]> git.karo-electronics.de Git - karo-tx-uboot.git/blob - arch/arm/cpu/armv7/omap-common/emif-common.c
f5b22f6a783626590f06123050437e8d3ad14b21
[karo-tx-uboot.git] / arch / arm / cpu / armv7 / omap-common / emif-common.c
1 /*
2  * EMIF programming
3  *
4  * (C) Copyright 2010
5  * Texas Instruments, <www.ti.com>
6  *
7  * Aneesh V <aneesh@ti.com>
8  *
9  * SPDX-License-Identifier:     GPL-2.0+
10  */
11
12 #include <common.h>
13 #include <asm/emif.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/sys_proto.h>
16 #include <asm/omap_common.h>
17 #include <asm/utils.h>
18 #include <linux/compiler.h>
19
20 static int emif1_enabled = -1, emif2_enabled = -1;
21
22 void set_lpmode_selfrefresh(u32 base)
23 {
24         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
25         u32 reg;
26
27         reg = readl(&emif->emif_pwr_mgmt_ctrl);
28         reg &= ~EMIF_REG_LP_MODE_MASK;
29         reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
30         reg &= ~EMIF_REG_SR_TIM_MASK;
31         writel(reg, &emif->emif_pwr_mgmt_ctrl);
32
33         /* dummy read for the new SR_TIM to be loaded */
34         readl(&emif->emif_pwr_mgmt_ctrl);
35 }
36
37 void force_emif_self_refresh()
38 {
39         set_lpmode_selfrefresh(EMIF1_BASE);
40         set_lpmode_selfrefresh(EMIF2_BASE);
41 }
42
43 inline u32 emif_num(u32 base)
44 {
45         if (base == EMIF1_BASE)
46                 return 1;
47         else if (base == EMIF2_BASE)
48                 return 2;
49         else
50                 return 0;
51 }
52
53 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
54 {
55         u32 mr;
56         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
57
58         mr_addr |= cs << EMIF_REG_CS_SHIFT;
59         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
60         if (omap_revision() == OMAP4430_ES2_0)
61                 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
62         else
63                 mr = readl(&emif->emif_lpddr2_mode_reg_data);
64         debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
65               cs, mr_addr, mr);
66         if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
67             ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
68             ((mr & 0xff000000) >> 24) == (mr & 0xff))
69                 return mr & 0xff;
70         else
71                 return mr;
72 }
73
74 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
75 {
76         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
77
78         mr_addr |= cs << EMIF_REG_CS_SHIFT;
79         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
80         writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
81 }
82
83 void emif_reset_phy(u32 base)
84 {
85         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
86         u32 iodft;
87
88         iodft = readl(&emif->emif_iodft_tlgc);
89         iodft |= EMIF_REG_RESET_PHY_MASK;
90         writel(iodft, &emif->emif_iodft_tlgc);
91 }
92
93 static void do_lpddr2_init(u32 base, u32 cs)
94 {
95         u32 mr_addr;
96         const struct lpddr2_mr_regs *mr_regs;
97
98         get_lpddr2_mr_regs(&mr_regs);
99         /* Wait till device auto initialization is complete */
100         while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
101                 ;
102         set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
103         /*
104          * tZQINIT = 1 us
105          * Enough loops assuming a maximum of 2GHz
106          */
107
108         sdelay(2000);
109
110         set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
111         set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
112
113         /*
114          * Enable refresh along with writing MR2
115          * Encoding of RL in MR2 is (RL - 2)
116          */
117         mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
118         set_mr(base, cs, mr_addr, mr_regs->mr2);
119
120         if (mr_regs->mr3 > 0)
121                 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
122 }
123
124 static void lpddr2_init(u32 base, const struct emif_regs *regs)
125 {
126         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
127
128         /* Not NVM */
129         clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
130
131         /*
132          * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
133          * when EMIF_SDRAM_CONFIG register is written
134          */
135         setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
136
137         /*
138          * Set the SDRAM_CONFIG and PHY_CTRL for the
139          * un-locked frequency & default RL
140          */
141         writel(regs->sdram_config_init, &emif->emif_sdram_config);
142         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
143
144         do_ext_phy_settings(base, regs);
145
146         do_lpddr2_init(base, CS0);
147         if (regs->sdram_config & EMIF_REG_EBANK_MASK)
148                 do_lpddr2_init(base, CS1);
149
150         writel(regs->sdram_config, &emif->emif_sdram_config);
151         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
152
153         /* Enable refresh now */
154         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
155
156         }
157
158 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
159 {
160 }
161
162 void emif_update_timings(u32 base, const struct emif_regs *regs)
163 {
164         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
165
166         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
167         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
168         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
169         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
170         if (omap_revision() == OMAP4430_ES1_0) {
171                 /* ES1 bug EMIF should be in force idle during freq_update */
172                 writel(0, &emif->emif_pwr_mgmt_ctrl);
173         } else {
174                 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
175                 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
176         }
177         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
178         writel(regs->zq_config, &emif->emif_zq_config);
179         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
180         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
181
182         if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
183                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
184                         &emif->emif_l3_config);
185         } else if (omap_revision() >= OMAP4460_ES1_0) {
186                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
187                         &emif->emif_l3_config);
188         } else {
189                 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
190                         &emif->emif_l3_config);
191         }
192 }
193
194 static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
195 {
196         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
197
198         /* keep sdram in self-refresh */
199         writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
200                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
201         __udelay(130);
202
203         /*
204          * Set invert_clkout (if activated)--DDR_PHYCTRL_1
205          * Invert clock adds an additional half cycle delay on the
206          * command interface.  The additional half cycle, is usually
207          * meant to enable leveling in the situation that DQS is later
208          * than CK on the board.It also helps provide some additional
209          * margin for leveling.
