_bstats_update(q, skb);
3102
3103                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3104                         if (unlikely(contended)) {
3105                                 spin_unlock(&q->busylock);
3106                                 contended = false;
3107                         }
3108                         __qdisc_run(q);
3109                 } else
3110                         qdisc_run_end(q);
3111
3112                 rc = NET_XMIT_SUCCESS;
3113         } else {
3114                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3115                 if (qdisc_run_begin(q)) {
3116                         if (unlikely(contended)) {
3117                                 spin_unlock(&q->busylock);
3118                                 contended = false;
3119                         }
3120                         __qdisc_run(q);
3121                 }
3122         }
3123         spin_unlock(root_lock);
3124         if (unlikely(to_free))
3125                 kfree_skb_list(to_free);
3126         if (unlikely(contended))
3127                 spin_unlock(&q->busylock);
3128         return rc;
3129 }
3130
3131 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3132 static void skb_update_prio(struct sk_buff *skb)
3133 {
3134         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3135
3136         if (!skb->priority && skb->sk && map) {
3137                 unsigned int prioidx =
3138                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3139
3140                 if (prioidx < map->priomap_len)
3141                         skb->priority = map->priomap[prioidx];
3142         }
3143 }
3144 #else
3145 #define skb_update_prio(skb)
3146 #endif
3147
3148 DEFINE_PER_CPU(int, xmit_recursion);
3149 EXPORT_SYMBOL(xmit_recursion);
3150
3151 /**
3152  *      dev_loopback_xmit - loop back @skb
3153  *      @net: network namespace this loopback is happening in
3154  *      @sk:  sk needed to be a netfilter okfn
3155  *      @skb: buffer to transmit
3156  */
3157 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3158 {
3159         skb_reset_mac_header(skb);
3160         __skb_pull(skb, skb_network_offset(skb));
3161         skb->pkt_type = PACKET_LOOPBACK;
3162         skb->ip_summed = CHECKSUM_UNNECESSARY;
3163         WARN_ON(!skb_dst(skb));
3164         skb_dst_force(skb);
3165         netif_rx_ni(skb);
3166         return 0;
3167 }
3168 EXPORT_SYMBOL(dev_loopback_xmit);
3169
3170 #ifdef CONFIG_NET_EGRESS
3171 static struct sk_buff *
3172 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173 {
3174         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175         struct tcf_result cl_res;
3176
3177         if (!cl)
3178                 return skb;
3179
3180         /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181          * earlier by the caller.
3182          */
3183         qdisc_bstats_cpu_update(cl->q, skb);
3184
3185         switch (tc_classify(skb, cl, &cl_res, false)) {
3186         case TC_ACT_OK:
3187         case TC_ACT_RECLASSIFY:
3188                 skb->tc_index = TC_H_MIN(cl_res.classid);
3189                 break;
3190         case TC_ACT_SHOT:
3191                 qdisc_qstats_cpu_drop(cl->q);
3192                 *ret = NET_XMIT_DROP;
3193                 kfree_skb(skb);
3194                 return NULL;
3195         case TC_ACT_STOLEN:
3196         case TC_ACT_QUEUED:
3197                 *ret = NET_XMIT_SUCCESS;
3198                 consume_skb(skb);
3199                 return NULL;
3200         case TC_ACT_REDIRECT:
3201                 /* No need to push/pop skb's mac_header here on egress! */
3202                 skb_do_redirect(skb);
3203                 *ret = NET_XMIT_SUCCESS;
3204                 return NULL;
3205         default:
3206                 break;
3207         }
3208
3209         return skb;
3210 }
3211 #endif /* CONFIG_NET_EGRESS */
3212
3213 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3214 {
3215 #ifdef CONFIG_XPS
3216         struct xps_dev_maps *dev_maps;
3217         struct xps_map *map;
3218         int queue_index = -1;
3219
3220         rcu_read_lock();
3221         dev_maps = rcu_dereference(dev->xps_maps);
3222         if (dev_maps) {
3223                 map = rcu_dereference(
3224                     dev_maps->cpu_map[skb->sender_cpu - 1]);
3225                 if (map) {
3226                         if (map->len == 1)
3227                                 queue_index = map->queues[0];
3228                         else
3229                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3230                                                                            map->len)];
3231                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3232                                 queue_index = -1;
3233                 }
3234         }
3235         rcu_read_unlock();
3236
3237         return queue_index;
3238 #else
3239         return -1;
3240 #endif
3241 }
3242
3243 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3244 {
3245         struct sock *sk = skb->sk;
3246         int queue_index = sk_tx_queue_get(sk);
3247
3248         if (queue_index < 0 || skb->ooo_okay ||
3249             queue_index >= dev->real_num_tx_queues) {
3250                 int new_index = get_xps_queue(dev, skb);
3251                 if (new_index < 0)
3252                         new_index = skb_tx_hash(dev, skb);
3253
3254                 if (queue_index != new_index && sk &&
3255                     sk_fullsock(sk) &&
3256                     rcu_access_pointer(sk->sk_dst_cache))
3257                         sk_tx_queue_set(sk, new_index);
3258
3259                 queue_index = new_index;
3260         }
3261
3262         return queue_index;
3263 }
3264
3265 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266                                     struct sk_buff *skb,
3267                                     void *accel_priv)
3268 {
3269         int queue_index = 0;
3270
3271 #ifdef CONFIG_XPS
3272         u32 sender_cpu = skb->sender_cpu - 1;
3273
3274         if (sender_cpu >= (u32)NR_CPUS)
3275                 skb->sender_cpu = raw_smp_processor_id() + 1;
3276 #endif
3277
3278         if (dev->real_num_tx_queues != 1) {
3279                 const struct net_device_ops *ops = dev->netdev_ops;
3280                 if (ops->ndo_select_queue)
3281                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3282                                                             __netdev_pick_tx);
3283                 else
3284                         queue_index = __netdev_pick_tx(dev, skb);
3285
3286                 if (!accel_priv)
3287                         queue_index = netdev_cap_txqueue(dev, queue_index);
3288         }
3289
3290         skb_set_queue_mapping(skb, queue_index);
3291         return netdev_get_tx_queue(dev, queue_index);
3292 }
3293
3294 /**
3295  *      __dev_queue_xmit - transmit a buffer
3296  *      @skb: buffer to transmit
3297  *      @accel_priv: private data used for L2 forwarding offload
3298  *
3299  *      Queue a buffer for transmission to a network device. The caller must
3300  *      have set the device and priority and built the buffer before calling
3301  *      this function. The function can be called from an interrupt.
3302  *
3303  *      A negative errno code is returned on a failure. A success does not
3304  *      guarantee the frame will be transmitted as it may be dropped due
3305  *      to congestion or traffic shaping.
3306  *
3307  * -----------------------------------------------------------------------------------
3308  *      I notice this method can also return errors from the queue disciplines,
3309  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3310  *      be positive.
3311  *
3312  *      Regardless of the return value, the skb is consumed, so it is currently
3313  *      difficult to retry a send to this method.  (You can bump the ref count
3314  *      before sending to hold a reference for retry if you are careful.)
3315  *
3316  *      When calling this method, interrupts MUST be enabled.  This is because
3317  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3318  *          --BLG
3319  */
3320 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3321 {
3322         struct net_device *dev = skb->dev;
3323         struct netdev_queue *txq;
3324         struct Qdisc *q;
3325         int rc = -ENOMEM;
3326
3327         skb_reset_mac_header(skb);
3328
3329         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3331
3332         /* Disable soft irqs for various locks below. Also
3333          * stops preemption for RCU.
3334          */
3335         rcu_read_lock_bh();
3336
3337         skb_update_prio(skb);
3338
3339         qdisc_pkt_len_init(skb);
3340 #ifdef CONFIG_NET_CLS_ACT
3341         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342 # ifdef CONFIG_NET_EGRESS
3343         if (static_key_false(&egress_needed)) {
3344                 skb = sch_handle_egress(skb, &rc, dev);
3345                 if (!skb)
3346                         goto out;
3347         }
3348 # endif
3349 #endif
3350         /* If device/qdisc don't need skb->dst, release it right now while
3351          * its hot in this cpu cache.
3352          */
3353         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354                 skb_dst_drop(skb);
3355         else
3356                 skb_dst_force(skb);
3357
3358         txq = netdev_pick_tx(dev, skb, accel_priv);
3359         q = rcu_dereference_bh(txq->qdisc);
3360
3361         trace_net_dev_queue(skb);
3362         if (q->enqueue) {
3363                 rc = __dev_xmit_skb(skb, q, dev, txq);
3364                 goto out;
3365         }
3366
3367         /* The device has no queue. Common case for software devices:
3368            loopback, all the sorts of tunnels...
3369
3370            Really, it is unlikely that netif_tx_lock protection is necessary
3371            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3372            counters.)
3373            However, it is possible, that they rely on protection
3374            made by us here.
3375
3376            Check this and shot the lock. It is not prone from deadlocks.
3377            Either shot noqueue qdisc, it is even simpler 8)
3378          */
3379         if (dev->flags & IFF_UP) {
3380                 int cpu = smp_processor_id(); /* ok because BHs are off */
3381
3382                 if (txq->xmit_lock_owner != cpu) {
3383                         if (unlikely(__this_cpu_read(xmit_recursion) >
3384                                      XMIT_RECURSION_LIMIT))
3385                                 goto recursion_alert;
3386
3387                         skb = validate_xmit_skb(skb, dev);
3388                         if (!skb)
3389                                 goto out;
3390
3391                         HARD_TX_LOCK(dev, txq, cpu);
3392
3393                         if (!netif_xmit_stopped(txq)) {
3394                                 __this_cpu_inc(xmit_recursion);
3395                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3396                                 __this_cpu_dec(xmit_recursion);
3397                                 if (dev_xmit_complete(rc)) {
3398                                         HARD_TX_UNLOCK(dev, txq);
3399                                         goto out;
3400                                 }
3401                         }
3402                         HARD_TX_UNLOCK(dev, txq);
3403                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3404                                              dev->name);
3405                 } else {
3406                         /* Recursion is detected! It is possible,
3407                          * unfortunately
3408                          */
3409 recursion_alert:
3410                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3411                                              dev->name);
3412                 }
3413         }
3414
3415         rc = -ENETDOWN;
3416         rcu_read_unlock_bh();
3417
3418         atomic_long_inc(&dev->tx_dropped);
3419         kfree_skb_list(skb);
3420         return rc;
3421 out:
3422         rcu_read_unlock_bh();
3423         return rc;
3424 }
3425
3426 int dev_queue_xmit(struct sk_buff *skb)
3427 {
3428         return __dev_queue_xmit(skb, NULL);
3429 }
3430 EXPORT_SYMBOL(dev_queue_xmit);
3431
3432 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3433 {
3434         return __dev_queue_xmit(skb, accel_priv);
3435 }
3436 EXPORT_SYMBOL(dev_queue_xmit_accel);
3437
3438
3439 /*=======================================================================
3440                         Receiver routines
3441   =======================================================================*/
3442
3443 int netdev_max_backlog __read_mostly = 1000;
3444 EXPORT_SYMBOL(netdev_max_backlog);
3445
3446 int netdev_tstamp_prequeue __read_mostly = 1;
3447 int netdev_budget __read_mostly = 300;
3448 int weight_p __read_mostly = 64;            /* old backlog weight */
3449
3450 /* Called with irq disabled */
3451 static inline void ____napi_schedule(struct softnet_data *sd,
3452                                      struct napi_struct *napi)
3453 {
3454         list_add_tail(&napi->poll_list, &sd->poll_list);
3455         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3456 }
3457
3458 #ifdef CONFIG_RPS
3459
3460 /* One global table that all flow-based protocols share. */
3461 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3462 EXPORT_SYMBOL(rps_sock_flow_table);
3463 u32 rps_cpu_mask __read_mostly;
3464 EXPORT_SYMBOL(rps_cpu_mask);
3465
3466 struct static_key rps_needed __read_mostly;
3467 EXPORT_SYMBOL(rps_needed);
3468
3469 static struct rps_dev_flow *
3470 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3471             struct rps_dev_flow *rflow, u16 next_cpu)
3472 {
3473         if (next_cpu < nr_cpu_ids) {
3474 #ifdef CONFIG_RFS_ACCEL
3475                 struct netdev_rx_queue *rxqueue;
3476                 struct rps_dev_flow_table *flow_table;
3477                 struct rps_dev_flow *old_rflow;
3478                 u32 flow_id;
3479                 u16 rxq_index;
3480                 int rc;
3481
3482                 /* Should we steer this flow to a different hardware queue? */
3483                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3484                     !(dev->features & NETIF_F_NTUPLE))
3485                         goto out;
3486                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3487                 if (rxq_index == skb_get_rx_queue(skb))
3488                         goto out;
3489
3490                 rxqueue = dev->_rx + rxq_index;
3491                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3492                 if (!flow_table)
3493                         goto out;
3494                 flow_id = skb_get_hash(skb) & flow_table->mask;
3495                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3496                                                         rxq_index, flow_id);
3497                 if (rc < 0)
3498                         goto out;
3499                 old_rflow = rflow;
3500                 rflow = &flow_table->flows[flow_id];
3501                 rflow->filter = rc;
3502                 if (old_rflow->filter == rflow->filter)
3503                         old_rflow->filter = RPS_NO_FILTER;
3504         out:
3505 #endif
3506                 rflow->last_qtail =
3507                         per_cpu(softnet_data, next_cpu).input_queue_head;
3508         }
3509
3510         rflow->cpu = next_cpu;
3511         return rflow;
3512 }
3513
3514 /*
3515  * get_rps_cpu is called from netif_receive_skb and returns the target
3516  * CPU from the RPS map of the receiving queue for a given skb.
3517  * rcu_read_lock must be held on entry.
3518  */
3519 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3520                        struct rps_dev_flow **rflowp)
3521 {
3522         const struct rps_sock_flow_table *sock_flow_table;
3523         struct netdev_rx_queue *rxqueue = dev->_rx;
3524         struct rps_dev_flow_table *flow_table;
3525         struct rps_map *map;
3526         int cpu = -1;
3527         u32 tcpu;
3528         u32 hash;
3529
3530         if (skb_rx_queue_recorded(skb)) {
3531                 u16 index = skb_get_rx_queue(skb);
3532
3533                 if (unlikely(index >= dev->real_num_rx_queues)) {
3534                         WARN_ONCE(dev->real_num_rx_queues > 1,
3535                                   "%s received packet on queue %u, but number "
3536                                   "of RX queues is %u\n",
3537                                   dev->name, index, dev->real_num_rx_queues);
3538                         goto done;
3539                 }
3540                 rxqueue += index;
3541         }
3542
3543         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3544
3545         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3546         map = rcu_dereference(rxqueue->rps_map);
3547         if (!flow_table && !map)
3548                 goto done;
3549
3550         skb_reset_network_header(skb);
3551         hash = skb_get_hash(skb);
3552         if (!hash)
3553                 goto done;
3554
3555         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3556         if (flow_table && sock_flow_table) {
3557                 struct rps_dev_flow *rflow;
3558                 u32 next_cpu;
3559                 u32 ident;
3560
3561                 /* First check into global flow table if there is a match */
3562                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3563                 if ((ident ^ hash) & ~rps_cpu_mask)
3564                         goto try_rps;
3565
3566                 next_cpu = ident & rps_cpu_mask;
3567
3568                 /* OK, now we know there is a match,
3569                  * we can look at the local (per receive queue) flow table
3570                  */
3571                 rflow = &flow_table->flows[hash & flow_table->mask];
3572                 tcpu = rflow->cpu;
3573
3574                 /*
3575                  * If the desired CPU (where last recvmsg was done) is
3576                  * different from current CPU (one in the rx-queue flow
3577                  * table entry), switch if one of the following holds:
3578                  *   - Current CPU is unset (>= nr_cpu_ids).
3579                  *   - Current CPU is offline.
3580                  *   - The current CPU's queue tail has advanced beyond the
3581                  *     last packet that was enqueued using this table entry.
3582                  *     This guarantees that all previous packets for the flow
3583                  *     have been dequeued, thus preserving in order delivery.
3584                  */
3585                 if (unlikely(tcpu != next_cpu) &&
3586                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3587                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3588                       rflow->last_qtail)) >= 0)) {
3589                         tcpu = next_cpu;
3590                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3591                 }
3592
3593                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3594                         *rflowp = rflow;
3595                         cpu = tcpu;
3596                         goto done;
3597                 }
3598         }
3599
3600 try_rps:
3601
3602         if (map) {
3603                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3604                 if (cpu_online(tcpu)) {
3605                         cpu = tcpu;
3606                         goto done;
3607                 }
3608         }
3609
3610 done:
3611         return cpu;
3612 }
3613
3614 #ifdef CONFIG_RFS_ACCEL
3615
3616 /**
3617  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3618  * @dev: Device on which the filter was set
3619  * @rxq_index: RX queue index
3620  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3621  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3622  *
3623  * Drivers that implement ndo_rx_flow_steer() should periodically call
3624  * this function for each installed filter and remove the filters for
3625  * which it returns %true.
3626  */
3627 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3628                          u32 flow_id, u16 filter_id)
3629 {
3630         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3631         struct rps_dev_flow_table *flow_table;
3632         struct rps_dev_flow *rflow;
3633         bool expire = true;
3634         unsigned int cpu;
3635
3636         rcu_read_lock();
3637         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3638         if (flow_table && flow_id <= flow_table->mask) {
3639                 rflow = &flow_table->flows[flow_id];
3640                 cpu = ACCESS_ONCE(rflow->cpu);
3641                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3642                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3643                            rflow->last_qtail) <
3644                      (int)(10 * flow_table->mask)))
3645                         expire = false;
3646         }
3647         rcu_read_unlock();
3648         return expire;
3649 }
3650 EXPORT_SYMBOL(rps_may_expire_flow);
3651
3652 #endif /* CONFIG_RFS_ACCEL */
3653
3654 /* Called from hardirq (IPI) context */
3655 static void rps_trigger_softirq(void *data)
3656 {
3657         struct softnet_data *sd = data;
3658
3659         ____napi_schedule(sd, &sd->backlog);
3660         sd->received_rps++;
3661 }
3662
3663 #endif /* CONFIG_RPS */
3664
3665 /*
3666  * Check if this softnet_data structure is another cpu one
3667  * If yes, queue it to our IPI list and return 1
3668  * If no, return 0
3669  */
3670 static int rps_ipi_queued(struct softnet_data *sd)
3671 {
3672 #ifdef CONFIG_RPS
3673         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3674
3675         if (sd != mysd) {
3676                 sd->rps_ipi_next = mysd->rps_ipi_list;
3677                 mysd->rps_ipi_list = sd;
3678
3679                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3680                 return 1;
3681         }
3682 #endif /* CONFIG_RPS */
3683         return 0;
3684 }
3685
3686 #ifdef CONFIG_NET_FLOW_LIMIT
3687 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3688 #endif
3689
3690 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3691 {
3692 #ifdef CONFIG_NET_FLOW_LIMIT
3693         struct sd_flow_limit *fl;
3694         struct softnet_data *sd;
3695         unsigned int old_flow, new_flow;
3696
3697         if (qlen < (netdev_max_backlog >> 1))
3698                 return false;
3699
3700         sd = this_cpu_ptr(&softnet_data);
3701
3702         rcu_read_lock();
3703         fl = rcu_dereference(sd->flow_limit);
3704         if (fl) {
3705                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3706                 old_flow = fl->history[fl->history_head];
3707                 fl->history[fl->history_head] = new_flow;
3708
3709                 fl->history_head++;
3710                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3711
3712                 if (likely(fl->buckets[old_flow]))
3713                         fl->buckets[old_flow]--;
3714
3715                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3716                         fl->count++;
3717                         rcu_read_unlock();
3718                         return true;
3719                 }
3720         }
3721         rcu_read_unlock();
3722 #endif
3723         return false;
3724 }
3725
3726 /*
3727  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3728  * queue (may be a remote CPU queue).
