]> git.karo-electronics.de Git - karo-tx-linux.git/blob - net/rfkill/core.c
Merge remote-tracking branch 'mac80211-next/master'
[karo-tx-linux.git] / net / rfkill / core.c
1 /*
2  * Copyright (C) 2006 - 2007 Ivo van Doorn
3  * Copyright (C) 2007 Dmitry Torokhov
4  * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/workqueue.h>
24 #include <linux/capability.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/rfkill.h>
28 #include <linux/sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/device.h>
31 #include <linux/miscdevice.h>
32 #include <linux/wait.h>
33 #include <linux/poll.h>
34 #include <linux/fs.h>
35 #include <linux/slab.h>
36
37 #include "rfkill.h"
38
39 #define POLL_INTERVAL           (5 * HZ)
40
41 #define RFKILL_BLOCK_HW         BIT(0)
42 #define RFKILL_BLOCK_SW         BIT(1)
43 #define RFKILL_BLOCK_SW_PREV    BIT(2)
44 #define RFKILL_BLOCK_ANY        (RFKILL_BLOCK_HW |\
45                                  RFKILL_BLOCK_SW |\
46                                  RFKILL_BLOCK_SW_PREV)
47 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
48
49 struct rfkill {
50         spinlock_t              lock;
51
52         enum rfkill_type        type;
53
54         unsigned long           state;
55
56         u32                     idx;
57
58         bool                    registered;
59         bool                    persistent;
60         bool                    polling_paused;
61         bool                    suspended;
62
63         const struct rfkill_ops *ops;
64         void                    *data;
65
66 #ifdef CONFIG_RFKILL_LEDS
67         struct led_trigger      led_trigger;
68         const char              *ledtrigname;
69 #endif
70
71         struct device           dev;
72         struct list_head        node;
73
74         struct delayed_work     poll_work;
75         struct work_struct      uevent_work;
76         struct work_struct      sync_work;
77         char                    name[];
78 };
79 #define to_rfkill(d)    container_of(d, struct rfkill, dev)
80
81 struct rfkill_int_event {
82         struct list_head        list;
83         struct rfkill_event     ev;
84 };
85
86 struct rfkill_data {
87         struct list_head        list;
88         struct list_head        events;
89         struct mutex            mtx;
90         wait_queue_head_t       read_wait;
91         bool                    input_handler;
92 };
93
94
95 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
96 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
97 MODULE_DESCRIPTION("RF switch support");
98 MODULE_LICENSE("GPL");
99
100
101 /*
102  * The locking here should be made much smarter, we currently have
103  * a bit of a stupid situation because drivers might want to register
104  * the rfkill struct under their own lock, and take this lock during
105  * rfkill method calls -- which will cause an AB-BA deadlock situation.
106  *
107  * To fix that, we need to rework this code here to be mostly lock-free
108  * and only use the mutex for list manipulations, not to protect the
109  * various other global variables. Then we can avoid holding the mutex
110  * around driver operations, and all is happy.
111  */
112 static LIST_HEAD(rfkill_list);  /* list of registered rf switches */
113 static DEFINE_MUTEX(rfkill_global_mutex);
114 static LIST_HEAD(rfkill_fds);   /* list of open fds of /dev/rfkill */
115
116 static unsigned int rfkill_default_state = 1;
117 module_param_named(default_state, rfkill_default_state, uint, 0444);
118 MODULE_PARM_DESC(default_state,
119                  "Default initial state for all radio types, 0 = radio off");
120
121 static struct {
122         bool cur, sav;
123 } rfkill_global_states[NUM_RFKILL_TYPES];
124
125 static bool rfkill_epo_lock_active;
126
127
128 #ifdef CONFIG_RFKILL_LEDS
129 static void rfkill_led_trigger_event(struct rfkill *rfkill)
130 {
131         struct led_trigger *trigger;
132
133         if (!rfkill->registered)
134                 return;
135
136         trigger = &rfkill->led_trigger;
137
138         if (rfkill->state & RFKILL_BLOCK_ANY)
139                 led_trigger_event(trigger, LED_OFF);
140         else
141                 led_trigger_event(trigger, LED_FULL);
142 }
143
144 static void rfkill_led_trigger_activate(struct led_classdev *led)
145 {
146         struct rfkill *rfkill;
147
148         rfkill = container_of(led->trigger, struct rfkill, led_trigger);
149
150         rfkill_led_trigger_event(rfkill);
151 }
152
153 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
154 {
155         return rfkill->led_trigger.name;
156 }
157 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
158
159 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
160 {
161         BUG_ON(!rfkill);
162
163         rfkill->ledtrigname = name;
164 }
165 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
166
167 static int rfkill_led_trigger_register(struct rfkill *rfkill)
168 {
169         rfkill->led_trigger.name = rfkill->ledtrigname
170                                         ? : dev_name(&rfkill->dev);
171         rfkill->led_trigger.activate = rfkill_led_trigger_activate;
172         return led_trigger_register(&rfkill->led_trigger);
173 }
174
175 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
176 {
177         led_trigger_unregister(&rfkill->led_trigger);
178 }
179 #else
180 static void rfkill_led_trigger_event(struct rfkill *rfkill)
181 {
182 }
183
184 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
185 {
186         return 0;
