]> git.karo-electronics.de Git - linux-beck.git/blob - net/core/dev.c
net: use a work queue to defer net_disable_timestamp() work
[linux-beck.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;       /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160                                          struct net_device *dev,
161                                          struct netdev_notifier_info *info);
162
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195         while (++net->dev_base_seq == 0);
196 }
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
201
202         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213         spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
226 {
227         struct net *net = dev_net(dev);
228
229         ASSERT_RTNL();
230
231         write_lock_bh(&dev_base_lock);
232         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234         hlist_add_head_rcu(&dev->index_hlist,
235                            dev_index_hash(net, dev->ifindex));
236         write_unlock_bh(&dev_base_lock);
237
238         dev_base_seq_inc(net);
239 }
240
241 /* Device list removal
242  * caller must respect a RCU grace period before freeing/reusing dev
243  */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246         ASSERT_RTNL();
247
248         /* Unlink dev from the device chain */
249         write_lock_bh(&dev_base_lock);
250         list_del_rcu(&dev->dev_list);
251         hlist_del_rcu(&dev->name_hlist);
252         hlist_del_rcu(&dev->index_hlist);
253         write_unlock_bh(&dev_base_lock);
254
255         dev_base_seq_inc(dev_net(dev));
256 }
257
258 /*
259  *      Our notifier list
260  */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265  *      Device drivers call our routines to queue packets here. We empty the
266  *      queue in the local softnet handler.
267  */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275  * according to dev->type
276  */
277 static const unsigned short netdev_lock_type[] =
278         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316         int i;
317
318         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319                 if (netdev_lock_type[i] == dev_type)
320                         return i;
321         /* the last key is used by default */
322         return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326                                                  unsigned short dev_type)
327 {
328         int i;
329
330         i = netdev_lock_pos(dev_type);
331         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332                                    netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev->type);
340         lockdep_set_class_and_name(&dev->addr_list_lock,
341                                    &netdev_addr_lock_key[i],
342                                    netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346                                                  unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356                 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361  *      Add a protocol ID to the list. Now that the input handler is
362  *      smarter we can dispense with all the messy stuff that used to be
363  *      here.
364  *
365  *      BEWARE!!! Protocol handlers, mangling input packets,
366  *      MUST BE last in hash buckets and checking protocol handlers
367  *      MUST start from promiscuous ptype_all chain in net_bh.
368  *      It is true now, do not change it.
369  *      Explanation follows: if protocol handler, mangling packet, will
370  *      be the first on list, it is not able to sense, that packet
371  *      is cloned and should be copied-on-write, so that it will
372  *      change it and subsequent readers will get broken packet.
373  *                                                      --ANK (980803)
374  */
375
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 {
378         if (pt->type == htons(ETH_P_ALL))
379                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380         else
381                 return pt->dev ? &pt->dev->ptype_specific :
382                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386  *      dev_add_pack - add packet handler
387  *      @pt: packet type declaration
388  *
389  *      Add a protocol handler to the networking stack. The passed &packet_type
390  *      is linked into kernel lists and may not be freed until it has been
391  *      removed from the kernel lists.
392  *
393  *      This call does not sleep therefore it can not
394  *      guarantee all CPU's that are in middle of receiving packets
395  *      will see the new packet type (until the next received packet).
396  */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400         struct list_head *head = ptype_head(pt);
401
402         spin_lock(&ptype_lock);
403         list_add_rcu(&pt->list, head);
404         spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409  *      __dev_remove_pack        - remove packet handler
410  *      @pt: packet type declaration
411  *
412  *      Remove a protocol handler that was previously added to the kernel
413  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
414  *      from the kernel lists and can be freed or reused once this function
415  *      returns.
416  *
417  *      The packet type might still be in use by receivers
418  *      and must not be freed until after all the CPU's have gone
419  *      through a quiescent state.
420  */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423         struct list_head *head = ptype_head(pt);
424         struct packet_type *pt1;
425
426         spin_lock(&ptype_lock);
427
428         list_for_each_entry(pt1, head, list) {
429                 if (pt == pt1) {
430                         list_del_rcu(&pt->list);
431                         goto out;
432                 }
433         }
434
435         pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437         spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442  *      dev_remove_pack  - remove packet handler
443  *      @pt: packet type declaration
444  *
445  *      Remove a protocol handler that was previously added to the kernel
446  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
447  *      from the kernel lists and can be freed or reused once this function
448  *      returns.
449  *
450  *      This call sleeps to guarantee that no CPU is looking at the packet
451  *      type after return.
452  */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455         __dev_remove_pack(pt);
456
457         synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461
462 /**
463  *      dev_add_offload - register offload handlers
464  *      @po: protocol offload declaration
465  *
466  *      Add protocol offload handlers to the networking stack. The passed
467  *      &proto_offload is linked into kernel lists and may not be freed until
468  *      it has been removed from the kernel lists.
469  *
470  *      This call does not sleep therefore it can not
471  *      guarantee all CPU's that are in middle of receiving packets
472  *      will see the new offload handlers (until the next received packet).
473  */
474 void dev_add_offload(struct packet_offload *po)
475 {
476         struct packet_offload *elem;
477
478         spin_lock(&offload_lock);
479         list_for_each_entry(elem, &offload_base, list) {
480                 if (po->priority < elem->priority)
481                         break;
482         }
483         list_add_rcu(&po->list, elem->list.prev);
484         spin_unlock(&offload_lock);
485 }
486 EXPORT_SYMBOL(dev_add_offload);
487
488 /**
489  *      __dev_remove_offload     - remove offload handler
490  *      @po: packet offload declaration
491  *
492  *      Remove a protocol offload handler that was previously added to the
493  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
494  *      is removed from the kernel lists and can be freed or reused once this
495  *      function returns.
496  *
497  *      The packet type might still be in use by receivers
498  *      and must not be freed until after all the CPU's have gone
499  *      through a quiescent state.
500  */
501 static void __dev_remove_offload(struct packet_offload *po)
502 {
503         struct list_head *head = &offload_base;
504         struct packet_offload *po1;
505
506         spin_lock(&offload_lock);
507
508         list_for_each_entry(po1, head, list) {
509                 if (po == po1) {
510                         list_del_rcu(&po->list);
511                         goto out;
512                 }
513         }
514
515         pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517         spin_unlock(&offload_lock);
518 }
519
520 /**
521  *      dev_remove_offload       - remove packet offload handler
522  *      @po: packet offload declaration
523  *
524  *      Remove a packet offload handler that was previously added to the kernel
525  *      offload handlers by dev_add_offload(). The passed &offload_type is
526  *      removed from the kernel lists and can be freed or reused once this
527  *      function returns.
528  *
529  *      This call sleeps to guarantee that no CPU is looking at the packet
530  *      type after return.
531  */
532 void dev_remove_offload(struct packet_offload *po)
533 {
534         __dev_remove_offload(po);
535
536         synchronize_net();
537 }
538 EXPORT_SYMBOL(dev_remove_offload);
539
540 /******************************************************************************
541
542                       Device Boot-time Settings Routines
543
544 *******************************************************************************/
545
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549 /**
550  *      netdev_boot_setup_add   - add new setup entry
551  *      @name: name of the device
552  *      @map: configured settings for the device
553  *
554  *      Adds new setup entry to the dev_boot_setup list.  The function
555  *      returns 0 on error and 1 on success.  This is a generic routine to
556  *      all netdevices.
557  */
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 {
560         struct netdev_boot_setup *s;
561         int i;
562
563         s = dev_boot_setup;
564         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566                         memset(s[i].name, 0, sizeof(s[i].name));
567                         strlcpy(s[i].name, name, IFNAMSIZ);
568                         memcpy(&s[i].map, map, sizeof(s[i].map));
569                         break;
570                 }
571         }
572
573         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574 }
575
576 /**
577  *      netdev_boot_setup_check - check boot time settings
578  *      @dev: the netdevice
579  *
580  *      Check boot time settings for the device.
581  *      The found settings are set for the device to be used
582  *      later in the device probing.
583  *      Returns 0 if no settings found, 1 if they are.
584  */
585 int netdev_boot_setup_check(struct net_device *dev)
586 {
587         struct netdev_boot_setup *s = dev_boot_setup;
588         int i;
589
590         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592                     !strcmp(dev->name, s[i].name)) {
593                         dev->irq        = s[i].map.irq;
594                         dev->base_addr  = s[i].map.base_addr;
595                         dev->mem_start  = s[i].map.mem_start;
596                         dev->mem_end    = s[i].map.mem_end;
597                         return 1;
598                 }
599         }
600         return 0;
601 }
602 EXPORT_SYMBOL(netdev_boot_setup_check);
603
604
605 /**
606  *      netdev_boot_base        - get address from boot time settings
607  *      @prefix: prefix for network device
608  *      @unit: id for network device
609  *
610  *      Check boot time settings for the base address of device.
611  *      The found settings are set for the device to be used
612  *      later in the device probing.
613  *      Returns 0 if no settings found.
614  */
615 unsigned long netdev_boot_base(const char *prefix, int unit)
616 {
617         const struct netdev_boot_setup *s = dev_boot_setup;
618         char name[IFNAMSIZ];
619         int i;
620
621         sprintf(name, "%s%d", prefix, unit);
622
623         /*
624          * If device already registered then return base of 1
625          * to indicate not to probe for this interface
626          */
627         if (__dev_get_by_name(&init_net, name))
628                 return 1;
629
630         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631                 if (!strcmp(name, s[i].name))
632                         return s[i].map.base_addr;
633         return 0;
634 }
635
636 /*
637  * Saves at boot time configured settings for any netdevice.