3729  */
3730 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3731                               unsigned int *qtail)
3732 {
3733         struct softnet_data *sd;
3734         unsigned long flags;
3735         unsigned int qlen;
3736
3737         sd = &per_cpu(softnet_data, cpu);
3738
3739         local_irq_save(flags);
3740
3741         rps_lock(sd);
3742         if (!netif_running(skb->dev))
3743                 goto drop;
3744         qlen = skb_queue_len(&sd->input_pkt_queue);
3745         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3746                 if (qlen) {
3747 enqueue:
3748                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3749                         input_queue_tail_incr_save(sd, qtail);
3750                         rps_unlock(sd);
3751                         local_irq_restore(flags);
3752                         return NET_RX_SUCCESS;
3753                 }
3754
3755                 /* Schedule NAPI for backlog device
3756                  * We can use non atomic operation since we own the queue lock
3757                  */
3758                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3759                         if (!rps_ipi_queued(sd))
3760                                 ____napi_schedule(sd, &sd->backlog);
3761                 }
3762                 goto enqueue;
3763         }
3764
3765 drop:
3766         sd->dropped++;
3767         rps_unlock(sd);
3768
3769         local_irq_restore(flags);
3770
3771         atomic_long_inc(&skb->dev->rx_dropped);
3772         kfree_skb(skb);
3773         return NET_RX_DROP;
3774 }
3775
3776 static int netif_rx_internal(struct sk_buff *skb)
3777 {
3778         int ret;
3779
3780         net_timestamp_check(netdev_tstamp_prequeue, skb);
3781
3782         trace_netif_rx(skb);
3783 #ifdef CONFIG_RPS
3784         if (static_key_false(&rps_needed)) {
3785                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3786                 int cpu;
3787
3788                 preempt_disable();
3789                 rcu_read_lock();
3790
3791                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3792                 if (cpu < 0)
3793                         cpu = smp_processor_id();
3794
3795                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3796
3797                 rcu_read_unlock();
3798                 preempt_enable();
3799         } else
3800 #endif
3801         {
3802                 unsigned int qtail;
3803                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3804                 put_cpu();
3805         }
3806         return ret;
3807 }
3808
3809 /**
3810  *      netif_rx        -       post buffer to the network code
3811  *      @skb: buffer to post
3812  *
3813  *      This function receives a packet from a device driver and queues it for
3814  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3815  *      may be dropped during processing for congestion control or by the
3816  *      protocol layers.
3817  *
3818  *      return values:
3819  *      NET_RX_SUCCESS  (no congestion)
3820  *      NET_RX_DROP     (packet was dropped)
3821  *
3822  */
3823
3824 int netif_rx(struct sk_buff *skb)
3825 {
3826         trace_netif_rx_entry(skb);
3827
3828         return netif_rx_internal(skb);
3829 }
3830 EXPORT_SYMBOL(netif_rx);
3831
3832 int netif_rx_ni(struct sk_buff *skb)
3833 {
3834         int err;
3835
3836         trace_netif_rx_ni_entry(skb);
3837
3838         preempt_disable();
3839         err = netif_rx_internal(skb);
3840         if (local_softirq_pending())
3841                 do_softirq();
3842         preempt_enable();
3843
3844         return err;
3845 }
3846 EXPORT_SYMBOL(netif_rx_ni);
3847
3848 static void net_tx_action(struct softirq_action *h)
3849 {
3850         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3851
3852         if (sd->completion_queue) {
3853                 struct sk_buff *clist;
3854
3855                 local_irq_disable();
3856                 clist = sd->completion_queue;
3857                 sd->completion_queue = NULL;
3858                 local_irq_enable();
3859
3860                 while (clist) {
3861                         struct sk_buff *skb = clist;
3862                         clist = clist->next;
3863
3864                         WARN_ON(atomic_read(&skb->users));
3865                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3866                                 trace_consume_skb(skb);
3867                         else
3868                                 trace_kfree_skb(skb, net_tx_action);
3869
3870                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3871                                 __kfree_skb(skb);
3872                         else
3873                                 __kfree_skb_defer(skb);
3874                 }
3875
3876                 __kfree_skb_flush();
3877         }
3878
3879         if (sd->output_queue) {
3880                 struct Qdisc *head;
3881
3882                 local_irq_disable();
3883                 head = sd->output_queue;
3884                 sd->output_queue = NULL;
3885                 sd->output_queue_tailp = &sd->output_queue;
3886                 local_irq_enable();
3887
3888                 while (head) {
3889                         struct Qdisc *q = head;
3890                         spinlock_t *root_lock;
3891
3892                         head = head->next_sched;
3893
3894                         root_lock = qdisc_lock(q);
3895                         spin_lock(root_lock);
3896                         /* We need to make sure head->next_sched is read
3897                          * before clearing __QDISC_STATE_SCHED
3898                          */
3899                         smp_mb__before_atomic();
3900                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3901                         qdisc_run(q);
3902                         spin_unlock(root_lock);
3903                 }
3904         }
3905 }
3906
3907 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3908     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3909 /* This hook is defined here for ATM LANE */
3910 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3911                              unsigned char *addr) __read_mostly;
3912 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3913 #endif
3914
3915 static inline struct sk_buff *
3916 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3917                    struct net_device *orig_dev)
3918 {
3919 #ifdef CONFIG_NET_CLS_ACT
3920         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3921         struct tcf_result cl_res;
3922
3923         /* If there's at least one ingress present somewhere (so
3924          * we get here via enabled static key), remaining devices
3925          * that are not configured with an ingress qdisc will bail
3926          * out here.
3927          */
3928         if (!cl)
3929                 return skb;
3930         if (*pt_prev) {
3931                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3932                 *pt_prev = NULL;
3933         }
3934
3935         qdisc_skb_cb(skb)->pkt_len = skb->len;
3936         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3937         qdisc_bstats_cpu_update(cl->q, skb);
3938
3939         switch (tc_classify(skb, cl, &cl_res, false)) {
3940         case TC_ACT_OK:
3941         case TC_ACT_RECLASSIFY:
3942                 skb->tc_index = TC_H_MIN(cl_res.classid);
3943                 break;
3944         case TC_ACT_SHOT:
3945                 qdisc_qstats_cpu_drop(cl->q);
3946                 kfree_skb(skb);
3947                 return NULL;
3948         case TC_ACT_STOLEN:
3949         case TC_ACT_QUEUED:
3950                 consume_skb(skb);
3951                 return NULL;
3952         case TC_ACT_REDIRECT:
3953                 /* skb_mac_header check was done by cls/act_bpf, so
3954                  * we can safely push the L2 header back before
3955                  * redirecting to another netdev
3956                  */
3957                 __skb_push(skb, skb->mac_len);
3958                 skb_do_redirect(skb);
3959                 return NULL;
3960         default:
3961                 break;
3962         }
3963 #endif /* CONFIG_NET_CLS_ACT */
3964         return skb;
3965 }
3966
3967 /**
3968  *      netdev_rx_handler_register - register receive handler
3969  *      @dev: device to register a handler for
3970  *      @rx_handler: receive handler to register
3971  *      @rx_handler_data: data pointer that is used by rx handler
3972  *
3973  *      Register a receive handler for a device. This handler will then be
3974  *      called from __netif_receive_skb. A negative errno code is returned
3975  *      on a failure.
3976  *
3977  *      The caller must hold the rtnl_mutex.
3978  *
3979  *      For a general description of rx_handler, see enum rx_handler_result.
3980  */
3981 int netdev_rx_handler_register(struct net_device *dev,
3982                                rx_handler_func_t *rx_handler,
3983                                void *rx_handler_data)
3984 {
3985         ASSERT_RTNL();
3986
3987         if (dev->rx_handler)
3988                 return -EBUSY;
3989
3990         /* Note: rx_handler_data must be set before rx_handler */
3991         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3992         rcu_assign_pointer(dev->rx_handler, rx_handler);
3993
3994         return 0;
3995 }
3996 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3997
3998 /**
3999  *      netdev_rx_handler_unregister - unregister receive handler
4000  *      @dev: device to unregister a handler from
4001  *
4002  *      Unregister a receive handler from a device.
4003  *
4004  *      The caller must hold the rtnl_mutex.
4005  */
4006 void netdev_rx_handler_unregister(struct net_device *dev)
4007 {
4008
4009         ASSERT_RTNL();
4010         RCU_INIT_POINTER(dev->rx_handler, NULL);
4011         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4012          * section has a guarantee to see a non NULL rx_handler_data
4013          * as well.
4014          */
4015         synchronize_net();
4016         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4017 }
4018 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4019
4020 /*
4021  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4022  * the special handling of PFMEMALLOC skbs.
4023  */
4024 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4025 {
4026         switch (skb->protocol) {
4027         case htons(ETH_P_ARP):
4028         case htons(ETH_P_IP):
4029         case htons(ETH_P_IPV6):
4030         case htons(ETH_P_8021Q):
4031         case htons(ETH_P_8021AD):
4032                 return true;
4033         default:
4034                 return false;
4035         }
4036 }
4037
4038 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4039                              int *ret, struct net_device *orig_dev)
4040 {
4041 #ifdef CONFIG_NETFILTER_INGRESS
4042         if (nf_hook_ingress_active(skb)) {
4043                 if (*pt_prev) {
4044                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4045                         *pt_prev = NULL;
4046                 }
4047
4048                 return nf_hook_ingress(skb);
4049         }
4050 #endif /* CONFIG_NETFILTER_INGRESS */
4051         return 0;
4052 }
4053
4054 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4055 {
4056         struct packet_type *ptype, *pt_prev;
4057         rx_handler_func_t *rx_handler;
4058         struct net_device *orig_dev;
4059         bool deliver_exact = false;
4060         int ret = NET_RX_DROP;
4061         __be16 type;
4062
4063         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4064
4065         trace_netif_receive_skb(skb);
4066
4067         orig_dev = skb->dev;
4068
4069         skb_reset_network_header(skb);
4070         if (!skb_transport_header_was_set(skb))
4071                 skb_reset_transport_header(skb);
4072         skb_reset_mac_len(skb);
4073
4074         pt_prev = NULL;
4075
4076 another_round:
4077         skb->skb_iif = skb->dev->ifindex;
4078
4079         __this_cpu_inc(softnet_data.processed);
4080
4081         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4082             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4083                 skb = skb_vlan_untag(skb);
4084                 if (unlikely(!skb))
4085                         goto out;
4086         }
4087
4088 #ifdef CONFIG_NET_CLS_ACT
4089         if (skb->tc_verd & TC_NCLS) {
4090                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4091                 goto ncls;
4092         }
4093 #endif
4094
4095         if (pfmemalloc)
4096                 goto skip_taps;
4097
4098         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4099                 if (pt_prev)
4100                         ret = deliver_skb(skb, pt_prev, orig_dev);
4101                 pt_prev = ptype;
4102         }
4103
4104         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4105                 if (pt_prev)
4106                         ret = deliver_skb(skb, pt_prev, orig_dev);
4107                 pt_prev = ptype;
4108         }
4109
4110 skip_taps:
4111 #ifdef CONFIG_NET_INGRESS
4112         if (static_key_false(&ingress_needed)) {
4113                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4114                 if (!skb)
4115                         goto out;
4116
4117                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4118                         goto out;
4119         }
4120 #endif
4121 #ifdef CONFIG_NET_CLS_ACT
4122         skb->tc_verd = 0;
4123 ncls:
4124 #endif
4125         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4126                 goto drop;
4127
4128         if (skb_vlan_tag_present(skb)) {
4129                 if (pt_prev) {
4130                         ret = deliver_skb(skb, pt_prev, orig_dev);
4131                         pt_prev = NULL;
4132                 }
4133                 if (vlan_do_receive(&skb))
4134                         goto another_round;
4135                 else if (unlikely(!skb))
4136                         goto out;
4137         }
4138
4139         rx_handler = rcu_dereference(skb->dev->rx_handler);
4140         if (rx_handler) {
4141                 if (pt_prev) {
4142                         ret = deliver_skb(skb, pt_prev, orig_dev);
4143                         pt_prev = NULL;
4144                 }
4145                 switch (rx_handler(&skb)) {
4146                 case RX_HANDLER_CONSUMED:
4147                         ret = NET_RX_SUCCESS;
4148                         goto out;
4149                 case RX_HANDLER_ANOTHER:
4150                         goto another_round;
4151                 case RX_HANDLER_EXACT:
4152                         deliver_exact = true;
4153                 case RX_HANDLER_PASS:
4154                         break;
4155                 default:
4156                         BUG();
4157                 }
4158         }
4159
4160         if (unlikely(skb_vlan_tag_present(skb))) {
4161                 if (skb_vlan_tag_get_id(skb))
4162                         skb->pkt_type = PACKET_OTHERHOST;
4163                 /* Note: we might in the future use prio bits
4164                  * and set skb->priority like in vlan_do_receive()
4165                  * For the time being, just ignore Priority Code Point
4166                  */
4167                 skb->vlan_tci = 0;
4168         }
4169
4170         type = skb->protocol;
4171
4172         /* deliver only exact match when indicated */
4173         if (likely(!deliver_exact)) {
4174                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4175                                        &ptype_base[ntohs(type) &
4176                                                    PTYPE_HASH_MASK]);
4177         }
4178
4179         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4180                                &orig_dev->ptype_specific);
4181
4182         if (unlikely(skb->dev != orig_dev)) {
4183                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4184                                        &skb->dev->ptype_specific);
4185         }
4186
4187         if (pt_prev) {
4188                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4189                         goto drop;
4190                 else
4191                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4192         } else {
4193 drop:
4194                 if (!deliver_exact)
4195                         atomic_long_inc(&skb->dev->rx_dropped);
4196                 else
4197                         atomic_long_inc(&skb->dev->rx_nohandler);
4198                 kfree_skb(skb);
4199                 /* Jamal, now you will not able to escape explaining
4200                  * me how you were going to use this. :-)
4201                  */
4202                 ret = NET_RX_DROP;
4203         }
4204
4205 out:
4206         return ret;
4207 }
4208
4209 static int __netif_receive_skb(struct sk_buff *skb)
4210 {
4211         int ret;
4212
4213         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4214                 unsigned long pflags = current->flags;
4215
4216                 /*
4217                  * PFMEMALLOC skbs are special, they should
4218                  * - be delivered to SOCK_MEMALLOC sockets only
4219                  * - stay away from userspace
4220                  * - have bounded memory usage
4221                  *
4222                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4223                  * context down to all allocation sites.
4224                  */
4225                 current->flags |= PF_MEMALLOC;
4226                 ret = __netif_receive_skb_core(skb, true);
4227                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4228         } else
4229                 ret = __netif_receive_skb_core(skb, false);
4230
4231         return ret;
4232 }
4233
4234 static int netif_receive_skb_internal(struct sk_buff *skb)
4235 {
4236         int ret;
4237
4238         net_timestamp_check(netdev_tstamp_prequeue, skb);
4239
4240         if (skb_defer_rx_timestamp(skb))
4241                 return NET_RX_SUCCESS;
4242
4243         rcu_read_lock();
4244
4245 #ifdef CONFIG_RPS
4246         if (static_key_false(&rps_needed)) {
4247                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4248                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4249
4250                 if (cpu >= 0) {
4251                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4252                         rcu_read_unlock();
4253                         return ret;
4254                 }
4255         }
4256 #endif
4257         ret = __netif_receive_skb(skb);
4258         rcu_read_unlock();
4259         return ret;
4260 }
4261
4262 /**
4263  *      netif_receive_skb - process receive buffer from network
4264  *      @skb: buffer to process
4265  *
4266  *      netif_receive_skb() is the main receive data processing function.
4267  *      It always succeeds. The buffer may be dropped during processing
4268  *      for congestion control or by the protocol layers.
4269  *
4270  *      This function may only be called from softirq context and interrupts
4271  *      should be enabled.
4272  *
4273  *      Return values (usually ignored):
4274  *      NET_RX_SUCCESS: no congestion
4275  *      NET_RX_DROP: packet was dropped
4276  */
4277 int netif_receive_skb(struct sk_buff *skb)
4278 {
4279         trace_netif_receive_skb_entry(skb);
4280
4281         return netif_receive_skb_internal(skb);
4282 }
4283 EXPORT_SYMBOL(netif_receive_skb);
4284
4285 struct flush_work {
4286         struct net_device *dev;
4287         struct work_struct work;
4288 };
4289
4290 DEFINE_PER_CPU(struct flush_work, flush_works);
4291
4292 /* Network device is going away, flush any packets still pending */
4293 static void flush_backlog(struct work_struct *work)
4294 {
4295         struct flush_work *flush = container_of(work, typeof(*flush), work);
4296         struct net_device *dev = flush->dev;
4297         struct sk_buff *skb, *tmp;
4298         struct softnet_data *sd;
4299
4300         local_bh_disable();
4301         sd = this_cpu_ptr(&softnet_data);
4302
4303         local_irq_disable();
4304         rps_lock(sd);
4305         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4306                 if (skb->dev == dev) {
4307                         __skb_unlink(skb, &sd->input_pkt_queue);
4308                         kfree_skb(skb);
4309                         input_queue_head_incr(sd);
4310                 }
4311         }
4312         rps_unlock(sd);
4313         local_irq_enable();
4314
4315         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4316                 if (skb->dev == dev) {
4317                         __skb_unlink(skb, &sd->process_queue);
4318                         kfree_skb(skb);
4319                         input_queue_head_incr(sd);
4320                 }
4321         }
4322         local_bh_enable();
4323 }
4324
4325 static void flush_all_backlogs(struct net_device *dev)
4326 {
4327         unsigned int cpu;
4328
4329         get_online_cpus();
4330
4331         for_each_online_cpu(cpu) {
4332                 struct flush_work *flush = per_cpu_ptr(&flush_works, cpu);
4333
4334                 INIT_WORK(&flush->work, flush_backlog);
4335                 flush->dev = dev;
4336                 queue_work_on(cpu, system_highpri_wq, &flush->work);
4337         }
4338
4339         for_each_online_cpu(cpu)
4340                 flush_work(&per_cpu_ptr(&flush_works, cpu)->work);
4341
4342         put_online_cpus();
4343 }
4344
4345 static int napi_gro_complete(struct sk_buff *skb)
4346 {
4347         struct packet_offload *ptype;
4348         __be16 type = skb->protocol;
4349         struct list_head *head = &offload_base;
4350         int err = -ENOENT;
4351
4352         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4353
4354         if (NAPI_GRO_CB(skb)->count == 1) {
4355                 skb_shinfo(skb)->gso_size = 0;
4356                 goto out;
4357         }
4358
4359         rcu_read_lock();
4360         list_for_each_entry_rcu(ptype, head, list) {
4361                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4362                         continue;
4363
4364                 err = ptype->callbacks.gro_complete(skb, 0);
4365                 break;
4366         }
4367         rcu_read_unlock();
4368
4369         if (err) {
4370                 WARN_ON(&ptype->list == head);
4371                 kfree_skb(skb);
4372                 return NET_RX_SUCCESS;
4373         }
4374
4375 out:
4376         return netif_receive_skb_internal(skb);
4377 }
4378
4379 /* napi->gro_list contains packets ordered by age.
4380  * youngest packets at the head of it.
4381  * Complete skbs in reverse order to reduce latencies.