210          */
211         writel(regs->emif_ddr_phy_ctlr_1,
212                &emif->emif_ddr_phy_ctrl_1);
213
214         writel(regs->emif_ddr_phy_ctlr_1,
215                &emif->emif_ddr_phy_ctrl_1_shdw);
216         __udelay(130);
217
218         writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
219                & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
220
221         /* Launch Full leveling */
222         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
223
224         /* Wait till full leveling is complete */
225         readl(&emif->emif_rd_wr_lvl_ctl);
226               __udelay(130);
227
228         /* Read data eye leveling no of samples */
229         config_data_eye_leveling_samples(base);
230
231         /*
232          * Launch 8 incremental WR_LVL- to compensate for
233          * PHY limitation.
234          */
235         writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
236                &emif->emif_rd_wr_lvl_ctl);
237
238         __udelay(130);
239
240         /* Launch Incremental leveling */
241         writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
242                __udelay(130);
243 }
244
245 static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
246 {
247         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
248         u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
249         u32 reg, i;
250
251         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[7];
252
253         /* Update PHY_REG_RDDQS_RATIO */
254         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
255         for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
256                 reg = readl(emif_phy_status++);
257                 writel(reg, emif_ext_phy_ctrl_reg++);
258                 writel(reg, emif_ext_phy_ctrl_reg++);
259         }
260
261         /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
262         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
263         for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
264                 reg = readl(emif_phy_status++);
265                 writel(reg, emif_ext_phy_ctrl_reg++);
266                 writel(reg, emif_ext_phy_ctrl_reg++);
267         }
268
269         /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
270         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
271         for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
272                 reg = readl(emif_phy_status++);
273                 writel(reg, emif_ext_phy_ctrl_reg++);
274                 writel(reg, emif_ext_phy_ctrl_reg++);
275         }
276
277         /* Disable Leveling */
278         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
279         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
280         writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
281 }
282
283 static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
284 {
285         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
286
287         /* Clear Error Status */
288         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
289                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
290                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
291
292         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
293                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
294                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
295
296         /* Disable refreshed before leveling */
297         clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_SHIFT,
298                         EMIF_REG_INITREF_DIS_SHIFT);
299
300         /* Start Full leveling */
301         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
302
303         __udelay(300);
304
305         /* Check for leveling timeout */
306         if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
307                 printf("Leveling timeout on EMIF%d\n", emif_num(base));
308                 return;
309         }
310
311         /* Enable refreshes after leveling */
312         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_SHIFT);
313
314         debug("HW leveling success\n");
315         /*
316          * Update slave ratios in EXT_PHY_CTRLx registers
317          * as per HW leveling output
318          */
319         update_hwleveling_output(base, regs);
320 }
321
322 static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
323 {
324         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
325
326         if (warm_reset())
327                 emif_reset_phy(base);
328         do_ext_phy_settings(base, regs);
329
330         writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
331                &emif->emif_sdram_ref_ctrl);
332         /* Update timing registers */
333         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
334         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
335         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
336
337         writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
338         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
339         writel(regs->zq_config, &emif->emif_zq_config);
340         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
341         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
342         writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
343
344         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
345         writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
346
347         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
348
349         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
350         writel(regs->sdram_config_init, &emif->emif_sdram_config);
351
352         __udelay(1000);
353
354         writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
355
356         if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK)
357                 dra7_ddr3_leveling(base, regs);
358 }
359
360 static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
361 {
362         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
363
364         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
365         writel(regs->sdram_config_init, &emif->emif_sdram_config);
366         /*
367          * Set SDRAM_CONFIG and PHY control registers to locked frequency
368          * and RL =7. As the default values of the Mode Registers are not
369          * defined, contents of mode Registers must be fully initialized.