638  */
639 int __init netdev_boot_setup(char *str)
640 {
641         int ints[5];
642         struct ifmap map;
643
644         str = get_options(str, ARRAY_SIZE(ints), ints);
645         if (!str || !*str)
646                 return 0;
647
648         /* Save settings */
649         memset(&map, 0, sizeof(map));
650         if (ints[0] > 0)
651                 map.irq = ints[1];
652         if (ints[0] > 1)
653                 map.base_addr = ints[2];
654         if (ints[0] > 2)
655                 map.mem_start = ints[3];
656         if (ints[0] > 3)
657                 map.mem_end = ints[4];
658
659         /* Add new entry to the list */
660         return netdev_boot_setup_add(str, &map);
661 }
662
663 __setup("netdev=", netdev_boot_setup);
664
665 /*******************************************************************************
666
667                             Device Interface Subroutines
668
669 *******************************************************************************/
670
671 /**
672  *      dev_get_iflink  - get 'iflink' value of a interface
673  *      @dev: targeted interface
674  *
675  *      Indicates the ifindex the interface is linked to.
676  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
677  */
678
679 int dev_get_iflink(const struct net_device *dev)
680 {
681         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682                 return dev->netdev_ops->ndo_get_iflink(dev);
683
684         return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687
688 /**
689  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
690  *      @dev: targeted interface
691  *      @skb: The packet.
692  *
693  *      For better visibility of tunnel traffic OVS needs to retrieve
694  *      egress tunnel information for a packet. Following API allows
695  *      user to get this info.
696  */
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 {
699         struct ip_tunnel_info *info;
700
701         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
702                 return -EINVAL;
703
704         info = skb_tunnel_info_unclone(skb);
705         if (!info)
706                 return -ENOMEM;
707         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708                 return -EINVAL;
709
710         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
714 /**
715  *      __dev_get_by_name       - find a device by its name
716  *      @net: the applicable net namespace
717  *      @name: name to find
718  *
719  *      Find an interface by name. Must be called under RTNL semaphore
720  *      or @dev_base_lock. If the name is found a pointer to the device
721  *      is returned. If the name is not found then %NULL is returned. The
722  *      reference counters are not incremented so the caller must be
723  *      careful with locks.
724  */
725
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728         struct net_device *dev;
729         struct hlist_head *head = dev_name_hash(net, name);
730
731         hlist_for_each_entry(dev, head, name_hlist)
732                 if (!strncmp(dev->name, name, IFNAMSIZ))
733                         return dev;
734
735         return NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738
739 /**
740  *      dev_get_by_name_rcu     - find a device by its name
741  *      @net: the applicable net namespace
742  *      @name: name to find
743  *
744  *      Find an interface by name.
745  *      If the name is found a pointer to the device is returned.
746  *      If the name is not found then %NULL is returned.
747  *      The reference counters are not incremented so the caller must be
748  *      careful with locks. The caller must hold RCU lock.
749  */
750
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753         struct net_device *dev;
754         struct hlist_head *head = dev_name_hash(net, name);
755
756         hlist_for_each_entry_rcu(dev, head, name_hlist)
757                 if (!strncmp(dev->name, name, IFNAMSIZ))
758                         return dev;
759
760         return NULL;
761 }
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
763
764 /**
765  *      dev_get_by_name         - find a device by its name
766  *      @net: the applicable net namespace
767  *      @name: name to find
768  *
769  *      Find an interface by name. This can be called from any
770  *      context and does its own locking. The returned handle has
771  *      the usage count incremented and the caller must use dev_put() to
772  *      release it when it is no longer needed. %NULL is returned if no
773  *      matching device is found.
774  */
775
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 {
778         struct net_device *dev;
779
780         rcu_read_lock();
781         dev = dev_get_by_name_rcu(net, name);
782         if (dev)
783                 dev_hold(dev);
784         rcu_read_unlock();
785         return dev;
786 }
787 EXPORT_SYMBOL(dev_get_by_name);
788
789 /**
790  *      __dev_get_by_index - find a device by its ifindex
791  *      @net: the applicable net namespace
792  *      @ifindex: index of device
793  *
794  *      Search for an interface by index. Returns %NULL if the device
795  *      is not found or a pointer to the device. The device has not
796  *      had its reference counter increased so the caller must be careful
797  *      about locking. The caller must hold either the RTNL semaphore
798  *      or @dev_base_lock.
799  */
800
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 {
803         struct net_device *dev;
804         struct hlist_head *head = dev_index_hash(net, ifindex);
805
806         hlist_for_each_entry(dev, head, index_hlist)
807                 if (dev->ifindex == ifindex)
808                         return dev;
809
810         return NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_index);
813
814 /**
815  *      dev_get_by_index_rcu - find a device by its ifindex
816  *      @net: the applicable net namespace
817  *      @ifindex: index of device
818  *
819  *      Search for an interface by index. Returns %NULL if the device
820  *      is not found or a pointer to the device. The device has not
821  *      had its reference counter increased so the caller must be careful
822  *      about locking. The caller must hold RCU lock.
823  */
824
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 {
827         struct net_device *dev;
828         struct hlist_head *head = dev_index_hash(net, ifindex);
829
830         hlist_for_each_entry_rcu(dev, head, index_hlist)
831                 if (dev->ifindex == ifindex)
832                         return dev;
833
834         return NULL;
835 }
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
837
838
839 /**
840  *      dev_get_by_index - find a device by its ifindex
841  *      @net: the applicable net namespace
842  *      @ifindex: index of device
843  *
844  *      Search for an interface by index. Returns NULL if the device
845  *      is not found or a pointer to the device. The device returned has
846  *      had a reference added and the pointer is safe until the user calls
847  *      dev_put to indicate they have finished with it.
848  */
849
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 {
852         struct net_device *dev;
853
854         rcu_read_lock();
855         dev = dev_get_by_index_rcu(net, ifindex);
856         if (dev)
857                 dev_hold(dev);
858         rcu_read_unlock();
859         return dev;
860 }
861 EXPORT_SYMBOL(dev_get_by_index);
862
863 /**
864  *      netdev_get_name - get a netdevice name, knowing its ifindex.
865  *      @net: network namespace
866  *      @name: a pointer to the buffer where the name will be stored.
867  *      @ifindex: the ifindex of the interface to get the name from.
868  *
869  *      The use of raw_seqcount_begin() and cond_resched() before
870  *      retrying is required as we want to give the writers a chance
871  *      to complete when CONFIG_PREEMPT is not set.
872  */
873 int netdev_get_name(struct net *net, char *name, int ifindex)
874 {
875         struct net_device *dev;
876         unsigned int seq;
877
878 retry:
879         seq = raw_seqcount_begin(&devnet_rename_seq);
880         rcu_read_lock();
881         dev = dev_get_by_index_rcu(net, ifindex);
882         if (!dev) {
883                 rcu_read_unlock();
884                 return -ENODEV;
885         }
886
887         strcpy(name, dev->name);
888         rcu_read_unlock();
889         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890                 cond_resched();
891                 goto retry;
892         }
893
894         return 0;
895 }
896
897 /**
898  *      dev_getbyhwaddr_rcu - find a device by its hardware address
899  *      @net: the applicable net namespace
900  *      @type: media type of device
901  *      @ha: hardware address
902  *
903  *      Search for an interface by MAC address. Returns NULL if the device
904  *      is not found or a pointer to the device.
905  *      The caller must hold RCU or RTNL.
906  *      The returned device has not had its ref count increased
907  *      and the caller must therefore be careful about locking
908  *
909  */
910
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912                                        const char *ha)
913 {
914         struct net_device *dev;
915
916         for_each_netdev_rcu(net, dev)
917                 if (dev->type == type &&
918                     !memcmp(dev->dev_addr, ha, dev->addr_len))
919                         return dev;
920
921         return NULL;
922 }
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 {
927         struct net_device *dev;
928
929         ASSERT_RTNL();
930         for_each_netdev(net, dev)
931                 if (dev->type == type)
932                         return dev;
933
934         return NULL;
935 }
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 {
940         struct net_device *dev, *ret = NULL;
941
942         rcu_read_lock();
943         for_each_netdev_rcu(net, dev)
944                 if (dev->type == type) {
945                         dev_hold(dev);
946                         ret = dev;
947                         break;
948                 }
949         rcu_read_unlock();
950         return ret;
951 }
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954 /**
955  *      __dev_get_by_flags - find any device with given flags
956  *      @net: the applicable net namespace
957  *      @if_flags: IFF_* values
958  *      @mask: bitmask of bits in if_flags to check
959  *
960  *      Search for any interface with the given flags. Returns NULL if a device
961  *      is not found or a pointer to the device. Must be called inside
962  *      rtnl_lock(), and result refcount is unchanged.