4382  */
4383 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4384 {
4385         struct sk_buff *skb, *prev = NULL;
4386
4387         /* scan list and build reverse chain */
4388         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4389                 skb->prev = prev;
4390                 prev = skb;
4391         }
4392
4393         for (skb = prev; skb; skb = prev) {
4394                 skb->next = NULL;
4395
4396                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4397                         return;
4398
4399                 prev = skb->prev;
4400                 napi_gro_complete(skb);
4401                 napi->gro_count--;
4402         }
4403
4404         napi->gro_list = NULL;
4405 }
4406 EXPORT_SYMBOL(napi_gro_flush);
4407
4408 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4409 {
4410         struct sk_buff *p;
4411         unsigned int maclen = skb->dev->hard_header_len;
4412         u32 hash = skb_get_hash_raw(skb);
4413
4414         for (p = napi->gro_list; p; p = p->next) {
4415                 unsigned long diffs;
4416
4417                 NAPI_GRO_CB(p)->flush = 0;
4418
4419                 if (hash != skb_get_hash_raw(p)) {
4420                         NAPI_GRO_CB(p)->same_flow = 0;
4421                         continue;
4422                 }
4423
4424                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4425                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4426                 diffs |= skb_metadata_dst_cmp(p, skb);
4427                 if (maclen == ETH_HLEN)
4428                         diffs |= compare_ether_header(skb_mac_header(p),
4429                                                       skb_mac_header(skb));
4430                 else if (!diffs)
4431                         diffs = memcmp(skb_mac_header(p),
4432                                        skb_mac_header(skb),
4433                                        maclen);
4434                 NAPI_GRO_CB(p)->same_flow = !diffs;
4435         }
4436 }
4437
4438 static void skb_gro_reset_offset(struct sk_buff *skb)
4439 {
4440         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4441         const skb_frag_t *frag0 = &pinfo->frags[0];
4442
4443         NAPI_GRO_CB(skb)->data_offset = 0;
4444         NAPI_GRO_CB(skb)->frag0 = NULL;
4445         NAPI_GRO_CB(skb)->frag0_len = 0;
4446
4447         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4448             pinfo->nr_frags &&
4449             !PageHighMem(skb_frag_page(frag0))) {
4450                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4451                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4452         }
4453 }
4454
4455 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4456 {
4457         struct skb_shared_info *pinfo = skb_shinfo(skb);
4458
4459         BUG_ON(skb->end - skb->tail < grow);
4460
4461         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4462
4463         skb->data_len -= grow;
4464         skb->tail += grow;
4465
4466         pinfo->frags[0].page_offset += grow;
4467         skb_frag_size_sub(&pinfo->frags[0], grow);
4468
4469         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4470                 skb_frag_unref(skb, 0);
4471                 memmove(pinfo->frags, pinfo->frags + 1,
4472                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4473         }
4474 }
4475
4476 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4477 {
4478         struct sk_buff **pp = NULL;
4479         struct packet_offload *ptype;
4480         __be16 type = skb->protocol;
4481         struct list_head *head = &offload_base;
4482         int same_flow;
4483         enum gro_result ret;
4484         int grow;
4485
4486         if (!(skb->dev->features & NETIF_F_GRO))
4487                 goto normal;
4488
4489         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4490                 goto normal;
4491
4492         gro_list_prepare(napi, skb);
4493
4494         rcu_read_lock();
4495         list_for_each_entry_rcu(ptype, head, list) {
4496                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4497                         continue;
4498
4499                 skb_set_network_header(skb, skb_gro_offset(skb));
4500                 skb_reset_mac_len(skb);
4501                 NAPI_GRO_CB(skb)->same_flow = 0;
4502                 NAPI_GRO_CB(skb)->flush = 0;
4503                 NAPI_GRO_CB(skb)->free = 0;
4504                 NAPI_GRO_CB(skb)->encap_mark = 0;
4505                 NAPI_GRO_CB(skb)->is_fou = 0;
4506                 NAPI_GRO_CB(skb)->is_atomic = 1;
4507                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4508
4509                 /* Setup for GRO checksum validation */
4510                 switch (skb->ip_summed) {
4511                 case CHECKSUM_COMPLETE:
4512                         NAPI_GRO_CB(skb)->csum = skb->csum;
4513                         NAPI_GRO_CB(skb)->csum_valid = 1;
4514                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4515                         break;
4516                 case CHECKSUM_UNNECESSARY:
4517                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4518                         NAPI_GRO_CB(skb)->csum_valid = 0;
4519                         break;
4520                 default:
4521                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4522                         NAPI_GRO_CB(skb)->csum_valid = 0;
4523                 }
4524
4525                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4526                 break;
4527         }
4528         rcu_read_unlock();
4529
4530         if (&ptype->list == head)
4531                 goto normal;
4532
4533         same_flow = NAPI_GRO_CB(skb)->same_flow;
4534         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4535
4536         if (pp) {
4537                 struct sk_buff *nskb = *pp;
4538
4539                 *pp = nskb->next;
4540                 nskb->next = NULL;
4541                 napi_gro_complete(nskb);
4542                 napi->gro_count--;
4543         }
4544
4545         if (same_flow)
4546                 goto ok;
4547
4548         if (NAPI_GRO_CB(skb)->flush)
4549                 goto normal;
4550
4551         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4552                 struct sk_buff *nskb = napi->gro_list;
4553
4554                 /* locate the end of the list to select the 'oldest' flow */
4555                 while (nskb->next) {
4556                         pp = &nskb->next;
4557                         nskb = *pp;
4558                 }
4559                 *pp = NULL;
4560                 nskb->next = NULL;
4561                 napi_gro_complete(nskb);
4562         } else {
4563                 napi->gro_count++;
4564         }
4565         NAPI_GRO_CB(skb)->count = 1;
4566         NAPI_GRO_CB(skb)->age = jiffies;
4567         NAPI_GRO_CB(skb)->last = skb;
4568         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4569         skb->next = napi->gro_list;
4570         napi->gro_list = skb;
4571         ret = GRO_HELD;
4572
4573 pull:
4574         grow = skb_gro_offset(skb) - skb_headlen(skb);
4575         if (grow > 0)
4576                 gro_pull_from_frag0(skb, grow);
4577 ok:
4578         return ret;
4579
4580 normal:
4581         ret = GRO_NORMAL;
4582         goto pull;
4583 }
4584
4585 struct packet_offload *gro_find_receive_by_type(__be16 type)
4586 {
4587         struct list_head *offload_head = &offload_base;
4588         struct packet_offload *ptype;
4589
4590         list_for_each_entry_rcu(ptype, offload_head, list) {
4591                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4592                         continue;
4593                 return ptype;
4594         }
4595         return NULL;
4596 }
4597 EXPORT_SYMBOL(gro_find_receive_by_type);
4598
4599 struct packet_offload *gro_find_complete_by_type(__be16 type)
4600 {
4601         struct list_head *offload_head = &offload_base;
4602         struct packet_offload *ptype;
4603
4604         list_for_each_entry_rcu(ptype, offload_head, list) {
4605                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4606                         continue;
4607                 return ptype;
4608         }
4609         return NULL;
4610 }
4611 EXPORT_SYMBOL(gro_find_complete_by_type);
4612
4613 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4614 {
4615         switch (ret) {
4616         case GRO_NORMAL:
4617                 if (netif_receive_skb_internal(skb))
4618                         ret = GRO_DROP;
4619                 break;
4620
4621         case GRO_DROP:
4622                 kfree_skb(skb);
4623                 break;
4624
4625         case GRO_MERGED_FREE:
4626                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4627                         skb_dst_drop(skb);
4628                         kmem_cache_free(skbuff_head_cache, skb);
4629                 } else {
4630                         __kfree_skb(skb);
4631                 }
4632                 break;
4633
4634         case GRO_HELD:
4635         case GRO_MERGED:
4636                 break;
4637         }
4638
4639         return ret;
4640 }
4641
4642 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4643 {
4644         skb_mark_napi_id(skb, napi);
4645         trace_napi_gro_receive_entry(skb);
4646
4647         skb_gro_reset_offset(skb);
4648
4649         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4650 }
4651 EXPORT_SYMBOL(napi_gro_receive);
4652
4653 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4654 {
4655         if (unlikely(skb->pfmemalloc)) {
4656                 consume_skb(skb);
4657                 return;
4658         }
4659         __skb_pull(skb, skb_headlen(skb));
4660         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4661         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4662         skb->vlan_tci = 0;
4663         skb->dev = napi->dev;
4664         skb->skb_iif = 0;
4665         skb->encapsulation = 0;
4666         skb_shinfo(skb)->gso_type = 0;
4667         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4668
4669         napi->skb = skb;
4670 }
4671
4672 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4673 {
4674         struct sk_buff *skb = napi->skb;
4675
4676         if (!skb) {
4677                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4678                 if (skb) {
4679                         napi->skb = skb;
4680                         skb_mark_napi_id(skb, napi);
4681                 }
4682         }
4683         return skb;
4684 }
4685 EXPORT_SYMBOL(napi_get_frags);
4686
4687 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4688                                       struct sk_buff *skb,
4689                                       gro_result_t ret)
4690 {
4691         switch (ret) {
4692         case GRO_NORMAL:
4693         case GRO_HELD:
4694                 __skb_push(skb, ETH_HLEN);
4695                 skb->protocol = eth_type_trans(skb, skb->dev);
4696                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4697                         ret = GRO_DROP;
4698                 break;
4699
4700         case GRO_DROP:
4701         case GRO_MERGED_FREE:
4702                 napi_reuse_skb(napi, skb);
4703                 break;
4704
4705         case GRO_MERGED:
4706                 break;
4707         }
4708
4709         return ret;
4710 }
4711
4712 /* Upper GRO stack assumes network header starts at gro_offset=0
4713  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4714  * We copy ethernet header into skb->data to have a common layout.
4715  */
4716 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4717 {
4718         struct sk_buff *skb = napi->skb;
4719         const struct ethhdr *eth;
4720         unsigned int hlen = sizeof(*eth);
4721
4722         napi->skb = NULL;
4723
4724         skb_reset_mac_header(skb);
4725         skb_gro_reset_offset(skb);
4726
4727         eth = skb_gro_header_fast(skb, 0);
4728         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4729                 eth = skb_gro_header_slow(skb, hlen, 0);
4730                 if (unlikely(!eth)) {
4731                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4732                                              __func__, napi->dev->name);
4733                         napi_reuse_skb(napi, skb);
4734                         return NULL;
4735                 }
4736         } else {
4737                 gro_pull_from_frag0(skb, hlen);
4738                 NAPI_GRO_CB(skb)->frag0 += hlen;
4739                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4740         }
4741         __skb_pull(skb, hlen);
4742
4743         /*
4744          * This works because the only protocols we care about don't require
4745          * special handling.
4746          * We'll fix it up properly in napi_frags_finish()
4747          */
4748         skb->protocol = eth->h_proto;
4749
4750         return skb;
4751 }
4752
4753 gro_result_t napi_gro_frags(struct napi_struct *napi)
4754 {
4755         struct sk_buff *skb = napi_frags_skb(napi);
4756
4757         if (!skb)
4758                 return GRO_DROP;
4759
4760         trace_napi_gro_frags_entry(skb);
4761
4762         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4763 }
4764 EXPORT_SYMBOL(napi_gro_frags);
4765
4766 /* Compute the checksum from gro_offset and return the folded value
4767  * after adding in any pseudo checksum.
4768  */
4769 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4770 {
4771         __wsum wsum;
4772         __sum16 sum;
4773
4774         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4775
4776         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4777         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4778         if (likely(!sum)) {
4779                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4780                     !skb->csum_complete_sw)
4781                         netdev_rx_csum_fault(skb->dev);
4782         }
4783
4784         NAPI_GRO_CB(skb)->csum = wsum;
4785         NAPI_GRO_CB(skb)->csum_valid = 1;
4786
4787         return sum;
4788 }
4789 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4790
4791 /*
4792  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4793  * Note: called with local irq disabled, but exits with local irq enabled.
4794  */
4795 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4796 {
4797 #ifdef CONFIG_RPS
4798         struct softnet_data *remsd = sd->rps_ipi_list;
4799
4800         if (remsd) {
4801                 sd->rps_ipi_list = NULL;
4802
4803                 local_irq_enable();
4804
4805                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4806                 while (remsd) {
4807                         struct softnet_data *next = remsd->rps_ipi_next;
4808
4809                         if (cpu_online(remsd->cpu))
4810                                 smp_call_function_single_async(remsd->cpu,
4811                                                            &remsd->csd);
4812                         remsd = next;
4813                 }
4814         } else
4815 #endif
4816                 local_irq_enable();
4817 }
4818
4819 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4820 {
4821 #ifdef CONFIG_RPS
4822         return sd->rps_ipi_list != NULL;
4823 #else
4824         return false;
4825 #endif
4826 }
4827
4828 static int process_backlog(struct napi_struct *napi, int quota)
4829 {
4830         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4831         bool again = true;
4832         int work = 0;
4833
4834         /* Check if we have pending ipi, its better to send them now,
4835          * not waiting net_rx_action() end.
4836          */
4837         if (sd_has_rps_ipi_waiting(sd)) {
4838                 local_irq_disable();
4839                 net_rps_action_and_irq_enable(sd);
4840         }
4841
4842         napi->weight = weight_p;
4843         while (again) {
4844                 struct sk_buff *skb;
4845
4846                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4847                         rcu_read_lock();
4848                         __netif_receive_skb(skb);
4849                         rcu_read_unlock();
4850                         input_queue_head_incr(sd);
4851                         if (++work >= quota)
4852                                 return work;
4853
4854                 }
4855
4856                 local_irq_disable();
4857                 rps_lock(sd);
4858                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4859                         /*
4860                          * Inline a custom version of __napi_complete().
4861                          * only current cpu owns and manipulates this napi,
4862                          * and NAPI_STATE_SCHED is the only possible flag set
4863                          * on backlog.
4864                          * We can use a plain write instead of clear_bit(),
4865                          * and we dont need an smp_mb() memory barrier.
4866                          */
4867                         napi->state = 0;
4868                         again = false;
4869                 } else {
4870                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
4871                                                    &sd->process_queue);
4872                 }
4873                 rps_unlock(sd);
4874                 local_irq_enable();
4875         }
4876
4877         return work;
4878 }
4879
4880 /**
4881  * __napi_schedule - schedule for receive
4882  * @n: entry to schedule
4883  *
4884  * The entry's receive function will be scheduled to run.
4885  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4886  */
4887 void __napi_schedule(struct napi_struct *n)
4888 {
4889         unsigned long flags;
4890
4891         local_irq_save(flags);
4892         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4893         local_irq_restore(flags);
4894 }
4895 EXPORT_SYMBOL(__napi_schedule);
4896
4897 /**
4898  * __napi_schedule_irqoff - schedule for receive
4899  * @n: entry to schedule
4900  *
4901  * Variant of __napi_schedule() assuming hard irqs are masked
4902  */
4903 void __napi_schedule_irqoff(struct napi_struct *n)
4904 {
4905         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4906 }
4907 EXPORT_SYMBOL(__napi_schedule_irqoff);
4908
4909 void __napi_complete(struct napi_struct *n)
4910 {
4911         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4912
4913         list_del_init(&n->poll_list);
4914         smp_mb__before_atomic();
4915         clear_bit(NAPI_STATE_SCHED, &n->state);
4916 }
4917 EXPORT_SYMBOL(__napi_complete);
4918
4919 void napi_complete_done(struct napi_struct *n, int work_done)
4920 {
4921         unsigned long flags;
4922
4923         /*
4924          * don't let napi dequeue from the cpu poll list
4925          * just in case its running on a different cpu
4926          */
4927         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4928                 return;
4929
4930         if (n->gro_list) {
4931                 unsigned long timeout = 0;
4932
4933                 if (work_done)
4934                         timeout = n->dev->gro_flush_timeout;
4935
4936                 if (timeout)
4937                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4938                                       HRTIMER_MODE_REL_PINNED);
4939                 else
4940                         napi_gro_flush(n, false);
4941         }
4942         if (likely(list_empty(&n->poll_list))) {
4943                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4944         } else {
4945                 /* If n->poll_list is not empty, we need to mask irqs */
4946                 local_irq_save(flags);
4947                 __napi_complete(n);
4948                 local_irq_restore(flags);
4949         }
4950 }
4951 EXPORT_SYMBOL(napi_complete_done);
4952
4953 /* must be called under rcu_read_lock(), as we dont take a reference */
4954 static struct napi_struct *napi_by_id(unsigned int napi_id)
4955 {
4956         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4957         struct napi_struct *napi;
4958
4959         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4960                 if (napi->napi_id == napi_id)
4961                         return napi;
4962
4963         return NULL;
4964 }
4965
4966 #if defined(CONFIG_NET_RX_BUSY_POLL)
4967 #define BUSY_POLL_BUDGET 8
4968 bool sk_busy_loop(struct sock *sk, int nonblock)
4969 {
4970         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4971         int (*busy_poll)(struct napi_struct *dev);
4972         struct napi_struct *napi;
4973         int rc = false;
4974
4975         rcu_read_lock();
4976
4977         napi = napi_by_id(sk->sk_napi_id);
4978         if (!napi)
4979                 goto out;
4980
4981         /* Note: ndo_busy_poll method is optional in linux-4.5 */
4982         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4983
4984         do {
4985                 rc = 0;
4986                 local_bh_disable();
4987                 if (busy_poll) {
4988                         rc = busy_poll(napi);
4989                 } else if (napi_schedule_prep(napi)) {
4990                         void *have = netpoll_poll_lock(napi);
4991
4992                         if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4993                                 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4994                                 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
4995                                 if (rc == BUSY_POLL_BUDGET) {
4996                                         napi_complete_done(napi, rc);
4997                                         napi_schedule(napi);
4998                                 }
4999                         }
5000                         netpoll_poll_unlock(have);
5001                 }
5002                 if (rc > 0)
5003                         __NET_ADD_STATS(sock_net(sk),
5004                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5005                 local_bh_enable();
5006
5007                 if (rc == LL_FLUSH_FAILED)
5008                         break; /* permanent failure */
5009
5010                 cpu_relax();
5011         } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5012                  !need_resched() && !busy_loop_timeout(end_time));
5013
5014         rc = !skb_queue_empty(&sk->sk_receive_queue);
5015 out:
5016         rcu_read_unlock();
5017         return rc;
5018 }
5019 EXPORT_SYMBOL(sk_busy_loop);
5020
5021 #endif /* CONFIG_NET_RX_BUSY_POLL */
5022
5023 void napi_hash_add(struct napi_struct *napi)
5024 {
5025         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5026             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5027                 return;
5028
5029         spin_lock(&napi_hash_lock);
5030
5031         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5032         do {
5033                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5034                         napi_gen_id = NR_CPUS + 1;
5035         } while (napi_by_id(napi_gen_id));
5036         napi->napi_id = napi_gen_id;
5037
5038         hlist_add_head_rcu(&napi->napi_hash_node,
5039                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5040
5041         spin_unlock(&napi_hash_lock);
5042 }
5043 EXPORT_SYMBOL_GPL(napi_hash_add);
5044
5045 /* Warning : caller is responsible to make sure rcu grace period
5046  * is respected before freeing memory containing @napi
5047  */
5048 bool napi_hash_del(struct napi_struct *napi)
5049 {
5050         bool rcu_sync_needed = false;
5051
5052         spin_lock(&napi_hash_lock);
5053
5054         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5055                 rcu_sync_needed = true;
5056                 hlist_del_rcu(&napi->napi_hash_node);
5057         }
5058         spin_unlock(&napi_hash_lock);
5059         return rcu_sync_needed;
5060 }
5061 EXPORT_SYMBOL_GPL(napi_hash_del);
5062
5063 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5064 {
5065         struct napi_struct *napi;
5066
5067         napi = container_of(timer, struct napi_struct, timer);
5068         if (napi->gro_list)
5069                 napi_schedule(napi);
5070
5071         return HRTIMER_NORESTART;
5072 }
5073
5074 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5075                     int (*poll)(struct napi_struct *, int), int weight)
5076 {
5077         INIT_LIST_HEAD(&napi->poll_list);
5078         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5079         napi->timer.function = napi_watchdog;
5080         napi->gro_count = 0;
5081         napi->gro_list = NULL;
5082         napi->skb = NULL;
5083         napi->poll = poll;
5084         if (weight > NAPI_POLL_WEIGHT)
5085                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5086                             weight, dev->name);
5087         napi->weight = weight;
5088         list_add(&napi->dev_list, &dev->napi_list);
5089         napi->dev = dev;
5090 #ifdef CONFIG_NETPOLL
5091         spin_lock_init(&napi->poll_lock);
5092         napi->poll_owner = -1;
5093 #endif
5094         set_bit(NAPI_STATE_SCHED, &napi->state);
5095         napi_hash_add(napi);
5096 }
5097 EXPORT_SYMBOL(netif_napi_add);
5098
5099 void napi_disable(struct napi_struct *n)
5100 {
5101         might_sleep();
5102         set_bit(NAPI_STATE_DISABLE, &n->state);
5103
5104         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5105                 msleep(1);
5106         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5107                 msleep(1);
5108
5109         hrtimer_cancel(&n->timer);
5110
5111         clear_bit(NAPI_STATE_DISABLE, &n->state);
5112 }
5113 EXPORT_SYMBOL(napi_disable);
5114
5115 /* Must be called in process context */
5116 void netif_napi_del(struct napi_struct *napi)
5117 {
5118         might_sleep();
5119         if (napi_hash_del(napi))
5120                 synchronize_net();
5121         list_del_init(&napi->dev_list);
5122         napi_free_frags(napi);
5123
5124         kfree_skb_list(napi->gro_list);
5125         napi->gro_list = NULL;
5126         napi->gro_count = 0;
5127 }
5128 EXPORT_SYMBOL(netif_napi_del);
5129
5130 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5131 {
5132         void *have;
5133         int work, weight;
5134
5135         list_del_init(&n->poll_list);
5136
5137         have = netpoll_poll_lock(n);
5138
5139         weight = n->weight;
5140
5141         /* This NAPI_STATE_SCHED test is for avoiding a race
5142          * with netpoll's poll_napi().  Only the entity which
5143          * obtains the lock and sees NAPI_STATE_SCHED set will
5144          * actually make the ->poll() call.  Therefore we avoid
5145          * accidentally calling ->poll() when NAPI is not scheduled.