187 }
188
189 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
190 {
191 }
192 #endif /* CONFIG_RFKILL_LEDS */
193
194 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
195                               enum rfkill_operation op)
196 {
197         unsigned long flags;
198
199         ev->idx = rfkill->idx;
200         ev->type = rfkill->type;
201         ev->op = op;
202
203         spin_lock_irqsave(&rfkill->lock, flags);
204         ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
205         ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
206                                         RFKILL_BLOCK_SW_PREV));
207         spin_unlock_irqrestore(&rfkill->lock, flags);
208 }
209
210 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
211 {
212         struct rfkill_data *data;
213         struct rfkill_int_event *ev;
214
215         list_for_each_entry(data, &rfkill_fds, list) {
216                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
217                 if (!ev)
218                         continue;
219                 rfkill_fill_event(&ev->ev, rfkill, op);
220                 mutex_lock(&data->mtx);
221                 list_add_tail(&ev->list, &data->events);
222                 mutex_unlock(&data->mtx);
223                 wake_up_interruptible(&data->read_wait);
224         }
225 }
226
227 static void rfkill_event(struct rfkill *rfkill)
228 {
229         if (!rfkill->registered)
230                 return;
231
232         kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
233
234         /* also send event to /dev/rfkill */
235         rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
236 }
237
238 /**
239  * rfkill_set_block - wrapper for set_block method
240  *
241  * @rfkill: the rfkill struct to use
242  * @blocked: the new software state
243  *
244  * Calls the set_block method (when applicable) and handles notifications
245  * etc. as well.
246  */
247 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
248 {
249         unsigned long flags;
250         bool prev, curr;
251         int err;
252
253         if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
254                 return;
255
256         /*
257          * Some platforms (...!) generate input events which affect the
258          * _hard_ kill state -- whenever something tries to change the
259          * current software state query the hardware state too.
260          */
261         if (rfkill->ops->query)
262                 rfkill->ops->query(rfkill, rfkill->data);
263
264         spin_lock_irqsave(&rfkill->lock, flags);
265         prev = rfkill->state & RFKILL_BLOCK_SW;
266
267         if (prev)
268                 rfkill->state |= RFKILL_BLOCK_SW_PREV;
269         else
270                 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
271
272         if (blocked)
273                 rfkill->state |= RFKILL_BLOCK_SW;
274         else
275                 rfkill->state &= ~RFKILL_BLOCK_SW;
276
277         rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
278         spin_unlock_irqrestore(&rfkill->lock, flags);
279
280         err = rfkill->ops->set_block(rfkill->data, blocked);
281
282         spin_lock_irqsave(&rfkill->lock, flags);
283         if (err) {
284                 /*
285                  * Failed -- reset status to _prev, this may be different
286                  * from what set set _PREV to earlier in this function
287                  * if rfkill_set_sw_state was invoked.
288                  */
289                 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
290                         rfkill->state |= RFKILL_BLOCK_SW;
291                 else
292                         rfkill->state &= ~RFKILL_BLOCK_SW;
293         }
294         rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
295         rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
296         curr = rfkill->state & RFKILL_BLOCK_SW;
297         spin_unlock_irqrestore(&rfkill->lock, flags);
298
299         rfkill_led_trigger_event(rfkill);
300
301         if (prev != curr)
302                 rfkill_event(rfkill);
303 }
304
305 #ifdef CONFIG_RFKILL_INPUT
306 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
307
308 /**
309  * __rfkill_switch_all - Toggle state of all switches of given type
310  * @type: type of interfaces to be affected
311  * @blocked: the new state
312  *
313  * This function sets the state of all switches of given type,
314  * unless a specific switch is suspended.
315  *
316  * Caller must have acquired rfkill_global_mutex.
317  */
318 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
319 {
320         struct rfkill *rfkill;
321
322         if (type == RFKILL_TYPE_ALL) {
323                 int i;
324
325                 for (i = 0; i < NUM_RFKILL_TYPES; i++)
326                         rfkill_global_states[i].cur = blocked;
327         } else {
328                 rfkill_global_states[type].cur = blocked;
329         }
330
331         list_for_each_entry(rfkill, &rfkill_list, node) {
332                 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
333                         continue;
334
335                 rfkill_set_block(rfkill, blocked);
336         }
337 }
338
339 /**
340  * rfkill_switch_all - Toggle state of all switches of given type
341  * @type: type of interfaces to be affected
342  * @blocked: the new state
343  *
344  * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
345  * Please refer to __rfkill_switch_all() for details.