963  */
964
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966                                       unsigned short mask)
967 {
968         struct net_device *dev, *ret;
969
970         ASSERT_RTNL();
971
972         ret = NULL;
973         for_each_netdev(net, dev) {
974                 if (((dev->flags ^ if_flags) & mask) == 0) {
975                         ret = dev;
976                         break;
977                 }
978         }
979         return ret;
980 }
981 EXPORT_SYMBOL(__dev_get_by_flags);
982
983 /**
984  *      dev_valid_name - check if name is okay for network device
985  *      @name: name string
986  *
987  *      Network device names need to be valid file names to
988  *      to allow sysfs to work.  We also disallow any kind of
989  *      whitespace.
990  */
991 bool dev_valid_name(const char *name)
992 {
993         if (*name == '\0')
994                 return false;
995         if (strlen(name) >= IFNAMSIZ)
996                 return false;
997         if (!strcmp(name, ".") || !strcmp(name, ".."))
998                 return false;
999
1000         while (*name) {
1001                 if (*name == '/' || *name == ':' || isspace(*name))
1002                         return false;
1003                 name++;
1004         }
1005         return true;
1006 }
1007 EXPORT_SYMBOL(dev_valid_name);
1008
1009 /**
1010  *      __dev_alloc_name - allocate a name for a device
1011  *      @net: network namespace to allocate the device name in
1012  *      @name: name format string
1013  *      @buf:  scratch buffer and result name string
1014  *
1015  *      Passed a format string - eg "lt%d" it will try and find a suitable
1016  *      id. It scans list of devices to build up a free map, then chooses
1017  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1018  *      while allocating the name and adding the device in order to avoid
1019  *      duplicates.
1020  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021  *      Returns the number of the unit assigned or a negative errno code.
1022  */
1023
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 {
1026         int i = 0;
1027         const char *p;
1028         const int max_netdevices = 8*PAGE_SIZE;
1029         unsigned long *inuse;
1030         struct net_device *d;
1031
1032         p = strnchr(name, IFNAMSIZ-1, '%');
1033         if (p) {
1034                 /*
1035                  * Verify the string as this thing may have come from
1036                  * the user.  There must be either one "%d" and no other "%"
1037                  * characters.
1038                  */
1039                 if (p[1] != 'd' || strchr(p + 2, '%'))
1040                         return -EINVAL;
1041
1042                 /* Use one page as a bit array of possible slots */
1043                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044                 if (!inuse)
1045                         return -ENOMEM;
1046
1047                 for_each_netdev(net, d) {
1048                         if (!sscanf(d->name, name, &i))
1049                                 continue;
1050                         if (i < 0 || i >= max_netdevices)
1051                                 continue;
1052
1053                         /*  avoid cases where sscanf is not exact inverse of printf */
1054                         snprintf(buf, IFNAMSIZ, name, i);
1055                         if (!strncmp(buf, d->name, IFNAMSIZ))
1056                                 set_bit(i, inuse);
1057                 }
1058
1059                 i = find_first_zero_bit(inuse, max_netdevices);
1060                 free_page((unsigned long) inuse);
1061         }
1062
1063         if (buf != name)
1064                 snprintf(buf, IFNAMSIZ, name, i);
1065         if (!__dev_get_by_name(net, buf))
1066                 return i;
1067
1068         /* It is possible to run out of possible slots
1069          * when the name is long and there isn't enough space left
1070          * for the digits, or if all bits are used.
1071          */
1072         return -ENFILE;
1073 }
1074
1075 /**
1076  *      dev_alloc_name - allocate a name for a device
1077  *      @dev: device
1078  *      @name: name format string
1079  *
1080  *      Passed a format string - eg "lt%d" it will try and find a suitable
1081  *      id. It scans list of devices to build up a free map, then chooses
1082  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *      while allocating the name and adding the device in order to avoid
1084  *      duplicates.
1085  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *      Returns the number of the unit assigned or a negative errno code.
1087  */
1088
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1090 {
1091         char buf[IFNAMSIZ];
1092         struct net *net;
1093         int ret;
1094
1095         BUG_ON(!dev_net(dev));
1096         net = dev_net(dev);
1097         ret = __dev_alloc_name(net, name, buf);
1098         if (ret >= 0)
1099                 strlcpy(dev->name, buf, IFNAMSIZ);
1100         return ret;
1101 }
1102 EXPORT_SYMBOL(dev_alloc_name);
1103
1104 static int dev_alloc_name_ns(struct net *net,
1105                              struct net_device *dev,
1106                              const char *name)
1107 {
1108         char buf[IFNAMSIZ];
1109         int ret;
1110
1111         ret = __dev_alloc_name(net, name, buf);
1112         if (ret >= 0)
1113                 strlcpy(dev->name, buf, IFNAMSIZ);
1114         return ret;
1115 }
1116
1117 static int dev_get_valid_name(struct net *net,
1118                               struct net_device *dev,
1119                               const char *name)
1120 {
1121         BUG_ON(!net);
1122
1123         if (!dev_valid_name(name))
1124                 return -EINVAL;
1125
1126         if (strchr(name, '%'))
1127                 return dev_alloc_name_ns(net, dev, name);
1128         else if (__dev_get_by_name(net, name))
1129                 return -EEXIST;
1130         else if (dev->name != name)
1131                 strlcpy(dev->name, name, IFNAMSIZ);
1132
1133         return 0;
1134 }
1135
1136 /**
1137  *      dev_change_name - change name of a device
1138  *      @dev: device
1139  *      @newname: name (or format string) must be at least IFNAMSIZ
1140  *
1141  *      Change name of a device, can pass format strings "eth%d".
1142  *      for wildcarding.
1143  */
1144 int dev_change_name(struct net_device *dev, const char *newname)
1145 {
1146         unsigned char old_assign_type;
1147         char oldname[IFNAMSIZ];
1148         int err = 0;
1149         int ret;
1150         struct net *net;
1151
1152         ASSERT_RTNL();
1153         BUG_ON(!dev_net(dev));
1154
1155         net = dev_net(dev);
1156         if (dev->flags & IFF_UP)
1157                 return -EBUSY;
1158
1159         write_seqcount_begin(&devnet_rename_seq);
1160
1161         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162                 write_seqcount_end(&devnet_rename_seq);
1163                 return 0;
1164         }
1165
1166         memcpy(oldname, dev->name, IFNAMSIZ);
1167
1168         err = dev_get_valid_name(net, dev, newname);
1169         if (err < 0) {
1170                 write_seqcount_end(&devnet_rename_seq);
1171                 return err;
1172         }
1173
1174         if (oldname[0] && !strchr(oldname, '%'))
1175                 netdev_info(dev, "renamed from %s\n", oldname);
1176
1177         old_assign_type = dev->name_assign_type;
1178         dev->name_assign_type = NET_NAME_RENAMED;
1179
1180 rollback:
1181         ret = device_rename(&dev->dev, dev->name);
1182         if (ret) {
1183                 memcpy(dev->name, oldname, IFNAMSIZ);
1184                 dev->name_assign_type = old_assign_type;
1185                 write_seqcount_end(&devnet_rename_seq);
1186                 return ret;
1187         }
1188
1189         write_seqcount_end(&devnet_rename_seq);
1190
1191         netdev_adjacent_rename_links(dev, oldname);
1192
1193         write_lock_bh(&dev_base_lock);
1194         hlist_del_rcu(&dev->name_hlist);
1195         write_unlock_bh(&dev_base_lock);
1196
1197         synchronize_rcu();
1198
1199         write_lock_bh(&dev_base_lock);
1200         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201         write_unlock_bh(&dev_base_lock);
1202
1203         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204         ret = notifier_to_errno(ret);
1205
1206         if (ret) {
1207                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208                 if (err >= 0) {
1209                         err = ret;
1210                         write_seqcount_begin(&devnet_rename_seq);
1211                         memcpy(dev->name, oldname, IFNAMSIZ);
1212                         memcpy(oldname, newname, IFNAMSIZ);
1213                         dev->name_assign_type = old_assign_type;
1214                         old_assign_type = NET_NAME_RENAMED;
1215                         goto rollback;
1216                 } else {
1217                         pr_err("%s: name change rollback failed: %d\n",
1218                                dev->name, ret);
1219                 }
1220         }
1221
1222         return err;
1223 }
1224
1225 /**
1226  *      dev_set_alias - change ifalias of a device
1227  *      @dev: device
1228  *      @alias: name up to IFALIASZ
1229  *      @len: limit of bytes to copy from info
1230  *
1231  *      Set ifalias for a device,
1232  */
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 {
1235         char *new_ifalias;
1236
1237         ASSERT_RTNL();
1238
1239         if (len >= IFALIASZ)
1240                 return -EINVAL;
1241
1242         if (!len) {
1243                 kfree(dev->ifalias);
1244                 dev->ifalias = NULL;
1245                 return 0;
1246         }
1247
1248         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249         if (!new_ifalias)
1250                 return -ENOMEM;
1251         dev->ifalias = new_ifalias;
1252
1253         strlcpy(dev->ifalias, alias, len+1);
1254         return len;
1255 }
1256
1257
1258 /**
1259  *      netdev_features_change - device changes features
1260  *      @dev: device to cause notification
1261  *
1262  *      Called to indicate a device has changed features.
1263  */
1264 void netdev_features_change(struct net_device *dev)
1265 {
1266         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 }
1268 EXPORT_SYMBOL(netdev_features_change);
1269
1270 /**
1271  *      netdev_state_change - device changes state
1272  *      @dev: device to cause notification
1273  *
1274  *      Called to indicate a device has changed state. This function calls
1275  *      the notifier chains for netdev_chain and sends a NEWLINK message
1276  *      to the routing socket.