5146          */
5147         work = 0;
5148         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5149                 work = n->poll(n, weight);
5150                 trace_napi_poll(n, work, weight);
5151         }
5152
5153         WARN_ON_ONCE(work > weight);
5154
5155         if (likely(work < weight))
5156                 goto out_unlock;
5157
5158         /* Drivers must not modify the NAPI state if they
5159          * consume the entire weight.  In such cases this code
5160          * still "owns" the NAPI instance and therefore can
5161          * move the instance around on the list at-will.
5162          */
5163         if (unlikely(napi_disable_pending(n))) {
5164                 napi_complete(n);
5165                 goto out_unlock;
5166         }
5167
5168         if (n->gro_list) {
5169                 /* flush too old packets
5170                  * If HZ < 1000, flush all packets.
5171                  */
5172                 napi_gro_flush(n, HZ >= 1000);
5173         }
5174
5175         /* Some drivers may have called napi_schedule
5176          * prior to exhausting their budget.
5177          */
5178         if (unlikely(!list_empty(&n->poll_list))) {
5179                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5180                              n->dev ? n->dev->name : "backlog");
5181                 goto out_unlock;
5182         }
5183
5184         list_add_tail(&n->poll_list, repoll);
5185
5186 out_unlock:
5187         netpoll_poll_unlock(have);
5188
5189         return work;
5190 }
5191
5192 static void net_rx_action(struct softirq_action *h)
5193 {
5194         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5195         unsigned long time_limit = jiffies + 2;
5196         int budget = netdev_budget;
5197         LIST_HEAD(list);
5198         LIST_HEAD(repoll);
5199
5200         local_irq_disable();
5201         list_splice_init(&sd->poll_list, &list);
5202         local_irq_enable();
5203
5204         for (;;) {
5205                 struct napi_struct *n;
5206
5207                 if (list_empty(&list)) {
5208                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5209                                 return;
5210                         break;
5211                 }
5212
5213                 n = list_first_entry(&list, struct napi_struct, poll_list);
5214                 budget -= napi_poll(n, &repoll);
5215
5216                 /* If softirq window is exhausted then punt.
5217                  * Allow this to run for 2 jiffies since which will allow
5218                  * an average latency of 1.5/HZ.
5219                  */
5220                 if (unlikely(budget <= 0 ||
5221                              time_after_eq(jiffies, time_limit))) {
5222                         sd->time_squeeze++;
5223                         break;
5224                 }
5225         }
5226
5227         __kfree_skb_flush();
5228         local_irq_disable();
5229
5230         list_splice_tail_init(&sd->poll_list, &list);
5231         list_splice_tail(&repoll, &list);
5232         list_splice(&list, &sd->poll_list);
5233         if (!list_empty(&sd->poll_list))
5234                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5235
5236         net_rps_action_and_irq_enable(sd);
5237 }
5238
5239 struct netdev_adjacent {
5240         struct net_device *dev;
5241
5242         /* upper master flag, there can only be one master device per list */
5243         bool master;
5244
5245         /* counter for the number of times this device was added to us */
5246         u16 ref_nr;
5247
5248         /* private field for the users */
5249         void *private;
5250
5251         struct list_head list;
5252         struct rcu_head rcu;
5253 };
5254
5255 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5256                                                  struct list_head *adj_list)
5257 {
5258         struct netdev_adjacent *adj;
5259
5260         list_for_each_entry(adj, adj_list, list) {
5261                 if (adj->dev == adj_dev)
5262                         return adj;
5263         }
5264         return NULL;
5265 }
5266
5267 /**
5268  * netdev_has_upper_dev - Check if device is linked to an upper device
5269  * @dev: device
5270  * @upper_dev: upper device to check
5271  *
5272  * Find out if a device is linked to specified upper device and return true
5273  * in case it is. Note that this checks only immediate upper device,
5274  * not through a complete stack of devices. The caller must hold the RTNL lock.
5275  */
5276 bool netdev_has_upper_dev(struct net_device *dev,
5277                           struct net_device *upper_dev)
5278 {
5279         ASSERT_RTNL();
5280
5281         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5282 }
5283 EXPORT_SYMBOL(netdev_has_upper_dev);
5284
5285 /**
5286  * netdev_has_any_upper_dev - Check if device is linked to some device
5287  * @dev: device
5288  *
5289  * Find out if a device is linked to an upper device and return true in case
5290  * it is. The caller must hold the RTNL lock.
5291  */
5292 static bool netdev_has_any_upper_dev(struct net_device *dev)
5293 {
5294         ASSERT_RTNL();
5295
5296         return !list_empty(&dev->all_adj_list.upper);
5297 }
5298
5299 /**
5300  * netdev_master_upper_dev_get - Get master upper device
5301  * @dev: device
5302  *
5303  * Find a master upper device and return pointer to it or NULL in case
5304  * it's not there. The caller must hold the RTNL lock.
5305  */
5306 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5307 {
5308         struct netdev_adjacent *upper;
5309
5310         ASSERT_RTNL();
5311
5312         if (list_empty(&dev->adj_list.upper))
5313                 return NULL;
5314
5315         upper = list_first_entry(&dev->adj_list.upper,
5316                                  struct netdev_adjacent, list);
5317         if (likely(upper->master))
5318                 return upper->dev;
5319         return NULL;
5320 }
5321 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5322
5323 void *netdev_adjacent_get_private(struct list_head *adj_list)
5324 {
5325         struct netdev_adjacent *adj;
5326
5327         adj = list_entry(adj_list, struct netdev_adjacent, list);
5328
5329         return adj->private;
5330 }
5331 EXPORT_SYMBOL(netdev_adjacent_get_private);
5332
5333 /**
5334  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5335  * @dev: device
5336  * @iter: list_head ** of the current position
5337  *
5338  * Gets the next device from the dev's upper list, starting from iter
5339  * position. The caller must hold RCU read lock.
5340  */
5341 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5342                                                  struct list_head **iter)
5343 {
5344         struct netdev_adjacent *upper;
5345
5346         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5347
5348         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5349
5350         if (&upper->list == &dev->adj_list.upper)
5351                 return NULL;
5352
5353         *iter = &upper->list;
5354
5355         return upper->dev;
5356 }
5357 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5358
5359 /**
5360  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5361  * @dev: device
5362  * @iter: list_head ** of the current position
5363  *
5364  * Gets the next device from the dev's upper list, starting from iter
5365  * position. The caller must hold RCU read lock.
5366  */
5367 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5368                                                      struct list_head **iter)
5369 {
5370         struct netdev_adjacent *upper;
5371
5372         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5373
5374         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5375
5376         if (&upper->list == &dev->all_adj_list.upper)
5377                 return NULL;
5378
5379         *iter = &upper->list;
5380
5381         return upper->dev;
5382 }
5383 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5384
5385 /**
5386  * netdev_lower_get_next_private - Get the next ->private from the
5387  *                                 lower neighbour list
5388  * @dev: device
5389  * @iter: list_head ** of the current position
5390  *
5391  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5392  * list, starting from iter position. The caller must hold either hold the
5393  * RTNL lock or its own locking that guarantees that the neighbour lower
5394  * list will remain unchanged.
5395  */
5396 void *netdev_lower_get_next_private(struct net_device *dev,
5397                                     struct list_head **iter)
5398 {
5399         struct netdev_adjacent *lower;
5400
5401         lower = list_entry(*iter, struct netdev_adjacent, list);
5402
5403         if (&lower->list == &dev->adj_list.lower)
5404                 return NULL;
5405
5406         *iter = lower->list.next;
5407
5408         return lower->private;
5409 }
5410 EXPORT_SYMBOL(netdev_lower_get_next_private);
5411
5412 /**
5413  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5414  *                                     lower neighbour list, RCU
5415  *                                     variant
5416  * @dev: device
5417  * @iter: list_head ** of the current position
5418  *
5419  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5420  * list, starting from iter position. The caller must hold RCU read lock.
5421  */
5422 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5423                                         struct list_head **iter)
5424 {
5425         struct netdev_adjacent *lower;
5426
5427         WARN_ON_ONCE(!rcu_read_lock_held());
5428
5429         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5430
5431         if (&lower->list == &dev->adj_list.lower)
5432                 return NULL;
5433
5434         *iter = &lower->list;
5435
5436         return lower->private;
5437 }
5438 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5439
5440 /**
5441  * netdev_lower_get_next - Get the next device from the lower neighbour
5442  *                         list
5443  * @dev: device
5444  * @iter: list_head ** of the current position
5445  *
5446  * Gets the next netdev_adjacent from the dev's lower neighbour
5447  * list, starting from iter position. The caller must hold RTNL lock or
5448  * its own locking that guarantees that the neighbour lower
5449  * list will remain unchanged.
5450  */
5451 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5452 {
5453         struct netdev_adjacent *lower;
5454
5455         lower = list_entry(*iter, struct netdev_adjacent, list);
5456
5457         if (&lower->list == &dev->adj_list.lower)
5458                 return NULL;
5459
5460         *iter = lower->list.next;
5461
5462         return lower->dev;
5463 }
5464 EXPORT_SYMBOL(netdev_lower_get_next);
5465
5466 /**
5467  * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5468  * @dev: device
5469  * @iter: list_head ** of the current position
5470  *
5471  * Gets the next netdev_adjacent from the dev's all lower neighbour
5472  * list, starting from iter position. The caller must hold RTNL lock or
5473  * its own locking that guarantees that the neighbour all lower
5474  * list will remain unchanged.
5475  */
5476 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5477 {
5478         struct netdev_adjacent *lower;
5479
5480         lower = list_entry(*iter, struct netdev_adjacent, list);
5481
5482         if (&lower->list == &dev->all_adj_list.lower)
5483                 return NULL;
5484
5485         *iter = lower->list.next;
5486
5487         return lower->dev;
5488 }
5489 EXPORT_SYMBOL(netdev_all_lower_get_next);
5490
5491 /**
5492  * netdev_all_lower_get_next_rcu - Get the next device from all
5493  *                                 lower neighbour list, RCU variant
5494  * @dev: device
5495  * @iter: list_head ** of the current position
5496  *
5497  * Gets the next netdev_adjacent from the dev's all lower neighbour
5498  * list, starting from iter position. The caller must hold RCU read lock.
5499  */
5500 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5501                                                  struct list_head **iter)
5502 {
5503         struct netdev_adjacent *lower;
5504
5505         lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5506                                        struct netdev_adjacent, list);
5507
5508         return lower ? lower->dev : NULL;
5509 }
5510 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5511
5512 /**
5513  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5514  *                                     lower neighbour list, RCU
5515  *                                     variant
5516  * @dev: device
5517  *
5518  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5519  * list. The caller must hold RCU read lock.
5520  */
5521 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5522 {
5523         struct netdev_adjacent *lower;
5524
5525         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5526                         struct netdev_adjacent, list);
5527         if (lower)
5528                 return lower->private;
5529         return NULL;
5530 }
5531 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5532
5533 /**
5534  * netdev_master_upper_dev_get_rcu - Get master upper device
5535  * @dev: device
5536  *
5537  * Find a master upper device and return pointer to it or NULL in case
5538  * it's not there. The caller must hold the RCU read lock.
5539  */
5540 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5541 {
5542         struct netdev_adjacent *upper;
5543
5544         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5545                                        struct netdev_adjacent, list);
5546         if (upper && likely(upper->master))
5547                 return upper->dev;
5548         return NULL;
5549 }
5550 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5551
5552 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5553                               struct net_device *adj_dev,
5554                               struct list_head *dev_list)
5555 {
5556         char linkname[IFNAMSIZ+7];
5557         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5558                 "upper_%s" : "lower_%s", adj_dev->name);
5559         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5560                                  linkname);
5561 }
5562 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5563                                char *name,
5564                                struct list_head *dev_list)
5565 {
5566         char linkname[IFNAMSIZ+7];
5567         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5568                 "upper_%s" : "lower_%s", name);
5569         sysfs_remove_link(&(dev->dev.kobj), linkname);
5570 }
5571
5572 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5573                                                  struct net_device *adj_dev,
5574                                                  struct list_head *dev_list)
5575 {
5576         return (dev_list == &dev->adj_list.upper ||
5577                 dev_list == &dev->adj_list.lower) &&
5578                 net_eq(dev_net(dev), dev_net(adj_dev));
5579 }
5580
5581 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5582                                         struct net_device *adj_dev,
5583                                         struct list_head *dev_list,
5584                                         void *private, bool master)
5585 {
5586         struct netdev_adjacent *adj;
5587         int ret;
5588
5589         adj = __netdev_find_adj(adj_dev, dev_list);
5590
5591         if (adj) {
5592                 adj->ref_nr++;
5593                 return 0;
5594         }
5595
5596         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5597         if (!adj)
5598                 return -ENOMEM;
5599
5600         adj->dev = adj_dev;
5601         adj->master = master;
5602         adj->ref_nr = 1;
5603         adj->private = private;
5604         dev_hold(adj_dev);
5605
5606         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5607                  adj_dev->name, dev->name, adj_dev->name);
5608
5609         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5610                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5611                 if (ret)
5612                         goto free_adj;
5613         }
5614
5615         /* Ensure that master link is always the first item in list. */
5616         if (master) {
5617                 ret = sysfs_create_link(&(dev->dev.kobj),
5618                                         &(adj_dev->dev.kobj), "master");
5619                 if (ret)
5620                         goto remove_symlinks;
5621
5622                 list_add_rcu(&adj->list, dev_list);
5623         } else {
5624                 list_add_tail_rcu(&adj->list, dev_list);
5625         }
5626
5627         return 0;
5628
5629 remove_symlinks:
5630         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5631                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5632 free_adj:
5633         kfree(adj);
5634         dev_put(adj_dev);
5635
5636         return ret;
5637 }
5638
5639 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5640                                          struct net_device *adj_dev,
5641                                          struct list_head *dev_list)
5642 {
5643         struct netdev_adjacent *adj;
5644
5645         adj = __netdev_find_adj(adj_dev, dev_list);
5646
5647         if (!adj) {
5648                 pr_err("tried to remove device %s from %s\n",
5649                        dev->name, adj_dev->name);
5650                 BUG();
5651         }
5652
5653         if (adj->ref_nr > 1) {
5654                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5655                          adj->ref_nr-1);
5656                 adj->ref_nr--;
5657                 return;
5658         }
5659
5660         if (adj->master)
5661                 sysfs_remove_link(&(dev->dev.kobj), "master");
5662
5663         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5664                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5665
5666         list_del_rcu(&adj->list);
5667         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5668                  adj_dev->name, dev->name, adj_dev->name);
5669         dev_put(adj_dev);
5670         kfree_rcu(adj, rcu);
5671 }
5672
5673 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5674                                             struct net_device *upper_dev,
5675                                             struct list_head *up_list,
5676                                             struct list_head *down_list,
5677                                             void *private, bool master)
5678 {
5679         int ret;
5680
5681         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5682                                            master);
5683         if (ret)
5684                 return ret;
5685
5686         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5687                                            false);
5688         if (ret) {
5689                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5690                 return ret;
5691         }
5692
5693         return 0;
5694 }
5695
5696 static int __netdev_adjacent_dev_link(struct net_device *dev,
5697                                       struct net_device *upper_dev)
5698 {
5699         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5700                                                 &dev->all_adj_list.upper,
5701                                                 &upper_dev->all_adj_list.lower,
5702                                                 NULL, false);
5703 }
5704
5705 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5706                                                struct net_device *upper_dev,
5707                                                struct list_head *up_list,
5708                                                struct list_head *down_list)
5709 {
5710         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5711         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5712 }
5713
5714 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5715                                          struct net_device *upper_dev)
5716 {
5717         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5718                                            &dev->all_adj_list.upper,
5719                                            &upper_dev->all_adj_list.lower);
5720 }
5721
5722 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5723                                                 struct net_device *upper_dev,
5724                                                 void *private, bool master)
5725 {
5726         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5727
5728         if (ret)
5729                 return ret;
5730
5731         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5732                                                &dev->adj_list.upper,
5733                                                &upper_dev->adj_list.lower,
5734                                                private, master);
5735         if (ret) {
5736                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5737                 return ret;
5738         }
5739
5740         return 0;
5741 }
5742
5743 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5744                                                    struct net_device *upper_dev)
5745 {
5746         __netdev_adjacent_dev_unlink(dev, upper_dev);
5747         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5748                                            &dev->adj_list.upper,
5749                                            &upper_dev->adj_list.lower);
5750 }
5751
5752 static int __netdev_upper_dev_link(struct net_device *dev,
5753                                    struct net_device *upper_dev, bool master,
5754                                    void *upper_priv, void *upper_info)
5755 {
5756         struct netdev_notifier_changeupper_info changeupper_info;
5757         struct netdev_adjacent *i, *j, *to_i, *to_j;
5758         int ret = 0;
5759
5760         ASSERT_RTNL();
5761
5762         if (dev == upper_dev)
5763                 return -EBUSY;
5764
5765         /* To prevent loops, check if dev is not upper device to upper_dev. */
5766         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5767                 return -EBUSY;
5768
5769         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5770                 return -EEXIST;
5771
5772         if (master && netdev_master_upper_dev_get(dev))
5773                 return -EBUSY;
5774
5775         changeupper_info.upper_dev = upper_dev;
5776         changeupper_info.master = master;
5777         changeupper_info.linking = true;
5778         changeupper_info.upper_info = upper_info;
5779
5780         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5781                                             &changeupper_info.info);
5782         ret = notifier_to_errno(ret);
5783         if (ret)
5784                 return ret;
5785
5786         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5787                                                    master);
5788         if (ret)
5789                 return ret;
5790
5791         /* Now that we linked these devs, make all the upper_dev's
5792          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5793          * versa, and don't forget the devices itself. All of these
5794          * links are non-neighbours.