346  *
347  * Does nothing if the EPO lock is active.
348  */
349 void rfkill_switch_all(enum rfkill_type type, bool blocked)
350 {
351         if (atomic_read(&rfkill_input_disabled))
352                 return;
353
354         mutex_lock(&rfkill_global_mutex);
355
356         if (!rfkill_epo_lock_active)
357                 __rfkill_switch_all(type, blocked);
358
359         mutex_unlock(&rfkill_global_mutex);
360 }
361
362 /**
363  * rfkill_epo - emergency power off all transmitters
364  *
365  * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
366  * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
367  *
368  * The global state before the EPO is saved and can be restored later
369  * using rfkill_restore_states().
370  */
371 void rfkill_epo(void)
372 {
373         struct rfkill *rfkill;
374         int i;
375
376         if (atomic_read(&rfkill_input_disabled))
377                 return;
378
379         mutex_lock(&rfkill_global_mutex);
380
381         rfkill_epo_lock_active = true;
382         list_for_each_entry(rfkill, &rfkill_list, node)
383                 rfkill_set_block(rfkill, true);
384
385         for (i = 0; i < NUM_RFKILL_TYPES; i++) {
386                 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
387                 rfkill_global_states[i].cur = true;
388         }
389
390         mutex_unlock(&rfkill_global_mutex);
391 }
392
393 /**
394  * rfkill_restore_states - restore global states
395  *
396  * Restore (and sync switches to) the global state from the
397  * states in rfkill_default_states.  This can undo the effects of
398  * a call to rfkill_epo().
399  */
400 void rfkill_restore_states(void)
401 {
402         int i;
403
404         if (atomic_read(&rfkill_input_disabled))
405                 return;
406
407         mutex_lock(&rfkill_global_mutex);
408
409         rfkill_epo_lock_active = false;
410         for (i = 0; i < NUM_RFKILL_TYPES; i++)
411                 __rfkill_switch_all(i, rfkill_global_states[i].sav);
412         mutex_unlock(&rfkill_global_mutex);
413 }
414
415 /**
416  * rfkill_remove_epo_lock - unlock state changes
417  *
418  * Used by rfkill-input manually unlock state changes, when
419  * the EPO switch is deactivated.
420  */
421 void rfkill_remove_epo_lock(void)
422 {
423         if (atomic_read(&rfkill_input_disabled))
424                 return;
425
426         mutex_lock(&rfkill_global_mutex);
427         rfkill_epo_lock_active = false;
428         mutex_unlock(&rfkill_global_mutex);
429 }
430
431 /**
432  * rfkill_is_epo_lock_active - returns true EPO is active
433  *
434  * Returns 0 (false) if there is NOT an active EPO contidion,
435  * and 1 (true) if there is an active EPO contition, which
436  * locks all radios in one of the BLOCKED states.
437  *
438  * Can be called in atomic context.
439  */
440 bool rfkill_is_epo_lock_active(void)
441 {
442         return rfkill_epo_lock_active;
443 }
444
445 /**
446  * rfkill_get_global_sw_state - returns global state for a type
447  * @type: the type to get the global state of
448  *
449  * Returns the current global state for a given wireless
450  * device type.
451  */
452 bool rfkill_get_global_sw_state(const enum rfkill_type type)
453 {
454         return rfkill_global_states[type].cur;
455 }
456 #endif
457
458
459 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
460 {
461         unsigned long flags;
462         bool ret, prev;
463
464         BUG_ON(!rfkill);
465
466         spin_lock_irqsave(&rfkill->lock, flags);
467         prev = !!(rfkill->state & RFKILL_BLOCK_HW);
468         if (blocked)
469                 rfkill->state |= RFKILL_BLOCK_HW;
470         else
471                 rfkill->state &= ~RFKILL_BLOCK_HW;
472         ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
473         spin_unlock_irqrestore(&rfkill->lock, flags);
474
475         rfkill_led_trigger_event(rfkill);
476
477         if (!rfkill->registered)
478                 return ret;
479
480         if (prev != blocked)
481                 schedule_work(&rfkill->uevent_work);
482
483         return ret;
484 }
485 EXPORT_SYMBOL(rfkill_set_hw_state);
486
487 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
488 {
489         u32 bit = RFKILL_BLOCK_SW;
490
491         /* if in a ops->set_block right now, use other bit */
492         if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
493                 bit = RFKILL_BLOCK_SW_PREV;
494
495         if (blocked)
496                 rfkill->state |= bit;
497         else
498                 rfkill->state &= ~bit;
499 }
500
501 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
502 {
503         unsigned long flags;
504         bool prev, hwblock;
505
506         BUG_ON(!rfkill);
507
508         spin_lock_irqsave(&rfkill->lock, flags);
509         prev = !!(rfkill->state & RFKILL_BLOCK_SW);
510         __rfkill_set_sw_state(rfkill, blocked);
511         hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
512         blocked = blocked || hwblock;
513         spin_unlock_irqrestore(&rfkill->lock, flags);
514
515         if (!rfkill->registered)
516                 return blocked;
517
518         if (prev != blocked && !hwblock)
519                 schedule_work(&rfkill->uevent_work);
520
521         rfkill_led_trigger_event(rfkill);
522
523         return blocked;
524 }
525 EXPORT_SYMBOL(rfkill_set_sw_state);
526
527 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
528 {
529         unsigned long flags;
530
531         BUG_ON(!rfkill);
532         BUG_ON(rfkill->registered);
533
534         spin_lock_irqsave(&rfkill->lock, flags);
535         __rfkill_set_sw_state(rfkill, blocked);
536         rfkill->persistent = true;
537         spin_unlock_irqrestore(&rfkill->lock, flags);
538 }
539 EXPORT_SYMBOL(rfkill_init_sw_state);
540
541 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
542 {
543         unsigned long flags;
544         bool swprev, hwprev;
545
546         BUG_ON(!rfkill);
547
548         spin_lock_irqsave(&rfkill->lock, flags);
549
550         /*
551          * No need to care about prev/setblock ... this is for uevent only
552          * and that will get triggered by rfkill_set_block anyway.
