]> git.karo-electronics.de Git - karo-tx-linux.git/blob - virt/kvm/kvm_main.c
Merge remote-tracking branch 'kvm/linux-next'
[karo-tx-linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, int, S_IRUGO);
76
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, int, S_IRUGO);
80
81 /*
82  * Ordering of locks:
83  *
84  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85  */
86
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104                            unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107                                   unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114 static void kvm_release_pfn_dirty(pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120 static bool largepages_enabled = true;
121
122 bool kvm_is_reserved_pfn(pfn_t pfn)
123 {
124         if (pfn_valid(pfn))
125                 return PageReserved(pfn_to_page(pfn));
126
127         return true;
128 }
129
130 /*
131  * Switches to specified vcpu, until a matching vcpu_put()
132  */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135         int cpu;
136
137         if (mutex_lock_killable(&vcpu->mutex))
138                 return -EINTR;
139         cpu = get_cpu();
140         preempt_notifier_register(&vcpu->preempt_notifier);
141         kvm_arch_vcpu_load(vcpu, cpu);
142         put_cpu();
143         return 0;
144 }
145
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148         preempt_disable();
149         kvm_arch_vcpu_put(vcpu);
150         preempt_notifier_unregister(&vcpu->preempt_notifier);
151         preempt_enable();
152         mutex_unlock(&vcpu->mutex);
153 }
154
155 static void ack_flush(void *_completed)
156 {
157 }
158
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161         int i, cpu, me;
162         cpumask_var_t cpus;
163         bool called = true;
164         struct kvm_vcpu *vcpu;
165
166         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168         me = get_cpu();
169         kvm_for_each_vcpu(i, vcpu, kvm) {
170                 kvm_make_request(req, vcpu);
171                 cpu = vcpu->cpu;
172
173                 /* Set ->requests bit before we read ->mode */
174                 smp_mb();
175
176                 if (cpus != NULL && cpu != -1 && cpu != me &&
177                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178                         cpumask_set_cpu(cpu, cpus);
179         }
180         if (unlikely(cpus == NULL))
181                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182         else if (!cpumask_empty(cpus))
183                 smp_call_function_many(cpus, ack_flush, NULL, 1);
184         else
185                 called = false;
186         put_cpu();
187         free_cpumask_var(cpus);
188         return called;
189 }
190
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194         long dirty_count = kvm->tlbs_dirty;
195
196         smp_mb();
197         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198                 ++kvm->stat.remote_tlb_flush;
199         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203
204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208
209 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
210 {
211         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
212 }
213
214 void kvm_make_scan_ioapic_request(struct kvm *kvm)
215 {
216         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
217 }
218
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221         struct page *page;
222         int r;
223
224         mutex_init(&vcpu->mutex);
225         vcpu->cpu = -1;
226         vcpu->kvm = kvm;
227         vcpu->vcpu_id = id;
228         vcpu->pid = NULL;
229         vcpu->halt_poll_ns = 0;
230         init_waitqueue_head(&vcpu->wq);
231         kvm_async_pf_vcpu_init(vcpu);
232
233         vcpu->pre_pcpu = -1;
234         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
235
236         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
237         if (!page) {
238                 r = -ENOMEM;
239                 goto fail;
240         }
241         vcpu->run = page_address(page);
242
243         kvm_vcpu_set_in_spin_loop(vcpu, false);
244         kvm_vcpu_set_dy_eligible(vcpu, false);
245         vcpu->preempted = false;
246
247         r = kvm_arch_vcpu_init(vcpu);
248         if (r < 0)
249                 goto fail_free_run;
250         return 0;
251
252 fail_free_run:
253         free_page((unsigned long)vcpu->run);
254 fail:
255         return r;
256 }
257 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
258
259 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
260 {
261         put_pid(vcpu->pid);
262         kvm_arch_vcpu_uninit(vcpu);
263         free_page((unsigned long)vcpu->run);
264 }
265 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
266
267 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
268 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
269 {
270         return container_of(mn, struct kvm, mmu_notifier);
271 }
272
273 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
274                                              struct mm_struct *mm,
275                                              unsigned long address)
276 {
277         struct kvm *kvm = mmu_notifier_to_kvm(mn);
278         int need_tlb_flush, idx;
279
280         /*
281          * When ->invalidate_page runs, the linux pte has been zapped
282          * already but the page is still allocated until
283          * ->invalidate_page returns. So if we increase the sequence
284          * here the kvm page fault will notice if the spte can't be
285          * established because the page is going to be freed. If
286          * instead the kvm page fault establishes the spte before
287          * ->invalidate_page runs, kvm_unmap_hva will release it
288          * before returning.
289          *
290          * The sequence increase only need to be seen at spin_unlock
291          * time, and not at spin_lock time.
292          *
293          * Increasing the sequence after the spin_unlock would be
294          * unsafe because the kvm page fault could then establish the
295          * pte after kvm_unmap_hva returned, without noticing the page
296          * is going to be freed.
297          */
298         idx = srcu_read_lock(&kvm->srcu);
299         spin_lock(&kvm->mmu_lock);
300
301         kvm->mmu_notifier_seq++;
302         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
303         /* we've to flush the tlb before the pages can be freed */
304         if (need_tlb_flush)
305                 kvm_flush_remote_tlbs(kvm);
306
307         spin_unlock(&kvm->mmu_lock);
308
309         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
310
311         srcu_read_unlock(&kvm->srcu, idx);
312 }
313
314 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
315                                         struct mm_struct *mm,
316                                         unsigned long address,
317                                         pte_t pte)
318 {
319         struct kvm *kvm = mmu_notifier_to_kvm(mn);
320         int idx;
321
322         idx = srcu_read_lock(&kvm->srcu);
323         spin_lock(&kvm->mmu_lock);
324         kvm->mmu_notifier_seq++;
325         kvm_set_spte_hva(kvm, address, pte);
326         spin_unlock(&kvm->mmu_lock);
327         srcu_read_unlock(&kvm->srcu, idx);
328 }
329
330 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
331                                                     struct mm_struct *mm,
332                                                     unsigned long start,
333                                                     unsigned long end)
334 {
335         struct kvm *kvm = mmu_notifier_to_kvm(mn);
336         int need_tlb_flush = 0, idx;
337
338         idx = srcu_read_lock(&kvm->srcu);
339         spin_lock(&kvm->mmu_lock);
340         /*
341          * The count increase must become visible at unlock time as no
342          * spte can be established without taking the mmu_lock and
343          * count is also read inside the mmu_lock critical section.
344          */
345         kvm->mmu_notifier_count++;
346         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
347         need_tlb_flush |= kvm->tlbs_dirty;
348         /* we've to flush the tlb before the pages can be freed */
349         if (need_tlb_flush)
350                 kvm_flush_remote_tlbs(kvm);
351
352         spin_unlock(&kvm->mmu_lock);
353         srcu_read_unlock(&kvm->srcu, idx);
354 }
355
356 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
357                                                   struct mm_struct *mm,
358                                                   unsigned long start,
359                                                   unsigned long end)
360 {
361         struct kvm *kvm = mmu_notifier_to_kvm(mn);
362
363         spin_lock(&kvm->mmu_lock);
364         /*
365          * This sequence increase will notify the kvm page fault that
366          * the page that is going to be mapped in the spte could have
367          * been freed.
368          */
369         kvm->mmu_notifier_seq++;
370         smp_wmb();
371         /*
372          * The above sequence increase must be visible before the
373          * below count decrease, which is ensured by the smp_wmb above
374          * in conjunction with the smp_rmb in mmu_notifier_retry().
375          */
376         kvm->mmu_notifier_count--;
377         spin_unlock(&kvm->mmu_lock);
378
379         BUG_ON(kvm->mmu_notifier_count < 0);
380 }
381
382 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
383                                               struct mm_struct *mm,
384                                               unsigned long start,
385                                               unsigned long end)
386 {
387         struct kvm *kvm = mmu_notifier_to_kvm(mn);
388         int young, idx;
389
390         idx = srcu_read_lock(&kvm->srcu);
391         spin_lock(&kvm->mmu_lock);
392
393         young = kvm_age_hva(kvm, start, end);
394         if (young)
395                 kvm_flush_remote_tlbs(kvm);
396
397         spin_unlock(&kvm->mmu_lock);
398         srcu_read_unlock(&kvm->srcu, idx);
399
400         return young;
401 }
402
403 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
404                                         struct mm_struct *mm,
405                                         unsigned long start,
406                                         unsigned long end)
407 {
408         struct kvm *kvm = mmu_notifier_to_kvm(mn);
409         int young, idx;
410
411         idx = srcu_read_lock(&kvm->srcu);
412         spin_lock(&kvm->mmu_lock);
413         /*
414          * Even though we do not flush TLB, this will still adversely
415          * affect performance on pre-Haswell Intel EPT, where there is
416          * no EPT Access Bit to clear so that we have to tear down EPT
417          * tables instead. If we find this unacceptable, we can always
418          * add a parameter to kvm_age_hva so that it effectively doesn't
419          * do anything on clear_young.
420          *
421          * Also note that currently we never issue secondary TLB flushes
422          * from clear_young, leaving this job up to the regular system
423          * cadence. If we find this inaccurate, we might come up with a
424          * more sophisticated heuristic later.
425          */
426         young = kvm_age_hva(kvm, start, end);
427         spin_unlock(&kvm->mmu_lock);
428         srcu_read_unlock(&kvm->srcu, idx);
429
430         return young;
431 }
432
433 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
434                                        struct mm_struct *mm,
435                                        unsigned long address)
436 {
437         struct kvm *kvm = mmu_notifier_to_kvm(mn);
438         int young, idx;
439
440         idx = srcu_read_lock(&kvm->srcu);
441         spin_lock(&kvm->mmu_lock);
442         young = kvm_test_age_hva(kvm, address);
443         spin_unlock(&kvm->mmu_lock);
444         srcu_read_unlock(&kvm->srcu, idx);
445
446         return young;
447 }
448
449 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
450                                      struct mm_struct *mm)
451 {
452         struct kvm *kvm = mmu_notifier_to_kvm(mn);
453         int idx;
454
455         idx = srcu_read_lock(&kvm->srcu);
456         kvm_arch_flush_shadow_all(kvm);
457         srcu_read_unlock(&kvm->srcu, idx);
458 }
459
460 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
461         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
462         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
463         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
464         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
465         .clear_young            = kvm_mmu_notifier_clear_young,
466         .test_young             = kvm_mmu_notifier_test_young,
467         .change_pte             = kvm_mmu_notifier_change_pte,
468         .release                = kvm_mmu_notifier_release,
469 };
470
471 static int kvm_init_mmu_notifier(struct kvm *kvm)
472 {
473         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
474         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
475 }
476
477 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
478
479 static int kvm_init_mmu_notifier(struct kvm *kvm)
480 {
481         return 0;
482 }
483
484 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
485
486 static struct kvm_memslots *kvm_alloc_memslots(void)
487 {
488         int i;
489         struct kvm_memslots *slots;
490
491         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
492         if (!slots)
493                 return NULL;
494
495         /*
496          * Init kvm generation close to the maximum to easily test the
497          * code of handling generation number wrap-around.
498          */
499         slots->generation = -150;
500         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
501                 slots->id_to_index[i] = slots->memslots[i].id = i;
502
503         return slots;
504 }
505
506 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
507 {
508         if (!memslot->dirty_bitmap)
509                 return;
510
511         kvfree(memslot->dirty_bitmap);
512         memslot->dirty_bitmap = NULL;
513 }
514
515 /*
516  * Free any memory in @free but not in @dont.