5795          */
5796         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5797                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5798                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5799                                  i->dev->name, j->dev->name);
5800                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5801                         if (ret)
5802                                 goto rollback_mesh;
5803                 }
5804         }
5805
5806         /* add dev to every upper_dev's upper device */
5807         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5808                 pr_debug("linking %s's upper device %s with %s\n",
5809                          upper_dev->name, i->dev->name, dev->name);
5810                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5811                 if (ret)
5812                         goto rollback_upper_mesh;
5813         }
5814
5815         /* add upper_dev to every dev's lower device */
5816         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5817                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5818                          i->dev->name, upper_dev->name);
5819                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5820                 if (ret)
5821                         goto rollback_lower_mesh;
5822         }
5823
5824         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5825                                             &changeupper_info.info);
5826         ret = notifier_to_errno(ret);
5827         if (ret)
5828                 goto rollback_lower_mesh;
5829
5830         return 0;
5831
5832 rollback_lower_mesh:
5833         to_i = i;
5834         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5835                 if (i == to_i)
5836                         break;
5837                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5838         }
5839
5840         i = NULL;
5841
5842 rollback_upper_mesh:
5843         to_i = i;
5844         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5845                 if (i == to_i)
5846                         break;
5847                 __netdev_adjacent_dev_unlink(dev, i->dev);
5848         }
5849
5850         i = j = NULL;
5851
5852 rollback_mesh:
5853         to_i = i;
5854         to_j = j;
5855         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5856                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5857                         if (i == to_i && j == to_j)
5858                                 break;
5859                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5860                 }
5861                 if (i == to_i)
5862                         break;
5863         }
5864
5865         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5866
5867         return ret;
5868 }
5869
5870 /**
5871  * netdev_upper_dev_link - Add a link to the upper device
5872  * @dev: device
5873  * @upper_dev: new upper device
5874  *
5875  * Adds a link to device which is upper to this one. The caller must hold
5876  * the RTNL lock. On a failure a negative errno code is returned.
5877  * On success the reference counts are adjusted and the function
5878  * returns zero.
5879  */
5880 int netdev_upper_dev_link(struct net_device *dev,
5881                           struct net_device *upper_dev)
5882 {
5883         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5884 }
5885 EXPORT_SYMBOL(netdev_upper_dev_link);
5886
5887 /**
5888  * netdev_master_upper_dev_link - Add a master link to the upper device
5889  * @dev: device
5890  * @upper_dev: new upper device
5891  * @upper_priv: upper device private
5892  * @upper_info: upper info to be passed down via notifier
5893  *
5894  * Adds a link to device which is upper to this one. In this case, only
5895  * one master upper device can be linked, although other non-master devices
5896  * might be linked as well. The caller must hold the RTNL lock.
5897  * On a failure a negative errno code is returned. On success the reference
5898  * counts are adjusted and the function returns zero.
5899  */
5900 int netdev_master_upper_dev_link(struct net_device *dev,
5901                                  struct net_device *upper_dev,
5902                                  void *upper_priv, void *upper_info)
5903 {
5904         return __netdev_upper_dev_link(dev, upper_dev, true,
5905                                        upper_priv, upper_info);
5906 }
5907 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5908
5909 /**
5910  * netdev_upper_dev_unlink - Removes a link to upper device
5911  * @dev: device
5912  * @upper_dev: new upper device
5913  *
5914  * Removes a link to device which is upper to this one. The caller must hold
5915  * the RTNL lock.
5916  */
5917 void netdev_upper_dev_unlink(struct net_device *dev,
5918                              struct net_device *upper_dev)
5919 {
5920         struct netdev_notifier_changeupper_info changeupper_info;
5921         struct netdev_adjacent *i, *j;
5922         ASSERT_RTNL();
5923
5924         changeupper_info.upper_dev = upper_dev;
5925         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5926         changeupper_info.linking = false;
5927
5928         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5929                                       &changeupper_info.info);
5930
5931         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5932
5933         /* Here is the tricky part. We must remove all dev's lower
5934          * devices from all upper_dev's upper devices and vice
5935          * versa, to maintain the graph relationship.
5936          */
5937         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5938                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5939                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5940
5941         /* remove also the devices itself from lower/upper device
5942          * list
5943          */
5944         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5945                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5946
5947         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5948                 __netdev_adjacent_dev_unlink(dev, i->dev);
5949
5950         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5951                                       &changeupper_info.info);
5952 }
5953 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5954
5955 /**
5956  * netdev_bonding_info_change - Dispatch event about slave change
5957  * @dev: device
5958  * @bonding_info: info to dispatch
5959  *
5960  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5961  * The caller must hold the RTNL lock.
5962  */
5963 void netdev_bonding_info_change(struct net_device *dev,
5964                                 struct netdev_bonding_info *bonding_info)
5965 {
5966         struct netdev_notifier_bonding_info     info;
5967
5968         memcpy(&info.bonding_info, bonding_info,
5969                sizeof(struct netdev_bonding_info));
5970         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5971                                       &info.info);
5972 }
5973 EXPORT_SYMBOL(netdev_bonding_info_change);
5974
5975 static void netdev_adjacent_add_links(struct net_device *dev)
5976 {
5977         struct netdev_adjacent *iter;
5978
5979         struct net *net = dev_net(dev);
5980
5981         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5982                 if (!net_eq(net, dev_net(iter->dev)))
5983                         continue;
5984                 netdev_adjacent_sysfs_add(iter->dev, dev,
5985                                           &iter->dev->adj_list.lower);
5986                 netdev_adjacent_sysfs_add(dev, iter->dev,
5987                                           &dev->adj_list.upper);
5988         }
5989
5990         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5991                 if (!net_eq(net, dev_net(iter->dev)))
5992                         continue;
5993                 netdev_adjacent_sysfs_add(iter->dev, dev,
5994                                           &iter->dev->adj_list.upper);
5995                 netdev_adjacent_sysfs_add(dev, iter->dev,
5996                                           &dev->adj_list.lower);
5997         }
5998 }
5999
6000 static void netdev_adjacent_del_links(struct net_device *dev)
6001 {
6002         struct netdev_adjacent *iter;
6003
6004         struct net *net = dev_net(dev);
6005
6006         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6007                 if (!net_eq(net, dev_net(iter->dev)))
6008                         continue;
6009                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6010                                           &iter->dev->adj_list.lower);
6011                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6012                                           &dev->adj_list.upper);
6013         }
6014
6015         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6016                 if (!net_eq(net, dev_net(iter->dev)))
6017                         continue;
6018                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6019                                           &iter->dev->adj_list.upper);
6020                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6021                                           &dev->adj_list.lower);
6022         }
6023 }
6024
6025 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6026 {
6027         struct netdev_adjacent *iter;
6028
6029         struct net *net = dev_net(dev);
6030
6031         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6032                 if (!net_eq(net, dev_net(iter->dev)))
6033                         continue;
6034                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6035                                           &iter->dev->adj_list.lower);
6036                 netdev_adjacent_sysfs_add(iter->dev, dev,
6037                                           &iter->dev->adj_list.lower);
6038         }
6039
6040         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6041                 if (!net_eq(net, dev_net(iter->dev)))
6042                         continue;
6043                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6044                                           &iter->dev->adj_list.upper);
6045                 netdev_adjacent_sysfs_add(iter->dev, dev,
6046                                           &iter->dev->adj_list.upper);
6047         }
6048 }
6049
6050 void *netdev_lower_dev_get_private(struct net_device *dev,
6051                                    struct net_device *lower_dev)
6052 {
6053         struct netdev_adjacent *lower;
6054
6055         if (!lower_dev)
6056                 return NULL;
6057         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6058         if (!lower)
6059                 return NULL;
6060
6061         return lower->private;
6062 }
6063 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6064
6065
6066 int dev_get_nest_level(struct net_device *dev)
6067 {
6068         struct net_device *lower = NULL;
6069         struct list_head *iter;
6070         int max_nest = -1;
6071         int nest;
6072
6073         ASSERT_RTNL();
6074
6075         netdev_for_each_lower_dev(dev, lower, iter) {
6076                 nest = dev_get_nest_level(lower);
6077                 if (max_nest < nest)
6078                         max_nest = nest;
6079         }
6080
6081         return max_nest + 1;
6082 }
6083 EXPORT_SYMBOL(dev_get_nest_level);
6084
6085 /**
6086  * netdev_lower_change - Dispatch event about lower device state change
6087  * @lower_dev: device
6088  * @lower_state_info: state to dispatch
6089  *
6090  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6091  * The caller must hold the RTNL lock.
6092  */
6093 void netdev_lower_state_changed(struct net_device *lower_dev,
6094                                 void *lower_state_info)
6095 {
6096         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6097
6098         ASSERT_RTNL();
6099         changelowerstate_info.lower_state_info = lower_state_info;
6100         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6101                                       &changelowerstate_info.info);
6102 }
6103 EXPORT_SYMBOL(netdev_lower_state_changed);
6104
6105 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6106                                            struct neighbour *n)
6107 {
6108         struct net_device *lower_dev, *stop_dev;
6109         struct list_head *iter;
6110         int err;
6111
6112         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6113                 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6114                         continue;
6115                 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6116                 if (err) {
6117                         stop_dev = lower_dev;
6118                         goto rollback;
6119                 }
6120         }
6121         return 0;
6122
6123 rollback:
6124         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6125                 if (lower_dev == stop_dev)
6126                         break;
6127                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6128                         continue;
6129                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6130         }
6131         return err;
6132 }
6133 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6134
6135 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6136                                           struct neighbour *n)
6137 {
6138         struct net_device *lower_dev;
6139         struct list_head *iter;
6140
6141         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6142                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6143                         continue;
6144                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6145         }
6146 }
6147 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6148
6149 static void dev_change_rx_flags(struct net_device *dev, int flags)
6150 {
6151         const struct net_device_ops *ops = dev->netdev_ops;
6152
6153         if (ops->ndo_change_rx_flags)
6154                 ops->ndo_change_rx_flags(dev, flags);
6155 }
6156
6157 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6158 {
6159         unsigned int old_flags = dev->flags;
6160         kuid_t uid;
6161         kgid_t gid;
6162
6163         ASSERT_RTNL();
6164
6165         dev->flags |= IFF_PROMISC;
6166         dev->promiscuity += inc;
6167         if (dev->promiscuity == 0) {
6168                 /*
6169                  * Avoid overflow.
6170                  * If inc causes overflow, untouch promisc and return error.
6171                  */
6172                 if (inc < 0)
6173                         dev->flags &= ~IFF_PROMISC;
6174                 else {
6175                         dev->promiscuity -= inc;
6176                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6177                                 dev->name);
6178                         return -EOVERFLOW;
6179                 }
6180         }
6181         if (dev->flags != old_flags) {
6182                 pr_info("device %s %s promiscuous mode\n",
6183                         dev->name,
6184                         dev->flags & IFF_PROMISC ? "entered" : "left");
6185                 if (audit_enabled) {
6186                         current_uid_gid(&uid, &gid);
6187                         audit_log(current->audit_context, GFP_ATOMIC,
6188                                 AUDIT_ANOM_PROMISCUOUS,
6189                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6190                                 dev->name, (dev->flags & IFF_PROMISC),
6191                                 (old_flags & IFF_PROMISC),
6192                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6193                                 from_kuid(&init_user_ns, uid),
6194                                 from_kgid(&init_user_ns, gid),
6195                                 audit_get_sessionid(current));
6196                 }
6197
6198                 dev_change_rx_flags(dev, IFF_PROMISC);
6199         }
6200         if (notify)
6201                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6202         return 0;
6203 }
6204
6205 /**
6206  *      dev_set_promiscuity     - update promiscuity count on a device
6207  *      @dev: device
6208  *      @inc: modifier
6209  *
6210  *      Add or remove promiscuity from a device. While the count in the device
6211  *      remains above zero the interface remains promiscuous. Once it hits zero
6212  *      the device reverts back to normal filtering operation. A negative inc
6213  *      value is used to drop promiscuity on the device.
6214  *      Return 0 if successful or a negative errno code on error.
6215  */
6216 int dev_set_promiscuity(struct net_device *dev, int inc)
6217 {
6218         unsigned int old_flags = dev->flags;
6219         int err;
6220
6221         err = __dev_set_promiscuity(dev, inc, true);
6222         if (err < 0)
6223                 return err;
6224         if (dev->flags != old_flags)
6225                 dev_set_rx_mode(dev);
6226         return err;
6227 }
6228 EXPORT_SYMBOL(dev_set_promiscuity);
6229
6230 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6231 {
6232         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6233
6234         ASSERT_RTNL();
6235
6236         dev->flags |= IFF_ALLMULTI;
6237         dev->allmulti += inc;
6238         if (dev->allmulti == 0) {
6239                 /*
6240                  * Avoid overflow.
6241                  * If inc causes overflow, untouch allmulti and return error.
6242                  */
6243                 if (inc < 0)
6244                         dev->flags &= ~IFF_ALLMULTI;
6245                 else {
6246                         dev->allmulti -= inc;
6247                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6248                                 dev->name);
6249                         return -EOVERFLOW;
6250                 }
6251         }
6252         if (dev->flags ^ old_flags) {
6253                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6254                 dev_set_rx_mode(dev);
6255                 if (notify)
6256                         __dev_notify_flags(dev, old_flags,
6257                                            dev->gflags ^ old_gflags);
6258         }
6259         return 0;
6260 }
6261
6262 /**
6263  *      dev_set_allmulti        - update allmulti count on a device
6264  *      @dev: device
6265  *      @inc: modifier
6266  *
6267  *      Add or remove reception of all multicast frames to a device. While the
6268  *      count in the device remains above zero the interface remains listening
6269  *      to all interfaces. Once it hits zero the device reverts back to normal
6270  *      filtering operation. A negative @inc value is used to drop the counter
6271  *      when releasing a resource needing all multicasts.
6272  *      Return 0 if successful or a negative errno code on error.
6273  */
6274
6275 int dev_set_allmulti(struct net_device *dev, int inc)
6276 {
6277         return __dev_set_allmulti(dev, inc, true);
6278 }
6279 EXPORT_SYMBOL(dev_set_allmulti);
6280
6281 /*
6282  *      Upload unicast and multicast address lists to device and
6283  *      configure RX filtering. When the device doesn't support unicast
6284  *      filtering it is put in promiscuous mode while unicast addresses
6285  *      are present.
6286  */
6287 void __dev_set_rx_mode(struct net_device *dev)
6288 {
6289         const struct net_device_ops *ops = dev->netdev_ops;
6290
6291         /* dev_open will call this function so the list will stay sane. */
6292         if (!(dev->flags&IFF_UP))
6293                 return;
6294
6295         if (!netif_device_present(dev))
6296                 return;
6297
6298         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6299                 /* Unicast addresses changes may only happen under the rtnl,
6300                  * therefore calling __dev_set_promiscuity here is safe.
6301                  */
6302                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6303                         __dev_set_promiscuity(dev, 1, false);
6304                         dev->uc_promisc = true;
6305                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6306                         __dev_set_promiscuity(dev, -1, false);
6307                         dev->uc_promisc = false;
6308                 }
6309         }
6310
6311         if (ops->ndo_set_rx_mode)
6312                 ops->ndo_set_rx_mode(dev);
6313 }
6314
6315 void dev_set_rx_mode(struct net_device *dev)
6316 {
6317         netif_addr_lock_bh(dev);
6318         __dev_set_rx_mode(dev);
6319         netif_addr_unlock_bh(dev);
6320 }
6321
6322 /**
6323  *      dev_get_flags - get flags reported to userspace
6324  *      @dev: device
6325  *
6326  *      Get the combination of flag bits exported through APIs to userspace.
6327  */
6328 unsigned int dev_get_flags(const struct net_device *dev)
6329 {
6330         unsigned int flags;
6331
6332         flags = (dev->flags & ~(IFF_PROMISC |
6333                                 IFF_ALLMULTI |
6334                                 IFF_RUNNING |
6335                                 IFF_LOWER_UP |
6336                                 IFF_DORMANT)) |
6337                 (dev->gflags & (IFF_PROMISC |
6338                                 IFF_ALLMULTI));
6339
6340         if (netif_running(dev)) {
6341                 if (netif_oper_up(dev))
6342                         flags |= IFF_RUNNING;
6343                 if (netif_carrier_ok(dev))
6344                         flags |= IFF_LOWER_UP;
6345                 if (netif_dormant(dev))
6346                         flags |= IFF_DORMANT;
6347         }
6348
6349         return flags;
6350 }
6351 EXPORT_SYMBOL(dev_get_flags);
6352
6353 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6354 {
6355         unsigned int old_flags = dev->flags;
6356         int ret;
6357
6358         ASSERT_RTNL();
6359
6360         /*
6361          *      Set the flags on our device.
6362          */
6363
6364         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6365                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6366                                IFF_AUTOMEDIA)) |
6367                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6368                                     IFF_ALLMULTI));
6369
6370         /*
6371          *      Load in the correct multicast list now the flags have changed.
6372          */
6373
6374         if ((old_flags ^ flags) & IFF_MULTICAST)
6375                 dev_change_rx_flags(dev, IFF_MULTICAST);
6376
6377         dev_set_rx_mode(dev);
6378
6379         /*
6380          *      Have we downed the interface. We handle IFF_UP ourselves
6381          *      according to user attempts to set it, rather than blindly
6382          *      setting it.
6383          */
6384
6385         ret = 0;
6386         if ((old_flags ^ flags) & IFF_UP)
6387                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6388
6389         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6390                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6391                 unsigned int old_flags = dev->flags;
6392
6393                 dev->gflags ^= IFF_PROMISC;
6394
6395                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6396                         if (dev->flags != old_flags)
6397                                 dev_set_rx_mode(dev);
6398         }
6399
6400         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6401            is important. Some (broken) drivers set IFF_PROMISC, when
6402            IFF_ALLMULTI is requested not asking us and not reporting.
6403          */
6404         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6405                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6406
6407                 dev->gflags ^= IFF_ALLMULTI;
6408                 __dev_set_allmulti(dev, inc, false);
6409         }
6410
6411         return ret;
6412 }
6413
6414 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6415                         unsigned int gchanges)
6416 {
6417         unsigned int changes = dev->flags ^ old_flags;
6418
6419         if (gchanges)
6420                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6421
6422         if (changes & IFF_UP) {
6423                 if (dev->flags & IFF_UP)
6424                         call_netdevice_notifiers(NETDEV_UP, dev);
6425                 else
6426                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6427         }
6428
6429         if (dev->flags & IFF_UP &&
6430             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6431                 struct netdev_notifier_change_info change_info;
6432
6433                 change_info.flags_changed = changes;
6434                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6435                                               &change_info.info);
6436         }
6437 }
6438
6439 /**
6440  *      dev_change_flags - change device settings
6441  *      @dev: device
6442  *      @flags: device state flags
6443  *
6444  *      Change settings on device based state flags. The flags are
6445  *      in the userspace exported format.