370          * H/W takes care of this initialization
371          */
372         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
373
374         /* Update timing registers */
375         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
376         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
377         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
378
379         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
380
381         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
382         writel(regs->sdram_config_init, &emif->emif_sdram_config);
383         do_ext_phy_settings(base, regs);
384
385         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
386         omap5_ddr3_leveling(base, regs);
387 }
388
389 static void ddr3_init(u32 base, const struct emif_regs *regs)
390 {
391         if (is_omap54xx())
392                 omap5_ddr3_init(base, regs);
393         else
394                 dra7_ddr3_init(base, regs);
395 }
396
397 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
398 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
399
400 /*
401  * Organization and refresh requirements for LPDDR2 devices of different
402  * types and densities. Derived from JESD209-2 section 2.4
403  */
404 const struct lpddr2_addressing addressing_table[] = {
405         /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
406         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
407         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
408         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
409         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
410         {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
411         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
412         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
413         {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
414         {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
415         {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
416 };
417
418 static const u32 lpddr2_density_2_size_in_mbytes[] = {
419         8,                      /* 64Mb */
420         16,                     /* 128Mb */
421         32,                     /* 256Mb */
422         64,                     /* 512Mb */
423         128,                    /* 1Gb   */
424         256,                    /* 2Gb   */
425         512,                    /* 4Gb   */
426         1024,                   /* 8Gb   */
427         2048,                   /* 16Gb  */
428         4096                    /* 32Gb  */
429 };
430
431 /*
432  * Calculate the period of DDR clock from frequency value and set the
433  * denominator and numerator in global variables for easy access later
434  */
435 static void set_ddr_clk_period(u32 freq)
436 {
437         /*
438          * period = 1/freq
439          * period_in_ns = 10^9/freq
440          */
441         *T_num = 1000000000;
442         *T_den = freq;
443         cancel_out(T_num, T_den, 200);
444
445 }
446
447 /*
448  * Convert time in nano seconds to number of cycles of DDR clock
449  */
450 static inline u32 ns_2_cycles(u32 ns)
451 {
452         return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
453 }
454
455 /*
456  * ns_2_cycles with the difference that the time passed is 2 times the actual
457  * value(to avoid fractions). The cycles returned is for the original value of
458  * the timing parameter
459  */
460 static inline u32 ns_x2_2_cycles(u32 ns)
461 {
462         return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
463 }
464
465 /*
466  * Find addressing table index based on the device's type(S2 or S4) and
467  * density
468  */
469 s8 addressing_table_index(u8 type, u8 density, u8 width)
470 {
471         u8 index;
472         if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
473                 return -1;
474
475         /*
476          * Look at the way ADDR_TABLE_INDEX* values have been defined
477          * in emif.h compared to LPDDR2_DENSITY_* values
478          * The table is layed out in the increasing order of density
479          * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
480          * at the end
481          */
482         if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
483                 index = ADDR_TABLE_INDEX1GS2;
484         else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
485                 index = ADDR_TABLE_INDEX2GS2;
486         else
487                 index = density;
488
489         debug("emif: addressing table index %d\n", index);
490
491         return index;
492 }
493
494 /*
495  * Find the the right timing table from the array of timing
496  * tables of the device using DDR clock frequency
497  */
498 static const struct lpddr2_ac_timings *get_timings_table(const struct
499                         lpddr2_ac_timings const *const *device_timings,
500                         u32 freq)
501 {
502         u32 i, temp, freq_nearest;
503         const struct lpddr2_ac_timings *timings = 0;
504
505         emif_assert(freq <= MAX_LPDDR2_FREQ);
506         emif_assert(device_timings);
507
508         /*
509          * Start with the maximum allowed frequency - that is always safe
510          */
511         freq_nearest = MAX_LPDDR2_FREQ;
512         /*
513          * Find the timings table that has the max frequency value:
514          *   i.  Above or equal to the DDR frequency - safe
515          *   ii. The lowest that satisfies condition (i) - optimal
516          */
517         for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
518                 temp = device_timings[i]->max_freq;
519                 if ((temp >= freq) && (temp <= freq_nearest)) {
520                         freq_nearest = temp;
521                         timings = device_timings[i];
522                 }
523         }
524         debug("emif: timings table: %d\n", freq_nearest);
525         return timings;
526 }
527
528 /*
529  * Finds the value of emif_sdram_config_reg
530  * All parameters are programmed based on the device on CS0.
531  * If there is a device on CS1, it will be same as that on CS0 or
532  * it will be NVM. We don't support NVM yet.
533  * If cs1_device pointer is NULL it is assumed that there is no device
534  * on CS1
535  */
536 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
537                                 const struct lpddr2_device_details *cs1_device,
538                                 const struct lpddr2_addressing *addressing,
539                                 u8 RL)
540 {
541         u32 config_reg = 0;
542
543         config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
544         config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
545                         EMIF_REG_IBANK_POS_SHIFT;
546
547         config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
548
549         config_reg |= RL << EMIF_REG_CL_SHIFT;
550
551         config_reg |= addressing->row_sz[cs0_device->io_width] <<
552                         EMIF_REG_ROWSIZE_SHIFT;
553
554         config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
555
556         config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
557                         EMIF_REG_EBANK_SHIFT;
558
559         config_reg |= addressing->col_sz[cs0_device->io_width] <<
560                         EMIF_REG_PAGESIZE_SHIFT;
561
562         return config_reg;
563 }
564
565 static u32 get_sdram_ref_ctrl(u32 freq,
566                               const struct lpddr2_addressing *addressing)
567 {
568         u32 ref_ctrl = 0, val = 0, freq_khz;