517  */
518 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
519                               struct kvm_memory_slot *dont)
520 {
521         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
522                 kvm_destroy_dirty_bitmap(free);
523
524         kvm_arch_free_memslot(kvm, free, dont);
525
526         free->npages = 0;
527 }
528
529 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
530 {
531         struct kvm_memory_slot *memslot;
532
533         if (!slots)
534                 return;
535
536         kvm_for_each_memslot(memslot, slots)
537                 kvm_free_memslot(kvm, memslot, NULL);
538
539         kvfree(slots);
540 }
541
542 static struct kvm *kvm_create_vm(unsigned long type)
543 {
544         int r, i;
545         struct kvm *kvm = kvm_arch_alloc_vm();
546
547         if (!kvm)
548                 return ERR_PTR(-ENOMEM);
549
550         r = kvm_arch_init_vm(kvm, type);
551         if (r)
552                 goto out_err_no_disable;
553
554         r = hardware_enable_all();
555         if (r)
556                 goto out_err_no_disable;
557
558 #ifdef CONFIG_HAVE_KVM_IRQFD
559         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
560 #endif
561
562         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
563
564         r = -ENOMEM;
565         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
566                 kvm->memslots[i] = kvm_alloc_memslots();
567                 if (!kvm->memslots[i])
568                         goto out_err_no_srcu;
569         }
570
571         if (init_srcu_struct(&kvm->srcu))
572                 goto out_err_no_srcu;
573         if (init_srcu_struct(&kvm->irq_srcu))
574                 goto out_err_no_irq_srcu;
575         for (i = 0; i < KVM_NR_BUSES; i++) {
576                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
577                                         GFP_KERNEL);
578                 if (!kvm->buses[i])
579                         goto out_err;
580         }
581
582         spin_lock_init(&kvm->mmu_lock);
583         kvm->mm = current->mm;
584         atomic_inc(&kvm->mm->mm_count);
585         kvm_eventfd_init(kvm);
586         mutex_init(&kvm->lock);
587         mutex_init(&kvm->irq_lock);
588         mutex_init(&kvm->slots_lock);
589         atomic_set(&kvm->users_count, 1);
590         INIT_LIST_HEAD(&kvm->devices);
591
592         r = kvm_init_mmu_notifier(kvm);
593         if (r)
594                 goto out_err;
595
596         spin_lock(&kvm_lock);
597         list_add(&kvm->vm_list, &vm_list);
598         spin_unlock(&kvm_lock);
599
600         preempt_notifier_inc();
601
602         return kvm;
603
604 out_err:
605         cleanup_srcu_struct(&kvm->irq_srcu);
606 out_err_no_irq_srcu:
607         cleanup_srcu_struct(&kvm->srcu);
608 out_err_no_srcu:
609         hardware_disable_all();
610 out_err_no_disable:
611         for (i = 0; i < KVM_NR_BUSES; i++)
612                 kfree(kvm->buses[i]);
613         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
614                 kvm_free_memslots(kvm, kvm->memslots[i]);
615         kvm_arch_free_vm(kvm);
616         return ERR_PTR(r);
617 }
618
619 /*
620  * Avoid using vmalloc for a small buffer.
621  * Should not be used when the size is statically known.
622  */
623 void *kvm_kvzalloc(unsigned long size)
624 {
625         if (size > PAGE_SIZE)
626                 return vzalloc(size);
627         else
628                 return kzalloc(size, GFP_KERNEL);
629 }
630
631 static void kvm_destroy_devices(struct kvm *kvm)
632 {
633         struct list_head *node, *tmp;
634
635         list_for_each_safe(node, tmp, &kvm->devices) {
636                 struct kvm_device *dev =
637                         list_entry(node, struct kvm_device, vm_node);
638
639                 list_del(node);
640                 dev->ops->destroy(dev);
641         }
642 }
643
644 static void kvm_destroy_vm(struct kvm *kvm)
645 {
646         int i;
647         struct mm_struct *mm = kvm->mm;
648
649         kvm_arch_sync_events(kvm);
650         spin_lock(&kvm_lock);
651         list_del(&kvm->vm_list);
652         spin_unlock(&kvm_lock);
653         kvm_free_irq_routing(kvm);
654         for (i = 0; i < KVM_NR_BUSES; i++)
655                 kvm_io_bus_destroy(kvm->buses[i]);
656         kvm_coalesced_mmio_free(kvm);
657 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
658         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
659 #else
660         kvm_arch_flush_shadow_all(kvm);
661 #endif
662         kvm_arch_destroy_vm(kvm);
663         kvm_destroy_devices(kvm);
664         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
665                 kvm_free_memslots(kvm, kvm->memslots[i]);
666         cleanup_srcu_struct(&kvm->irq_srcu);
667         cleanup_srcu_struct(&kvm->srcu);
668         kvm_arch_free_vm(kvm);
669         preempt_notifier_dec();
670         hardware_disable_all();
671         mmdrop(mm);
672 }
673
674 void kvm_get_kvm(struct kvm *kvm)
675 {
676         atomic_inc(&kvm->users_count);
677 }
678 EXPORT_SYMBOL_GPL(kvm_get_kvm);
679
680 void kvm_put_kvm(struct kvm *kvm)
681 {
682         if (atomic_dec_and_test(&kvm->users_count))
683                 kvm_destroy_vm(kvm);
684 }
685 EXPORT_SYMBOL_GPL(kvm_put_kvm);
686
687
688 static int kvm_vm_release(struct inode *inode, struct file *filp)
689 {
690         struct kvm *kvm = filp->private_data;
691
692         kvm_irqfd_release(kvm);
693
694         kvm_put_kvm(kvm);
695         return 0;
696 }
697
698 /*
699  * Allocation size is twice as large as the actual dirty bitmap size.
700  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
701  */
702 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
703 {
704         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
705
706         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
707         if (!memslot->dirty_bitmap)
708                 return -ENOMEM;
709
710         return 0;
711 }
712
713 /*
714  * Insert memslot and re-sort memslots based on their GFN,
715  * so binary search could be used to lookup GFN.
716  * Sorting algorithm takes advantage of having initially
717  * sorted array and known changed memslot position.
718  */
719 static void update_memslots(struct kvm_memslots *slots,
720                             struct kvm_memory_slot *new)
721 {
722         int id = new->id;
723         int i = slots->id_to_index[id];
724         struct kvm_memory_slot *mslots = slots->memslots;
725
726         WARN_ON(mslots[i].id != id);
727         if (!new->npages) {
728                 WARN_ON(!mslots[i].npages);
729                 if (mslots[i].npages)
730                         slots->used_slots--;
731         } else {
732                 if (!mslots[i].npages)
733                         slots->used_slots++;
734         }
735
736         while (i < KVM_MEM_SLOTS_NUM - 1 &&
737                new->base_gfn <= mslots[i + 1].base_gfn) {
738                 if (!mslots[i + 1].npages)
739                         break;
740                 mslots[i] = mslots[i + 1];
741                 slots->id_to_index[mslots[i].id] = i;
742                 i++;
743         }
744
745         /*
746          * The ">=" is needed when creating a slot with base_gfn == 0,
747          * so that it moves before all those with base_gfn == npages == 0.
748          *
749          * On the other hand, if new->npages is zero, the above loop has
750          * already left i pointing to the beginning of the empty part of
751          * mslots, and the ">=" would move the hole backwards in this
752          * case---which is wrong.  So skip the loop when deleting a slot.
753          */
754         if (new->npages) {
755                 while (i > 0 &&
756                        new->base_gfn >= mslots[i - 1].base_gfn) {
757                         mslots[i] = mslots[i - 1];
758                         slots->id_to_index[mslots[i].id] = i;
759                         i--;
760                 }
761         } else
762                 WARN_ON_ONCE(i != slots->used_slots);
763
764         mslots[i] = *new;
765         slots->id_to_index[mslots[i].id] = i;
766 }
767
768 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
769 {
770         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
771
772 #ifdef __KVM_HAVE_READONLY_MEM
773         valid_flags |= KVM_MEM_READONLY;
774 #endif
775
776         if (mem->flags & ~valid_flags)
777                 return -EINVAL;
778
779         return 0;
780 }
781
782 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
783                 int as_id, struct kvm_memslots *slots)
784 {
785         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
786
787         /*
788          * Set the low bit in the generation, which disables SPTE caching
789          * until the end of synchronize_srcu_expedited.
790          */
791         WARN_ON(old_memslots->generation & 1);
792         slots->generation = old_memslots->generation + 1;
793
794         rcu_assign_pointer(kvm->memslots[as_id], slots);
795         synchronize_srcu_expedited(&kvm->srcu);
796
797         /*
798          * Increment the new memslot generation a second time. This prevents
799          * vm exits that race with memslot updates from caching a memslot
800          * generation that will (potentially) be valid forever.
801          */
802         slots->generation++;
803
804         kvm_arch_memslots_updated(kvm, slots);
805
806         return old_memslots;
807 }
808
809 /*
810  * Allocate some memory and give it an address in the guest physical address
811  * space.
812  *
813  * Discontiguous memory is allowed, mostly for framebuffers.
814  *
815  * Must be called holding kvm->slots_lock for write.
816  */
817 int __kvm_set_memory_region(struct kvm *kvm,
818                             const struct kvm_userspace_memory_region *mem)
819 {
820         int r;
821         gfn_t base_gfn;
822         unsigned long npages;
823         struct kvm_memory_slot *slot;
824         struct kvm_memory_slot old, new;
825         struct kvm_memslots *slots = NULL, *old_memslots;
826         int as_id, id;
827         enum kvm_mr_change change;
828
829         r = check_memory_region_flags(mem);
830         if (r)
831                 goto out;
832
833         r = -EINVAL;
834         as_id = mem->slot >> 16;
835         id = (u16)mem->slot;
836
837         /* General sanity checks */
838         if (mem->memory_size & (PAGE_SIZE - 1))
839                 goto out;
840         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
841                 goto out;
842         /* We can read the guest memory with __xxx_user() later on. */
843         if ((id < KVM_USER_MEM_SLOTS) &&
844             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
845              !access_ok(VERIFY_WRITE,
846                         (void __user *)(unsigned long)mem->userspace_addr,
847                         mem->memory_size)))
848                 goto out;
849         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
850                 goto out;
851         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
852                 goto out;
853
854         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
855         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
856         npages = mem->memory_size >> PAGE_SHIFT;
857
858         if (npages > KVM_MEM_MAX_NR_PAGES)
859                 goto out;
860
861         new = old = *slot;
862
863         new.id = id;
864         new.base_gfn = base_gfn;
865         new.npages = npages;
866         new.flags = mem->flags;
867
868         if (npages) {
869                 if (!old.npages)
870                         change = KVM_MR_CREATE;
871                 else { /* Modify an existing slot. */
872                         if ((mem->userspace_addr != old.userspace_addr) ||
873                             (npages != old.npages) ||
874                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
875                                 goto out;
876
877                         if (base_gfn != old.base_gfn)
878                                 change = KVM_MR_MOVE;
879                         else if (new.flags != old.flags)
880                                 change = KVM_MR_FLAGS_ONLY;
881                         else { /* Nothing to change. */
882                                 r = 0;
883                                 goto out;
884                         }
885                 }
886         } else {
887                 if (!old.npages)
888                         goto out;
889
890                 change = KVM_MR_DELETE;
891                 new.base_gfn = 0;
892                 new.flags = 0;
893         }
894
895         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
896                 /* Check for overlaps */
897                 r = -EEXIST;
898                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
899                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
900                             (slot->id == id))
901                                 continue;
902                         if (!((base_gfn + npages <= slot->base_gfn) ||
903                               (base_gfn >= slot->base_gfn + slot->npages)))
904                                 goto out;
905                 }
906         }
907
908         /* Free page dirty bitmap if unneeded */
909         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
910                 new.dirty_bitmap = NULL;
911
912         r = -ENOMEM;
913         if (change == KVM_MR_CREATE) {
914                 new.userspace_addr = mem->userspace_addr;
915
916                 if (kvm_arch_create_memslot(kvm, &new, npages))
917                         goto out_free;
918         }
919
920         /* Allocate page dirty bitmap if needed */
921         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
922                 if (kvm_create_dirty_bitmap(&new) < 0)
923                         goto out_free;
924         }
925
926         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
927         if (!slots)
928                 goto out_free;
929         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
930
931         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
932                 slot = id_to_memslot(slots, id);
933                 slot->flags |= KVM_MEMSLOT_INVALID;
934
935                 old_memslots = install_new_memslots(kvm, as_id, slots);
936
937                 /* slot was deleted or moved, clear iommu mapping */
938                 kvm_iommu_unmap_pages(kvm, &old);
939                 /* From this point no new shadow pages pointing to a deleted,
940                  * or moved, memslot will be created.