6446  */
6447 int dev_change_flags(struct net_device *dev, unsigned int flags)
6448 {
6449         int ret;
6450         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6451
6452         ret = __dev_change_flags(dev, flags);
6453         if (ret < 0)
6454                 return ret;
6455
6456         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6457         __dev_notify_flags(dev, old_flags, changes);
6458         return ret;
6459 }
6460 EXPORT_SYMBOL(dev_change_flags);
6461
6462 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6463 {
6464         const struct net_device_ops *ops = dev->netdev_ops;
6465
6466         if (ops->ndo_change_mtu)
6467                 return ops->ndo_change_mtu(dev, new_mtu);
6468
6469         dev->mtu = new_mtu;
6470         return 0;
6471 }
6472
6473 /**
6474  *      dev_set_mtu - Change maximum transfer unit
6475  *      @dev: device
6476  *      @new_mtu: new transfer unit
6477  *
6478  *      Change the maximum transfer size of the network device.
6479  */
6480 int dev_set_mtu(struct net_device *dev, int new_mtu)
6481 {
6482         int err, orig_mtu;
6483
6484         if (new_mtu == dev->mtu)
6485                 return 0;
6486
6487         /*      MTU must be positive.    */
6488         if (new_mtu < 0)
6489                 return -EINVAL;
6490
6491         if (!netif_device_present(dev))
6492                 return -ENODEV;
6493
6494         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6495         err = notifier_to_errno(err);
6496         if (err)
6497                 return err;
6498
6499         orig_mtu = dev->mtu;
6500         err = __dev_set_mtu(dev, new_mtu);
6501
6502         if (!err) {
6503                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6504                 err = notifier_to_errno(err);
6505                 if (err) {
6506                         /* setting mtu back and notifying everyone again,
6507                          * so that they have a chance to revert changes.
6508                          */
6509                         __dev_set_mtu(dev, orig_mtu);
6510                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6511                 }
6512         }
6513         return err;
6514 }
6515 EXPORT_SYMBOL(dev_set_mtu);
6516
6517 /**
6518  *      dev_set_group - Change group this device belongs to
6519  *      @dev: device
6520  *      @new_group: group this device should belong to
6521  */
6522 void dev_set_group(struct net_device *dev, int new_group)
6523 {
6524         dev->group = new_group;
6525 }
6526 EXPORT_SYMBOL(dev_set_group);
6527
6528 /**
6529  *      dev_set_mac_address - Change Media Access Control Address
6530  *      @dev: device
6531  *      @sa: new address
6532  *
6533  *      Change the hardware (MAC) address of the device
6534  */
6535 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6536 {
6537         const struct net_device_ops *ops = dev->netdev_ops;
6538         int err;
6539
6540         if (!ops->ndo_set_mac_address)
6541                 return -EOPNOTSUPP;
6542         if (sa->sa_family != dev->type)
6543                 return -EINVAL;
6544         if (!netif_device_present(dev))
6545                 return -ENODEV;
6546         err = ops->ndo_set_mac_address(dev, sa);
6547         if (err)
6548                 return err;
6549         dev->addr_assign_type = NET_ADDR_SET;
6550         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6551         add_device_randomness(dev->dev_addr, dev->addr_len);
6552         return 0;
6553 }
6554 EXPORT_SYMBOL(dev_set_mac_address);
6555
6556 /**
6557  *      dev_change_carrier - Change device carrier
6558  *      @dev: device
6559  *      @new_carrier: new value
6560  *
6561  *      Change device carrier
6562  */
6563 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6564 {
6565         const struct net_device_ops *ops = dev->netdev_ops;
6566
6567         if (!ops->ndo_change_carrier)
6568                 return -EOPNOTSUPP;
6569         if (!netif_device_present(dev))
6570                 return -ENODEV;
6571         return ops->ndo_change_carrier(dev, new_carrier);
6572 }
6573 EXPORT_SYMBOL(dev_change_carrier);
6574
6575 /**
6576  *      dev_get_phys_port_id - Get device physical port ID
6577  *      @dev: device
6578  *      @ppid: port ID
6579  *
6580  *      Get device physical port ID
6581  */
6582 int dev_get_phys_port_id(struct net_device *dev,
6583                          struct netdev_phys_item_id *ppid)
6584 {
6585         const struct net_device_ops *ops = dev->netdev_ops;
6586
6587         if (!ops->ndo_get_phys_port_id)
6588                 return -EOPNOTSUPP;
6589         return ops->ndo_get_phys_port_id(dev, ppid);
6590 }
6591 EXPORT_SYMBOL(dev_get_phys_port_id);
6592
6593 /**
6594  *      dev_get_phys_port_name - Get device physical port name
6595  *      @dev: device
6596  *      @name: port name
6597  *      @len: limit of bytes to copy to name
6598  *
6599  *      Get device physical port name
6600  */
6601 int dev_get_phys_port_name(struct net_device *dev,
6602                            char *name, size_t len)
6603 {
6604         const struct net_device_ops *ops = dev->netdev_ops;
6605
6606         if (!ops->ndo_get_phys_port_name)
6607                 return -EOPNOTSUPP;
6608         return ops->ndo_get_phys_port_name(dev, name, len);
6609 }
6610 EXPORT_SYMBOL(dev_get_phys_port_name);
6611
6612 /**
6613  *      dev_change_proto_down - update protocol port state information
6614  *      @dev: device
6615  *      @proto_down: new value
6616  *
6617  *      This info can be used by switch drivers to set the phys state of the
6618  *      port.
6619  */
6620 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6621 {
6622         const struct net_device_ops *ops = dev->netdev_ops;
6623
6624         if (!ops->ndo_change_proto_down)
6625                 return -EOPNOTSUPP;
6626         if (!netif_device_present(dev))
6627                 return -ENODEV;
6628         return ops->ndo_change_proto_down(dev, proto_down);
6629 }
6630 EXPORT_SYMBOL(dev_change_proto_down);
6631
6632 /**
6633  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6634  *      @dev: device
6635  *      @fd: new program fd or negative value to clear
6636  *
6637  *      Set or clear a bpf program for a device
6638  */
6639 int dev_change_xdp_fd(struct net_device *dev, int fd)
6640 {
6641         const struct net_device_ops *ops = dev->netdev_ops;
6642         struct bpf_prog *prog = NULL;
6643         struct netdev_xdp xdp = {};
6644         int err;
6645
6646         if (!ops->ndo_xdp)
6647                 return -EOPNOTSUPP;
6648         if (fd >= 0) {
6649                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6650                 if (IS_ERR(prog))
6651                         return PTR_ERR(prog);
6652         }
6653
6654         xdp.command = XDP_SETUP_PROG;
6655         xdp.prog = prog;
6656         err = ops->ndo_xdp(dev, &xdp);
6657         if (err < 0 && prog)
6658                 bpf_prog_put(prog);
6659
6660         return err;
6661 }
6662 EXPORT_SYMBOL(dev_change_xdp_fd);
6663
6664 /**
6665  *      dev_new_index   -       allocate an ifindex
6666  *      @net: the applicable net namespace
6667  *
6668  *      Returns a suitable unique value for a new device interface
6669  *      number.  The caller must hold the rtnl semaphore or the
6670  *      dev_base_lock to be sure it remains unique.
6671  */
6672 static int dev_new_index(struct net *net)
6673 {
6674         int ifindex = net->ifindex;
6675         for (;;) {
6676                 if (++ifindex <= 0)
6677                         ifindex = 1;
6678                 if (!__dev_get_by_index(net, ifindex))
6679                         return net->ifindex = ifindex;
6680         }
6681 }
6682
6683 /* Delayed registration/unregisteration */
6684 static LIST_HEAD(net_todo_list);
6685 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6686
6687 static void net_set_todo(struct net_device *dev)
6688 {
6689         list_add_tail(&dev->todo_list, &net_todo_list);
6690         dev_net(dev)->dev_unreg_count++;
6691 }
6692
6693 static void rollback_registered_many(struct list_head *head)
6694 {
6695         struct net_device *dev, *tmp;
6696         LIST_HEAD(close_head);
6697
6698         BUG_ON(dev_boot_phase);
6699         ASSERT_RTNL();
6700
6701         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6702                 /* Some devices call without registering
6703                  * for initialization unwind. Remove those
6704                  * devices and proceed with the remaining.
6705                  */
6706                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6707                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6708                                  dev->name, dev);
6709
6710                         WARN_ON(1);
6711                         list_del(&dev->unreg_list);
6712                         continue;
6713                 }
6714                 dev->dismantle = true;
6715                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6716         }
6717
6718         /* If device is running, close it first. */
6719         list_for_each_entry(dev, head, unreg_list)
6720                 list_add_tail(&dev->close_list, &close_head);
6721         dev_close_many(&close_head, true);
6722
6723         list_for_each_entry(dev, head, unreg_list) {
6724                 /* And unlink it from device chain. */
6725                 unlist_netdevice(dev);
6726
6727                 dev->reg_state = NETREG_UNREGISTERING;
6728                 flush_all_backlogs(dev);
6729         }
6730
6731         synchronize_net();
6732
6733         list_for_each_entry(dev, head, unreg_list) {
6734                 struct sk_buff *skb = NULL;
6735
6736                 /* Shutdown queueing discipline. */
6737                 dev_shutdown(dev);
6738
6739
6740                 /* Notify protocols, that we are about to destroy
6741                    this device. They should clean all the things.
6742                 */
6743                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6744
6745                 if (!dev->rtnl_link_ops ||
6746                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6747                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6748                                                      GFP_KERNEL);
6749
6750                 /*
6751                  *      Flush the unicast and multicast chains
6752                  */
6753                 dev_uc_flush(dev);
6754                 dev_mc_flush(dev);
6755
6756                 if (dev->netdev_ops->ndo_uninit)
6757                         dev->netdev_ops->ndo_uninit(dev);
6758
6759                 if (skb)
6760                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6761
6762                 /* Notifier chain MUST detach us all upper devices. */
6763                 WARN_ON(netdev_has_any_upper_dev(dev));
6764
6765                 /* Remove entries from kobject tree */
6766                 netdev_unregister_kobject(dev);
6767 #ifdef CONFIG_XPS
6768                 /* Remove XPS queueing entries */
6769                 netif_reset_xps_queues_gt(dev, 0);
6770 #endif
6771         }
6772
6773         synchronize_net();
6774
6775         list_for_each_entry(dev, head, unreg_list)
6776                 dev_put(dev);
6777 }
6778
6779 static void rollback_registered(struct net_device *dev)
6780 {
6781         LIST_HEAD(single);
6782
6783         list_add(&dev->unreg_list, &single);
6784         rollback_registered_many(&single);
6785         list_del(&single);
6786 }
6787
6788 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6789         struct net_device *upper, netdev_features_t features)
6790 {
6791         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6792         netdev_features_t feature;
6793         int feature_bit;
6794
6795         for_each_netdev_feature(&upper_disables, feature_bit) {
6796                 feature = __NETIF_F_BIT(feature_bit);
6797                 if (!(upper->wanted_features & feature)
6798                     && (features & feature)) {
6799                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6800                                    &feature, upper->name);
6801                         features &= ~feature;
6802                 }
6803         }
6804
6805         return features;
6806 }
6807
6808 static void netdev_sync_lower_features(struct net_device *upper,
6809         struct net_device *lower, netdev_features_t features)
6810 {
6811         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6812         netdev_features_t feature;
6813         int feature_bit;
6814
6815         for_each_netdev_feature(&upper_disables, feature_bit) {
6816                 feature = __NETIF_F_BIT(feature_bit);
6817                 if (!(features & feature) && (lower->features & feature)) {
6818                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6819                                    &feature, lower->name);
6820                         lower->wanted_features &= ~feature;
6821                         netdev_update_features(lower);
6822
6823                         if (unlikely(lower->features & feature))
6824                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6825                                             &feature, lower->name);
6826                 }
6827         }
6828 }
6829
6830 static netdev_features_t netdev_fix_features(struct net_device *dev,
6831         netdev_features_t features)
6832 {
6833         /* Fix illegal checksum combinations */
6834         if ((features & NETIF_F_HW_CSUM) &&
6835             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6836                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6837                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6838         }
6839
6840         /* TSO requires that SG is present as well. */
6841         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6842                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6843                 features &= ~NETIF_F_ALL_TSO;
6844         }
6845
6846         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6847                                         !(features & NETIF_F_IP_CSUM)) {
6848                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6849                 features &= ~NETIF_F_TSO;
6850                 features &= ~NETIF_F_TSO_ECN;
6851         }
6852
6853         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6854                                          !(features & NETIF_F_IPV6_CSUM)) {
6855                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6856                 features &= ~NETIF_F_TSO6;
6857         }
6858
6859         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6860         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6861                 features &= ~NETIF_F_TSO_MANGLEID;
6862
6863         /* TSO ECN requires that TSO is present as well. */
6864         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6865                 features &= ~NETIF_F_TSO_ECN;
6866
6867         /* Software GSO depends on SG. */
6868         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6869                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6870                 features &= ~NETIF_F_GSO;
6871         }
6872
6873         /* UFO needs SG and checksumming */
6874         if (features & NETIF_F_UFO) {
6875                 /* maybe split UFO into V4 and V6? */
6876                 if (!(features & NETIF_F_HW_CSUM) &&
6877                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6878                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6879                         netdev_dbg(dev,
6880                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6881                         features &= ~NETIF_F_UFO;
6882                 }
6883
6884                 if (!(features & NETIF_F_SG)) {
6885                         netdev_dbg(dev,
6886                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6887                         features &= ~NETIF_F_UFO;
6888                 }
6889         }
6890
6891         /* GSO partial features require GSO partial be set */
6892         if ((features & dev->gso_partial_features) &&
6893             !(features & NETIF_F_GSO_PARTIAL)) {
6894                 netdev_dbg(dev,
6895                            "Dropping partially supported GSO features since no GSO partial.\n");
6896                 features &= ~dev->gso_partial_features;
6897         }
6898
6899 #ifdef CONFIG_NET_RX_BUSY_POLL
6900         if (dev->netdev_ops->ndo_busy_poll)
6901                 features |= NETIF_F_BUSY_POLL;
6902         else
6903 #endif
6904                 features &= ~NETIF_F_BUSY_POLL;
6905
6906         return features;
6907 }
6908
6909 int __netdev_update_features(struct net_device *dev)
6910 {
6911         struct net_device *upper, *lower;
6912         netdev_features_t features;
6913         struct list_head *iter;
6914         int err = -1;
6915
6916         ASSERT_RTNL();
6917
6918         features = netdev_get_wanted_features(dev);
6919
6920         if (dev->netdev_ops->ndo_fix_features)
6921                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6922
6923         /* driver might be less strict about feature dependencies */
6924         features = netdev_fix_features(dev, features);
6925
6926         /* some features can't be enabled if they're off an an upper device */
6927         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6928                 features = netdev_sync_upper_features(dev, upper, features);
6929
6930         if (dev->features == features)
6931                 goto sync_lower;
6932
6933         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6934                 &dev->features, &features);
6935
6936         if (dev->netdev_ops->ndo_set_features)
6937                 err = dev->netdev_ops->ndo_set_features(dev, features);
6938         else
6939                 err = 0;
6940
6941         if (unlikely(err < 0)) {
6942                 netdev_err(dev,
6943                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6944                         err, &features, &dev->features);
6945                 /* return non-0 since some features might have changed and
6946                  * it's better to fire a spurious notification than miss it
6947                  */
6948                 return -1;
6949         }
6950
6951 sync_lower:
6952         /* some features must be disabled on lower devices when disabled
6953          * on an upper device (think: bonding master or bridge)
6954          */
6955         netdev_for_each_lower_dev(dev, lower, iter)
6956                 netdev_sync_lower_features(dev, lower, features);
6957
6958         if (!err)
6959                 dev->features = features;
6960
6961         return err < 0 ? 0 : 1;
6962 }
6963
6964 /**
6965  *      netdev_update_features - recalculate device features
6966  *      @dev: the device to check
6967  *
6968  *      Recalculate dev->features set and send notifications if it
6969  *      has changed. Should be called after driver or hardware dependent
6970  *      conditions might have changed that influence the features.
6971  */
6972 void netdev_update_features(struct net_device *dev)
6973 {
6974         if (__netdev_update_features(dev))
6975                 netdev_features_change(dev);
6976 }
6977 EXPORT_SYMBOL(netdev_update_features);
6978
6979 /**
6980  *      netdev_change_features - recalculate device features
6981  *      @dev: the device to check
6982  *
6983  *      Recalculate dev->features set and send notifications even
6984  *      if they have not changed. Should be called instead of
6985  *      netdev_update_features() if also dev->vlan_features might
6986  *      have changed to allow the changes to be propagated to stacked
6987  *      VLAN devices.
6988  */
6989 void netdev_change_features(struct net_device *dev)
6990 {
6991         __netdev_update_features(dev);
6992         netdev_features_change(dev);
6993 }
6994 EXPORT_SYMBOL(netdev_change_features);
6995
6996 /**
6997  *      netif_stacked_transfer_operstate -      transfer operstate
6998  *      @rootdev: the root or lower level device to transfer state from
6999  *      @dev: the device to transfer operstate to
7000  *
7001  *      Transfer operational state from root to device. This is normally
7002  *      called when a stacking relationship exists between the root
7003  *      device and the device(a leaf device).
7004  */
7005 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7006                                         struct net_device *dev)
7007 {
7008         if (rootdev->operstate == IF_OPER_DORMANT)
7009                 netif_dormant_on(dev);
7010         else
7011                 netif_dormant_off(dev);
7012
7013         if (netif_carrier_ok(rootdev)) {
7014                 if (!netif_carrier_ok(dev))
7015                         netif_carrier_on(dev);
7016         } else {
7017                 if (netif_carrier_ok(dev))
7018                         netif_carrier_off(dev);
7019         }
7020 }
7021 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7022
7023 #ifdef CONFIG_SYSFS
7024 static int netif_alloc_rx_queues(struct net_device *dev)
7025 {
7026         unsigned int i, count = dev->num_rx_queues;
7027         struct netdev_rx_queue *rx;
7028         size_t sz = count * sizeof(*rx);
7029
7030         BUG_ON(count < 1);
7031
7032         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7033         if (!rx) {
7034                 rx = vzalloc(sz);
7035                 if (!rx)
7036                         return -ENOMEM;
7037         }
7038         dev->_rx = rx;
7039
7040         for (i = 0; i < count; i++)
7041                 rx[i].dev = dev;
7042         return 0;
7043 }
7044 #endif
7045
7046 static void netdev_init_one_queue(struct net_device *dev,
7047                                   struct netdev_queue *queue, void *_unused)
7048 {
7049         /* Initialize queue lock */
7050         spin_lock_init(&queue->_xmit_lock);
7051         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7052         queue->xmit_lock_owner = -1;
7053         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7054         queue->dev = dev;
7055 #ifdef CONFIG_BQL
7056         dql_init(&queue->dql, HZ);
7057 #endif
7058 }
7059
7060 static void netif_free_tx_queues(struct net_device *dev)
7061 {
7062         kvfree(dev->_tx);
7063 }
7064
7065 static int netif_alloc_netdev_queues(struct net_device *dev)
7066 {
7067         unsigned int count = dev->num_tx_queues;
7068         struct netdev_queue *tx;
7069         size_t sz = count * sizeof(*tx);
7070
7071         if (count < 1 || count > 0xffff)
7072                 return -EINVAL;
7073
7074         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7075         if (!tx) {
7076                 tx = vzalloc(sz);
7077                 if (!tx)
7078                         return -ENOMEM;
7079         }
7080         dev->_tx = tx;
7081
7082         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7083         spin_lock_init(&dev->tx_global_lock);
7084
7085         return 0;
7086 }
7087
7088 void netif_tx_stop_all_queues(struct net_device *dev)
7089 {
7090         unsigned int i;
7091
7092         for (i = 0; i < dev->num_tx_queues; i++) {
7093                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7094                 netif_tx_stop_queue(txq);
7095         }
7096 }
7097 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7098
7099 /**
7100  *      register_netdevice      - register a network device
7101  *      @dev: device to register
7102  *
7103  *      Take a completed network device structure and add it to the kernel
7104  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7105  *      chain. 0 is returned on success. A negative errno code is returned
7106  *      on a failure to set up the device, or if the name is a duplicate.