569         freq_khz = freq / 1000;
570         /*
571          * refresh rate to be set is 'tREFI * freq in MHz
572          * division by 10000 to account for khz and x10 in t_REFI_us_x10
573          */
574         val = addressing->t_REFI_us_x10 * freq_khz / 10000;
575         ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
576
577         return ref_ctrl;
578 }
579
580 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
581                                const struct lpddr2_min_tck *min_tck,
582                                const struct lpddr2_addressing *addressing)
583 {
584         u32 tim1 = 0, val = 0;
585         val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
586         tim1 |= val << EMIF_REG_T_WTR_SHIFT;
587
588         if (addressing->num_banks == BANKS8)
589                 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
590                                                         (4 * (*T_num)) - 1;
591         else
592                 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
593
594         tim1 |= val << EMIF_REG_T_RRD_SHIFT;
595
596         val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
597         tim1 |= val << EMIF_REG_T_RC_SHIFT;
598
599         val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
600         tim1 |= val << EMIF_REG_T_RAS_SHIFT;
601
602         val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
603         tim1 |= val << EMIF_REG_T_WR_SHIFT;
604
605         val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
606         tim1 |= val << EMIF_REG_T_RCD_SHIFT;
607
608         val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
609         tim1 |= val << EMIF_REG_T_RP_SHIFT;
610
611         return tim1;
612 }
613
614 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
615                                const struct lpddr2_min_tck *min_tck)
616 {
617         u32 tim2 = 0, val = 0;
618         val = max(min_tck->tCKE, timings->tCKE) - 1;
619         tim2 |= val << EMIF_REG_T_CKE_SHIFT;
620
621         val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
622         tim2 |= val << EMIF_REG_T_RTP_SHIFT;
623
624         /*
625          * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
626          * same value
627          */
628         val = ns_2_cycles(timings->tXSR) - 1;
629         tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
630         tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
631
632         val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
633         tim2 |= val << EMIF_REG_T_XP_SHIFT;
634
635         return tim2;
636 }
637
638 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
639                                const struct lpddr2_min_tck *min_tck,
640                                const struct lpddr2_addressing *addressing)
641 {
642         u32 tim3 = 0, val = 0;
643         val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
644         tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
645
646         val = ns_2_cycles(timings->tRFCab) - 1;
647         tim3 |= val << EMIF_REG_T_RFC_SHIFT;
648
649         val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
650         tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
651
652         val = ns_2_cycles(timings->tZQCS) - 1;
653         tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
654
655         val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
656         tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
657
658         return tim3;
659 }
660
661 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
662                              const struct lpddr2_addressing *addressing,
663                              u8 volt_ramp)
664 {
665         u32 zq = 0, val = 0;
666         if (volt_ramp)
667                 val =
668                     EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
669                     addressing->t_REFI_us_x10;
670         else
671                 val =
672                     EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
673                     addressing->t_REFI_us_x10;
674         zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
675
676         zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
677
678         zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
679
680         zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
681
682         /*
683          * Assuming that two chipselects have a single calibration resistor
684          * If there are indeed two calibration resistors, then this flag should
685          * be enabled to take advantage of dual calibration feature.
686          * This data should ideally come from board files. But considering
687          * that none of the boards today have calibration resistors per CS,
688          * it would be an unnecessary overhead.
689          */
690         zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
691
692         zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
693
694         zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
695
696         return zq;
697 }
698
699 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
700                                  const struct lpddr2_addressing *addressing,
701                                  u8 is_derated)
702 {
703         u32 alert = 0, interval;
704         interval =
705             TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
706         if (is_derated)
707                 interval *= 4;
708         alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
709
710         alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
711
712         alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
713
714         alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
715
716         alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
717
718         alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
719
720         return alert;
721 }
722
723 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
724 {
725         u32 idle = 0, val = 0;
726         if (volt_ramp)
727                 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
728         else
729                 /*Maximum value in normal conditions - suggested by hw team */
730                 val = 0x1FF;
731         idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
732
733         idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
734
735         return idle;
736 }
737
738 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
739 {
740         u32 phy = 0, val = 0;
741
742         phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
743
744         if (freq <= 100000000)
745                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
746         else if (freq <= 200000000)
747                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
748         else
749                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
750         phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
751
752         /* Other fields are constant magic values. Hardcode them together */
753         phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
754                 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
755
756         return phy;
757 }
758
759 static u32 get_emif_mem_size(u32 base)
760 {
761         u32 size_mbytes = 0, temp;
762         struct emif_device_details dev_details;
763         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
764         u32 emif_nr = emif_num(base);
765
766         emif_reset_phy(base);