553          */
554         swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
555         hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
556         __rfkill_set_sw_state(rfkill, sw);
557         if (hw)
558                 rfkill->state |= RFKILL_BLOCK_HW;
559         else
560                 rfkill->state &= ~RFKILL_BLOCK_HW;
561
562         spin_unlock_irqrestore(&rfkill->lock, flags);
563
564         if (!rfkill->registered) {
565                 rfkill->persistent = true;
566         } else {
567                 if (swprev != sw || hwprev != hw)
568                         schedule_work(&rfkill->uevent_work);
569
570                 rfkill_led_trigger_event(rfkill);
571         }
572 }
573 EXPORT_SYMBOL(rfkill_set_states);
574
575 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
576                          char *buf)
577 {
578         struct rfkill *rfkill = to_rfkill(dev);
579
580         return sprintf(buf, "%s\n", rfkill->name);
581 }
582 static DEVICE_ATTR_RO(name);
583
584 static const char *rfkill_get_type_str(enum rfkill_type type)
585 {
586         BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_NFC + 1);
587
588         switch (type) {
589         case RFKILL_TYPE_WLAN:
590                 return "wlan";
591         case RFKILL_TYPE_BLUETOOTH:
592                 return "bluetooth";
593         case RFKILL_TYPE_UWB:
594                 return "ultrawideband";
595         case RFKILL_TYPE_WIMAX:
596                 return "wimax";
597         case RFKILL_TYPE_WWAN:
598                 return "wwan";
599         case RFKILL_TYPE_GPS:
600                 return "gps";
601         case RFKILL_TYPE_FM:
602                 return "fm";
603         case RFKILL_TYPE_NFC:
604                 return "nfc";
605         default:
606                 BUG();
607         }
608 }
609
610 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
611                          char *buf)
612 {
613         struct rfkill *rfkill = to_rfkill(dev);
614
615         return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
616 }
617 static DEVICE_ATTR_RO(type);
618
619 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
620                           char *buf)
621 {
622         struct rfkill *rfkill = to_rfkill(dev);
623
624         return sprintf(buf, "%d\n", rfkill->idx);
625 }
626 static DEVICE_ATTR_RO(index);
627
628 static ssize_t persistent_show(struct device *dev,
629                                struct device_attribute *attr, char *buf)
630 {
631         struct rfkill *rfkill = to_rfkill(dev);
632
633         return sprintf(buf, "%d\n", rfkill->persistent);
634 }
635 static DEVICE_ATTR_RO(persistent);
636
637 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
638                          char *buf)
639 {
640         struct rfkill *rfkill = to_rfkill(dev);
641
642         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
643 }
644 static DEVICE_ATTR_RO(hard);
645
646 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
647                          char *buf)
648 {
649         struct rfkill *rfkill = to_rfkill(dev);
650
651         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
652 }
653
654 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
655                           const char *buf, size_t count)
656 {
657         struct rfkill *rfkill = to_rfkill(dev);
658         unsigned long state;
659         int err;
660
661         if (!capable(CAP_NET_ADMIN))
662                 return -EPERM;
663
664         err = kstrtoul(buf, 0, &state);
665         if (err)
666                 return err;
667
668         if (state > 1 )
669                 return -EINVAL;
670
671         mutex_lock(&rfkill_global_mutex);
672         rfkill_set_block(rfkill, state);
673         mutex_unlock(&rfkill_global_mutex);
674
675         return count;
676 }
677 static DEVICE_ATTR_RW(soft);
678
679 static u8 user_state_from_blocked(unsigned long state)
680 {
681         if (state & RFKILL_BLOCK_HW)
682                 return RFKILL_USER_STATE_HARD_BLOCKED;
683         if (state & RFKILL_BLOCK_SW)
684                 return RFKILL_USER_STATE_SOFT_BLOCKED;
685
686         return RFKILL_USER_STATE_UNBLOCKED;
687 }
688
689 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
690                           char *buf)
691 {
692         struct rfkill *rfkill = to_rfkill(dev);
693
694         return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
695 }
696
697 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
698                            const char *buf, size_t count)
699 {
700         struct rfkill *rfkill = to_rfkill(dev);
701         unsigned long state;
702         int err;
703