7107  *
7108  *      Callers must hold the rtnl semaphore. You may want
7109  *      register_netdev() instead of this.
7110  *
7111  *      BUGS:
7112  *      The locking appears insufficient to guarantee two parallel registers
7113  *      will not get the same name.
7114  */
7115
7116 int register_netdevice(struct net_device *dev)
7117 {
7118         int ret;
7119         struct net *net = dev_net(dev);
7120
7121         BUG_ON(dev_boot_phase);
7122         ASSERT_RTNL();
7123
7124         might_sleep();
7125
7126         /* When net_device's are persistent, this will be fatal. */
7127         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7128         BUG_ON(!net);
7129
7130         spin_lock_init(&dev->addr_list_lock);
7131         netdev_set_addr_lockdep_class(dev);
7132
7133         ret = dev_get_valid_name(net, dev, dev->name);
7134         if (ret < 0)
7135                 goto out;
7136
7137         /* Init, if this function is available */
7138         if (dev->netdev_ops->ndo_init) {
7139                 ret = dev->netdev_ops->ndo_init(dev);
7140                 if (ret) {
7141                         if (ret > 0)
7142                                 ret = -EIO;
7143                         goto out;
7144                 }
7145         }
7146
7147         if (((dev->hw_features | dev->features) &
7148              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7149             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7150              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7151                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7152                 ret = -EINVAL;
7153                 goto err_uninit;
7154         }
7155
7156         ret = -EBUSY;
7157         if (!dev->ifindex)
7158                 dev->ifindex = dev_new_index(net);
7159         else if (__dev_get_by_index(net, dev->ifindex))
7160                 goto err_uninit;
7161
7162         /* Transfer changeable features to wanted_features and enable
7163          * software offloads (GSO and GRO).
7164          */
7165         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7166         dev->features |= NETIF_F_SOFT_FEATURES;
7167         dev->wanted_features = dev->features & dev->hw_features;
7168
7169         if (!(dev->flags & IFF_LOOPBACK))
7170                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7171
7172         /* If IPv4 TCP segmentation offload is supported we should also
7173          * allow the device to enable segmenting the frame with the option
7174          * of ignoring a static IP ID value.  This doesn't enable the
7175          * feature itself but allows the user to enable it later.
7176          */
7177         if (dev->hw_features & NETIF_F_TSO)
7178                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7179         if (dev->vlan_features & NETIF_F_TSO)
7180                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7181         if (dev->mpls_features & NETIF_F_TSO)
7182                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7183         if (dev->hw_enc_features & NETIF_F_TSO)
7184                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7185
7186         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7187          */
7188         dev->vlan_features |= NETIF_F_HIGHDMA;
7189
7190         /* Make NETIF_F_SG inheritable to tunnel devices.
7191          */
7192         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7193
7194         /* Make NETIF_F_SG inheritable to MPLS.
7195          */
7196         dev->mpls_features |= NETIF_F_SG;
7197
7198         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7199         ret = notifier_to_errno(ret);
7200         if (ret)
7201                 goto err_uninit;
7202
7203         ret = netdev_register_kobject(dev);
7204         if (ret)
7205                 goto err_uninit;
7206         dev->reg_state = NETREG_REGISTERED;
7207
7208         __netdev_update_features(dev);
7209
7210         /*
7211          *      Default initial state at registry is that the
7212          *      device is present.
7213          */
7214
7215         set_bit(__LINK_STATE_PRESENT, &dev->state);
7216
7217         linkwatch_init_dev(dev);
7218
7219         dev_init_scheduler(dev);
7220         dev_hold(dev);
7221         list_netdevice(dev);
7222         add_device_randomness(dev->dev_addr, dev->addr_len);
7223
7224         /* If the device has permanent device address, driver should
7225          * set dev_addr and also addr_assign_type should be set to
7226          * NET_ADDR_PERM (default value).
7227          */
7228         if (dev->addr_assign_type == NET_ADDR_PERM)
7229                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7230
7231         /* Notify protocols, that a new device appeared. */
7232         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7233         ret = notifier_to_errno(ret);
7234         if (ret) {
7235                 rollback_registered(dev);
7236                 dev->reg_state = NETREG_UNREGISTERED;
7237         }
7238         /*
7239          *      Prevent userspace races by waiting until the network
7240          *      device is fully setup before sending notifications.
7241          */
7242         if (!dev->rtnl_link_ops ||
7243             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7244                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7245
7246 out:
7247         return ret;
7248
7249 err_uninit:
7250         if (dev->netdev_ops->ndo_uninit)
7251                 dev->netdev_ops->ndo_uninit(dev);
7252         goto out;
7253 }
7254 EXPORT_SYMBOL(register_netdevice);
7255
7256 /**
7257  *      init_dummy_netdev       - init a dummy network device for NAPI
7258  *      @dev: device to init
7259  *
7260  *      This takes a network device structure and initialize the minimum
7261  *      amount of fields so it can be used to schedule NAPI polls without
7262  *      registering a full blown interface. This is to be used by drivers
7263  *      that need to tie several hardware interfaces to a single NAPI
7264  *      poll scheduler due to HW limitations.
7265  */
7266 int init_dummy_netdev(struct net_device *dev)
7267 {
7268         /* Clear everything. Note we don't initialize spinlocks
7269          * are they aren't supposed to be taken by any of the
7270          * NAPI code and this dummy netdev is supposed to be
7271          * only ever used for NAPI polls
7272          */
7273         memset(dev, 0, sizeof(struct net_device));
7274
7275         /* make sure we BUG if trying to hit standard
7276          * register/unregister code path
7277          */
7278         dev->reg_state = NETREG_DUMMY;
7279
7280         /* NAPI wants this */
7281         INIT_LIST_HEAD(&dev->napi_list);
7282
7283         /* a dummy interface is started by default */
7284         set_bit(__LINK_STATE_PRESENT, &dev->state);
7285         set_bit(__LINK_STATE_START, &dev->state);
7286
7287         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7288          * because users of this 'device' dont need to change
7289          * its refcount.
7290          */
7291
7292         return 0;
7293 }
7294 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7295
7296
7297 /**
7298  *      register_netdev - register a network device
7299  *      @dev: device to register
7300  *
7301  *      Take a completed network device structure and add it to the kernel
7302  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7303  *      chain. 0 is returned on success. A negative errno code is returned
7304  *      on a failure to set up the device, or if the name is a duplicate.
7305  *
7306  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7307  *      and expands the device name if you passed a format string to
7308  *      alloc_netdev.
7309  */
7310 int register_netdev(struct net_device *dev)
7311 {
7312         int err;
7313
7314         rtnl_lock();
7315         err = register_netdevice(dev);
7316         rtnl_unlock();
7317         return err;
7318 }
7319 EXPORT_SYMBOL(register_netdev);
7320
7321 int netdev_refcnt_read(const struct net_device *dev)
7322 {
7323         int i, refcnt = 0;
7324
7325         for_each_possible_cpu(i)
7326                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7327         return refcnt;
7328 }
7329 EXPORT_SYMBOL(netdev_refcnt_read);
7330
7331 /**
7332  * netdev_wait_allrefs - wait until all references are gone.
7333  * @dev: target net_device
7334  *
7335  * This is called when unregistering network devices.
7336  *
7337  * Any protocol or device that holds a reference should register
7338  * for netdevice notification, and cleanup and put back the
7339  * reference if they receive an UNREGISTER event.
7340  * We can get stuck here if buggy protocols don't correctly
7341  * call dev_put.
7342  */
7343 static void netdev_wait_allrefs(struct net_device *dev)
7344 {
7345         unsigned long rebroadcast_time, warning_time;
7346         int refcnt;
7347
7348         linkwatch_forget_dev(dev);
7349
7350         rebroadcast_time = warning_time = jiffies;
7351         refcnt = netdev_refcnt_read(dev);
7352
7353         while (refcnt != 0) {
7354                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7355                         rtnl_lock();
7356
7357                         /* Rebroadcast unregister notification */
7358                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7359
7360                         __rtnl_unlock();
7361                         rcu_barrier();
7362                         rtnl_lock();
7363
7364                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7365                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7366                                      &dev->state)) {
7367                                 /* We must not have linkwatch events
7368                                  * pending on unregister. If this
7369                                  * happens, we simply run the queue
7370                                  * unscheduled, resulting in a noop
7371                                  * for this device.
7372                                  */
7373                                 linkwatch_run_queue();
7374                         }
7375
7376                         __rtnl_unlock();
7377
7378                         rebroadcast_time = jiffies;
7379                 }
7380
7381                 msleep(250);
7382
7383                 refcnt = netdev_refcnt_read(dev);
7384
7385                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7386                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7387                                  dev->name, refcnt);
7388                         warning_time = jiffies;
7389                 }
7390         }
7391 }
7392
7393 /* The sequence is:
7394  *
7395  *      rtnl_lock();
7396  *      ...
7397  *      register_netdevice(x1);
7398  *      register_netdevice(x2);
7399  *      ...
7400  *      unregister_netdevice(y1);
7401  *      unregister_netdevice(y2);
7402  *      ...
7403  *      rtnl_unlock();
7404  *      free_netdev(y1);
7405  *      free_netdev(y2);
7406  *
7407  * We are invoked by rtnl_unlock().
7408  * This allows us to deal with problems:
7409  * 1) We can delete sysfs objects which invoke hotplug
7410  *    without deadlocking with linkwatch via keventd.
7411  * 2) Since we run with the RTNL semaphore not held, we can sleep
7412  *    safely in order to wait for the netdev refcnt to drop to zero.
7413  *
7414  * We must not return until all unregister events added during
7415  * the interval the lock was held have been completed.
7416  */
7417 void netdev_run_todo(void)
7418 {
7419         struct list_head list;
7420
7421         /* Snapshot list, allow later requests */
7422         list_replace_init(&net_todo_list, &list);
7423
7424         __rtnl_unlock();
7425
7426
7427         /* Wait for rcu callbacks to finish before next phase */
7428         if (!list_empty(&list))
7429                 rcu_barrier();
7430
7431         while (!list_empty(&list)) {
7432                 struct net_device *dev
7433                         = list_first_entry(&list, struct net_device, todo_list);
7434                 list_del(&dev->todo_list);
7435
7436                 rtnl_lock();
7437                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7438                 __rtnl_unlock();
7439
7440                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7441                         pr_err("network todo '%s' but state %d\n",
7442                                dev->name, dev->reg_state);
7443                         dump_stack();
7444                         continue;
7445                 }
7446
7447                 dev->reg_state = NETREG_UNREGISTERED;
7448
7449                 netdev_wait_allrefs(dev);
7450
7451                 /* paranoia */
7452                 BUG_ON(netdev_refcnt_read(dev));
7453                 BUG_ON(!list_empty(&dev->ptype_all));
7454                 BUG_ON(!list_empty(&dev->ptype_specific));
7455                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7456                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7457                 WARN_ON(dev->dn_ptr);
7458
7459                 if (dev->destructor)
7460                         dev->destructor(dev);
7461
7462                 /* Report a network device has been unregistered */
7463                 rtnl_lock();
7464                 dev_net(dev)->dev_unreg_count--;
7465                 __rtnl_unlock();
7466                 wake_up(&netdev_unregistering_wq);
7467
7468                 /* Free network device */
7469                 kobject_put(&dev->dev.kobj);
7470         }
7471 }
7472
7473 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7474  * all the same fields in the same order as net_device_stats, with only
7475  * the type differing, but rtnl_link_stats64 may have additional fields
7476  * at the end for newer counters.
7477  */
7478 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7479                              const struct net_device_stats *netdev_stats)
7480 {
7481 #if BITS_PER_LONG == 64
7482         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7483         memcpy(stats64, netdev_stats, sizeof(*stats64));
7484         /* zero out counters that only exist in rtnl_link_stats64 */
7485         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7486                sizeof(*stats64) - sizeof(*netdev_stats));
7487 #else
7488         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7489         const unsigned long *src = (const unsigned long *)netdev_stats;
7490         u64 *dst = (u64 *)stats64;
7491
7492         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7493         for (i = 0; i < n; i++)
7494                 dst[i] = src[i];
7495         /* zero out counters that only exist in rtnl_link_stats64 */
7496         memset((char *)stats64 + n * sizeof(u64), 0,
7497                sizeof(*stats64) - n * sizeof(u64));
7498 #endif
7499 }
7500 EXPORT_SYMBOL(netdev_stats_to_stats64);
7501
7502 /**
7503  *      dev_get_stats   - get network device statistics
7504  *      @dev: device to get statistics from
7505  *      @storage: place to store stats
7506  *
7507  *      Get network statistics from device. Return @storage.
7508  *      The device driver may provide its own method by setting
7509  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7510  *      otherwise the internal statistics structure is used.
7511  */
7512 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7513                                         struct rtnl_link_stats64 *storage)
7514 {
7515         const struct net_device_ops *ops = dev->netdev_ops;
7516
7517         if (ops->ndo_get_stats64) {
7518                 memset(storage, 0, sizeof(*storage));
7519                 ops->ndo_get_stats64(dev, storage);
7520         } else if (ops->ndo_get_stats) {
7521                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7522         } else {
7523                 netdev_stats_to_stats64(storage, &dev->stats);
7524         }
7525         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7526         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7527         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7528         return storage;
7529 }
7530 EXPORT_SYMBOL(dev_get_stats);
7531
7532 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7533 {
7534         struct netdev_queue *queue = dev_ingress_queue(dev);
7535
7536 #ifdef CONFIG_NET_CLS_ACT
7537         if (queue)
7538                 return queue;
7539         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7540         if (!queue)
7541                 return NULL;
7542         netdev_init_one_queue(dev, queue, NULL);
7543         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7544         queue->qdisc_sleeping = &noop_qdisc;
7545         rcu_assign_pointer(dev->ingress_queue, queue);
7546 #endif
7547         return queue;
7548 }
7549
7550 static const struct ethtool_ops default_ethtool_ops;
7551
7552 void netdev_set_default_ethtool_ops(struct net_device *dev,
7553                                     const struct ethtool_ops *ops)
7554 {
7555         if (dev->ethtool_ops == &default_ethtool_ops)
7556                 dev->ethtool_ops = ops;
7557 }
7558 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7559
7560 void netdev_freemem(struct net_device *dev)
7561 {
7562         char *addr = (char *)dev - dev->padded;
7563
7564         kvfree(addr);
7565 }
7566
7567 /**
7568  *      alloc_netdev_mqs - allocate network device
7569  *      @sizeof_priv:           size of private data to allocate space for
7570  *      @name:                  device name format string
7571  *      @name_assign_type:      origin of device name
7572  *      @setup:                 callback to initialize device
7573  *      @txqs:                  the number of TX subqueues to allocate
7574  *      @rxqs:                  the number of RX subqueues to allocate
7575  *
7576  *      Allocates a struct net_device with private data area for driver use
7577  *      and performs basic initialization.  Also allocates subqueue structs
7578  *      for each queue on the device.
7579  */
7580 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7581                 unsigned char name_assign_type,
7582                 void (*setup)(struct net_device *),
7583                 unsigned int txqs, unsigned int rxqs)
7584 {
7585         struct net_device *dev;
7586         size_t alloc_size;
7587         struct net_device *p;
7588
7589         BUG_ON(strlen(name) >= sizeof(dev->name));
7590
7591         if (txqs < 1) {
7592                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7593                 return NULL;
7594         }
7595
7596 #ifdef CONFIG_SYSFS
7597         if (rxqs < 1) {
7598                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7599                 return NULL;
7600         }
7601 #endif
7602
7603         alloc_size = sizeof(struct net_device);
7604         if (sizeof_priv) {
7605                 /* ensure 32-byte alignment of private area */
7606                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7607                 alloc_size += sizeof_priv;
7608         }
7609         /* ensure 32-byte alignment of whole construct */
7610         alloc_size += NETDEV_ALIGN - 1;
7611
7612         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7613         if (!p)
7614                 p = vzalloc(alloc_size);
7615         if (!p)
7616                 return NULL;
7617
7618         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7619         dev->padded = (char *)dev - (char *)p;
7620
7621         dev->pcpu_refcnt = alloc_percpu(int);
7622         if (!dev->pcpu_refcnt)
7623                 goto free_dev;
7624
7625         if (dev_addr_init(dev))
7626                 goto free_pcpu;
7627
7628         dev_mc_init(dev);
7629         dev_uc_init(dev);
7630
7631         dev_net_set(dev, &init_net);
7632
7633         dev->gso_max_size = GSO_MAX_SIZE;
7634         dev->gso_max_segs = GSO_MAX_SEGS;
7635
7636         INIT_LIST_HEAD(&dev->napi_list);
7637         INIT_LIST_HEAD(&dev->unreg_list);
7638         INIT_LIST_HEAD(&dev->close_list);
7639         INIT_LIST_HEAD(&dev->link_watch_list);
7640         INIT_LIST_HEAD(&dev->adj_list.upper);
7641         INIT_LIST_HEAD(&dev->adj_list.lower);
7642         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7643         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7644         INIT_LIST_HEAD(&dev->ptype_all);
7645         INIT_LIST_HEAD(&dev->ptype_specific);
7646 #ifdef CONFIG_NET_SCHED
7647         hash_init(dev->qdisc_hash);
7648 #endif
7649         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7650         setup(dev);
7651
7652         if (!dev->tx_queue_len) {
7653                 dev->priv_flags |= IFF_NO_QUEUE;
7654                 dev->tx_queue_len = 1;
7655         }
7656
7657         dev->num_tx_queues = txqs;
7658         dev->real_num_tx_queues = txqs;
7659         if (netif_alloc_netdev_queues(dev))
7660                 goto free_all;
7661
7662 #ifdef CONFIG_SYSFS
7663         dev->num_rx_queues = rxqs;
7664         dev->real_num_rx_queues = rxqs;
7665         if (netif_alloc_rx_queues(dev))
7666                 goto free_all;
7667 #endif
7668
7669         strcpy(dev->name, name);
7670         dev->name_assign_type = name_assign_type;
7671         dev->group = INIT_NETDEV_GROUP;
7672         if (!dev->ethtool_ops)
7673                 dev->ethtool_ops = &default_ethtool_ops;
7674
7675         nf_hook_ingress_init(dev);
7676
7677         return dev;
7678
7679 free_all:
7680         free_netdev(dev);
7681         return NULL;
7682
7683 free_pcpu:
7684         free_percpu(dev->pcpu_refcnt);
7685 free_dev:
7686         netdev_freemem(dev);
7687         return NULL;
7688 }
7689 EXPORT_SYMBOL(alloc_netdev_mqs);
7690
7691 /**
7692  *      free_netdev - free network device
7693  *      @dev: device
7694  *
7695  *      This function does the last stage of destroying an allocated device
7696  *      interface. The reference to the device object is released.