1277  */
1278 void netdev_state_change(struct net_device *dev)
1279 {
1280         if (dev->flags & IFF_UP) {
1281                 struct netdev_notifier_change_info change_info;
1282
1283                 change_info.flags_changed = 0;
1284                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285                                               &change_info.info);
1286                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1287         }
1288 }
1289 EXPORT_SYMBOL(netdev_state_change);
1290
1291 /**
1292  *      netdev_notify_peers - notify network peers about existence of @dev
1293  *      @dev: network device
1294  *
1295  * Generate traffic such that interested network peers are aware of
1296  * @dev, such as by generating a gratuitous ARP. This may be used when
1297  * a device wants to inform the rest of the network about some sort of
1298  * reconfiguration such as a failover event or virtual machine
1299  * migration.
1300  */
1301 void netdev_notify_peers(struct net_device *dev)
1302 {
1303         rtnl_lock();
1304         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305         rtnl_unlock();
1306 }
1307 EXPORT_SYMBOL(netdev_notify_peers);
1308
1309 static int __dev_open(struct net_device *dev)
1310 {
1311         const struct net_device_ops *ops = dev->netdev_ops;
1312         int ret;
1313
1314         ASSERT_RTNL();
1315
1316         if (!netif_device_present(dev))
1317                 return -ENODEV;
1318
1319         /* Block netpoll from trying to do any rx path servicing.
1320          * If we don't do this there is a chance ndo_poll_controller
1321          * or ndo_poll may be running while we open the device
1322          */
1323         netpoll_poll_disable(dev);
1324
1325         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326         ret = notifier_to_errno(ret);
1327         if (ret)
1328                 return ret;
1329
1330         set_bit(__LINK_STATE_START, &dev->state);
1331
1332         if (ops->ndo_validate_addr)
1333                 ret = ops->ndo_validate_addr(dev);
1334
1335         if (!ret && ops->ndo_open)
1336                 ret = ops->ndo_open(dev);
1337
1338         netpoll_poll_enable(dev);
1339
1340         if (ret)
1341                 clear_bit(__LINK_STATE_START, &dev->state);
1342         else {
1343                 dev->flags |= IFF_UP;
1344                 dev_set_rx_mode(dev);
1345                 dev_activate(dev);
1346                 add_device_randomness(dev->dev_addr, dev->addr_len);
1347         }
1348
1349         return ret;
1350 }
1351
1352 /**
1353  *      dev_open        - prepare an interface for use.
1354  *      @dev:   device to open
1355  *
1356  *      Takes a device from down to up state. The device's private open
1357  *      function is invoked and then the multicast lists are loaded. Finally
1358  *      the device is moved into the up state and a %NETDEV_UP message is
1359  *      sent to the netdev notifier chain.
1360  *
1361  *      Calling this function on an active interface is a nop. On a failure
1362  *      a negative errno code is returned.
1363  */
1364 int dev_open(struct net_device *dev)
1365 {
1366         int ret;
1367
1368         if (dev->flags & IFF_UP)
1369                 return 0;
1370
1371         ret = __dev_open(dev);
1372         if (ret < 0)
1373                 return ret;
1374
1375         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376         call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378         return ret;
1379 }
1380 EXPORT_SYMBOL(dev_open);
1381
1382 static int __dev_close_many(struct list_head *head)
1383 {
1384         struct net_device *dev;
1385
1386         ASSERT_RTNL();
1387         might_sleep();
1388
1389         list_for_each_entry(dev, head, close_list) {
1390                 /* Temporarily disable netpoll until the interface is down */
1391                 netpoll_poll_disable(dev);
1392
1393                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394
1395                 clear_bit(__LINK_STATE_START, &dev->state);
1396
1397                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398                  * can be even on different cpu. So just clear netif_running().
1399                  *
1400                  * dev->stop() will invoke napi_disable() on all of it's
1401                  * napi_struct instances on this device.
1402                  */
1403                 smp_mb__after_atomic(); /* Commit netif_running(). */
1404         }
1405
1406         dev_deactivate_many(head);
1407
1408         list_for_each_entry(dev, head, close_list) {
1409                 const struct net_device_ops *ops = dev->netdev_ops;
1410
1411                 /*
1412                  *      Call the device specific close. This cannot fail.
1413                  *      Only if device is UP
1414                  *
1415                  *      We allow it to be called even after a DETACH hot-plug
1416                  *      event.
1417                  */
1418                 if (ops->ndo_stop)
1419                         ops->ndo_stop(dev);
1420
1421                 dev->flags &= ~IFF_UP;
1422                 netpoll_poll_enable(dev);
1423         }
1424
1425         return 0;
1426 }
1427
1428 static int __dev_close(struct net_device *dev)
1429 {
1430         int retval;
1431         LIST_HEAD(single);
1432
1433         list_add(&dev->close_list, &single);
1434         retval = __dev_close_many(&single);
1435         list_del(&single);
1436
1437         return retval;
1438 }
1439
1440 int dev_close_many(struct list_head *head, bool unlink)
1441 {
1442         struct net_device *dev, *tmp;
1443
1444         /* Remove the devices that don't need to be closed */
1445         list_for_each_entry_safe(dev, tmp, head, close_list)
1446                 if (!(dev->flags & IFF_UP))
1447                         list_del_init(&dev->close_list);
1448
1449         __dev_close_many(head);
1450
1451         list_for_each_entry_safe(dev, tmp, head, close_list) {
1452                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1454                 if (unlink)
1455                         list_del_init(&dev->close_list);
1456         }
1457
1458         return 0;
1459 }
1460 EXPORT_SYMBOL(dev_close_many);
1461
1462 /**
1463  *      dev_close - shutdown an interface.
1464  *      @dev: device to shutdown
1465  *
1466  *      This function moves an active device into down state. A
1467  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469  *      chain.
1470  */
1471 int dev_close(struct net_device *dev)
1472 {
1473         if (dev->flags & IFF_UP) {
1474                 LIST_HEAD(single);
1475
1476                 list_add(&dev->close_list, &single);
1477                 dev_close_many(&single, true);
1478                 list_del(&single);
1479         }
1480         return 0;
1481 }
1482 EXPORT_SYMBOL(dev_close);
1483
1484
1485 /**
1486  *      dev_disable_lro - disable Large Receive Offload on a device
1487  *      @dev: device
1488  *
1489  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1490  *      called under RTNL.  This is needed if received packets may be
1491  *      forwarded to another interface.
1492  */
1493 void dev_disable_lro(struct net_device *dev)
1494 {
1495         struct net_device *lower_dev;
1496         struct list_head *iter;
1497
1498         dev->wanted_features &= ~NETIF_F_LRO;
1499         netdev_update_features(dev);
1500
1501         if (unlikely(dev->features & NETIF_F_LRO))
1502                 netdev_WARN(dev, "failed to disable LRO!\n");
1503
1504         netdev_for_each_lower_dev(dev, lower_dev, iter)
1505                 dev_disable_lro(lower_dev);
1506 }
1507 EXPORT_SYMBOL(dev_disable_lro);
1508
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510                                    struct net_device *dev)
1511 {
1512         struct netdev_notifier_info info;
1513
1514         netdev_notifier_info_init(&info, dev);
1515         return nb->notifier_call(nb, val, &info);
1516 }
1517
1518 static int dev_boot_phase = 1;
1519
1520 /**
1521  *      register_netdevice_notifier - register a network notifier block
1522  *      @nb: notifier
1523  *
1524  *      Register a notifier to be called when network device events occur.
1525  *      The notifier passed is linked into the kernel structures and must
1526  *      not be reused until it has been unregistered. A negative errno code
1527  *      is returned on a failure.
1528  *
1529  *      When registered all registration and up events are replayed
1530  *      to the new notifier to allow device to have a race free
1531  *      view of the network device list.
1532  */
1533
1534 int register_netdevice_notifier(struct notifier_block *nb)
1535 {
1536         struct net_device *dev;
1537         struct net_device *last;
1538         struct net *net;
1539         int err;
1540
1541         rtnl_lock();
1542         err = raw_notifier_chain_register(&netdev_chain, nb);
1543         if (err)
1544                 goto unlock;
1545         if (dev_boot_phase)
1546                 goto unlock;
1547         for_each_net(net) {
1548                 for_each_netdev(net, dev) {
1549                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550                         err = notifier_to_errno(err);
1551                         if (err)
1552                                 goto rollback;
1553
1554                         if (!(dev->flags & IFF_UP))
1555                                 continue;
1556
1557                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1558                 }
1559         }
1560
1561 unlock:
1562         rtnl_unlock();
1563         return err;
1564
1565 rollback:
1566         last = dev;
1567         for_each_net(net) {
1568                 for_each_netdev(net, dev) {
1569                         if (dev == last)
1570                                 goto outroll;
1571
1572                         if (dev->flags & IFF_UP) {
1573                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574                                                         dev);
1575                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576                         }
1577                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1578                 }
1579         }
1580
1581 outroll:
1582         raw_notifier_chain_unregister(&netdev_chain, nb);
1583         goto unlock;
1584 }
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1586
1587 /**
1588  *      unregister_netdevice_notifier - unregister a network notifier block
1589  *      @nb: notifier
1590  *
1591  *      Unregister a notifier previously registered by
1592  *      register_netdevice_notifier(). The notifier is unlinked into the
1593  *      kernel structures and may then be reused. A negative errno code
1594  *      is returned on a failure.