704         if (!capable(CAP_NET_ADMIN))
705                 return -EPERM;
706
707         err = kstrtoul(buf, 0, &state);
708         if (err)
709                 return err;
710
711         if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
712             state != RFKILL_USER_STATE_UNBLOCKED)
713                 return -EINVAL;
714
715         mutex_lock(&rfkill_global_mutex);
716         rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
717         mutex_unlock(&rfkill_global_mutex);
718
719         return count;
720 }
721 static DEVICE_ATTR_RW(state);
722
723 static struct attribute *rfkill_dev_attrs[] = {
724         &dev_attr_name.attr,
725         &dev_attr_type.attr,
726         &dev_attr_index.attr,
727         &dev_attr_persistent.attr,
728         &dev_attr_state.attr,
729         &dev_attr_soft.attr,
730         &dev_attr_hard.attr,
731         NULL,
732 };
733 ATTRIBUTE_GROUPS(rfkill_dev);
734
735 static void rfkill_release(struct device *dev)
736 {
737         struct rfkill *rfkill = to_rfkill(dev);
738
739         kfree(rfkill);
740 }
741
742 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
743 {
744         struct rfkill *rfkill = to_rfkill(dev);
745         unsigned long flags;
746         u32 state;
747         int error;
748
749         error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
750         if (error)
751                 return error;
752         error = add_uevent_var(env, "RFKILL_TYPE=%s",
753                                rfkill_get_type_str(rfkill->type));
754         if (error)
755                 return error;
756         spin_lock_irqsave(&rfkill->lock, flags);
757         state = rfkill->state;
758         spin_unlock_irqrestore(&rfkill->lock, flags);
759         error = add_uevent_var(env, "RFKILL_STATE=%d",
760                                user_state_from_blocked(state));
761         return error;
762 }
763
764 void rfkill_pause_polling(struct rfkill *rfkill)
765 {
766         BUG_ON(!rfkill);
767
768         if (!rfkill->ops->poll)
769                 return;
770
771         rfkill->polling_paused = true;
772         cancel_delayed_work_sync(&rfkill->poll_work);
773 }
774 EXPORT_SYMBOL(rfkill_pause_polling);
775
776 void rfkill_resume_polling(struct rfkill *rfkill)
777 {
778         BUG_ON(!rfkill);
779
780         if (!rfkill->ops->poll)
781                 return;
782
783         rfkill->polling_paused = false;
784
785         if (rfkill->suspended)
786                 return;
787
788         queue_delayed_work(system_power_efficient_wq,
789                            &rfkill->poll_work, 0);
790 }
791 EXPORT_SYMBOL(rfkill_resume_polling);
792
793 #ifdef CONFIG_PM_SLEEP
794 static int rfkill_suspend(struct device *dev)
795 {
796         struct rfkill *rfkill = to_rfkill(dev);
797
798         rfkill->suspended = true;
799         cancel_delayed_work_sync(&rfkill->poll_work);
800
801         return 0;
802 }
803
804 static int rfkill_resume(struct device *dev)
805 {
806         struct rfkill *rfkill = to_rfkill(dev);
807         bool cur;
808
809         rfkill->suspended = false;
810
811         if (!rfkill->persistent) {
812                 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
813                 rfkill_set_block(rfkill, cur);
814         }
815
816         if (rfkill->ops->poll && !rfkill->polling_paused)
817                 queue_delayed_work(system_power_efficient_wq,
818                                    &rfkill->poll_work, 0);
819
820         return 0;
821 }
822
823 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
824 #define RFKILL_PM_OPS (&rfkill_pm_ops)
825 #else
826 #define RFKILL_PM_OPS NULL
827 #endif
828
829 static struct class rfkill_class = {
830         .name           = "rfkill",
831         .dev_release    = rfkill_release,
832         .dev_groups     = rfkill_dev_groups,
833         .dev_uevent     = rfkill_dev_uevent,
834         .pm             = RFKILL_PM_OPS,
835 };
836
837 bool rfkill_blocked(struct rfkill *rfkill)
838 {
839         unsigned long flags;
840         u32 state;
841
842         spin_lock_irqsave(&rfkill->lock, flags);
843         state = rfkill->state;
844         spin_unlock_irqrestore(&rfkill->lock, flags);
845
846         return !!(state & RFKILL_BLOCK_ANY);
847 }
848 EXPORT_SYMBOL(rfkill_blocked);
849
850
851 struct rfkill * __must_check rfkill_alloc(const char *name,
852                                           struct device *parent,
853                                           const enum rfkill_type type,
854                                           const struct rfkill_ops *ops,
855                                           void *ops_data)
856 {
857         struct rfkill *rfkill;