7697  *      If this is the last reference then it will be freed.
7698  *      Must be called in process context.
7699  */
7700 void free_netdev(struct net_device *dev)
7701 {
7702         struct napi_struct *p, *n;
7703
7704         might_sleep();
7705         netif_free_tx_queues(dev);
7706 #ifdef CONFIG_SYSFS
7707         kvfree(dev->_rx);
7708 #endif
7709
7710         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7711
7712         /* Flush device addresses */
7713         dev_addr_flush(dev);
7714
7715         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7716                 netif_napi_del(p);
7717
7718         free_percpu(dev->pcpu_refcnt);
7719         dev->pcpu_refcnt = NULL;
7720
7721         /*  Compatibility with error handling in drivers */
7722         if (dev->reg_state == NETREG_UNINITIALIZED) {
7723                 netdev_freemem(dev);
7724                 return;
7725         }
7726
7727         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7728         dev->reg_state = NETREG_RELEASED;
7729
7730         /* will free via device release */
7731         put_device(&dev->dev);
7732 }
7733 EXPORT_SYMBOL(free_netdev);
7734
7735 /**
7736  *      synchronize_net -  Synchronize with packet receive processing
7737  *
7738  *      Wait for packets currently being received to be done.
7739  *      Does not block later packets from starting.
7740  */
7741 void synchronize_net(void)
7742 {
7743         might_sleep();
7744         if (rtnl_is_locked())
7745                 synchronize_rcu_expedited();
7746         else
7747                 synchronize_rcu();
7748 }
7749 EXPORT_SYMBOL(synchronize_net);
7750
7751 /**
7752  *      unregister_netdevice_queue - remove device from the kernel
7753  *      @dev: device
7754  *      @head: list
7755  *
7756  *      This function shuts down a device interface and removes it
7757  *      from the kernel tables.
7758  *      If head not NULL, device is queued to be unregistered later.
7759  *
7760  *      Callers must hold the rtnl semaphore.  You may want
7761  *      unregister_netdev() instead of this.
7762  */
7763
7764 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7765 {
7766         ASSERT_RTNL();
7767
7768         if (head) {
7769                 list_move_tail(&dev->unreg_list, head);
7770         } else {
7771                 rollback_registered(dev);
7772                 /* Finish processing unregister after unlock */
7773                 net_set_todo(dev);
7774         }
7775 }
7776 EXPORT_SYMBOL(unregister_netdevice_queue);
7777
7778 /**
7779  *      unregister_netdevice_many - unregister many devices
7780  *      @head: list of devices
7781  *
7782  *  Note: As most callers use a stack allocated list_head,
7783  *  we force a list_del() to make sure stack wont be corrupted later.
7784  */
7785 void unregister_netdevice_many(struct list_head *head)
7786 {
7787         struct net_device *dev;
7788
7789         if (!list_empty(head)) {
7790                 rollback_registered_many(head);
7791                 list_for_each_entry(dev, head, unreg_list)
7792                         net_set_todo(dev);
7793                 list_del(head);
7794         }
7795 }
7796 EXPORT_SYMBOL(unregister_netdevice_many);
7797
7798 /**
7799  *      unregister_netdev - remove device from the kernel
7800  *      @dev: device
7801  *
7802  *      This function shuts down a device interface and removes it
7803  *      from the kernel tables.
7804  *
7805  *      This is just a wrapper for unregister_netdevice that takes
7806  *      the rtnl semaphore.  In general you want to use this and not
7807  *      unregister_netdevice.
7808  */
7809 void unregister_netdev(struct net_device *dev)
7810 {
7811         rtnl_lock();
7812         unregister_netdevice(dev);
7813         rtnl_unlock();
7814 }
7815 EXPORT_SYMBOL(unregister_netdev);
7816
7817 /**
7818  *      dev_change_net_namespace - move device to different nethost namespace
7819  *      @dev: device
7820  *      @net: network namespace
7821  *      @pat: If not NULL name pattern to try if the current device name
7822  *            is already taken in the destination network namespace.
7823  *
7824  *      This function shuts down a device interface and moves it
7825  *      to a new network namespace. On success 0 is returned, on
7826  *      a failure a netagive errno code is returned.
7827  *
7828  *      Callers must hold the rtnl semaphore.
7829  */
7830
7831 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7832 {
7833         int err;
7834
7835         ASSERT_RTNL();
7836
7837         /* Don't allow namespace local devices to be moved. */
7838         err = -EINVAL;
7839         if (dev->features & NETIF_F_NETNS_LOCAL)
7840                 goto out;
7841
7842         /* Ensure the device has been registrered */
7843         if (dev->reg_state != NETREG_REGISTERED)
7844                 goto out;
7845
7846         /* Get out if there is nothing todo */
7847         err = 0;
7848         if (net_eq(dev_net(dev), net))
7849                 goto out;
7850
7851         /* Pick the destination device name, and ensure
7852          * we can use it in the destination network namespace.
7853          */
7854         err = -EEXIST;
7855         if (__dev_get_by_name(net, dev->name)) {
7856                 /* We get here if we can't use the current device name */
7857                 if (!pat)
7858                         goto out;
7859                 if (dev_get_valid_name(net, dev, pat) < 0)
7860                         goto out;
7861         }
7862
7863         /*
7864          * And now a mini version of register_netdevice unregister_netdevice.
7865          */
7866
7867         /* If device is running close it first. */
7868         dev_close(dev);
7869
7870         /* And unlink it from device chain */
7871         err = -ENODEV;
7872         unlist_netdevice(dev);
7873
7874         synchronize_net();
7875
7876         /* Shutdown queueing discipline. */
7877         dev_shutdown(dev);
7878
7879         /* Notify protocols, that we are about to destroy
7880            this device. They should clean all the things.
7881
7882            Note that dev->reg_state stays at NETREG_REGISTERED.
7883            This is wanted because this way 8021q and macvlan know
7884            the device is just moving and can keep their slaves up.
7885         */
7886         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7887         rcu_barrier();
7888         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7889         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7890
7891         /*
7892          *      Flush the unicast and multicast chains
7893          */
7894         dev_uc_flush(dev);
7895         dev_mc_flush(dev);
7896
7897         /* Send a netdev-removed uevent to the old namespace */
7898         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7899         netdev_adjacent_del_links(dev);
7900
7901         /* Actually switch the network namespace */
7902         dev_net_set(dev, net);
7903
7904         /* If there is an ifindex conflict assign a new one */
7905         if (__dev_get_by_index(net, dev->ifindex))
7906                 dev->ifindex = dev_new_index(net);
7907
7908         /* Send a netdev-add uevent to the new namespace */
7909         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7910         netdev_adjacent_add_links(dev);
7911
7912         /* Fixup kobjects */
7913         err = device_rename(&dev->dev, dev->name);
7914         WARN_ON(err);
7915
7916         /* Add the device back in the hashes */
7917         list_netdevice(dev);
7918
7919         /* Notify protocols, that a new device appeared. */
7920         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7921
7922         /*
7923          *      Prevent userspace races by waiting until the network
7924          *      device is fully setup before sending notifications.
7925          */
7926         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7927
7928         synchronize_net();
7929         err = 0;
7930 out:
7931         return err;
7932 }
7933 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7934
7935 static int dev_cpu_callback(struct notifier_block *nfb,
7936                             unsigned long action,
7937                             void *ocpu)
7938 {
7939         struct sk_buff **list_skb;
7940         struct sk_buff *skb;
7941         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7942         struct softnet_data *sd, *oldsd;
7943
7944         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7945                 return NOTIFY_OK;
7946
7947         local_irq_disable();
7948         cpu = smp_processor_id();
7949         sd = &per_cpu(softnet_data, cpu);
7950         oldsd = &per_cpu(softnet_data, oldcpu);
7951
7952         /* Find end of our completion_queue. */
7953         list_skb = &sd->completion_queue;
7954         while (*list_skb)
7955                 list_skb = &(*list_skb)->next;
7956         /* Append completion queue from offline CPU. */
7957         *list_skb = oldsd->completion_queue;
7958         oldsd->completion_queue = NULL;
7959
7960         /* Append output queue from offline CPU. */
7961         if (oldsd->output_queue) {
7962                 *sd->output_queue_tailp = oldsd->output_queue;
7963                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7964                 oldsd->output_queue = NULL;
7965                 oldsd->output_queue_tailp = &oldsd->output_queue;
7966         }
7967         /* Append NAPI poll list from offline CPU, with one exception :
7968          * process_backlog() must be called by cpu owning percpu backlog.
7969          * We properly handle process_queue & input_pkt_queue later.
7970          */
7971         while (!list_empty(&oldsd->poll_list)) {
7972                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7973                                                             struct napi_struct,
7974                                                             poll_list);
7975
7976                 list_del_init(&napi->poll_list);
7977                 if (napi->poll == process_backlog)
7978                         napi->state = 0;
7979                 else
7980                         ____napi_schedule(sd, napi);
7981         }
7982
7983         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7984         local_irq_enable();
7985
7986         /* Process offline CPU's input_pkt_queue */
7987         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7988                 netif_rx_ni(skb);
7989                 input_queue_head_incr(oldsd);
7990         }
7991         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7992                 netif_rx_ni(skb);
7993                 input_queue_head_incr(oldsd);
7994         }
7995
7996         return NOTIFY_OK;
7997 }
7998
7999
8000 /**
8001  *      netdev_increment_features - increment feature set by one
8002  *      @all: current feature set
8003  *      @one: new feature set
8004  *      @mask: mask feature set
8005  *
8006  *      Computes a new feature set after adding a device with feature set
8007  *      @one to the master device with current feature set @all.  Will not
8008  *      enable anything that is off in @mask. Returns the new feature set.
8009  */
8010 netdev_features_t netdev_increment_features(netdev_features_t all,
8011         netdev_features_t one, netdev_features_t mask)
8012 {
8013         if (mask & NETIF_F_HW_CSUM)
8014                 mask |= NETIF_F_CSUM_MASK;
8015         mask |= NETIF_F_VLAN_CHALLENGED;
8016
8017         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8018         all &= one | ~NETIF_F_ALL_FOR_ALL;
8019
8020         /* If one device supports hw checksumming, set for all. */
8021         if (all & NETIF_F_HW_CSUM)
8022                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8023
8024         return all;
8025 }
8026 EXPORT_SYMBOL(netdev_increment_features);
8027
8028 static struct hlist_head * __net_init netdev_create_hash(void)
8029 {
8030         int i;
8031         struct hlist_head *hash;
8032
8033         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8034         if (hash != NULL)
8035                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8036                         INIT_HLIST_HEAD(&hash[i]);
8037
8038         return hash;
8039 }
8040
8041 /* Initialize per network namespace state */
8042 static int __net_init netdev_init(struct net *net)
8043 {
8044         if (net != &init_net)
8045                 INIT_LIST_HEAD(&net->dev_base_head);
8046
8047         net->dev_name_head = netdev_create_hash();
8048         if (net->dev_name_head == NULL)
8049                 goto err_name;
8050
8051         net->dev_index_head = netdev_create_hash();
8052         if (net->dev_index_head == NULL)
8053                 goto err_idx;
8054
8055         return 0;
8056
8057 err_idx:
8058         kfree(net->dev_name_head);
8059 err_name:
8060         return -ENOMEM;
8061 }
8062
8063 /**
8064  *      netdev_drivername - network driver for the device
8065  *      @dev: network device
8066  *
8067  *      Determine network driver for device.
8068  */
8069 const char *netdev_drivername(const struct net_device *dev)
8070 {
8071         const struct device_driver *driver;
8072         const struct device *parent;
8073         const char *empty = "";
8074
8075         parent = dev->dev.parent;
8076         if (!parent)
8077                 return empty;
8078
8079         driver = parent->driver;
8080         if (driver && driver->name)
8081                 return driver->name;
8082         return empty;
8083 }
8084
8085 static void __netdev_printk(const char *level, const struct net_device *dev,
8086                             struct va_format *vaf)
8087 {
8088         if (dev && dev->dev.parent) {
8089                 dev_printk_emit(level[1] - '0',
8090                                 dev->dev.parent,
8091                                 "%s %s %s%s: %pV",
8092                                 dev_driver_string(dev->dev.parent),
8093                                 dev_name(dev->dev.parent),
8094                                 netdev_name(dev), netdev_reg_state(dev),
8095                                 vaf);
8096         } else if (dev) {
8097                 printk("%s%s%s: %pV",
8098                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8099         } else {
8100                 printk("%s(NULL net_device): %pV", level, vaf);
8101         }
8102 }
8103
8104 void netdev_printk(const char *level, const struct net_device *dev,
8105                    const char *format, ...)
8106 {
8107         struct va_format vaf;
8108         va_list args;
8109
8110         va_start(args, format);
8111
8112         vaf.fmt = format;
8113         vaf.va = &args;
8114
8115         __netdev_printk(level, dev, &vaf);
8116
8117         va_end(args);
8118 }
8119 EXPORT_SYMBOL(netdev_printk);
8120
8121 #define define_netdev_printk_level(func, level)                 \
8122 void func(const struct net_device *dev, const char *fmt, ...)   \
8123 {                                                               \
8124         struct va_format vaf;                                   \
8125         va_list args;                                           \
8126                                                                 \
8127         va_start(args, fmt);                                    \
8128                                                                 \
8129         vaf.fmt = fmt;                                          \
8130         vaf.va = &args;                                         \
8131                                                                 \
8132         __netdev_printk(level, dev, &vaf);                      \
8133                                                                 \
8134         va_end(args);                                           \
8135 }                                                               \
8136 EXPORT_SYMBOL(func);
8137
8138 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8139 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8140 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8141 define_netdev_printk_level(netdev_err, KERN_ERR);
8142 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8143 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8144 define_netdev_printk_level(netdev_info, KERN_INFO);
8145
8146 static void __net_exit netdev_exit(struct net *net)
8147 {
8148         kfree(net->dev_name_head);
8149         kfree(net->dev_index_head);
8150 }
8151
8152 static struct pernet_operations __net_initdata netdev_net_ops = {
8153         .init = netdev_init,
8154         .exit = netdev_exit,
8155 };
8156
8157 static void __net_exit default_device_exit(struct net *net)
8158 {
8159         struct net_device *dev, *aux;
8160         /*
8161          * Push all migratable network devices back to the
8162          * initial network namespace
8163          */
8164         rtnl_lock();
8165         for_each_netdev_safe(net, dev, aux) {
8166                 int err;
8167                 char fb_name[IFNAMSIZ];
8168
8169                 /* Ignore unmoveable devices (i.e. loopback) */
8170                 if (dev->features & NETIF_F_NETNS_LOCAL)
8171                         continue;
8172
8173                 /* Leave virtual devices for the generic cleanup */
8174                 if (dev->rtnl_link_ops)
8175                         continue;
8176
8177                 /* Push remaining network devices to init_net */
8178                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8179                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8180                 if (err) {
8181                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8182                                  __func__, dev->name, err);
8183                         BUG();
8184                 }
8185         }
8186         rtnl_unlock();
8187 }
8188
8189 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8190 {
8191         /* Return with the rtnl_lock held when there are no network
8192          * devices unregistering in any network namespace in net_list.
8193          */
8194         struct net *net;
8195         bool unregistering;
8196         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8197
8198         add_wait_queue(&netdev_unregistering_wq, &wait);
8199         for (;;) {
8200                 unregistering = false;
8201                 rtnl_lock();
8202                 list_for_each_entry(net, net_list, exit_list) {
8203                         if (net->dev_unreg_count > 0) {
8204                                 unregistering = true;
8205                                 break;
8206                         }
8207                 }
8208                 if (!unregistering)
8209                         break;
8210                 __rtnl_unlock();
8211
8212                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8213         }
8214         remove_wait_queue(&netdev_unregistering_wq, &wait);
8215 }
8216
8217 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8218 {
8219         /* At exit all network devices most be removed from a network
8220          * namespace.  Do this in the reverse order of registration.
8221          * Do this across as many network namespaces as possible to
8222          * improve batching efficiency.
8223          */
8224         struct net_device *dev;
8225         struct net *net;
8226         LIST_HEAD(dev_kill_list);
8227
8228         /* To prevent network device cleanup code from dereferencing
8229          * loopback devices or network devices that have been freed
8230          * wait here for all pending unregistrations to complete,
8231          * before unregistring the loopback device and allowing the
8232          * network namespace be freed.
8233          *
8234          * The netdev todo list containing all network devices
8235          * unregistrations that happen in default_device_exit_batch
8236          * will run in the rtnl_unlock() at the end of
8237          * default_device_exit_batch.
8238          */
8239         rtnl_lock_unregistering(net_list);
8240         list_for_each_entry(net, net_list, exit_list) {
8241                 for_each_netdev_reverse(net, dev) {
8242                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8243                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8244                         else
8245                                 unregister_netdevice_queue(dev, &dev_kill_list);
8246                 }
8247         }
8248         unregister_netdevice_many(&dev_kill_list);
8249         rtnl_unlock();
8250 }
8251
8252 static struct pernet_operations __net_initdata default_device_ops = {
8253         .exit = default_device_exit,
8254         .exit_batch = default_device_exit_batch,
8255 };
8256
8257 /*
8258  *      Initialize the DEV module. At boot time this walks the device list and
8259  *      unhooks any devices that fail to initialise (normally hardware not
8260  *      present) and leaves us with a valid list of present and active devices.
8261  *
8262  */
8263
8264 /*
8265  *       This is called single threaded during boot, so no need
8266  *       to take the rtnl semaphore.
8267  */
8268 static int __init net_dev_init(void)
8269 {
8270         int i, rc = -ENOMEM;
8271
8272         BUG_ON(!dev_boot_phase);
8273
8274         if (dev_proc_init())
8275                 goto out;
8276
8277         if (netdev_kobject_init())
8278                 goto out;
8279
8280         INIT_LIST_HEAD(&ptype_all);
8281         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8282                 INIT_LIST_HEAD(&ptype_base[i]);
8283
8284         INIT_LIST_HEAD(&offload_base);
8285
8286         if (register_pernet_subsys(&netdev_net_ops))
8287                 goto out;
8288
8289         /*
8290          *      Initialise the packet receive queues.
8291          */
8292
8293         for_each_possible_cpu(i) {
8294                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8295
8296                 skb_queue_head_init(&sd->input_pkt_queue);
8297                 skb_queue_head_init(&sd->process_queue);
8298                 INIT_LIST_HEAD(&sd->poll_list);
8299                 sd->output_queue_tailp = &sd->output_queue;
8300 #ifdef CONFIG_RPS
8301                 sd->csd.func = rps_trigger_softirq;
8302                 sd->csd.info = sd;
8303                 sd->cpu = i;
8304 #endif
8305
8306                 sd->backlog.poll = process_backlog;
8307                 sd->backlog.weight = weight_p;
8308         }
8309
8310         dev_boot_phase = 0;
8311
8312         /* The loopback device is special if any other network devices
8313          * is present in a network namespace the loopback device must
8314          * be present. Since we now dynamically allocate and free the
8315          * loopback device ensure this invariant is maintained by
8316          * keeping the loopback device as the first device on the
8317          * list of network devices.  Ensuring the loopback devices
8318          * is the first device that appears and the last network device
8319          * that disappears.
8320          */
8321         if (register_pernet_device(&loopback_net_ops))
8322                 goto out;
8323
8324         if (register_pernet_device(&default_device_ops))
8325                 goto out;
8326
8327         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8328         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8329
8330         hotcpu_notifier(dev_cpu_callback, 0);
8331         dst_subsys_init();
8332         rc = 0;
8333 out:
8334         return rc;
8335 }
8336
8337 subsys_initcall(net_dev_init);