1595  *
1596  *      After unregistering unregister and down device events are synthesized
1597  *      for all devices on the device list to the removed notifier to remove
1598  *      the need for special case cleanup code.
1599  */
1600
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 {
1603         struct net_device *dev;
1604         struct net *net;
1605         int err;
1606
1607         rtnl_lock();
1608         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609         if (err)
1610                 goto unlock;
1611
1612         for_each_net(net) {
1613                 for_each_netdev(net, dev) {
1614                         if (dev->flags & IFF_UP) {
1615                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616                                                         dev);
1617                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618                         }
1619                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1620                 }
1621         }
1622 unlock:
1623         rtnl_unlock();
1624         return err;
1625 }
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1627
1628 /**
1629  *      call_netdevice_notifiers_info - call all network notifier blocks
1630  *      @val: value passed unmodified to notifier function
1631  *      @dev: net_device pointer passed unmodified to notifier function
1632  *      @info: notifier information data
1633  *
1634  *      Call all network notifier blocks.  Parameters and return value
1635  *      are as for raw_notifier_call_chain().
1636  */
1637
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639                                          struct net_device *dev,
1640                                          struct netdev_notifier_info *info)
1641 {
1642         ASSERT_RTNL();
1643         netdev_notifier_info_init(info, dev);
1644         return raw_notifier_call_chain(&netdev_chain, val, info);
1645 }
1646
1647 /**
1648  *      call_netdevice_notifiers - call all network notifier blocks
1649  *      @val: value passed unmodified to notifier function
1650  *      @dev: net_device pointer passed unmodified to notifier function
1651  *
1652  *      Call all network notifier blocks.  Parameters and return value
1653  *      are as for raw_notifier_call_chain().
1654  */
1655
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 {
1658         struct netdev_notifier_info info;
1659
1660         return call_netdevice_notifiers_info(val, dev, &info);
1661 }
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1663
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1666
1667 void net_inc_ingress_queue(void)
1668 {
1669         static_key_slow_inc(&ingress_needed);
1670 }
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673 void net_dec_ingress_queue(void)
1674 {
1675         static_key_slow_dec(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1679
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1682
1683 void net_inc_egress_queue(void)
1684 {
1685         static_key_slow_inc(&egress_needed);
1686 }
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689 void net_dec_egress_queue(void)
1690 {
1691         static_key_slow_dec(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1695
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 static atomic_t netstamp_needed_deferred;
1699 static void netstamp_clear(struct work_struct *work)
1700 {
1701         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1702
1703         while (deferred--)
1704                 static_key_slow_dec(&netstamp_needed);
1705 }
1706 static DECLARE_WORK(netstamp_work, netstamp_clear);
1707 #endif
1708
1709 void net_enable_timestamp(void)
1710 {
1711         static_key_slow_inc(&netstamp_needed);
1712 }
1713 EXPORT_SYMBOL(net_enable_timestamp);
1714
1715 void net_disable_timestamp(void)
1716 {
1717 #ifdef HAVE_JUMP_LABEL
1718         /* net_disable_timestamp() can be called from non process context */
1719         atomic_inc(&netstamp_needed_deferred);
1720         schedule_work(&netstamp_work);
1721 #else
1722         static_key_slow_dec(&netstamp_needed);
1723 #endif
1724 }
1725 EXPORT_SYMBOL(net_disable_timestamp);
1726
1727 static inline void net_timestamp_set(struct sk_buff *skb)
1728 {
1729         skb->tstamp = 0;
1730         if (static_key_false(&netstamp_needed))
1731                 __net_timestamp(skb);
1732 }
1733
1734 #define net_timestamp_check(COND, SKB)                  \
1735         if (static_key_false(&netstamp_needed)) {               \
1736                 if ((COND) && !(SKB)->tstamp)   \
1737                         __net_timestamp(SKB);           \
1738         }                                               \
1739
1740 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1741 {
1742         unsigned int len;
1743
1744         if (!(dev->flags & IFF_UP))
1745                 return false;
1746
1747         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1748         if (skb->len <= len)
1749                 return true;
1750
1751         /* if TSO is enabled, we don't care about the length as the packet
1752          * could be forwarded without being segmented before
1753          */
1754         if (skb_is_gso(skb))
1755                 return true;
1756
1757         return false;
1758 }
1759 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1760
1761 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1762 {
1763         int ret = ____dev_forward_skb(dev, skb);
1764
1765         if (likely(!ret)) {
1766                 skb->protocol = eth_type_trans(skb, dev);
1767                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1768         }
1769
1770         return ret;
1771 }
1772 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1773
1774 /**
1775  * dev_forward_skb - loopback an skb to another netif
1776  *
1777  * @dev: destination network device
1778  * @skb: buffer to forward
1779  *
1780  * return values:
1781  *      NET_RX_SUCCESS  (no congestion)
1782  *      NET_RX_DROP     (packet was dropped, but freed)
1783  *
1784  * dev_forward_skb can be used for injecting an skb from the
1785  * start_xmit function of one device into the receive queue
1786  * of another device.
1787  *
1788  * The receiving device may be in another namespace, so
1789  * we have to clear all information in the skb that could
1790  * impact namespace isolation.
1791  */
1792 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1793 {
1794         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1795 }
1796 EXPORT_SYMBOL_GPL(dev_forward_skb);
1797
1798 static inline int deliver_skb(struct sk_buff *skb,
1799                               struct packet_type *pt_prev,
1800                               struct net_device *orig_dev)
1801 {
1802         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1803                 return -ENOMEM;
1804         atomic_inc(&skb->users);
1805         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1806 }
1807
1808 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1809                                           struct packet_type **pt,
1810                                           struct net_device *orig_dev,
1811                                           __be16 type,
1812                                           struct list_head *ptype_list)
1813 {
1814         struct packet_type *ptype, *pt_prev = *pt;
1815
1816         list_for_each_entry_rcu(ptype, ptype_list, list) {
1817                 if (ptype->type != type)
1818                         continue;
1819                 if (pt_prev)
1820                         deliver_skb(skb, pt_prev, orig_dev);
1821                 pt_prev = ptype;
1822         }
1823         *pt = pt_prev;
1824 }
1825
1826 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1827 {
1828         if (!ptype->af_packet_priv || !skb->sk)
1829                 return false;
1830
1831         if (ptype->id_match)
1832                 return ptype->id_match(ptype, skb->sk);
1833         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1834                 return true;
1835
1836         return false;
1837 }
1838
1839 /*
1840  *      Support routine. Sends outgoing frames to any network
1841  *      taps currently in use.
1842  */
1843
1844 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1845 {
1846         struct packet_type *ptype;
1847         struct sk_buff *skb2 = NULL;
1848         struct packet_type *pt_prev = NULL;
1849         struct list_head *ptype_list = &ptype_all;
1850
1851         rcu_read_lock();
1852 again:
1853         list_for_each_entry_rcu(ptype, ptype_list, list) {
1854                 /* Never send packets back to the socket
1855                  * they originated from - MvS (miquels@drinkel.ow.org)
1856                  */
1857                 if (skb_loop_sk(ptype, skb))
1858                         continue;
1859
1860                 if (pt_prev) {
1861                         deliver_skb(skb2, pt_prev, skb->dev);
1862                         pt_prev = ptype;
1863                         continue;
1864                 }
1865
1866                 /* need to clone skb, done only once */
1867                 skb2 = skb_clone(skb, GFP_ATOMIC);
1868                 if (!skb2)
1869                         goto out_unlock;
1870
1871                 net_timestamp_set(skb2);
1872
1873                 /* skb->nh should be correctly
1874                  * set by sender, so that the second statement is
1875                  * just protection against buggy protocols.
1876                  */
1877                 skb_reset_mac_header(skb2);
1878
1879                 if (skb_network_header(skb2) < skb2->data ||
1880                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1881                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1882                                              ntohs(skb2->protocol),
1883                                              dev->name);
1884                         skb_reset_network_header(skb2);
1885                 }
1886
1887                 skb2->transport_header = skb2->network_header;
1888                 skb2->pkt_type = PACKET_OUTGOING;
1889                 pt_prev = ptype;
1890         }
1891
1892         if (ptype_list == &ptype_all) {
1893                 ptype_list = &dev->ptype_all;
1894                 goto again;
1895         }
1896 out_unlock:
1897         if (pt_prev)
1898                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1899         rcu_read_unlock();
1900 }
1901 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1902
1903 /**
1904  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1905  * @dev: Network device
1906  * @txq: number of queues available
1907  *
1908  * If real_num_tx_queues is changed the tc mappings may no longer be
1909  * valid. To resolve this verify the tc mapping remains valid and if
1910  * not NULL the mapping. With no priorities mapping to this
1911  * offset/count pair it will no longer be used. In the worst case TC0
1912  * is invalid nothing can be done so disable priority mappings. If is
1913  * expected that drivers will fix this mapping if they can before
1914  * calling netif_set_real_num_tx_queues.