858         struct device *dev;
859
860         if (WARN_ON(!ops))
861                 return NULL;
862
863         if (WARN_ON(!ops->set_block))
864                 return NULL;
865
866         if (WARN_ON(!name))
867                 return NULL;
868
869         if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
870                 return NULL;
871
872         rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
873         if (!rfkill)
874                 return NULL;
875
876         spin_lock_init(&rfkill->lock);
877         INIT_LIST_HEAD(&rfkill->node);
878         rfkill->type = type;
879         strcpy(rfkill->name, name);
880         rfkill->ops = ops;
881         rfkill->data = ops_data;
882
883         dev = &rfkill->dev;
884         dev->class = &rfkill_class;
885         dev->parent = parent;
886         device_initialize(dev);
887
888         return rfkill;
889 }
890 EXPORT_SYMBOL(rfkill_alloc);
891
892 static void rfkill_poll(struct work_struct *work)
893 {
894         struct rfkill *rfkill;
895
896         rfkill = container_of(work, struct rfkill, poll_work.work);
897
898         /*
899          * Poll hardware state -- driver will use one of the
900          * rfkill_set{,_hw,_sw}_state functions and use its
901          * return value to update the current status.
902          */
903         rfkill->ops->poll(rfkill, rfkill->data);
904
905         queue_delayed_work(system_power_efficient_wq,
906                 &rfkill->poll_work,
907                 round_jiffies_relative(POLL_INTERVAL));
908 }
909
910 static void rfkill_uevent_work(struct work_struct *work)
911 {
912         struct rfkill *rfkill;
913
914         rfkill = container_of(work, struct rfkill, uevent_work);
915
916         mutex_lock(&rfkill_global_mutex);
917         rfkill_event(rfkill);
918         mutex_unlock(&rfkill_global_mutex);
919 }
920
921 static void rfkill_sync_work(struct work_struct *work)
922 {
923         struct rfkill *rfkill;
924         bool cur;
925
926         rfkill = container_of(work, struct rfkill, sync_work);
927
928         mutex_lock(&rfkill_global_mutex);
929         cur = rfkill_global_states[rfkill->type].cur;
930         rfkill_set_block(rfkill, cur);
931         mutex_unlock(&rfkill_global_mutex);
932 }
933
934 int __must_check rfkill_register(struct rfkill *rfkill)
935 {
936         static unsigned long rfkill_no;
937         struct device *dev = &rfkill->dev;
938         int error;
939
940         BUG_ON(!rfkill);
941
942         mutex_lock(&rfkill_global_mutex);
943
944         if (rfkill->registered) {
945                 error = -EALREADY;
946                 goto unlock;
947         }
948
949         rfkill->idx = rfkill_no;
950         dev_set_name(dev, "rfkill%lu", rfkill_no);
951         rfkill_no++;
952
953         list_add_tail(&rfkill->node, &rfkill_list);
954
955         error = device_add(dev);
956         if (error)
957                 goto remove;
958
959         error = rfkill_led_trigger_register(rfkill);
960         if (error)
961                 goto devdel;
962
963         rfkill->registered = true;
964
965         INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
966         INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
967         INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
968
969         if (rfkill->ops->poll)
970                 queue_delayed_work(system_power_efficient_wq,
971                         &rfkill->poll_work,
972                         round_jiffies_relative(POLL_INTERVAL));
973
974         if (!rfkill->persistent || rfkill_epo_lock_active) {
975                 schedule_work(&rfkill->sync_work);
976         } else {
977 #ifdef CONFIG_RFKILL_INPUT
978                 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
979
980                 if (!atomic_read(&rfkill_input_disabled))
981                         __rfkill_switch_all(rfkill->type, soft_blocked);
982 #endif
983         }
984
985         rfkill_send_events(rfkill, RFKILL_OP_ADD);
986
987         mutex_unlock(&rfkill_global_mutex);
988         return 0;
989
990  devdel:
991         device_del(&rfkill->dev);
992  remove:
993         list_del_init(&rfkill->node);
994  unlock:
995         mutex_unlock(&rfkill_global_mutex);
996         return error;
997 }
998 EXPORT_SYMBOL(rfkill_register);
999
1000 void rfkill_unregister(struct rfkill *rfkill)
1001 {
1002         BUG_ON(!rfkill);
1003
1004         if (rfkill->ops->poll)
1005                 cancel_delayed_work_sync(&rfkill->poll_work);
1006
1007         cancel_work_sync(&rfkill->uevent_work);
1008         cancel_work_sync(&rfkill->sync_work);
1009
1010         rfkill->registered = false;
1011