767         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
768                                                 &cs0_dev_details);
769         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
770                                                 &cs1_dev_details);
771         emif_reset_phy(base);
772
773         if (dev_details.cs0_device_details) {
774                 temp = dev_details.cs0_device_details->density;
775                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
776         }
777
778         if (dev_details.cs1_device_details) {
779                 temp = dev_details.cs1_device_details->density;
780                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
781         }
782         /* convert to bytes */
783         return size_mbytes << 20;
784 }
785
786 /* Gets the encoding corresponding to a given DMM section size */
787 u32 get_dmm_section_size_map(u32 section_size)
788 {
789         /*
790          * Section size mapping:
791          * 0x0: 16-MiB section
792          * 0x1: 32-MiB section
793          * 0x2: 64-MiB section
794          * 0x3: 128-MiB section
795          * 0x4: 256-MiB section
796          * 0x5: 512-MiB section
797          * 0x6: 1-GiB section
798          * 0x7: 2-GiB section
799          */
800         section_size >>= 24; /* divide by 16 MB */
801         return log_2_n_round_down(section_size);
802 }
803
804 static void emif_calculate_regs(
805                 const struct emif_device_details *emif_dev_details,
806                 u32 freq, struct emif_regs *regs)
807 {
808         u32 temp, sys_freq;
809         const struct lpddr2_addressing *addressing;
810         const struct lpddr2_ac_timings *timings;
811         const struct lpddr2_min_tck *min_tck;
812         const struct lpddr2_device_details *cs0_dev_details =
813                                         emif_dev_details->cs0_device_details;
814         const struct lpddr2_device_details *cs1_dev_details =
815                                         emif_dev_details->cs1_device_details;
816         const struct lpddr2_device_timings *cs0_dev_timings =
817                                         emif_dev_details->cs0_device_timings;
818
819         emif_assert(emif_dev_details);
820         emif_assert(regs);
821         /*
822          * You can not have a device on CS1 without one on CS0
823          * So configuring EMIF without a device on CS0 doesn't
824          * make sense
825          */
826         emif_assert(cs0_dev_details);
827         emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
828         /*
829          * If there is a device on CS1 it should be same type as CS0
830          * (or NVM. But NVM is not supported in this driver yet)
831          */
832         emif_assert((cs1_dev_details == NULL) ||
833                     (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
834                     (cs0_dev_details->type == cs1_dev_details->type));
835         emif_assert(freq <= MAX_LPDDR2_FREQ);
836
837         set_ddr_clk_period(freq);
838
839         /*
840          * The device on CS0 is used for all timing calculations
841          * There is only one set of registers for timings per EMIF. So, if the
842          * second CS(CS1) has a device, it should have the same timings as the
843          * device on CS0
844          */
845         timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
846         emif_assert(timings);
847         min_tck = cs0_dev_timings->min_tck;
848
849         temp = addressing_table_index(cs0_dev_details->type,
850                                       cs0_dev_details->density,
851                                       cs0_dev_details->io_width);
852
853         emif_assert((temp >= 0));
854         addressing = &(addressing_table[temp]);
855         emif_assert(addressing);
856
857         sys_freq = get_sys_clk_freq();
858
859         regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
860                                                         cs1_dev_details,
861                                                         addressing, RL_BOOT);
862
863         regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
864                                                 cs1_dev_details,
865                                                 addressing, RL_FINAL);
866
867         regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
868
869         regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
870
871         regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
872
873         regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
874
875         regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
876
877         regs->temp_alert_config =
878             get_temp_alert_config(cs1_dev_details, addressing, 0);
879
880         regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
881                                             LPDDR2_VOLTAGE_STABLE);
882
883         regs->emif_ddr_phy_ctlr_1_init =
884                         get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
885
886         regs->emif_ddr_phy_ctlr_1 =
887                         get_ddr_phy_ctrl_1(freq, RL_FINAL);
888
889         regs->freq = freq;
890
891         print_timing_reg(regs->sdram_config_init);
892         print_timing_reg(regs->sdram_config);
893         print_timing_reg(regs->ref_ctrl);
894         print_timing_reg(regs->sdram_tim1);
895         print_timing_reg(regs->sdram_tim2);
896         print_timing_reg(regs->sdram_tim3);
897         print_timing_reg(regs->read_idle_ctrl);
898         print_timing_reg(regs->temp_alert_config);
899         print_timing_reg(regs->zq_config);
900         print_timing_reg(regs->emif_ddr_phy_ctlr_1);
901         print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
902 }
903 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
904
905 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
906 const char *get_lpddr2_type(u8 type_id)
907 {
908         switch (type_id) {
909         case LPDDR2_TYPE_S4:
910                 return "LPDDR2-S4";
911         case LPDDR2_TYPE_S2:
912                 return "LPDDR2-S2";
913         default:
914                 return NULL;
915         }
916 }
917
918 const char *get_lpddr2_io_width(u8 width_id)
919 {
920         switch (width_id) {
921         case LPDDR2_IO_WIDTH_8:
922                 return "x8";
923         case LPDDR2_IO_WIDTH_16:
924                 return "x16";
925         case LPDDR2_IO_WIDTH_32:
926                 return "x32";
927         default:
928                 return NULL;
929         }
930 }
931
932 const char *get_lpddr2_manufacturer(u32 manufacturer)
933 {
934         switch (manufacturer) {
935         case LPDDR2_MANUFACTURER_SAMSUNG:
936                 return "Samsung";
937         case LPDDR2_MANUFACTURER_QIMONDA:
938                 return "Qimonda";
939         case LPDDR2_MANUFACTURER_ELPIDA:
940                 return "Elpida";
941         case LPDDR2_MANUFACTURER_ETRON:
942                 return "Etron";
943         case LPDDR2_MANUFACTURER_NANYA:
944                 return "Nanya";
945         case LPDDR2_MANUFACTURER_HYNIX:
946                 return "Hynix";
947         case LPDDR2_MANUFACTURER_MOSEL:
948                 return "Mosel";
949         case LPDDR2_MANUFACTURER_WINBOND:
950                 return "Winbond";
951         case LPDDR2_MANUFACTURER_ESMT:
952                 return "ESMT";
953         case LPDDR2_MANUFACTURER_SPANSION:
954                 return "Spansion";
955         case LPDDR2_MANUFACTURER_SST:
956                 return "SST";