1915  */
1916 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1917 {
1918         int i;
1919         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1920
1921         /* If TC0 is invalidated disable TC mapping */
1922         if (tc->offset + tc->count > txq) {
1923                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1924                 dev->num_tc = 0;
1925                 return;
1926         }
1927
1928         /* Invalidated prio to tc mappings set to TC0 */
1929         for (i = 1; i < TC_BITMASK + 1; i++) {
1930                 int q = netdev_get_prio_tc_map(dev, i);
1931
1932                 tc = &dev->tc_to_txq[q];
1933                 if (tc->offset + tc->count > txq) {
1934                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1935                                 i, q);
1936                         netdev_set_prio_tc_map(dev, i, 0);
1937                 }
1938         }
1939 }
1940
1941 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1942 {
1943         if (dev->num_tc) {
1944                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1945                 int i;
1946
1947                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1948                         if ((txq - tc->offset) < tc->count)
1949                                 return i;
1950                 }
1951
1952                 return -1;
1953         }
1954
1955         return 0;
1956 }
1957
1958 #ifdef CONFIG_XPS
1959 static DEFINE_MUTEX(xps_map_mutex);
1960 #define xmap_dereference(P)             \
1961         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1962
1963 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1964                              int tci, u16 index)
1965 {
1966         struct xps_map *map = NULL;
1967         int pos;
1968
1969         if (dev_maps)
1970                 map = xmap_dereference(dev_maps->cpu_map[tci]);
1971         if (!map)
1972                 return false;
1973
1974         for (pos = map->len; pos--;) {
1975                 if (map->queues[pos] != index)
1976                         continue;
1977
1978                 if (map->len > 1) {
1979                         map->queues[pos] = map->queues[--map->len];
1980                         break;
1981                 }
1982
1983                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1984                 kfree_rcu(map, rcu);
1985                 return false;
1986         }
1987
1988         return true;
1989 }
1990
1991 static bool remove_xps_queue_cpu(struct net_device *dev,
1992                                  struct xps_dev_maps *dev_maps,
1993                                  int cpu, u16 offset, u16 count)
1994 {
1995         int num_tc = dev->num_tc ? : 1;
1996         bool active = false;
1997         int tci;
1998
1999         for (tci = cpu * num_tc; num_tc--; tci++) {
2000                 int i, j;
2001
2002                 for (i = count, j = offset; i--; j++) {
2003                         if (!remove_xps_queue(dev_maps, cpu, j))
2004                                 break;
2005                 }
2006
2007                 active |= i < 0;
2008         }
2009
2010         return active;
2011 }
2012
2013 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2014                                    u16 count)
2015 {
2016         struct xps_dev_maps *dev_maps;
2017         int cpu, i;
2018         bool active = false;
2019
2020         mutex_lock(&xps_map_mutex);
2021         dev_maps = xmap_dereference(dev->xps_maps);
2022
2023         if (!dev_maps)
2024                 goto out_no_maps;
2025
2026         for_each_possible_cpu(cpu)
2027                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2028                                                offset, count);
2029
2030         if (!active) {
2031                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2032                 kfree_rcu(dev_maps, rcu);
2033         }
2034
2035         for (i = offset + (count - 1); count--; i--)
2036                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2037                                              NUMA_NO_NODE);
2038
2039 out_no_maps:
2040         mutex_unlock(&xps_map_mutex);
2041 }
2042
2043 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2044 {
2045         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2046 }
2047
2048 static struct xps_map *expand_xps_map(struct xps_map *map,
2049                                       int cpu, u16 index)
2050 {
2051         struct xps_map *new_map;
2052         int alloc_len = XPS_MIN_MAP_ALLOC;
2053         int i, pos;
2054
2055         for (pos = 0; map && pos < map->len; pos++) {
2056                 if (map->queues[pos] != index)
2057                         continue;
2058                 return map;
2059         }
2060
2061         /* Need to add queue to this CPU's existing map */
2062         if (map) {
2063                 if (pos < map->alloc_len)
2064                         return map;
2065
2066                 alloc_len = map->alloc_len * 2;
2067         }
2068
2069         /* Need to allocate new map to store queue on this CPU's map */
2070         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2071                                cpu_to_node(cpu));
2072         if (!new_map)
2073                 return NULL;
2074
2075         for (i = 0; i < pos; i++)
2076                 new_map->queues[i] = map->queues[i];
2077         new_map->alloc_len = alloc_len;
2078         new_map->len = pos;
2079
2080         return new_map;
2081 }
2082
2083 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2084                         u16 index)
2085 {
2086         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2087         int i, cpu, tci, numa_node_id = -2;
2088         int maps_sz, num_tc = 1, tc = 0;
2089         struct xps_map *map, *new_map;
2090         bool active = false;
2091
2092         if (dev->num_tc) {
2093                 num_tc = dev->num_tc;
2094                 tc = netdev_txq_to_tc(dev, index);
2095                 if (tc < 0)
2096                         return -EINVAL;
2097         }
2098
2099         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2100         if (maps_sz < L1_CACHE_BYTES)
2101                 maps_sz = L1_CACHE_BYTES;
2102
2103         mutex_lock(&xps_map_mutex);
2104
2105         dev_maps = xmap_dereference(dev->xps_maps);
2106
2107         /* allocate memory for queue storage */
2108         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2109                 if (!new_dev_maps)
2110                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2111                 if (!new_dev_maps) {
2112                         mutex_unlock(&xps_map_mutex);
2113                         return -ENOMEM;
2114                 }
2115
2116                 tci = cpu * num_tc + tc;
2117                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2118                                  NULL;
2119
2120                 map = expand_xps_map(map, cpu, index);
2121                 if (!map)
2122                         goto error;
2123
2124                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2125         }
2126
2127         if (!new_dev_maps)
2128                 goto out_no_new_maps;
2129
2130         for_each_possible_cpu(cpu) {
2131                 /* copy maps belonging to foreign traffic classes */
2132                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2133                         /* fill in the new device map from the old device map */
2134                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2135                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2136                 }
2137
2138                 /* We need to explicitly update tci as prevous loop
2139                  * could break out early if dev_maps is NULL.
2140                  */
2141                 tci = cpu * num_tc + tc;
2142
2143                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2144                         /* add queue to CPU maps */
2145                         int pos = 0;
2146
2147                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2148                         while ((pos < map->len) && (map->queues[pos] != index))
2149                                 pos++;
2150
2151                         if (pos == map->len)
2152                                 map->queues[map->len++] = index;
2153 #ifdef CONFIG_NUMA
2154                         if (numa_node_id == -2)
2155                                 numa_node_id = cpu_to_node(cpu);
2156                         else if (numa_node_id != cpu_to_node(cpu))
2157                                 numa_node_id = -1;
2158 #endif
2159                 } else if (dev_maps) {
2160                         /* fill in the new device map from the old device map */
2161                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2162                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2163                 }
2164
2165                 /* copy maps belonging to foreign traffic classes */
2166                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2167                         /* fill in the new device map from the old device map */
2168                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2169                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2170                 }
2171         }
2172
2173         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2174
2175         /* Cleanup old maps */
2176         if (!dev_maps)
2177                 goto out_no_old_maps;
2178
2179         for_each_possible_cpu(cpu) {
2180                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2181                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2182                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2183                         if (map && map != new_map)
2184                                 kfree_rcu(map, rcu);
2185                 }
2186         }
2187
2188         kfree_rcu(dev_maps, rcu);
2189
2190 out_no_old_maps:
2191         dev_maps = new_dev_maps;
2192         active = true;
2193
2194 out_no_new_maps:
2195         /* update Tx queue numa node */
2196         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2197                                      (numa_node_id >= 0) ? numa_node_id :
2198                                      NUMA_NO_NODE);
2199
2200         if (!dev_maps)
2201                 goto out_no_maps;
2202
2203         /* removes queue from unused CPUs */
2204         for_each_possible_cpu(cpu) {
2205                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2206                         active |= remove_xps_queue(dev_maps, tci, index);
2207                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2208                         active |= remove_xps_queue(dev_maps, tci, index);
2209                 for (i = num_tc - tc, tci++; --i; tci++)
2210                         active |= remove_xps_queue(dev_maps, tci, index);
2211         }
2212
2213         /* free map if not active */
2214         if (!active) {
2215                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2216                 kfree_rcu(dev_maps, rcu);
2217         }
2218
2219 out_no_maps:
2220         mutex_unlock(&xps_map_mutex);
2221
2222         return 0;
2223 error:
2224         /* remove any maps that we added */
2225         for_each_possible_cpu(cpu) {
2226                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2227                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2228                         map = dev_maps ?