1012         device_del(&rfkill->dev);
1013
1014         mutex_lock(&rfkill_global_mutex);
1015         rfkill_send_events(rfkill, RFKILL_OP_DEL);
1016         list_del_init(&rfkill->node);
1017         mutex_unlock(&rfkill_global_mutex);
1018
1019         rfkill_led_trigger_unregister(rfkill);
1020 }
1021 EXPORT_SYMBOL(rfkill_unregister);
1022
1023 void rfkill_destroy(struct rfkill *rfkill)
1024 {
1025         if (rfkill)
1026                 put_device(&rfkill->dev);
1027 }
1028 EXPORT_SYMBOL(rfkill_destroy);
1029
1030 static int rfkill_fop_open(struct inode *inode, struct file *file)
1031 {
1032         struct rfkill_data *data;
1033         struct rfkill *rfkill;
1034         struct rfkill_int_event *ev, *tmp;
1035
1036         data = kzalloc(sizeof(*data), GFP_KERNEL);
1037         if (!data)
1038                 return -ENOMEM;
1039
1040         INIT_LIST_HEAD(&data->events);
1041         mutex_init(&data->mtx);
1042         init_waitqueue_head(&data->read_wait);
1043
1044         mutex_lock(&rfkill_global_mutex);
1045         mutex_lock(&data->mtx);
1046         /*
1047          * start getting events from elsewhere but hold mtx to get
1048          * startup events added first
1049          */
1050
1051         list_for_each_entry(rfkill, &rfkill_list, node) {
1052                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1053                 if (!ev)
1054                         goto free;
1055                 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1056                 list_add_tail(&ev->list, &data->events);
1057         }
1058         list_add(&data->list, &rfkill_fds);
1059         mutex_unlock(&data->mtx);
1060         mutex_unlock(&rfkill_global_mutex);
1061
1062         file->private_data = data;
1063
1064         return nonseekable_open(inode, file);
1065
1066  free:
1067         mutex_unlock(&data->mtx);
1068         mutex_unlock(&rfkill_global_mutex);
1069         mutex_destroy(&data->mtx);
1070         list_for_each_entry_safe(ev, tmp, &data->events, list)
1071                 kfree(ev);
1072         kfree(data);
1073         return -ENOMEM;
1074 }
1075
1076 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1077 {
1078         struct rfkill_data *data = file->private_data;
1079         unsigned int res = POLLOUT | POLLWRNORM;
1080
1081         poll_wait(file, &data->read_wait, wait);
1082
1083         mutex_lock(&data->mtx);
1084         if (!list_empty(&data->events))
1085                 res = POLLIN | POLLRDNORM;
1086         mutex_unlock(&data->mtx);
1087
1088         return res;
1089 }
1090
1091 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1092                                size_t count, loff_t *pos)
1093 {
1094         struct rfkill_data *data = file->private_data;
1095         struct rfkill_int_event *ev;
1096         unsigned long sz;
1097         int ret;
1098
1099         mutex_lock(&data->mtx);
1100
1101         while (list_empty(&data->events)) {
1102                 if (file->f_flags & O_NONBLOCK) {
1103                         ret = -EAGAIN;
1104                         goto out;
1105                 }
1106                 mutex_unlock(&data->mtx);
1107                 /* since we re-check and it just compares pointers,
1108                  * using !list_empty() without locking isn't a problem
1109                  */
1110                 ret = wait_event_interruptible(data->read_wait,
1111                                                !list_empty(&data->events));
1112                 mutex_lock(&data->mtx);
1113
1114                 if (ret)
1115                         goto out;
1116         }
1117
1118         ev = list_first_entry(&data->events, struct rfkill_int_event,
1119                                 list);
1120
1121         sz = min_t(unsigned long, sizeof(ev->ev), count);
1122         ret = sz;
1123         if (copy_to_user(buf, &ev->ev, sz))
1124                 ret = -EFAULT;
1125
1126         list_del(&ev->list);
1127         kfree(ev);
1128  out:
1129         mutex_unlock(&data->mtx);
1130         return ret;
1131 }
1132
1133 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1134                                 size_t count, loff_t *pos)
1135 {
1136         struct rfkill *rfkill;
1137         struct rfkill_event ev;
1138
1139         /* we don't need the 'hard' variable but accept it */
1140         if (count < RFKILL_EVENT_SIZE_V1 - 1)
1141                 return -EINVAL;
1142
1143         /*
1144          * Copy as much data as we can accept into our 'ev' buffer,
1145          * but tell userspace how much we've copied so it can determine
1146          * our API version even in a write() call, if it cares.