957         case LPDDR2_MANUFACTURER_ZMOS:
958                 return "ZMOS";
959         case LPDDR2_MANUFACTURER_INTEL:
960                 return "Intel";
961         case LPDDR2_MANUFACTURER_NUMONYX:
962                 return "Numonyx";
963         case LPDDR2_MANUFACTURER_MICRON:
964                 return "Micron";
965         default:
966                 return NULL;
967         }
968 }
969
970 static void display_sdram_details(u32 emif_nr, u32 cs,
971                                   struct lpddr2_device_details *device)
972 {
973         const char *mfg_str;
974         const char *type_str;
975         char density_str[10];
976         u32 density;
977
978         debug("EMIF%d CS%d\t", emif_nr, cs);
979
980         if (!device) {
981                 debug("None\n");
982                 return;
983         }
984
985         mfg_str = get_lpddr2_manufacturer(device->manufacturer);
986         type_str = get_lpddr2_type(device->type);
987
988         density = lpddr2_density_2_size_in_mbytes[device->density];
989         if ((density / 1024 * 1024) == density) {
990                 density /= 1024;
991                 sprintf(density_str, "%d GB", density);
992         } else
993                 sprintf(density_str, "%d MB", density);
994         if (mfg_str && type_str)
995                 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
996 }
997
998 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
999                                   struct lpddr2_device_details *lpddr2_device)
1000 {
1001         u32 mr = 0, temp;
1002
1003         mr = get_mr(base, cs, LPDDR2_MR0);
1004         if (mr > 0xFF) {
1005                 /* Mode register value bigger than 8 bit */
1006                 return 0;
1007         }
1008
1009         temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1010         if (temp) {
1011                 /* Not SDRAM */
1012                 return 0;
1013         }
1014         temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1015
1016         if (temp) {
1017                 /* DNV supported - But DNV is only supported for NVM */
1018                 return 0;
1019         }
1020
1021         mr = get_mr(base, cs, LPDDR2_MR4);
1022         if (mr > 0xFF) {
1023                 /* Mode register value bigger than 8 bit */
1024                 return 0;
1025         }
1026
1027         mr = get_mr(base, cs, LPDDR2_MR5);
1028         if (mr > 0xFF) {
1029                 /* Mode register value bigger than 8 bit */
1030                 return 0;
1031         }
1032
1033         if (!get_lpddr2_manufacturer(mr)) {
1034                 /* Manufacturer not identified */
1035                 return 0;
1036         }
1037         lpddr2_device->manufacturer = mr;
1038
1039         mr = get_mr(base, cs, LPDDR2_MR6);
1040         if (mr >= 0xFF) {
1041                 /* Mode register value bigger than 8 bit */
1042                 return 0;
1043         }
1044
1045         mr = get_mr(base, cs, LPDDR2_MR7);
1046         if (mr >= 0xFF) {
1047                 /* Mode register value bigger than 8 bit */
1048                 return 0;
1049         }
1050
1051         mr = get_mr(base, cs, LPDDR2_MR8);
1052         if (mr >= 0xFF) {
1053                 /* Mode register value bigger than 8 bit */
1054                 return 0;
1055         }
1056
1057         temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1058         if (!get_lpddr2_type(temp)) {
1059                 /* Not SDRAM */
1060                 return 0;
1061         }
1062         lpddr2_device->type = temp;
1063
1064         temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1065         if (temp > LPDDR2_DENSITY_32Gb) {
1066                 /* Density not supported */
1067                 return 0;
1068         }
1069         lpddr2_device->density = temp;
1070
1071         temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1072         if (!get_lpddr2_io_width(temp)) {
1073                 /* IO width unsupported value */
1074                 return 0;
1075         }
1076         lpddr2_device->io_width = temp;
1077
1078         /*
1079          * If all the above tests pass we should
1080          * have a device on this chip-select
1081          */
1082         return 1;
1083 }
1084
1085 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1086                         struct lpddr2_device_details *lpddr2_dev_details)
1087 {
1088         u32 phy;
1089         u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1090
1091         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1092
1093         if (!lpddr2_dev_details)
1094                 return NULL;
1095
1096         /* Do the minimum init for mode register accesses */
1097         if (!(running_from_sdram() || warm_reset())) {
1098                 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1099                 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1100         }
1101
1102         if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1103                 return NULL;
1104
1105         display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1106
1107         return lpddr2_dev_details;
1108 }
1109 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1110
1111 static void do_sdram_init(u32 base)
1112 {
1113         const struct emif_regs *regs;
1114         u32 in_sdram, emif_nr;
1115
1116         debug(">>do_sdram_init() %x\n", base);
1117
1118         in_sdram = running_from_sdram();
1119         emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1120
1121 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1122         emif_get_reg_dump(emif_nr, &regs);
1123         if (!regs) {
1124                 debug("EMIF: reg dump not provided\n");
1125                 return;
1126         }
1127 #else
1128         /*
1129          * The user has not provided the register values. We need to
1130          * calculate it based on the timings and the DDR frequency
1131          */
1132         struct emif_device_details dev_details;
1133         struct emif_regs calculated_regs;
1134
1135         /*
1136          * Get device details:
1137          * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1138          * - Obtained from user otherwise
1139          */
1140         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1141         emif_reset_phy(base);
1142         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1143                                                 &cs0_dev_details);
1144         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1145                                                 &cs1_dev_details);
1146         emif_reset_phy(base);
1147
1148         /* Return if no devices on this EMIF */
1149         if (!dev_details.cs0_device_details &&
1150             !dev_details.cs1_device_details) {
1151                 return;
1152         }
1153
1154         /*
1155          * Get device timings:
1156          * - Default timings specified by JESD209-2 if
1157          *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1158          * - Obtained from user otherwise
1159          */
1160         emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1161                                 &dev_details.cs1_device_timings);
1162
1163         /* Calculate the register values */
1164         emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1165         regs = &calculated_regs;
1166 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1167
1168         /*
1169          * Initializing the LPDDR2 device can not happen from SDRAM.