941                  *
942                  * validation of sp->gfn happens in:
943                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
944                  *      - kvm_is_visible_gfn (mmu_check_roots)
945                  */
946                 kvm_arch_flush_shadow_memslot(kvm, slot);
947
948                 /*
949                  * We can re-use the old_memslots from above, the only difference
950                  * from the currently installed memslots is the invalid flag.  This
951                  * will get overwritten by update_memslots anyway.
952                  */
953                 slots = old_memslots;
954         }
955
956         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
957         if (r)
958                 goto out_slots;
959
960         /* actual memory is freed via old in kvm_free_memslot below */
961         if (change == KVM_MR_DELETE) {
962                 new.dirty_bitmap = NULL;
963                 memset(&new.arch, 0, sizeof(new.arch));
964         }
965
966         update_memslots(slots, &new);
967         old_memslots = install_new_memslots(kvm, as_id, slots);
968
969         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
970
971         kvm_free_memslot(kvm, &old, &new);
972         kvfree(old_memslots);
973
974         /*
975          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
976          * un-mapped and re-mapped if their base changes.  Since base change
977          * unmapping is handled above with slot deletion, mapping alone is
978          * needed here.  Anything else the iommu might care about for existing
979          * slots (size changes, userspace addr changes and read-only flag
980          * changes) is disallowed above, so any other attribute changes getting
981          * here can be skipped.
982          */
983         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
984                 r = kvm_iommu_map_pages(kvm, &new);
985                 return r;
986         }
987
988         return 0;
989
990 out_slots:
991         kvfree(slots);
992 out_free:
993         kvm_free_memslot(kvm, &new, &old);
994 out:
995         return r;
996 }
997 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
998
999 int kvm_set_memory_region(struct kvm *kvm,
1000                           const struct kvm_userspace_memory_region *mem)
1001 {
1002         int r;
1003
1004         mutex_lock(&kvm->slots_lock);
1005         r = __kvm_set_memory_region(kvm, mem);
1006         mutex_unlock(&kvm->slots_lock);
1007         return r;
1008 }
1009 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1010
1011 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1012                                           struct kvm_userspace_memory_region *mem)
1013 {
1014         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1015                 return -EINVAL;
1016
1017         return kvm_set_memory_region(kvm, mem);
1018 }
1019
1020 int kvm_get_dirty_log(struct kvm *kvm,
1021                         struct kvm_dirty_log *log, int *is_dirty)
1022 {
1023         struct kvm_memslots *slots;
1024         struct kvm_memory_slot *memslot;
1025         int r, i, as_id, id;
1026         unsigned long n;
1027         unsigned long any = 0;
1028
1029         r = -EINVAL;
1030         as_id = log->slot >> 16;
1031         id = (u16)log->slot;
1032         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1033                 goto out;
1034
1035         slots = __kvm_memslots(kvm, as_id);
1036         memslot = id_to_memslot(slots, id);
1037         r = -ENOENT;
1038         if (!memslot->dirty_bitmap)
1039                 goto out;
1040
1041         n = kvm_dirty_bitmap_bytes(memslot);
1042
1043         for (i = 0; !any && i < n/sizeof(long); ++i)
1044                 any = memslot->dirty_bitmap[i];
1045
1046         r = -EFAULT;
1047         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1048                 goto out;
1049
1050         if (any)
1051                 *is_dirty = 1;
1052
1053         r = 0;
1054 out:
1055         return r;
1056 }
1057 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1058
1059 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1060 /**
1061  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1062  *      are dirty write protect them for next write.
1063  * @kvm:        pointer to kvm instance
1064  * @log:        slot id and address to which we copy the log
1065  * @is_dirty:   flag set if any page is dirty
1066  *
1067  * We need to keep it in mind that VCPU threads can write to the bitmap
1068  * concurrently. So, to avoid losing track of dirty pages we keep the
1069  * following order:
1070  *
1071  *    1. Take a snapshot of the bit and clear it if needed.
1072  *    2. Write protect the corresponding page.
1073  *    3. Copy the snapshot to the userspace.
1074  *    4. Upon return caller flushes TLB's if needed.
1075  *
1076  * Between 2 and 4, the guest may write to the page using the remaining TLB
1077  * entry.  This is not a problem because the page is reported dirty using
1078  * the snapshot taken before and step 4 ensures that writes done after
1079  * exiting to userspace will be logged for the next call.
1080  *
1081  */
1082 int kvm_get_dirty_log_protect(struct kvm *kvm,
1083                         struct kvm_dirty_log *log, bool *is_dirty)
1084 {
1085         struct kvm_memslots *slots;
1086         struct kvm_memory_slot *memslot;
1087         int r, i, as_id, id;
1088         unsigned long n;
1089         unsigned long *dirty_bitmap;
1090         unsigned long *dirty_bitmap_buffer;
1091
1092         r = -EINVAL;
1093         as_id = log->slot >> 16;
1094         id = (u16)log->slot;
1095         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1096                 goto out;
1097
1098         slots = __kvm_memslots(kvm, as_id);
1099         memslot = id_to_memslot(slots, id);
1100
1101         dirty_bitmap = memslot->dirty_bitmap;
1102         r = -ENOENT;
1103         if (!dirty_bitmap)
1104                 goto out;
1105
1106         n = kvm_dirty_bitmap_bytes(memslot);
1107
1108         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1109         memset(dirty_bitmap_buffer, 0, n);
1110
1111         spin_lock(&kvm->mmu_lock);
1112         *is_dirty = false;
1113         for (i = 0; i < n / sizeof(long); i++) {
1114                 unsigned long mask;
1115                 gfn_t offset;
1116
1117                 if (!dirty_bitmap[i])
1118                         continue;
1119
1120                 *is_dirty = true;
1121
1122                 mask = xchg(&dirty_bitmap[i], 0);
1123                 dirty_bitmap_buffer[i] = mask;
1124
1125                 if (mask) {
1126                         offset = i * BITS_PER_LONG;
1127                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1128                                                                 offset, mask);
1129                 }
1130         }
1131
1132         spin_unlock(&kvm->mmu_lock);
1133
1134         r = -EFAULT;
1135         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1136                 goto out;
1137
1138         r = 0;
1139 out:
1140         return r;
1141 }
1142 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1143 #endif
1144
1145 bool kvm_largepages_enabled(void)
1146 {
1147         return largepages_enabled;
1148 }
1149
1150 void kvm_disable_largepages(void)
1151 {
1152         largepages_enabled = false;
1153 }
1154 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1155
1156 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1157 {
1158         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1159 }
1160 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1161
1162 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1163 {
1164         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1165 }
1166
1167 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1168 {
1169         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1170
1171         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1172               memslot->flags & KVM_MEMSLOT_INVALID)
1173                 return 0;
1174
1175         return 1;
1176 }
1177 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1178
1179 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1180 {
1181         struct vm_area_struct *vma;
1182         unsigned long addr, size;
1183
1184         size = PAGE_SIZE;
1185
1186         addr = gfn_to_hva(kvm, gfn);
1187         if (kvm_is_error_hva(addr))
1188                 return PAGE_SIZE;
1189
1190         down_read(&current->mm->mmap_sem);
1191         vma = find_vma(current->mm, addr);
1192         if (!vma)
1193                 goto out;
1194
1195         size = vma_kernel_pagesize(vma);
1196
1197 out:
1198         up_read(&current->mm->mmap_sem);
1199
1200         return size;
1201 }
1202
1203 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1204 {
1205         return slot->flags & KVM_MEM_READONLY;
1206 }
1207
1208 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1209                                        gfn_t *nr_pages, bool write)
1210 {
1211         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1212                 return KVM_HVA_ERR_BAD;
1213
1214         if (memslot_is_readonly(slot) && write)
1215                 return KVM_HVA_ERR_RO_BAD;
1216
1217         if (nr_pages)
1218                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1219
1220         return __gfn_to_hva_memslot(slot, gfn);
1221 }
1222
1223 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1224                                      gfn_t *nr_pages)
1225 {
1226         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1227 }
1228
1229 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1230                                         gfn_t gfn)
1231 {
1232         return gfn_to_hva_many(slot, gfn, NULL);
1233 }
1234 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1235
1236 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1237 {
1238         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1239 }
1240 EXPORT_SYMBOL_GPL(gfn_to_hva);
1241
1242 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1243 {
1244         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1247
1248 /*
1249  * If writable is set to false, the hva returned by this function is only
1250  * allowed to be read.
1251  */
1252 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1253                                       gfn_t gfn, bool *writable)
1254 {
1255         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1256
1257         if (!kvm_is_error_hva(hva) && writable)
1258                 *writable = !memslot_is_readonly(slot);
1259
1260         return hva;
1261 }
1262
1263 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1264 {
1265         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1266
1267         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1268 }
1269
1270 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1271 {
1272         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1273
1274         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1275 }
1276
1277 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1278         unsigned long start, int write, struct page **page)
1279 {
1280         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1281
1282         if (write)
1283                 flags |= FOLL_WRITE;
1284
1285         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1286 }
1287
1288 static inline int check_user_page_hwpoison(unsigned long addr)
1289 {
1290         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1291
1292         rc = __get_user_pages(current, current->mm, addr, 1,
1293                               flags, NULL, NULL, NULL);
1294         return rc == -EHWPOISON;
1295 }
1296
1297 /*
1298  * The atomic path to get the writable pfn which will be stored in @pfn,
1299  * true indicates success, otherwise false is returned.
1300  */
1301 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1302                             bool write_fault, bool *writable, pfn_t *pfn)
1303 {
1304         struct page *page[1];
1305         int npages;
1306
1307         if (!(async || atomic))
1308                 return false;
1309
1310         /*
1311          * Fast pin a writable pfn only if it is a write fault request
1312          * or the caller allows to map a writable pfn for a read fault
1313          * request.
1314          */
1315         if (!(write_fault || writable))
1316                 return false;
1317
1318         npages = __get_user_pages_fast(addr, 1, 1, page);
1319         if (npages == 1) {
1320                 *pfn = page_to_pfn(page[0]);
1321
1322                 if (writable)
1323                         *writable = true;
1324                 return true;
1325         }
1326
1327         return false;
1328 }
1329
1330 /*
1331  * The slow path to get the pfn of the specified host virtual address,
1332  * 1 indicates success, -errno is returned if error is detected.
1333  */
1334 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1335                            bool *writable, pfn_t *pfn)
1336 {
1337         struct page *page[1];
1338         int npages = 0;
1339
1340         might_sleep();
1341
1342         if (writable)
1343                 *writable = write_fault;
1344
1345         if (async) {
1346                 down_read(&current->mm->mmap_sem);
1347                 npages = get_user_page_nowait(current, current->mm,
1348                                               addr, write_fault, page);
1349                 up_read(&current->mm->mmap_sem);
1350         } else
1351                 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1352                                                    write_fault, 0, page,
1353                                                    FOLL_TOUCH|FOLL_HWPOISON);
1354         if (npages != 1)
1355                 return npages;
1356
1357         /* map read fault as writable if possible */
1358         if (unlikely(!write_fault) && writable) {
1359                 struct page *wpage[1];
1360
1361                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1362                 if (npages == 1) {
1363                         *writable = true;
1364                         put_page(page[0]);
1365                         page[0] = wpage[0];
1366                 }
1367
1368                 npages = 1;
1369         }
1370         *pfn = page_to_pfn(page[0]);
1371         return npages;
1372 }
1373
1374 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1375 {
1376         if (unlikely(!(vma->vm_flags & VM_READ)))
1377                 return false;
1378
1379         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1380                 return false;
1381
1382         return true;
1383 }
1384
1385 /*
1386  * Pin guest page in memory and return its pfn.
1387  * @addr: host virtual address which maps memory to the guest
1388  * @atomic: whether this function can sleep
1389  * @async: whether this function need to wait IO complete if the
1390  *         host page is not in the memory
1391  * @write_fault: whether we should get a writable host page
1392  * @writable: whether it allows to map a writable host page for !@write_fault
1393  *
1394  * The function will map a writable host page for these two cases:
1395  * 1): @write_fault = true
1396  * 2): @write_fault = false && @writable, @writable will tell the caller
1397  *     whether the mapping is writable.