2229                               xmap_dereference(dev_maps->cpu_map[tci]) :
2230                               NULL;
2231                         if (new_map && new_map != map)
2232                                 kfree(new_map);
2233                 }
2234         }
2235
2236         mutex_unlock(&xps_map_mutex);
2237
2238         kfree(new_dev_maps);
2239         return -ENOMEM;
2240 }
2241 EXPORT_SYMBOL(netif_set_xps_queue);
2242
2243 #endif
2244 void netdev_reset_tc(struct net_device *dev)
2245 {
2246 #ifdef CONFIG_XPS
2247         netif_reset_xps_queues_gt(dev, 0);
2248 #endif
2249         dev->num_tc = 0;
2250         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2251         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2252 }
2253 EXPORT_SYMBOL(netdev_reset_tc);
2254
2255 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2256 {
2257         if (tc >= dev->num_tc)
2258                 return -EINVAL;
2259
2260 #ifdef CONFIG_XPS
2261         netif_reset_xps_queues(dev, offset, count);
2262 #endif
2263         dev->tc_to_txq[tc].count = count;
2264         dev->tc_to_txq[tc].offset = offset;
2265         return 0;
2266 }
2267 EXPORT_SYMBOL(netdev_set_tc_queue);
2268
2269 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2270 {
2271         if (num_tc > TC_MAX_QUEUE)
2272                 return -EINVAL;
2273
2274 #ifdef CONFIG_XPS
2275         netif_reset_xps_queues_gt(dev, 0);
2276 #endif
2277         dev->num_tc = num_tc;
2278         return 0;
2279 }
2280 EXPORT_SYMBOL(netdev_set_num_tc);
2281
2282 /*
2283  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2284  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2285  */
2286 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2287 {
2288         int rc;
2289
2290         if (txq < 1 || txq > dev->num_tx_queues)
2291                 return -EINVAL;
2292
2293         if (dev->reg_state == NETREG_REGISTERED ||
2294             dev->reg_state == NETREG_UNREGISTERING) {
2295                 ASSERT_RTNL();
2296
2297                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2298                                                   txq);
2299                 if (rc)
2300                         return rc;
2301
2302                 if (dev->num_tc)
2303                         netif_setup_tc(dev, txq);
2304
2305                 if (txq < dev->real_num_tx_queues) {
2306                         qdisc_reset_all_tx_gt(dev, txq);
2307 #ifdef CONFIG_XPS
2308                         netif_reset_xps_queues_gt(dev, txq);
2309 #endif
2310                 }
2311         }
2312
2313         dev->real_num_tx_queues = txq;
2314         return 0;
2315 }
2316 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2317
2318 #ifdef CONFIG_SYSFS
2319 /**
2320  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2321  *      @dev: Network device
2322  *      @rxq: Actual number of RX queues
2323  *
2324  *      This must be called either with the rtnl_lock held or before
2325  *      registration of the net device.  Returns 0 on success, or a
2326  *      negative error code.  If called before registration, it always
2327  *      succeeds.
2328  */
2329 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2330 {
2331         int rc;
2332
2333         if (rxq < 1 || rxq > dev->num_rx_queues)
2334                 return -EINVAL;
2335
2336         if (dev->reg_state == NETREG_REGISTERED) {
2337                 ASSERT_RTNL();
2338
2339                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2340                                                   rxq);
2341                 if (rc)
2342                         return rc;
2343         }
2344
2345         dev->real_num_rx_queues = rxq;
2346         return 0;
2347 }
2348 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2349 #endif
2350
2351 /**
2352  * netif_get_num_default_rss_queues - default number of RSS queues
2353  *
2354  * This routine should set an upper limit on the number of RSS queues
2355  * used by default by multiqueue devices.
2356  */
2357 int netif_get_num_default_rss_queues(void)
2358 {
2359         return is_kdump_kernel() ?
2360                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2361 }
2362 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2363
2364 static void __netif_reschedule(struct Qdisc *q)
2365 {
2366         struct softnet_data *sd;
2367         unsigned long flags;
2368
2369         local_irq_save(flags);
2370         sd = this_cpu_ptr(&softnet_data);
2371         q->next_sched = NULL;
2372         *sd->output_queue_tailp = q;
2373         sd->output_queue_tailp = &q->next_sched;
2374         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2375         local_irq_restore(flags);
2376 }
2377
2378 void __netif_schedule(struct Qdisc *q)
2379 {
2380         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2381                 __netif_reschedule(q);
2382 }
2383 EXPORT_SYMBOL(__netif_schedule);
2384
2385 struct dev_kfree_skb_cb {
2386         enum skb_free_reason reason;
2387 };
2388
2389 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2390 {
2391         return (struct dev_kfree_skb_cb *)skb->cb;
2392 }
2393
2394 void netif_schedule_queue(struct netdev_queue *txq)
2395 {
2396         rcu_read_lock();
2397         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2398                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2399
2400                 __netif_schedule(q);
2401         }
2402         rcu_read_unlock();
2403 }
2404 EXPORT_SYMBOL(netif_schedule_queue);
2405
2406 /**
2407  *      netif_wake_subqueue - allow sending packets on subqueue
2408  *      @dev: network device
2409  *      @queue_index: sub queue index
2410  *
2411  * Resume individual transmit queue of a device with multiple transmit queues.
2412  */
2413 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2414 {
2415         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2416
2417         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2418                 struct Qdisc *q;
2419
2420                 rcu_read_lock();
2421                 q = rcu_dereference(txq->qdisc);
2422                 __netif_schedule(q);
2423                 rcu_read_unlock();
2424         }
2425 }
2426 EXPORT_SYMBOL(netif_wake_subqueue);
2427
2428 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2429 {
2430         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2431                 struct Qdisc *q;
2432
2433                 rcu_read_lock();
2434                 q = rcu_dereference(dev_queue->qdisc);
2435                 __netif_schedule(q);
2436                 rcu_read_unlock();
2437         }
2438 }
2439 EXPORT_SYMBOL(netif_tx_wake_queue);
2440
2441 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2442 {
2443         unsigned long flags;
2444
2445         if (likely(atomic_read(&skb->users) == 1)) {
2446                 smp_rmb();
2447                 atomic_set(&skb->users, 0);
2448         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2449                 return;
2450         }
2451         get_kfree_skb_cb(skb)->reason = reason;
2452         local_irq_save(flags);
2453         skb->next = __this_cpu_read(softnet_data.completion_queue);
2454         __this_cpu_write(softnet_data.completion_queue, skb);
2455         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2456         local_irq_restore(flags);
2457 }
2458 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2459
2460 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2461 {
2462         if (in_irq() || irqs_disabled())
2463                 __dev_kfree_skb_irq(skb, reason);
2464         else
2465                 dev_kfree_skb(skb);
2466 }
2467 EXPORT_SYMBOL(__dev_kfree_skb_any);
2468
2469
2470 /**
2471  * netif_device_detach - mark device as removed
2472  * @dev: network device
2473  *
2474  * Mark device as removed from system and therefore no longer available.
2475  */
2476 void netif_device_detach(struct net_device *dev)
2477 {
2478         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2479             netif_running(dev)) {
2480                 netif_tx_stop_all_queues(dev);
2481         }
2482 }
2483 EXPORT_SYMBOL(netif_device_detach);
2484
2485 /**
2486  * netif_device_attach - mark device as attached
2487  * @dev: network device
2488  *
2489  * Mark device as attached from system and restart if needed.
2490  */
2491 void netif_device_attach(struct net_device *dev)
2492 {
2493         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2494             netif_running(dev)) {
2495                 netif_tx_wake_all_queues(dev);
2496                 __netdev_watchdog_up(dev);
2497         }
2498 }
2499 EXPORT_SYMBOL(netif_device_attach);
2500
2501 /*
2502  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2503  * to be used as a distribution range.
2504  */
2505 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2506                   unsigned int num_tx_queues)
2507 {
2508         u32 hash;
2509         u16 qoffset = 0;
2510         u16 qcount = num_tx_queues;
2511
2512         if (skb_rx_queue_recorded(skb)) {
2513                 hash = skb_get_rx_queue(skb);
2514                 while (unlikely(hash >= num_tx_queues))
2515                         hash -= num_tx_queues;
2516                 return hash;
2517         }
2518
2519         if (dev->num_tc) {
2520                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2521                 qoffset = dev->tc_to_txq[tc].offset;
2522                 qcount = dev->tc_to_txq[tc].count;
2523         }
2524
2525         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2526 }
2527 EXPORT_SYMBOL(__skb_tx_hash);
2528
2529 static void skb_warn_bad_offload(const struct sk_buff *skb)
2530 {
2531         static const netdev_features_t null_features;
2532         struct net_device *dev = skb->dev;
2533         const char *name = "";
2534
2535         if (!net_ratelimit())
2536                 return;
2537
2538         if (dev) {
2539                 if (dev->dev.parent)
2540                         name = dev_driver_string(dev->dev.parent);
2541                 else
2542                         name = netdev_name(dev);
2543         }
2544         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2545              "gso_type=%d ip_summed=%d\n",
2546              name, dev ? &dev->features : &null_features,
2547              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2548              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2549              skb_shinfo(skb)->gso_type, skb->ip_summed);
2550 }
2551
2552 /*
2553  * Invalidate hardware checksum when packet is to be mangled, and
2554  * complete checksum manually on outgoing path.
2555  */
2556 int skb_checksum_help(struct sk_buff *skb)
2557 {
2558         __wsum csum;
2559         int ret = 0, offset;
2560
2561         if (skb->ip_summed == CHECKSUM_COMPLETE)
2562                 goto out_set_summed;
2563
2564         if (unlikely(skb_shinfo(skb)->gso_size)) {
2565                 skb_warn_bad_offload(skb);
2566                 return -EINVAL;
2567         }
2568
2569         /* Before computing a checksum, we should make sure no frag could
2570          * be modified by an external entity : checksum could be wrong.