1170          * Changing the timing registers in EMIF can happen(going from one
1171          * OPP to another)
1172          */
1173         if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1174                 if (emif_sdram_type(regs->sdram_config) ==
1175                     EMIF_SDRAM_TYPE_LPDDR2)
1176                         lpddr2_init(base, regs);
1177                 else
1178                         ddr3_init(base, regs);
1179         }
1180         if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1181             EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1182                 set_lpmode_selfrefresh(base);
1183                 emif_reset_phy(base);
1184                 omap5_ddr3_leveling(base, regs);
1185         }
1186
1187         /* Write to the shadow registers */
1188         emif_update_timings(base, regs);
1189
1190         debug("<<do_sdram_init() %x\n", base);
1191 }
1192
1193 void emif_post_init_config(u32 base)
1194 {
1195         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1196         u32 omap_rev = omap_revision();
1197
1198         /* reset phy on ES2.0 */
1199         if (omap_rev == OMAP4430_ES2_0)
1200                 emif_reset_phy(base);
1201
1202         /* Put EMIF back in smart idle on ES1.0 */
1203         if (omap_rev == OMAP4430_ES1_0)
1204                 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1205 }
1206
1207 void dmm_init(u32 base)
1208 {
1209         const struct dmm_lisa_map_regs *lisa_map_regs;
1210         u32 i, section, valid;
1211
1212 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1213         emif_get_dmm_regs(&lisa_map_regs);
1214 #else
1215         u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1216         u32 section_cnt, sys_addr;
1217         struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1218
1219         mapped_size = 0;
1220         section_cnt = 3;
1221         sys_addr = CONFIG_SYS_SDRAM_BASE;
1222         emif1_size = get_emif_mem_size(EMIF1_BASE);
1223         emif2_size = get_emif_mem_size(EMIF2_BASE);
1224         debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1225
1226         if (!emif1_size && !emif2_size)
1227                 return;
1228
1229         /* symmetric interleaved section */
1230         if (emif1_size && emif2_size) {
1231                 mapped_size = min(emif1_size, emif2_size);
1232                 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1233                 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1234                 /* only MSB */
1235                 section_map |= (sys_addr >> 24) <<
1236                                 EMIF_SYS_ADDR_SHIFT;
1237                 section_map |= get_dmm_section_size_map(mapped_size * 2)
1238                                 << EMIF_SYS_SIZE_SHIFT;
1239                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1240                 emif1_size -= mapped_size;
1241                 emif2_size -= mapped_size;
1242                 sys_addr += (mapped_size * 2);
1243                 section_cnt--;
1244         }
1245
1246         /*
1247          * Single EMIF section(we can have a maximum of 1 single EMIF
1248          * section- either EMIF1 or EMIF2 or none, but not both)
1249          */
1250         if (emif1_size) {
1251                 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1252                 section_map |= get_dmm_section_size_map(emif1_size)
1253                                 << EMIF_SYS_SIZE_SHIFT;
1254                 /* only MSB */
1255                 section_map |= (mapped_size >> 24) <<
1256                                 EMIF_SDRC_ADDR_SHIFT;
1257                 /* only MSB */
1258                 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1259                 section_cnt--;
1260         }
1261         if (emif2_size) {
1262                 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1263                 section_map |= get_dmm_section_size_map(emif2_size) <<
1264                                 EMIF_SYS_SIZE_SHIFT;
1265                 /* only MSB */
1266                 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1267                 /* only MSB */
1268                 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1269                 section_cnt--;
1270         }
1271
1272         if (section_cnt == 2) {
1273                 /* Only 1 section - either symmetric or single EMIF */
1274                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1275                 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1276                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1277         } else {
1278                 /* 2 sections - 1 symmetric, 1 single EMIF */
1279                 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1280                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1281         }
1282
1283         /* TRAP for invalid TILER mappings in section 0 */
1284         lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1285
1286         if (omap_revision() >= OMAP4460_ES1_0)
1287                 lis_map_regs_calculated.is_ma_present = 1;
1288
1289         lisa_map_regs = &lis_map_regs_calculated;
1290 #endif
1291         struct dmm_lisa_map_regs *hw_lisa_map_regs =
1292             (struct dmm_lisa_map_regs *)base;
1293
1294         writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1295         writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1296         writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1297         writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1298
1299         writel(lisa_map_regs->dmm_lisa_map_3,
1300                 &hw_lisa_map_regs->dmm_lisa_map_3);
1301         writel(lisa_map_regs->dmm_lisa_map_2,
1302                 &hw_lisa_map_regs->dmm_lisa_map_2);
1303         writel(lisa_map_regs->dmm_lisa_map_1,
1304                 &hw_lisa_map_regs->dmm_lisa_map_1);
1305         writel(lisa_map_regs->dmm_lisa_map_0,
1306                 &hw_lisa_map_regs->dmm_lisa_map_0);
1307
1308         if (lisa_map_regs->is_ma_present) {
1309                 hw_lisa_map_regs =
1310                     (struct dmm_lisa_map_regs *)MA_BASE;
1311
1312                 writel(lisa_map_regs->dmm_lisa_map_3,
1313                         &hw_lisa_map_regs->dmm_lisa_map_3);
1314                 writel(lisa_map_regs->dmm_lisa_map_2,
1315                         &hw_lisa_map_regs->dmm_lisa_map_2);
1316                 writel(lisa_map_regs->dmm_lisa_map_1,
1317                         &hw_lisa_map_regs->dmm_lisa_map_1);
1318                 writel(lisa_map_regs->dmm_lisa_map_0,
1319                         &hw_lisa_map_regs->dmm_lisa_map_0);
1320         }
1321
1322         /*
1323          * EMIF should be configured only when
1324          * memory is mapped on it. Using emif1_enabled
1325          * and emif2_enabled variables for this.