1398  */
1399 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1400                         bool write_fault, bool *writable)
1401 {
1402         struct vm_area_struct *vma;
1403         pfn_t pfn = 0;
1404         int npages;
1405
1406         /* we can do it either atomically or asynchronously, not both */
1407         BUG_ON(atomic && async);
1408
1409         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1410                 return pfn;
1411
1412         if (atomic)
1413                 return KVM_PFN_ERR_FAULT;
1414
1415         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1416         if (npages == 1)
1417                 return pfn;
1418
1419         down_read(&current->mm->mmap_sem);
1420         if (npages == -EHWPOISON ||
1421               (!async && check_user_page_hwpoison(addr))) {
1422                 pfn = KVM_PFN_ERR_HWPOISON;
1423                 goto exit;
1424         }
1425
1426         vma = find_vma_intersection(current->mm, addr, addr + 1);
1427
1428         if (vma == NULL)
1429                 pfn = KVM_PFN_ERR_FAULT;
1430         else if ((vma->vm_flags & VM_PFNMAP)) {
1431                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1432                         vma->vm_pgoff;
1433                 BUG_ON(!kvm_is_reserved_pfn(pfn));
1434         } else {
1435                 if (async && vma_is_valid(vma, write_fault))
1436                         *async = true;
1437                 pfn = KVM_PFN_ERR_FAULT;
1438         }
1439 exit:
1440         up_read(&current->mm->mmap_sem);
1441         return pfn;
1442 }
1443
1444 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1445                            bool *async, bool write_fault, bool *writable)
1446 {
1447         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1448
1449         if (addr == KVM_HVA_ERR_RO_BAD)
1450                 return KVM_PFN_ERR_RO_FAULT;
1451
1452         if (kvm_is_error_hva(addr))
1453                 return KVM_PFN_NOSLOT;
1454
1455         /* Do not map writable pfn in the readonly memslot. */
1456         if (writable && memslot_is_readonly(slot)) {
1457                 *writable = false;
1458                 writable = NULL;
1459         }
1460
1461         return hva_to_pfn(addr, atomic, async, write_fault,
1462                           writable);
1463 }
1464 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1465
1466 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1467                       bool *writable)
1468 {
1469         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1470                                     write_fault, writable);
1471 }
1472 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1473
1474 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1475 {
1476         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1477 }
1478 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1479
1480 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1481 {
1482         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1483 }
1484 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1485
1486 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1487 {
1488         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1489 }
1490 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1491
1492 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1493 {
1494         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1495 }
1496 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1497
1498 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1499 {
1500         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1501 }
1502 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1503
1504 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1505 {
1506         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1507 }
1508 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1509
1510 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1511                             struct page **pages, int nr_pages)
1512 {
1513         unsigned long addr;
1514         gfn_t entry;
1515
1516         addr = gfn_to_hva_many(slot, gfn, &entry);
1517         if (kvm_is_error_hva(addr))
1518                 return -1;
1519
1520         if (entry < nr_pages)
1521                 return 0;
1522
1523         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1524 }
1525 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1526
1527 static struct page *kvm_pfn_to_page(pfn_t pfn)
1528 {
1529         if (is_error_noslot_pfn(pfn))
1530                 return KVM_ERR_PTR_BAD_PAGE;
1531
1532         if (kvm_is_reserved_pfn(pfn)) {
1533                 WARN_ON(1);
1534                 return KVM_ERR_PTR_BAD_PAGE;
1535         }
1536
1537         return pfn_to_page(pfn);
1538 }
1539
1540 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1541 {
1542         pfn_t pfn;
1543
1544         pfn = gfn_to_pfn(kvm, gfn);
1545
1546         return kvm_pfn_to_page(pfn);
1547 }
1548 EXPORT_SYMBOL_GPL(gfn_to_page);
1549
1550 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1551 {
1552         pfn_t pfn;
1553
1554         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1555
1556         return kvm_pfn_to_page(pfn);
1557 }
1558 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1559
1560 void kvm_release_page_clean(struct page *page)
1561 {
1562         WARN_ON(is_error_page(page));
1563
1564         kvm_release_pfn_clean(page_to_pfn(page));
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1567
1568 void kvm_release_pfn_clean(pfn_t pfn)
1569 {
1570         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1571                 put_page(pfn_to_page(pfn));
1572 }
1573 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1574
1575 void kvm_release_page_dirty(struct page *page)
1576 {
1577         WARN_ON(is_error_page(page));
1578
1579         kvm_release_pfn_dirty(page_to_pfn(page));
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1582
1583 static void kvm_release_pfn_dirty(pfn_t pfn)
1584 {
1585         kvm_set_pfn_dirty(pfn);
1586         kvm_release_pfn_clean(pfn);
1587 }
1588
1589 void kvm_set_pfn_dirty(pfn_t pfn)
1590 {
1591         if (!kvm_is_reserved_pfn(pfn)) {
1592                 struct page *page = pfn_to_page(pfn);
1593
1594                 if (!PageReserved(page))
1595                         SetPageDirty(page);
1596         }
1597 }
1598 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1599
1600 void kvm_set_pfn_accessed(pfn_t pfn)
1601 {
1602         if (!kvm_is_reserved_pfn(pfn))
1603                 mark_page_accessed(pfn_to_page(pfn));
1604 }
1605 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1606
1607 void kvm_get_pfn(pfn_t pfn)
1608 {
1609         if (!kvm_is_reserved_pfn(pfn))
1610                 get_page(pfn_to_page(pfn));
1611 }
1612 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1613
1614 static int next_segment(unsigned long len, int offset)
1615 {
1616         if (len > PAGE_SIZE - offset)
1617                 return PAGE_SIZE - offset;
1618         else
1619                 return len;
1620 }
1621
1622 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1623                                  void *data, int offset, int len)
1624 {
1625         int r;
1626         unsigned long addr;
1627
1628         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1629         if (kvm_is_error_hva(addr))
1630                 return -EFAULT;
1631         r = __copy_from_user(data, (void __user *)addr + offset, len);
1632         if (r)
1633                 return -EFAULT;
1634         return 0;
1635 }
1636
1637 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1638                         int len)
1639 {
1640         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1641
1642         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1643 }
1644 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1645
1646 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1647                              int offset, int len)
1648 {
1649         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1650
1651         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1652 }
1653 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1654
1655 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1656 {
1657         gfn_t gfn = gpa >> PAGE_SHIFT;
1658         int seg;
1659         int offset = offset_in_page(gpa);
1660         int ret;
1661
1662         while ((seg = next_segment(len, offset)) != 0) {
1663                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1664                 if (ret < 0)
1665                         return ret;
1666                 offset = 0;
1667                 len -= seg;
1668                 data += seg;
1669                 ++gfn;
1670         }
1671         return 0;
1672 }
1673 EXPORT_SYMBOL_GPL(kvm_read_guest);
1674
1675 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1676 {
1677         gfn_t gfn = gpa >> PAGE_SHIFT;
1678         int seg;
1679         int offset = offset_in_page(gpa);
1680         int ret;
1681
1682         while ((seg = next_segment(len, offset)) != 0) {
1683                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1684                 if (ret < 0)
1685                         return ret;
1686                 offset = 0;
1687                 len -= seg;
1688                 data += seg;
1689                 ++gfn;
1690         }
1691         return 0;
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1694
1695 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1696                                    void *data, int offset, unsigned long len)
1697 {
1698         int r;
1699         unsigned long addr;
1700
1701         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1702         if (kvm_is_error_hva(addr))
1703                 return -EFAULT;
1704         pagefault_disable();
1705         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1706         pagefault_enable();
1707         if (r)
1708                 return -EFAULT;
1709         return 0;
1710 }
1711
1712 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1713                           unsigned long len)
1714 {
1715         gfn_t gfn = gpa >> PAGE_SHIFT;
1716         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1717         int offset = offset_in_page(gpa);
1718
1719         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1720 }
1721 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1722
1723 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1724                                void *data, unsigned long len)
1725 {
1726         gfn_t gfn = gpa >> PAGE_SHIFT;
1727         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1728         int offset = offset_in_page(gpa);
1729
1730         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1731 }
1732 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1733
1734 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1735                                   const void *data, int offset, int len)
1736 {
1737         int r;
1738         unsigned long addr;
1739
1740         addr = gfn_to_hva_memslot(memslot, gfn);
1741         if (kvm_is_error_hva(addr))
1742                 return -EFAULT;
1743         r = __copy_to_user((void __user *)addr + offset, data, len);
1744         if (r)
1745                 return -EFAULT;
1746         mark_page_dirty_in_slot(memslot, gfn);
1747         return 0;
1748 }
1749
1750 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1751                          const void *data, int offset, int len)
1752 {
1753         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1754
1755         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1756 }
1757 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1758
1759 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1760                               const void *data, int offset, int len)
1761 {
1762         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1763
1764         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1765 }
1766 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1767
1768 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1769                     unsigned long len)
1770 {
1771         gfn_t gfn = gpa >> PAGE_SHIFT;
1772         int seg;
1773         int offset = offset_in_page(gpa);
1774         int ret;
1775
1776         while ((seg = next_segment(len, offset)) != 0) {
1777                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1778                 if (ret < 0)
1779                         return ret;
1780                 offset = 0;
1781                 len -= seg;
1782                 data += seg;
1783                 ++gfn;
1784         }
1785         return 0;
1786 }
1787 EXPORT_SYMBOL_GPL(kvm_write_guest);
1788
1789 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1790                          unsigned long len)
1791 {
1792         gfn_t gfn = gpa >> PAGE_SHIFT;
1793         int seg;
1794         int offset = offset_in_page(gpa);
1795         int ret;
1796
1797         while ((seg = next_segment(len, offset)) != 0) {
1798                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1799                 if (ret < 0)
1800                         return ret;
1801                 offset = 0;
1802                 len -= seg;
1803                 data += seg;
1804                 ++gfn;
1805         }
1806         return 0;
1807 }
1808 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1809
1810 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1811                               gpa_t gpa, unsigned long len)
1812 {
1813         struct kvm_memslots *slots = kvm_memslots(kvm);
1814         int offset = offset_in_page(gpa);
1815         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1816         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1817         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1818         gfn_t nr_pages_avail;
1819
1820         ghc->gpa = gpa;
1821         ghc->generation = slots->generation;
1822         ghc->len = len;
1823         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1824         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1825         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1826                 ghc->hva += offset;
1827         } else {
1828                 /*
1829                  * If the requested region crosses two memslots, we still
1830                  * verify that the entire region is valid here.