1147          */
1148         count = min(count, sizeof(ev));
1149         if (copy_from_user(&ev, buf, count))
1150                 return -EFAULT;
1151
1152         if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1153                 return -EINVAL;
1154
1155         if (ev.type >= NUM_RFKILL_TYPES)
1156                 return -EINVAL;
1157
1158         mutex_lock(&rfkill_global_mutex);
1159
1160         if (ev.op == RFKILL_OP_CHANGE_ALL) {
1161                 if (ev.type == RFKILL_TYPE_ALL) {
1162                         enum rfkill_type i;
1163                         for (i = 0; i < NUM_RFKILL_TYPES; i++)
1164                                 rfkill_global_states[i].cur = ev.soft;
1165                 } else {
1166                         rfkill_global_states[ev.type].cur = ev.soft;
1167                 }
1168         }
1169
1170         list_for_each_entry(rfkill, &rfkill_list, node) {
1171                 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1172                         continue;
1173
1174                 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1175                         continue;
1176
1177                 rfkill_set_block(rfkill, ev.soft);
1178         }
1179         mutex_unlock(&rfkill_global_mutex);
1180
1181         return count;
1182 }
1183
1184 static int rfkill_fop_release(struct inode *inode, struct file *file)
1185 {
1186         struct rfkill_data *data = file->private_data;
1187         struct rfkill_int_event *ev, *tmp;
1188
1189         mutex_lock(&rfkill_global_mutex);
1190         list_del(&data->list);
1191         mutex_unlock(&rfkill_global_mutex);
1192
1193         mutex_destroy(&data->mtx);
1194         list_for_each_entry_safe(ev, tmp, &data->events, list)
1195                 kfree(ev);
1196
1197 #ifdef CONFIG_RFKILL_INPUT
1198         if (data->input_handler)
1199                 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1200                         printk(KERN_DEBUG "rfkill: input handler enabled\n");
1201 #endif
1202
1203         kfree(data);
1204
1205         return 0;
1206 }
1207
1208 #ifdef CONFIG_RFKILL_INPUT
1209 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1210                              unsigned long arg)
1211 {
1212         struct rfkill_data *data = file->private_data;
1213
1214         if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1215                 return -ENOSYS;
1216
1217         if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1218                 return -ENOSYS;
1219
1220         mutex_lock(&data->mtx);
1221
1222         if (!data->input_handler) {
1223                 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1224                         printk(KERN_DEBUG "rfkill: input handler disabled\n");
1225                 data->input_handler = true;
1226         }
1227
1228         mutex_unlock(&data->mtx);
1229
1230         return 0;
1231 }
1232 #endif
1233
1234 static const struct file_operations rfkill_fops = {
1235         .owner          = THIS_MODULE,
1236         .open           = rfkill_fop_open,
1237         .read           = rfkill_fop_read,
1238         .write          = rfkill_fop_write,
1239         .poll           = rfkill_fop_poll,
1240         .release        = rfkill_fop_release,
1241 #ifdef CONFIG_RFKILL_INPUT
1242         .unlocked_ioctl = rfkill_fop_ioctl,
1243         .compat_ioctl   = rfkill_fop_ioctl,
1244 #endif
1245         .llseek         = no_llseek,
1246 };
1247
1248 static struct miscdevice rfkill_miscdev = {
1249         .name   = "rfkill",
1250         .fops   = &rfkill_fops,
1251         .minor  = MISC_DYNAMIC_MINOR,
1252 };
1253
1254 static int __init rfkill_init(void)
1255 {
1256         int error;
1257         int i;
1258
1259         for (i = 0; i < NUM_RFKILL_TYPES; i++)
1260                 rfkill_global_states[i].cur = !rfkill_default_state;
1261
1262         error = class_register(&rfkill_class);
1263         if (error)
1264                 goto out;
1265
1266         error = misc_register(&rfkill_miscdev);
1267         if (error) {
1268                 class_unregister(&rfkill_class);
1269                 goto out;
1270         }
1271
1272 #ifdef CONFIG_RFKILL_INPUT
1273         error = rfkill_handler_init();
1274         if (error) {
1275                 misc_deregister(&rfkill_miscdev);
1276                 class_unregister(&rfkill_class);
1277                 goto out;
1278         }
1279 #endif
1280
1281  out:
1282         return error;
1283 }
1284 subsys_initcall(rfkill_init);
1285
1286 static void __exit rfkill_exit(void)
1287 {
1288 #ifdef CONFIG_RFKILL_INPUT
1289         rfkill_handler_exit();
1290 #endif
1291         misc_deregister(&rfkill_miscdev);
1292         class_unregister(&rfkill_class);
1293 }
1294 module_exit(rfkill_exit);