1326          */
1327         emif1_enabled = 0;
1328         emif2_enabled = 0;
1329         for (i = 0; i < 4; i++) {
1330                 section = __raw_readl(DMM_BASE + i*4);
1331                 valid = (section & EMIF_SDRC_MAP_MASK) >>
1332                         (EMIF_SDRC_MAP_SHIFT);
1333                 if (valid == 3) {
1334                         emif1_enabled = 1;
1335                         emif2_enabled = 1;
1336                         break;
1337                 }
1338
1339                 if (valid == 1)
1340                         emif1_enabled = 1;
1341
1342                 if (valid == 2)
1343                         emif2_enabled = 1;
1344         }
1345 }
1346
1347 static void do_bug0039_workaround(u32 base)
1348 {
1349         u32 val, i, clkctrl;
1350         struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1351         const struct read_write_regs *bug_00339_regs;
1352         u32 iterations;
1353         u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1354         u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1355
1356         if (is_dra7xx())
1357                 phy_status_base++;
1358
1359         bug_00339_regs = get_bug_regs(&iterations);
1360
1361         /* Put EMIF in to idle */
1362         clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1363         __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1364
1365         /* Copy the phy status registers in to phy ctrl shadow registers */
1366         for (i = 0; i < iterations; i++) {
1367                 val = __raw_readl(phy_status_base +
1368                                   bug_00339_regs[i].read_reg - 1);
1369
1370                 __raw_writel(val, phy_ctrl_base +
1371                              ((bug_00339_regs[i].write_reg - 1) << 1));
1372
1373                 __raw_writel(val, phy_ctrl_base +
1374                              (bug_00339_regs[i].write_reg << 1) - 1);
1375         }
1376
1377         /* Disable leveling */
1378         writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1379
1380         __raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1381 }
1382
1383 /*
1384  * SDRAM initialization:
1385  * SDRAM initialization has two parts:
1386  * 1. Configuring the SDRAM device
1387  * 2. Update the AC timings related parameters in the EMIF module
1388  * (1) should be done only once and should not be done while we are
1389  * running from SDRAM.
1390  * (2) can and should be done more than once if OPP changes.
1391  * Particularly, this may be needed when we boot without SPL and
1392  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1393  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1394  * the frequency. So,
1395  * Doing (1) and (2) makes sense - first time initialization
1396  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1397  * Doing (1) and not (2) doen't make sense
1398  * See do_sdram_init() for the details
1399  */
1400 void sdram_init(void)
1401 {
1402         u32 in_sdram, size_prog, size_detect;
1403         struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1404         u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1405
1406         debug(">>sdram_init()\n");
1407
1408         if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1409                 return;
1410
1411         in_sdram = running_from_sdram();
1412         debug("in_sdram = %d\n", in_sdram);
1413
1414         if (!in_sdram) {
1415                 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1416                         bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1417                 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1418                         writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1419         }
1420
1421         if (!in_sdram)
1422                 dmm_init(DMM_BASE);
1423
1424         if (emif1_enabled)
1425                 do_sdram_init(EMIF1_BASE);
1426
1427         if (emif2_enabled)
1428                 do_sdram_init(EMIF2_BASE);
1429
1430         if (!(in_sdram || warm_reset())) {
1431                 if (emif1_enabled)
1432                         emif_post_init_config(EMIF1_BASE);
1433                 if (emif2_enabled)
1434                         emif_post_init_config(EMIF2_BASE);
1435         }
1436
1437         /* for the shadow registers to take effect */
1438         if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1439                 freq_update_core();
1440
1441         /* Do some testing after the init */
1442         if (!in_sdram) {
1443                 size_prog = omap_sdram_size();
1444                 size_prog = log_2_n_round_down(size_prog);
1445                 size_prog = (1 << size_prog);
1446
1447                 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1448                                                 size_prog);
1449                 /* Compare with the size programmed */
1450                 if (size_detect != size_prog) {
1451                         printf("SDRAM: identified size not same as expected"
1452                                 " size identified: %x expected: %x\n",
1453                                 size_detect,
1454                                 size_prog);
1455                 } else
1456                         debug("get_ram_size() successful");
1457         }
1458
1459         if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1460             (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1461                 if (emif1_enabled)
1462                         do_bug0039_workaround(EMIF1_BASE);
1463                 if (emif2_enabled)
1464                         do_bug0039_workaround(EMIF2_BASE);
1465         }
1466
1467         debug("<<sdram_init()\n");
1468 }