1831                  */
1832                 while (start_gfn <= end_gfn) {
1833                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1834                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1835                                                    &nr_pages_avail);
1836                         if (kvm_is_error_hva(ghc->hva))
1837                                 return -EFAULT;
1838                         start_gfn += nr_pages_avail;
1839                 }
1840                 /* Use the slow path for cross page reads and writes. */
1841                 ghc->memslot = NULL;
1842         }
1843         return 0;
1844 }
1845 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1846
1847 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1848                            void *data, unsigned long len)
1849 {
1850         struct kvm_memslots *slots = kvm_memslots(kvm);
1851         int r;
1852
1853         BUG_ON(len > ghc->len);
1854
1855         if (slots->generation != ghc->generation)
1856                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1857
1858         if (unlikely(!ghc->memslot))
1859                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1860
1861         if (kvm_is_error_hva(ghc->hva))
1862                 return -EFAULT;
1863
1864         r = __copy_to_user((void __user *)ghc->hva, data, len);
1865         if (r)
1866                 return -EFAULT;
1867         mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1868
1869         return 0;
1870 }
1871 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1872
1873 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1874                            void *data, unsigned long len)
1875 {
1876         struct kvm_memslots *slots = kvm_memslots(kvm);
1877         int r;
1878
1879         BUG_ON(len > ghc->len);
1880
1881         if (slots->generation != ghc->generation)
1882                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1883
1884         if (unlikely(!ghc->memslot))
1885                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1886
1887         if (kvm_is_error_hva(ghc->hva))
1888                 return -EFAULT;
1889
1890         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1891         if (r)
1892                 return -EFAULT;
1893
1894         return 0;
1895 }
1896 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1897
1898 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1899 {
1900         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1901
1902         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1903 }
1904 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1905
1906 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1907 {
1908         gfn_t gfn = gpa >> PAGE_SHIFT;
1909         int seg;
1910         int offset = offset_in_page(gpa);
1911         int ret;
1912
1913         while ((seg = next_segment(len, offset)) != 0) {
1914                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1915                 if (ret < 0)
1916                         return ret;
1917                 offset = 0;
1918                 len -= seg;
1919                 ++gfn;
1920         }
1921         return 0;
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1924
1925 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1926                                     gfn_t gfn)
1927 {
1928         if (memslot && memslot->dirty_bitmap) {
1929                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1930
1931                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1932         }
1933 }
1934
1935 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1936 {
1937         struct kvm_memory_slot *memslot;
1938
1939         memslot = gfn_to_memslot(kvm, gfn);
1940         mark_page_dirty_in_slot(memslot, gfn);
1941 }
1942 EXPORT_SYMBOL_GPL(mark_page_dirty);
1943
1944 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1945 {
1946         struct kvm_memory_slot *memslot;
1947
1948         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1949         mark_page_dirty_in_slot(memslot, gfn);
1950 }
1951 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1952
1953 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1954 {
1955         int old, val;
1956
1957         old = val = vcpu->halt_poll_ns;
1958         /* 10us base */
1959         if (val == 0 && halt_poll_ns_grow)
1960                 val = 10000;
1961         else
1962                 val *= halt_poll_ns_grow;
1963
1964         vcpu->halt_poll_ns = val;
1965         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1966 }
1967
1968 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1969 {
1970         int old, val;
1971
1972         old = val = vcpu->halt_poll_ns;
1973         if (halt_poll_ns_shrink == 0)
1974                 val = 0;
1975         else
1976                 val /= halt_poll_ns_shrink;
1977
1978         vcpu->halt_poll_ns = val;
1979         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1980 }
1981
1982 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1983 {
1984         if (kvm_arch_vcpu_runnable(vcpu)) {
1985                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1986                 return -EINTR;
1987         }
1988         if (kvm_cpu_has_pending_timer(vcpu))
1989                 return -EINTR;
1990         if (signal_pending(current))
1991                 return -EINTR;
1992
1993         return 0;
1994 }
1995
1996 /*
1997  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1998  */
1999 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2000 {
2001         ktime_t start, cur;
2002         DEFINE_WAIT(wait);
2003         bool waited = false;
2004         u64 block_ns;
2005
2006         start = cur = ktime_get();
2007         if (vcpu->halt_poll_ns) {
2008                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2009
2010                 ++vcpu->stat.halt_attempted_poll;
2011                 do {
2012                         /*
2013                          * This sets KVM_REQ_UNHALT if an interrupt
2014                          * arrives.
2015                          */
2016                         if (kvm_vcpu_check_block(vcpu) < 0) {
2017                                 ++vcpu->stat.halt_successful_poll;
2018                                 goto out;
2019                         }
2020                         cur = ktime_get();
2021                 } while (single_task_running() && ktime_before(cur, stop));
2022         }
2023
2024         kvm_arch_vcpu_blocking(vcpu);
2025
2026         for (;;) {
2027                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2028
2029                 if (kvm_vcpu_check_block(vcpu) < 0)
2030                         break;
2031
2032                 waited = true;
2033                 schedule();
2034         }
2035
2036         finish_wait(&vcpu->wq, &wait);
2037         cur = ktime_get();
2038
2039         kvm_arch_vcpu_unblocking(vcpu);
2040 out:
2041         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2042
2043         if (halt_poll_ns) {
2044                 if (block_ns <= vcpu->halt_poll_ns)
2045                         ;
2046                 /* we had a long block, shrink polling */
2047                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2048                         shrink_halt_poll_ns(vcpu);
2049                 /* we had a short halt and our poll time is too small */
2050                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2051                         block_ns < halt_poll_ns)
2052                         grow_halt_poll_ns(vcpu);
2053         } else
2054                 vcpu->halt_poll_ns = 0;
2055
2056         trace_kvm_vcpu_wakeup(block_ns, waited);
2057 }
2058 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2059
2060 #ifndef CONFIG_S390
2061 /*
2062  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2063  */
2064 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2065 {
2066         int me;
2067         int cpu = vcpu->cpu;
2068         wait_queue_head_t *wqp;
2069
2070         wqp = kvm_arch_vcpu_wq(vcpu);
2071         if (waitqueue_active(wqp)) {
2072                 wake_up_interruptible(wqp);
2073                 ++vcpu->stat.halt_wakeup;
2074         }
2075
2076         me = get_cpu();
2077         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2078                 if (kvm_arch_vcpu_should_kick(vcpu))
2079                         smp_send_reschedule(cpu);
2080         put_cpu();
2081 }
2082 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2083 #endif /* !CONFIG_S390 */
2084
2085 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2086 {
2087         struct pid *pid;
2088         struct task_struct *task = NULL;
2089         int ret = 0;
2090
2091         rcu_read_lock();
2092         pid = rcu_dereference(target->pid);
2093         if (pid)
2094                 task = get_pid_task(pid, PIDTYPE_PID);
2095         rcu_read_unlock();
2096         if (!task)
2097                 return ret;
2098         ret = yield_to(task, 1);
2099         put_task_struct(task);
2100
2101         return ret;
2102 }
2103 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2104
2105 /*
2106  * Helper that checks whether a VCPU is eligible for directed yield.
2107  * Most eligible candidate to yield is decided by following heuristics:
2108  *
2109  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2110  *  (preempted lock holder), indicated by @in_spin_loop.
2111  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2112  *
2113  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2114  *  chance last time (mostly it has become eligible now since we have probably
2115  *  yielded to lockholder in last iteration. This is done by toggling
2116  *  @dy_eligible each time a VCPU checked for eligibility.)
2117  *
2118  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2119  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2120  *  burning. Giving priority for a potential lock-holder increases lock
2121  *  progress.
2122  *
2123  *  Since algorithm is based on heuristics, accessing another VCPU data without
2124  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2125  *  and continue with next VCPU and so on.
2126  */
2127 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2128 {
2129 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2130         bool eligible;
2131
2132         eligible = !vcpu->spin_loop.in_spin_loop ||
2133                     vcpu->spin_loop.dy_eligible;
2134
2135         if (vcpu->spin_loop.in_spin_loop)
2136                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2137
2138         return eligible;
2139 #else
2140         return true;
2141 #endif
2142 }
2143
2144 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2145 {
2146         struct kvm *kvm = me->kvm;
2147         struct kvm_vcpu *vcpu;
2148         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2149         int yielded = 0;
2150         int try = 3;
2151         int pass;
2152         int i;
2153
2154         kvm_vcpu_set_in_spin_loop(me, true);
2155         /*
2156          * We boost the priority of a VCPU that is runnable but not
2157          * currently running, because it got preempted by something
2158          * else and called schedule in __vcpu_run.  Hopefully that
2159          * VCPU is holding the lock that we need and will release it.
2160          * We approximate round-robin by starting at the last boosted VCPU.
2161          */
2162         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2163                 kvm_for_each_vcpu(i, vcpu, kvm) {
2164                         if (!pass && i <= last_boosted_vcpu) {
2165                                 i = last_boosted_vcpu;
2166                                 continue;
2167                         } else if (pass && i > last_boosted_vcpu)
2168                                 break;
2169                         if (!ACCESS_ONCE(vcpu->preempted))
2170                                 continue;
2171                         if (vcpu == me)
2172                                 continue;
2173                         if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2174                                 continue;
2175                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2176                                 continue;
2177
2178                         yielded = kvm_vcpu_yield_to(vcpu);
2179                         if (yielded > 0) {
2180                                 kvm->last_boosted_vcpu = i;
2181                                 break;
2182                         } else if (yielded < 0) {
2183                                 try--;
2184                                 if (!try)
2185                                         break;
2186                         }
2187                 }
2188         }
2189         kvm_vcpu_set_in_spin_loop(me, false);
2190
2191         /* Ensure vcpu is not eligible during next spinloop */
2192         kvm_vcpu_set_dy_eligible(me, false);
2193 }
2194 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2195
2196 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2197 {
2198         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2199         struct page *page;
2200
2201         if (vmf->pgoff == 0)
2202                 page = virt_to_page(vcpu->run);
2203 #ifdef CONFIG_X86
2204         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2205                 page = virt_to_page(vcpu->arch.pio_data);
2206 #endif
2207 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2208         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2209                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2210 #endif
2211         else
2212                 return kvm_arch_vcpu_fault(vcpu, vmf);
2213         get_page(page);
2214         vmf->page = page;
2215         return 0;
2216 }
2217
2218 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2219         .fault = kvm_vcpu_fault,
2220 };
2221
2222 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2223 {
2224         vma->vm_ops = &kvm_vcpu_vm_ops;
2225         return 0;
2226 }
2227
2228 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2229 {
2230         struct kvm_vcpu *vcpu = filp->private_data;
2231
2232         kvm_put_kvm(vcpu->kvm);
2233         return 0;
2234 }
2235
2236 static struct file_operations kvm_vcpu_fops = {
2237         .release        = kvm_vcpu_release,
2238         .unlocked_ioctl = kvm_vcpu_ioctl,
2239 #ifdef CONFIG_KVM_COMPAT
2240         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2241 #endif
2242         .mmap           = kvm_vcpu_mmap,
2243         .llseek         = noop_llseek,
2244 };
2245
2246 /*
2247  * Allocates an inode for the vcpu.
2248  */
2249 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2250 {
2251         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2252 }
2253
2254 /*
2255  * Creates some virtual cpus.  Good luck creating more than one.
2256  */
2257 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2258 {
2259         int r;
2260         struct kvm_vcpu *vcpu, *v;
2261
2262         if (id >= KVM_MAX_VCPUS)
2263                 return -EINVAL;
2264
2265         vcpu = kvm_arch_vcpu_create(kvm, id);
2266         if (IS_ERR(vcpu))
2267                 return PTR_ERR(vcpu);
2268
2269         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2270
2271         r = kvm_arch_vcpu_setup(vcpu);
2272         if (r)
2273                 goto vcpu_destroy;
2274
2275         mutex_lock(&kvm->lock);
2276         if (!kvm_vcpu_compatible(vcpu)) {
2277                 r = -EINVAL;
2278                 goto unlock_vcpu_destroy;
2279         }
2280         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2281                 r = -EINVAL;
2282                 goto unlock_vcpu_destroy;
2283         }
2284
2285         kvm_for_each_vcpu(r, v, kvm)
2286                 if (v->vcpu_id == id) {
2287                         r = -EEXIST;
2288                         goto unlock_vcpu_destroy;
2289                 }
2290
2291         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2292
2293         /* Now it's all set up, let userspace reach it */
2294         kvm_get_kvm(kvm);
2295         r = create_vcpu_fd(vcpu);
2296         if (r < 0) {
2297                 kvm_put_kvm(kvm);
2298                 goto unlock_vcpu_destroy;
2299         }
2300
2301         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2302
2303         /*
2304          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2305          * before kvm->online_vcpu's incremented value.
2306          */
2307         smp_wmb();
2308         atomic_inc(&kvm->online_vcpus);
2309
2310         mutex_unlock(&kvm->lock);
2311         kvm_arch_vcpu_postcreate(vcpu);
2312         return r;
2313
2314 unlock_vcpu_destroy:
2315         mutex_unlock(&kvm->lock);
2316 vcpu_destroy:
2317         kvm_arch_vcpu_destroy(vcpu);
2318         return r;
2319 }
2320
2321 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2322 {
2323         if (sigset) {
2324                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2325                 vcpu->sigset_active = 1;
2326                 vcpu->sigset = *sigset;
2327         } else
2328                 vcpu->sigset_active = 0;
2329         return 0;
2330 }
2331
2332 static long kvm_vcpu_ioctl(struct file *filp,
2333                            unsigned int ioctl, unsigned long arg)
2334 {
2335         struct kvm_vcpu *vcpu = filp->private_data;
2336         void __user *argp = (void __user *)arg;
2337         int r;
2338         struct kvm_fpu *fpu = NULL;
2339         struct kvm_sregs *kvm_sregs = NULL;
2340
2341         if (vcpu->kvm->mm != current->mm)
2342                 return -EIO;
2343
2344         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2345                 return -EINVAL;
2346
2347 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2348         /*
2349          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2350          * so vcpu_load() would break it.
2351          */
2352         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2353                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2354 #endif
2355
2356
2357         r = vcpu_load(vcpu);
2358         if (r)
2359                 return r;
2360         switch (ioctl) {
2361         case KVM_RUN:
2362                 r = -EINVAL;
2363                 if (arg)
2364                         goto out;
2365                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2366                         /* The thread running this VCPU changed. */
2367                         struct pid *oldpid = vcpu->pid;
2368                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2369
2370                         rcu_assign_pointer(vcpu->pid, newpid);
2371                         if (oldpid)
2372                                 synchronize_rcu();
2373                         put_pid(oldpid);
2374                 }
2375                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2376                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2377                 break;
2378         case KVM_GET_REGS: {
2379                 struct kvm_regs *kvm_regs;
2380
2381                 r = -ENOMEM;
2382                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2383                 if (!kvm_regs)
2384                         goto out;
2385                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2386                 if (r)
2387                         goto out_free1;
2388                 r = -EFAULT;
2389                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2390                         goto out_free1;
2391                 r = 0;
2392 out_free1:
2393                 kfree(kvm_regs);
2394                 break;
2395         }
2396         case KVM_SET_REGS: {
2397                 struct kvm_regs *kvm_regs;
2398
2399                 r = -ENOMEM;
2400                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2401                 if (IS_ERR(kvm_regs)) {
2402                         r = PTR_ERR(kvm_regs);
2403                         goto out;
2404                 }
2405                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2406                 kfree(kvm_regs);
2407                 break;
2408         }
2409         case KVM_GET_SREGS: {
2410                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2411                 r = -ENOMEM;
2412                 if (!kvm_sregs)
2413                         goto out;
2414                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2415                 if (r)
2416                         goto out;
2417                 r = -EFAULT;
2418                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2419                         goto out;
2420                 r = 0;
2421                 break;
2422         }
2423         case KVM_SET_SREGS: {
2424                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2425                 if (IS_ERR(kvm_sregs)) {
2426                         r = PTR_ERR(kvm_sregs);
2427                         kvm_sregs = NULL;
2428                         goto out;
2429                 }
2430                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2431                 break;
2432         }
2433         case KVM_GET_MP_STATE: {
2434                 struct kvm_mp_state mp_state;
2435
2436                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2437                 if (r)
2438                         goto out;
2439                 r = -EFAULT;
2440                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2441                         goto out;
2442                 r = 0;
2443                 break;
2444         }
2445         case KVM_SET_MP_STATE: {
2446                 struct kvm_mp_state mp_state;
2447
2448                 r = -EFAULT;
2449                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2450                         goto out;
2451                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2452                 break;
2453         }
2454         case KVM_TRANSLATE: {
2455                 struct kvm_translation tr;
2456
2457                 r = -EFAULT;
2458                 if (copy_from_user(&tr, argp, sizeof(tr)))
2459                         goto out;
2460                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2461                 if (r)
2462                         goto out;
2463                 r = -EFAULT;
2464                 if (copy_to_user(argp, &tr, sizeof(tr)))
2465                         goto out;
2466                 r = 0;
2467                 break;
2468         }
2469         case KVM_SET_GUEST_DEBUG: {
2470                 struct kvm_guest_debug dbg;
2471
2472                 r = -EFAULT;
2473                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2474                         goto out;
2475                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2476                 break;
2477         }
2478         case KVM_SET_SIGNAL_MASK: {
2479                 struct kvm_signal_mask __user *sigmask_arg = argp;
2480                 struct kvm_signal_mask kvm_sigmask;
2481                 sigset_t sigset, *p;
2482
2483                 p = NULL;
2484                 if (argp) {
2485                         r = -EFAULT;
2486                         if (copy_from_user(&kvm_sigmask, argp,
2487                                            sizeof(kvm_sigmask)))
2488                                 goto out;
2489                         r = -EINVAL;
2490                         if (kvm_sigmask.len != sizeof(sigset))
2491                                 goto out;
2492                         r = -EFAULT;
2493                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2494                                            sizeof(sigset)))
2495                                 goto out;
2496                         p = &sigset;
2497                 }
2498                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2499                 break;
2500         }
2501         case KVM_GET_FPU: {
2502                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2503                 r = -ENOMEM;
2504                 if (!fpu)
2505                         goto out;
2506                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2507                 if (r)
2508                         goto out;
2509                 r = -EFAULT;
2510                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2511                         goto out;
2512                 r = 0;
2513                 break;
2514         }
2515         case KVM_SET_FPU: {
2516                 fpu = memdup_user(argp, sizeof(*fpu));
2517                 if (IS_ERR(fpu)) {
2518                         r = PTR_ERR(fpu);
2519                         fpu = NULL;
2520                         goto out;
2521                 }
2522                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2523                 break;
2524         }
2525         default:
2526                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2527         }
2528 out:
2529         vcpu_put(vcpu);
2530         kfree(fpu);
2531         kfree(kvm_sregs);
2532         return r;
2533 }
2534
2535 #ifdef CONFIG_KVM_COMPAT
2536 static long kvm_vcpu_compat_ioctl(struct file *filp,
2537                                   unsigned int ioctl, unsigned long arg)
2538 {
2539         struct kvm_vcpu *vcpu = filp->private_data;
2540         void __user *argp = compat_ptr(arg);
2541         int r;
2542
2543         if (vcpu->kvm->mm != current->mm)
2544                 return -EIO;
2545
2546         switch (ioctl) {
2547         case KVM_SET_SIGNAL_MASK: {
2548                 struct kvm_signal_mask __user *sigmask_arg = argp;
2549                 struct kvm_signal_mask kvm_sigmask;
2550                 compat_sigset_t csigset;
2551                 sigset_t sigset;
2552
2553                 if (argp) {
2554                         r = -EFAULT;
2555                         if (copy_from_user(&kvm_sigmask, argp,
2556                                            sizeof(kvm_sigmask)))
2557                                 goto out;
2558                         r = -EINVAL;
2559                         if (kvm_sigmask.len != sizeof(csigset))
2560                                 goto out;
2561                         r = -EFAULT;
2562                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2563                                            sizeof(csigset)))
2564                                 goto out;
2565                         sigset_from_compat(&sigset, &csigset);
2566                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2567                 } else
2568                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2569                 break;
2570         }
2571         default:
2572                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2573         }
2574
2575 out:
2576         return r;
2577 }
2578 #endif
2579
2580 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2581                                  int (*accessor)(struct kvm_device *dev,
2582                                                  struct kvm_device_attr *attr),
2583                                  unsigned long arg)
2584 {
2585         struct kvm_device_attr attr;
2586
2587         if (!accessor)
2588                 return -EPERM;
2589
2590         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2591                 return -EFAULT;
2592
2593         return accessor(dev, &attr);
2594 }
2595
2596 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2597                              unsigned long arg)
2598 {
2599         struct kvm_device *dev = filp->private_data;
2600
2601         switch (ioctl) {
2602         case KVM_SET_DEVICE_ATTR:
2603                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2604         case KVM_GET_DEVICE_ATTR:
2605                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2606         case KVM_HAS_DEVICE_ATTR:
2607                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2608         default:
2609                 if (dev->ops->ioctl)
2610                         return dev->ops->ioctl(dev, ioctl, arg);
2611
2612                 return -ENOTTY;
2613         }
2614 }
2615
2616 static int kvm_device_release(struct inode *inode, struct file *filp)
2617 {
2618         struct kvm_device *dev = filp->private_data;
2619         struct kvm *kvm = dev->kvm;
2620
2621         kvm_put_kvm(kvm);
2622         return 0;
2623 }
2624
2625 static const struct file_operations kvm_device_fops = {
2626         .unlocked_ioctl = kvm_device_ioctl,
2627 #ifdef CONFIG_KVM_COMPAT
2628         .compat_ioctl = kvm_device_ioctl,
2629 #endif
2630         .release = kvm_device_release,
2631 };
2632
2633 struct kvm_device *kvm_device_from_filp(struct file *filp)
2634 {
2635         if (filp->f_op != &kvm_device_fops)
2636                 return NULL;
2637
2638         return filp->private_data;
2639 }
2640
2641 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2642 #ifdef CONFIG_KVM_MPIC
2643         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2644         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2645 #endif
2646
2647 #ifdef CONFIG_KVM_XICS
2648         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2649 #endif
2650 };
2651
2652 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2653 {
2654         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2655                 return -ENOSPC;
2656
2657         if (kvm_device_ops_table[type] != NULL)
2658                 return -EEXIST;
2659
2660         kvm_device_ops_table[type] = ops;
2661         return 0;
2662 }
2663
2664 void kvm_unregister_device_ops(u32 type)
2665 {
2666         if (kvm_device_ops_table[type] != NULL)
2667                 kvm_device_ops_table[type] = NULL;
2668 }
2669
2670 static int kvm_ioctl_create_device(struct kvm *kvm,
2671                                    struct kvm_create_device *cd)
2672 {
2673         struct kvm_device_ops *ops = NULL;
2674         struct kvm_device *dev;
2675         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2676         int ret;
2677
2678         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2679                 return -ENODEV;
2680
2681         ops = kvm_device_ops_table[cd->type];
2682         if (ops == NULL)
2683                 return -ENODEV;
2684
2685         if (test)
2686                 return 0;
2687
2688         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2689         if (!dev)
2690                 return -ENOMEM;
2691
2692         dev->ops = ops;
2693         dev->kvm = kvm;
2694
2695         ret = ops->create(dev, cd->type);
2696         if (ret < 0) {
2697                 kfree(dev);
2698                 return ret;
2699         }
2700
2701         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2702         if (ret < 0) {
2703                 ops->destroy(dev);
2704                 return ret;
2705         }
2706
2707         list_add(&dev->vm_node, &kvm->devices);
2708         kvm_get_kvm(kvm);
2709         cd->fd = ret;
2710         return 0;
2711 }
2712
2713 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2714 {
2715         switch (arg) {
2716         case KVM_CAP_USER_MEMORY:
2717         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2718         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2719         case KVM_CAP_INTERNAL_ERROR_DATA:
2720 #ifdef CONFIG_HAVE_KVM_MSI
2721         case KVM_CAP_SIGNAL_MSI:
2722 #endif
2723 #ifdef CONFIG_HAVE_KVM_IRQFD
2724         case KVM_CAP_IRQFD:
2725         case KVM_CAP_IRQFD_RESAMPLE:
2726 #endif
2727         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2728         case KVM_CAP_CHECK_EXTENSION_VM:
2729                 return 1;
2730 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2731         case KVM_CAP_IRQ_ROUTING:
2732                 return KVM_MAX_IRQ_ROUTES;
2733 #endif
2734 #if KVM_ADDRESS_SPACE_NUM > 1
2735         case KVM_CAP_MULTI_ADDRESS_SPACE:
2736                 return KVM_ADDRESS_SPACE_NUM;
2737 #endif
2738         default:
2739                 break;
2740         }
2741         return kvm_vm_ioctl_check_extension(kvm, arg);
2742 }
2743
2744 static long kvm_vm_ioctl(struct file *filp,
2745                            unsigned int ioctl, unsigned long arg)
2746 {
2747         struct kvm *kvm = filp->private_data;
2748         void __user *argp = (void __user *)arg;
2749         int r;
2750
2751         if (kvm->mm != current->mm)
2752                 return -EIO;
2753         switch (ioctl) {
2754         case KVM_CREATE_VCPU:
2755                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2756                 break;
2757         case KVM_SET_USER_MEMORY_REGION: {
2758                 struct kvm_userspace_memory_region kvm_userspace_mem;
2759
2760                 r = -EFAULT;
2761                 if (copy_from_user(&kvm_userspace_mem, argp,
2762                                                 sizeof(kvm_userspace_mem)))
2763                         goto out;
2764
2765                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2766                 break;
2767         }
2768         case KVM_GET_DIRTY_LOG: {
2769                 struct kvm_dirty_log log;
2770
2771                 r = -EFAULT;
2772                 if (copy_from_user(&log, argp, sizeof(log)))
2773                         goto out;
2774                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2775                 break;
2776         }
2777 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2778         case KVM_REGISTER_COALESCED_MMIO: {
2779                 struct kvm_coalesced_mmio_zone zone;
2780
2781                 r = -EFAULT;
2782                 if (copy_from_user(&zone, argp, sizeof(zone)))
2783                         goto out;
2784                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2785                 break;
2786         }
2787         case KVM_UNREGISTER_COALESCED_MMIO: {
2788                 struct kvm_coalesced_mmio_zone zone;
2789
2790                 r = -EFAULT;
2791                 if (copy_from_user(&zone, argp, sizeof(zone)))
2792                         goto out;
2793                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2794                 break;
2795         }
2796 #endif
2797         case KVM_IRQFD: {
2798                 struct kvm_irqfd data;
2799
2800                 r = -EFAULT;
2801                 if (copy_from_user(&data, argp, sizeof(data)))
2802                         goto out;
2803                 r = kvm_irqfd(kvm, &data);
2804                 break;
2805         }
2806         case KVM_IOEVENTFD: {
2807                 struct kvm_ioeventfd data;
2808
2809                 r = -EFAULT;
2810                 if (copy_from_user(&data, argp, sizeof(data)))
2811                         goto out;
2812                 r = kvm_ioeventfd(kvm, &data);
2813                 break;
2814         }
2815 #ifdef CONFIG_HAVE_KVM_MSI
2816         case KVM_SIGNAL_MSI: {
2817                 struct kvm_msi msi;
2818
2819                 r = -EFAULT;
2820                 if (copy_from_user(&msi, argp, sizeof(msi)))
2821                         goto out;
2822                 r = kvm_send_userspace_msi(kvm, &msi);
2823                 break;
2824         }
2825 #endif
2826 #ifdef __KVM_HAVE_IRQ_LINE
2827         case KVM_IRQ_LINE_STATUS:
2828         case KVM_IRQ_LINE: {
2829                 struct kvm_irq_level irq_event;
2830
2831                 r = -EFAULT;
2832                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2833                         goto out;
2834
2835                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2836                                         ioctl == KVM_IRQ_LINE_STATUS);
2837                 if (r)
2838                         goto out;
2839
2840                 r = -EFAULT;
2841                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2842                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2843                                 goto out;
2844                 }
2845
2846                 r = 0;
2847                 break;
2848         }
2849 #endif
2850 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2851         case KVM_SET_GSI_ROUTING: {
2852                 struct kvm_irq_routing routing;
2853                 struct kvm_irq_routing __user *urouting;
2854                 struct kvm_irq_routing_entry *entries;
2855
2856                 r = -EFAULT;
2857                 if (copy_from_user(&routing, argp, sizeof(routing)))
2858                         goto out;
2859                 r = -EINVAL;
2860                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2861                         goto out;
2862                 if (routing.flags)
2863                         goto out;
2864                 r = -ENOMEM;
2865                 entries = vmalloc(routing.nr * sizeof(*entries));
2866                 if (!entries)
2867                         goto out;
2868                 r = -EFAULT;
2869                 urouting = argp;
2870                 if (copy_from_user(entries, urouting->entries,
2871                                    routing.nr * sizeof(*entries)))
2872                         goto out_free_irq_routing;
2873                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2874                                         routing.flags);
2875 out_free_irq_routing:
2876                 vfree(entries);
2877                 break;
2878         }
2879 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2880         case KVM_CREATE_DEVICE: {
2881                 struct kvm_create_device cd;
2882
2883                 r = -EFAULT;
2884                 if (copy_from_user(&cd, argp, sizeof(cd)))
2885                         goto out;
2886
2887                 r = kvm_ioctl_create_device(kvm, &cd);
2888                 if (r)
2889                         goto out;
2890
2891                 r = -EFAULT;
2892                 if (copy_to_user(argp, &cd, sizeof(cd)))
2893                         goto out;
2894
2895                 r = 0;
2896                 break;
2897         }
2898         case KVM_CHECK_EXTENSION:
2899                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2900                 break;
2901         default:
2902                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2903         }
2904 out:
2905         return r;
2906 }
2907
2908 #ifdef CONFIG_KVM_COMPAT
2909 struct compat_kvm_dirty_log {
2910         __u32 slot;
2911         __u32 padding1;
2912         union {
2913                 compat_uptr_t dirty_bitmap; /* one bit per page */
2914                 __u64 padding2;
2915         };
2916 };
2917
2918 static long kvm_vm_compat_ioctl(struct file *filp,
2919                            unsigned int ioctl, unsigned long arg)
2920 {
2921         struct kvm *kvm = filp->private_data;
2922         int r;
2923
2924         if (kvm->mm != current->mm)
2925                 return -EIO;
2926         switch (ioctl) {
2927         case KVM_GET_DIRTY_LOG: {
2928                 struct compat_kvm_dirty_log compat_log;
2929                 struct kvm_dirty_log log;
2930
2931                 r = -EFAULT;
2932                 if (copy_from_user(&compat_log, (void __user *)arg,
2933                                    sizeof(compat_log)))
2934                         goto out;
2935                 log.slot         = compat_log.slot;
2936                 log.padding1     = compat_log.padding1;
2937                 log.padding2     = compat_log.padding2;
2938                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2939
2940                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2941                 break;
2942         }
2943         default:
2944                 r = kvm_vm_ioctl(filp, ioctl, arg);
2945         }
2946
2947 out:
2948         return r;
2949 }
2950 #endif
2951
2952 static struct file_operations kvm_vm_fops = {
2953         .release        = kvm_vm_release,
2954         .unlocked_ioctl = kvm_vm_ioctl,
2955 #ifdef CONFIG_KVM_COMPAT
2956         .compat_ioctl   = kvm_vm_compat_ioctl,
2957 #endif
2958         .llseek         = noop_llseek,
2959 };
2960
2961 static int kvm_dev_ioctl_create_vm(unsigned long type)
2962 {
2963         int r;
2964         struct kvm *kvm;
2965
2966         kvm = kvm_create_vm(type);
2967         if (IS_ERR(kvm))
2968                 return PTR_ERR(kvm);
2969 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2970         r = kvm_coalesced_mmio_init(kvm);
2971         if (r < 0) {
2972                 kvm_put_kvm(kvm);
2973                 return r;
2974         }
2975 #endif
2976         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2977         if (r < 0)
2978                 kvm_put_kvm(kvm);
2979
2980         return r;
2981 }
2982
2983 static long kvm_dev_ioctl(struct file *filp,
2984                           unsigned int ioctl, unsigned long arg)
2985 {
2986         long r = -EINVAL;
2987
2988         switch (ioctl) {
2989         case KVM_GET_API_VERSION:
2990                 if (arg)
2991                         goto out;
2992                 r = KVM_API_VERSION;
2993                 break;
2994         case KVM_CREATE_VM:
2995                 r = kvm_dev_ioctl_create_vm(arg);
2996                 break;
2997         case KVM_CHECK_EXTENSION:
2998                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2999                 break;
3000         case KVM_GET_VCPU_MMAP_SIZE:
3001                 if (arg)
3002                         goto out;
3003                 r = PAGE_SIZE;     /* struct kvm_run */
3004 #ifdef CONFIG_X86
3005                 r += PAGE_SIZE;    /* pio data page */
3006 #endif
3007 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3008                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3009 #endif
3010                 break;
3011         case KVM_TRACE_ENABLE:
3012         case KVM_TRACE_PAUSE:
3013         case KVM_TRACE_DISABLE:
3014                 r = -EOPNOTSUPP;
3015                 break;
3016         default:
3017                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3018         }
3019 out:
3020         return r;
3021 }
3022
3023 static struct file_operations kvm_chardev_ops = {
3024         .unlocked_ioctl = kvm_dev_ioctl,
3025         .compat_ioctl   = kvm_dev_ioctl,
3026         .llseek         = noop_llseek,
3027 };
3028
3029 static struct miscdevice kvm_dev = {
3030         KVM_MINOR,
3031         "kvm",
3032         &kvm_chardev_ops,
3033 };
3034
3035 static void hardware_enable_nolock(void *junk)
3036 {
3037         int cpu = raw_smp_processor_id();
3038         int r;
3039
3040         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3041                 return;
3042
3043         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3044
3045         r = kvm_arch_hardware_enable();
3046
3047         if (r) {
3048                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3049                 atomic_inc(&hardware_enable_failed);
3050                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3051         }
3052 }
3053
3054 static void hardware_enable(void)
3055 {
3056         raw_spin_lock(&kvm_count_lock);
3057         if (kvm_usage_count)
3058                 hardware_enable_nolock(NULL);
3059         raw_spin_unlock(&kvm_count_lock);
3060 }
3061
3062 static void hardware_disable_nolock(void *junk)
3063 {
3064         int cpu = raw_smp_processor_id();
3065
3066         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3067                 return;
3068         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3069         kvm_arch_hardware_disable();
3070 }
3071
3072 static void hardware_disable(void)
3073 {
3074         raw_spin_lock(&kvm_count_lock);
3075         if (kvm_usage_count)
3076                 hardware_disable_nolock(NULL);
3077         raw_spin_unlock(&kvm_count_lock);
3078 }
3079
3080 static void hardware_disable_all_nolock(void)
3081 {
3082         BUG_ON(!kvm_usage_count);
3083
3084         kvm_usage_count--;
3085         if (!kvm_usage_count)
3086                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3087 }
3088
3089 static void hardware_disable_all(void)
3090 {
3091         raw_spin_lock(&kvm_count_lock);
3092         hardware_disable_all_nolock();
3093         raw_spin_unlock(&kvm_count_lock);
3094 }
3095
3096 static int hardware_enable_all(void)
3097 {
3098         int r = 0;
3099
3100         raw_spin_lock(&kvm_count_lock);
3101
3102         kvm_usage_count++;
3103         if (kvm_usage_count == 1) {
3104                 atomic_set(&hardware_enable_failed, 0);
3105                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3106
3107                 if (atomic_read(&hardware_enable_failed)) {
3108                         hardware_disable_all_nolock();
3109                         r = -EBUSY;
3110                 }
3111         }
3112
3113         raw_spin_unlock(&kvm_count_lock);
3114
3115         return r;
3116 }
3117
3118 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3119                            void *v)
3120 {
3121         val &= ~CPU_TASKS_FROZEN;
3122         switch (val) {
3123         case CPU_DYING:
3124                 hardware_disable();
3125                 break;
3126         case CPU_STARTING:
3127                 hardware_enable();
3128                 break;
3129         }
3130         return NOTIFY_OK;
3131 }
3132
3133 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3134                       void *v)
3135 {
3136         /*
3137          * Some (well, at least mine) BIOSes hang on reboot if
3138          * in vmx root mode.
3139          *
3140          * And Intel TXT required VMX off for all cpu when system shutdown.
3141          */
3142         pr_info("kvm: exiting hardware virtualization\n");
3143         kvm_rebooting = true;
3144         on_each_cpu(hardware_disable_nolock, NULL, 1);
3145         return NOTIFY_OK;
3146 }
3147
3148 static struct notifier_block kvm_reboot_notifier = {
3149         .notifier_call = kvm_reboot,
3150         .priority = 0,
3151 };
3152
3153 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3154 {
3155         int i;
3156
3157         for (i = 0; i < bus->dev_count; i++) {
3158                 struct kvm_io_device *pos = bus->range[i].dev;
3159
3160                 kvm_iodevice_destructor(pos);
3161         }
3162         kfree(bus);
3163 }
3164
3165 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3166                                  const struct kvm_io_range *r2)
3167 {
3168         gpa_t addr1 = r1->addr;
3169         gpa_t addr2 = r2->addr;
3170
3171         if (addr1 < addr2)
3172                 return -1;
3173
3174         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3175          * accept any overlapping write.  Any order is acceptable for
3176          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3177          * we process all of them.
3178          */
3179         if (r2->len) {
3180                 addr1 += r1->len;
3181                 addr2 += r2->len;
3182         }
3183
3184         if (addr1 > addr2)
3185                 return 1;
3186
3187         return 0;
3188 }
3189
3190 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3191 {
3192         return kvm_io_bus_cmp(p1, p2);
3193 }
3194
3195 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3196                           gpa_t addr, int len)
3197 {
3198         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3199                 .addr = addr,
3200                 .len = len,
3201                 .dev = dev,
3202         };
3203
3204         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3205                 kvm_io_bus_sort_cmp, NULL);
3206
3207         return 0;
3208 }
3209
3210 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3211                              gpa_t addr, int len)
3212 {
3213         struct kvm_io_range *range, key;
3214         int off;
3215
3216         key = (struct kvm_io_range) {
3217                 .addr = addr,
3218                 .len = len,
3219         };
3220
3221         range = bsearch(&key, bus->range, bus->dev_count,
3222                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3223         if (range == NULL)
3224                 return -ENOENT;
3225
3226         off = range - bus->range;
3227
3228         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3229                 off--;
3230
3231         return off;
3232 }
3233
3234 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3235                               struct kvm_io_range *range, const void *val)
3236 {
3237         int idx;
3238
3239         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3240         if (idx < 0)
3241                 return -EOPNOTSUPP;
3242
3243         while (idx < bus->dev_count &&
3244                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3245                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3246                                         range->len, val))
3247                         return idx;
3248                 idx++;
3249         }
3250
3251         return -EOPNOTSUPP;
3252 }
3253
3254 /* kvm_io_bus_write - called under kvm->slots_lock */
3255 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3256                      int len, const void *val)
3257 {
3258         struct kvm_io_bus *bus;
3259         struct kvm_io_range range;
3260         int r;
3261
3262         range = (struct kvm_io_range) {
3263                 .addr = addr,
3264                 .len = len,
3265         };
3266
3267         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3268         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3269         return r < 0 ? r : 0;
3270 }
3271
3272 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3273 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3274                             gpa_t addr, int len, const void *val, long cookie)
3275 {
3276         struct kvm_io_bus *bus;
3277         struct kvm_io_range range;
3278
3279         range = (struct kvm_io_range) {
3280                 .addr = addr,
3281                 .len = len,
3282         };
3283
3284         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3285
3286         /* First try the device referenced by cookie. */
3287         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3288             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3289                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3290                                         val))
3291                         return cookie;
3292
3293         /*
3294          * cookie contained garbage; fall back to search and return the
3295          * correct cookie value.
3296          */
3297         return __kvm_io_bus_write(vcpu, bus, &range, val);
3298 }
3299
3300 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3301                              struct kvm_io_range *range, void *val)
3302 {
3303         int idx;
3304
3305         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3306         if (idx < 0)
3307                 return -EOPNOTSUPP;
3308
3309         while (idx < bus->dev_count &&
3310                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3311                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3312                                        range->len, val))
3313                         return idx;
3314                 idx++;
3315         }
3316
3317         return -EOPNOTSUPP;
3318 }
3319 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3320
3321 /* kvm_io_bus_read - called under kvm->slots_lock */
3322 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3323                     int len, void *val)
3324 {
3325         struct kvm_io_bus *bus;
3326         struct kvm_io_range range;
3327         int r;
3328
3329         range = (struct kvm_io_range) {
3330                 .addr = addr,
3331                 .len = len,
3332         };
3333
3334         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3335         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3336         return r < 0 ? r : 0;
3337 }
3338
3339
3340 /* Caller must hold slots_lock. */
3341 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3342                             int len, struct kvm_io_device *dev)
3343 {
3344         struct kvm_io_bus *new_bus, *bus;
3345
3346         bus = kvm->buses[bus_idx];
3347         /* exclude ioeventfd which is limited by maximum fd */
3348         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3349                 return -ENOSPC;
3350
3351         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3352                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3353         if (!new_bus)
3354                 return -ENOMEM;
3355         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3356                sizeof(struct kvm_io_range)));
3357         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3358         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3359         synchronize_srcu_expedited(&kvm->srcu);
3360         kfree(bus);
3361
3362         return 0;
3363 }
3364
3365 /* Caller must hold slots_lock. */
3366 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3367                               struct kvm_io_device *dev)
3368 {
3369         int i, r;
3370         struct kvm_io_bus *new_bus, *bus;
3371
3372         bus = kvm->buses[bus_idx];
3373         r = -ENOENT;
3374         for (i = 0; i < bus->dev_count; i++)
3375                 if (bus->range[i].dev == dev) {
3376                         r = 0;
3377                         break;
3378                 }
3379
3380         if (r)
3381                 return r;
3382
3383         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3384                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3385         if (!new_bus)
3386                 return -ENOMEM;
3387
3388         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3389         new_bus->dev_count--;
3390         memcpy(new_bus->range + i, bus->range + i + 1,
3391                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3392
3393         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3394         synchronize_srcu_expedited(&kvm->srcu);
3395         kfree(bus);
3396         return r;
3397 }
3398
3399 static struct notifier_block kvm_cpu_notifier = {
3400         .notifier_call = kvm_cpu_hotplug,
3401 };
3402
3403 static int vm_stat_get(void *_offset, u64 *val)
3404 {
3405         unsigned offset = (long)_offset;
3406         struct kvm *kvm;
3407
3408         *val = 0;
3409         spin_lock(&kvm_lock);
3410         list_for_each_entry(kvm, &vm_list, vm_list)
3411                 *val += *(u32 *)((void *)kvm + offset);
3412         spin_unlock(&kvm_lock);
3413         return 0;
3414 }
3415
3416 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3417
3418 static int vcpu_stat_get(void *_offset, u64 *val)
3419 {
3420         unsigned offset = (long)_offset;
3421         struct kvm *kvm;
3422         struct kvm_vcpu *vcpu;
3423         int i;
3424
3425         *val = 0;
3426         spin_lock(&kvm_lock);
3427         list_for_each_entry(kvm, &vm_list, vm_list)
3428                 kvm_for_each_vcpu(i, vcpu, kvm)
3429                         *val += *(u32 *)((void *)vcpu + offset);
3430
3431         spin_unlock(&kvm_lock);
3432         return 0;
3433 }
3434
3435 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3436
3437 static const struct file_operations *stat_fops[] = {
3438         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3439         [KVM_STAT_VM]   = &vm_stat_fops,
3440 };
3441
3442 static int kvm_init_debug(void)
3443 {
3444         int r = -EEXIST;
3445         struct kvm_stats_debugfs_item *p;
3446
3447         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3448         if (kvm_debugfs_dir == NULL)
3449                 goto out;
3450
3451         for (p = debugfs_entries; p->name; ++p) {
3452                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3453                                                 (void *)(long)p->offset,
3454                                                 stat_fops[p->kind]);
3455                 if (p->dentry == NULL)
3456                         goto out_dir;
3457         }
3458
3459         return 0;
3460
3461 out_dir:
3462         debugfs_remove_recursive(kvm_debugfs_dir);
3463 out:
3464         return r;
3465 }
3466
3467 static void kvm_exit_debug(void)
3468 {
3469         struct kvm_stats_debugfs_item *p;
3470
3471         for (p = debugfs_entries; p->name; ++p)
3472                 debugfs_remove(p->dentry);
3473         debugfs_remove(kvm_debugfs_dir);
3474 }
3475
3476 static int kvm_suspend(void)
3477 {
3478         if (kvm_usage_count)
3479                 hardware_disable_nolock(NULL);
3480         return 0;
3481 }
3482
3483 static void kvm_resume(void)
3484 {
3485         if (kvm_usage_count) {
3486                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3487                 hardware_enable_nolock(NULL);
3488         }
3489 }
3490
3491 static struct syscore_ops kvm_syscore_ops = {
3492         .suspend = kvm_suspend,
3493         .resume = kvm_resume,
3494 };
3495
3496 static inline
3497 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3498 {
3499         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3500 }
3501
3502 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3503 {
3504         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3505
3506         if (vcpu->preempted)
3507                 vcpu->preempted = false;
3508
3509         kvm_arch_sched_in(vcpu, cpu);
3510
3511         kvm_arch_vcpu_load(vcpu, cpu);
3512 }
3513
3514 static void kvm_sched_out(struct preempt_notifier *pn,
3515                           struct task_struct *next)
3516 {
3517         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3518
3519         if (current->state == TASK_RUNNING)
3520                 vcpu->preempted = true;
3521         kvm_arch_vcpu_put(vcpu);
3522 }
3523
3524 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3525                   struct module *module)
3526 {
3527         int r;
3528         int cpu;
3529
3530         r = kvm_arch_init(opaque);
3531         if (r)
3532                 goto out_fail;
3533
3534         /*
3535          * kvm_arch_init makes sure there's at most one caller
3536          * for architectures that support multiple implementations,
3537          * like intel and amd on x86.
3538          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3539          * conflicts in case kvm is already setup for another implementation.
3540          */
3541         r = kvm_irqfd_init();
3542         if (r)
3543                 goto out_irqfd;
3544
3545         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3546                 r = -ENOMEM;
3547                 goto out_free_0;
3548         }
3549
3550         r = kvm_arch_hardware_setup();
3551         if (r < 0)
3552                 goto out_free_0a;
3553
3554         for_each_online_cpu(cpu) {
3555                 smp_call_function_single(cpu,
3556                                 kvm_arch_check_processor_compat,
3557                                 &r, 1);
3558                 if (r < 0)
3559                         goto out_free_1;
3560         }
3561
3562         r = register_cpu_notifier(&kvm_cpu_notifier);
3563         if (r)
3564                 goto out_free_2;
3565         register_reboot_notifier(&kvm_reboot_notifier);
3566
3567         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3568         if (!vcpu_align)
3569                 vcpu_align = __alignof__(struct kvm_vcpu);
3570         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3571                                            0, NULL);
3572         if (!kvm_vcpu_cache) {
3573                 r = -ENOMEM;
3574                 goto out_free_3;
3575         }
3576
3577         r = kvm_async_pf_init();
3578         if (r)
3579                 goto out_free;
3580
3581         kvm_chardev_ops.owner = module;
3582         kvm_vm_fops.owner = module;
3583         kvm_vcpu_fops.owner = module;
3584
3585         r = misc_register(&kvm_dev);
3586         if (r) {
3587                 pr_err("kvm: misc device register failed\n");
3588                 goto out_unreg;
3589         }
3590
3591         register_syscore_ops(&kvm_syscore_ops);
3592
3593         kvm_preempt_ops.sched_in = kvm_sched_in;
3594         kvm_preempt_ops.sched_out = kvm_sched_out;
3595
3596         r = kvm_init_debug();
3597         if (r) {
3598                 pr_err("kvm: create debugfs files failed\n");
3599                 goto out_undebugfs;
3600         }
3601
3602         r = kvm_vfio_ops_init();
3603         WARN_ON(r);
3604
3605         return 0;
3606
3607 out_undebugfs:
3608         unregister_syscore_ops(&kvm_syscore_ops);
3609         misc_deregister(&kvm_dev);
3610 out_unreg:
3611         kvm_async_pf_deinit();
3612 out_free:
3613         kmem_cache_destroy(kvm_vcpu_cache);
3614 out_free_3:
3615         unregister_reboot_notifier(&kvm_reboot_notifier);
3616         unregister_cpu_notifier(&kvm_cpu_notifier);
3617 out_free_2:
3618 out_free_1:
3619         kvm_arch_hardware_unsetup();
3620 out_free_0a:
3621         free_cpumask_var(cpus_hardware_enabled);
3622 out_free_0:
3623         kvm_irqfd_exit();
3624 out_irqfd:
3625         kvm_arch_exit();
3626 out_fail:
3627         return r;
3628 }
3629 EXPORT_SYMBOL_GPL(kvm_init);
3630
3631 void kvm_exit(void)
3632 {
3633         kvm_exit_debug();
3634         misc_deregister(&kvm_dev);
3635         kmem_cache_destroy(kvm_vcpu_cache);
3636         kvm_async_pf_deinit();
3637         unregister_syscore_ops(&kvm_syscore_ops);
3638         unregister_reboot_notifier(&kvm_reboot_notifier);
3639         unregister_cpu_notifier(&kvm_cpu_notifier);
3640         on_each_cpu(hardware_disable_nolock, NULL, 1);
3641         kvm_arch_hardware_unsetup();
3642         kvm_arch_exit();
3643         kvm_irqfd_exit();
3644         free_cpumask_var(cpus_hardware_enabled);
3645         kvm_vfio_ops_exit();
3646 }
3647 EXPORT_SYMBOL_GPL(kvm_exit);