2571          */
2572         if (skb_has_shared_frag(skb)) {
2573                 ret = __skb_linearize(skb);
2574                 if (ret)
2575                         goto out;
2576         }
2577
2578         offset = skb_checksum_start_offset(skb);
2579         BUG_ON(offset >= skb_headlen(skb));
2580         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2581
2582         offset += skb->csum_offset;
2583         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2584
2585         if (skb_cloned(skb) &&
2586             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2587                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2588                 if (ret)
2589                         goto out;
2590         }
2591
2592         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2593 out_set_summed:
2594         skb->ip_summed = CHECKSUM_NONE;
2595 out:
2596         return ret;
2597 }
2598 EXPORT_SYMBOL(skb_checksum_help);
2599
2600 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2601 {
2602         __be16 type = skb->protocol;
2603
2604         /* Tunnel gso handlers can set protocol to ethernet. */
2605         if (type == htons(ETH_P_TEB)) {
2606                 struct ethhdr *eth;
2607
2608                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2609                         return 0;
2610
2611                 eth = (struct ethhdr *)skb_mac_header(skb);
2612                 type = eth->h_proto;
2613         }
2614
2615         return __vlan_get_protocol(skb, type, depth);
2616 }
2617
2618 /**
2619  *      skb_mac_gso_segment - mac layer segmentation handler.
2620  *      @skb: buffer to segment
2621  *      @features: features for the output path (see dev->features)
2622  */
2623 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2624                                     netdev_features_t features)
2625 {
2626         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2627         struct packet_offload *ptype;
2628         int vlan_depth = skb->mac_len;
2629         __be16 type = skb_network_protocol(skb, &vlan_depth);
2630
2631         if (unlikely(!type))
2632                 return ERR_PTR(-EINVAL);
2633
2634         __skb_pull(skb, vlan_depth);
2635
2636         rcu_read_lock();
2637         list_for_each_entry_rcu(ptype, &offload_base, list) {
2638                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2639                         segs = ptype->callbacks.gso_segment(skb, features);
2640                         break;
2641                 }
2642         }
2643         rcu_read_unlock();
2644
2645         __skb_push(skb, skb->data - skb_mac_header(skb));
2646
2647         return segs;
2648 }
2649 EXPORT_SYMBOL(skb_mac_gso_segment);
2650
2651
2652 /* openvswitch calls this on rx path, so we need a different check.
2653  */
2654 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2655 {
2656         if (tx_path)
2657                 return skb->ip_summed != CHECKSUM_PARTIAL;
2658         else
2659                 return skb->ip_summed == CHECKSUM_NONE;
2660 }
2661
2662 /**
2663  *      __skb_gso_segment - Perform segmentation on skb.
2664  *      @skb: buffer to segment
2665  *      @features: features for the output path (see dev->features)
2666  *      @tx_path: whether it is called in TX path
2667  *
2668  *      This function segments the given skb and returns a list of segments.
2669  *
2670  *      It may return NULL if the skb requires no segmentation.  This is
2671  *      only possible when GSO is used for verifying header integrity.
2672  *
2673  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2674  */
2675 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2676                                   netdev_features_t features, bool tx_path)
2677 {
2678         if (unlikely(skb_needs_check(skb, tx_path))) {
2679                 int err;
2680
2681                 skb_warn_bad_offload(skb);
2682
2683                 err = skb_cow_head(skb, 0);
2684                 if (err < 0)
2685                         return ERR_PTR(err);
2686         }
2687
2688         /* Only report GSO partial support if it will enable us to
2689          * support segmentation on this frame without needing additional
2690          * work.
2691          */
2692         if (features & NETIF_F_GSO_PARTIAL) {
2693                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2694                 struct net_device *dev = skb->dev;
2695
2696                 partial_features |= dev->features & dev->gso_partial_features;
2697                 if (!skb_gso_ok(skb, features | partial_features))
2698                         features &= ~NETIF_F_GSO_PARTIAL;
2699         }
2700
2701         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2702                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2703
2704         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2705         SKB_GSO_CB(skb)->encap_level = 0;
2706
2707         skb_reset_mac_header(skb);
2708         skb_reset_mac_len(skb);
2709
2710         return skb_mac_gso_segment(skb, features);
2711 }
2712 EXPORT_SYMBOL(__skb_gso_segment);
2713
2714 /* Take action when hardware reception checksum errors are detected. */
2715 #ifdef CONFIG_BUG
2716 void netdev_rx_csum_fault(struct net_device *dev)
2717 {
2718         if (net_ratelimit()) {
2719                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2720                 dump_stack();
2721         }
2722 }
2723 EXPORT_SYMBOL(netdev_rx_csum_fault);
2724 #endif
2725
2726 /* Actually, we should eliminate this check as soon as we know, that:
2727  * 1. IOMMU is present and allows to map all the memory.
2728  * 2. No high memory really exists on this machine.
2729  */
2730
2731 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2732 {
2733 #ifdef CONFIG_HIGHMEM
2734         int i;
2735         if (!(dev->features & NETIF_F_HIGHDMA)) {
2736                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2737                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2738                         if (PageHighMem(skb_frag_page(frag)))
2739                                 return 1;
2740                 }
2741         }
2742
2743         if (PCI_DMA_BUS_IS_PHYS) {
2744                 struct device *pdev = dev->dev.parent;
2745
2746                 if (!pdev)
2747                         return 0;
2748                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2749                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2750                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2751                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2752                                 return 1;
2753                 }
2754         }
2755 #endif
2756         return 0;
2757 }
2758
2759 /* If MPLS offload request, verify we are testing hardware MPLS features
2760  * instead of standard features for the netdev.
2761  */
2762 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2763 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2764                                            netdev_features_t features,
2765                                            __be16 type)
2766 {
2767         if (eth_p_mpls(type))
2768                 features &= skb->dev->mpls_features;
2769
2770         return features;
2771 }
2772 #else
2773 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2774                                            netdev_features_t features,
2775                                            __be16 type)
2776 {
2777         return features;
2778 }
2779 #endif
2780
2781 static netdev_features_t harmonize_features(struct sk_buff *skb,
2782         netdev_features_t features)
2783 {
2784         int tmp;
2785         __be16 type;
2786
2787         type = skb_network_protocol(skb, &tmp);
2788         features = net_mpls_features(skb, features, type);
2789
2790         if (skb->ip_summed != CHECKSUM_NONE &&
2791             !can_checksum_protocol(features, type)) {
2792                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2793         }
2794         if (illegal_highdma(skb->dev, skb))
2795                 features &= ~NETIF_F_SG;
2796
2797         return features;
2798 }
2799
2800 netdev_features_t passthru_features_check(struct sk_buff *skb,
2801                                           struct net_device *dev,
2802                                           netdev_features_t features)
2803 {
2804         return features;
2805 }
2806 EXPORT_SYMBOL(passthru_features_check);
2807
2808 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2809                                              struct net_device *dev,
2810                                              netdev_features_t features)
2811 {
2812         return vlan_features_check(skb, features);
2813 }
2814
2815 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2816                                             struct net_device *dev,
2817                                             netdev_features_t features)
2818 {
2819         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2820
2821         if (gso_segs > dev->gso_max_segs)
2822                 return features & ~NETIF_F_GSO_MASK;
2823
2824         /* Support for GSO partial features requires software
2825          * intervention before we can actually process the packets
2826          * so we need to strip support for any partial features now
2827          * and we can pull them back in after we have partially
2828          * segmented the frame.
2829          */
2830         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2831                 features &= ~dev->gso_partial_features;
2832
2833         /* Make sure to clear the IPv4 ID mangling feature if the
2834          * IPv4 header has the potential to be fragmented.
2835          */
2836         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2837                 struct iphdr *iph = skb->encapsulation ?
2838                                     inner_ip_hdr(skb) : ip_hdr(skb);
2839
2840                 if (!(iph->frag_off & htons(IP_DF)))
2841                         features &= ~NETIF_F_TSO_MANGLEID;
2842         }
2843
2844         return features;
2845 }
2846
2847 netdev_features_t netif_skb_features(struct sk_buff *skb)
2848 {
2849         struct net_device *dev = skb->dev;
2850         netdev_features_t features = dev->features;
2851
2852         if (skb_is_gso(skb))
2853                 features = gso_features_check(skb, dev, features);
2854
2855         /* If encapsulation offload request, verify we are testing
2856          * hardware encapsulation features instead of standard
2857          * features for the netdev
2858          */
2859         if (skb->encapsulation)
2860                 features &= dev->hw_enc_features;
2861
2862         if (skb_vlan_tagged(skb))
2863                 features = netdev_intersect_features(features,
2864                                                      dev->vlan_features |
2865                                                      NETIF_F_HW_VLAN_CTAG_TX |
2866                                                      NETIF_F_HW_VLAN_STAG_TX);
2867
2868         if (dev->netdev_ops->ndo_features_check)
2869                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2870                                                                 features);
2871         else
2872                 features &= dflt_features_check(skb, dev, features);
2873
2874         return harmonize_features(skb, features);
2875 }
2876 EXPORT_SYMBOL(netif_skb_features);
2877
2878 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2879                     struct netdev_queue *txq, bool more)
2880 {
2881         unsigned int len;
2882         int rc;
2883
2884         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2885                 dev_queue_xmit_nit(skb, dev);
2886
2887         len = skb->len;
2888         trace_net_dev_start_xmit(skb, dev);
2889         rc = netdev_start_xmit(skb, dev, txq, more);
2890         trace_net_dev_xmit(skb, rc, dev, len);
2891
2892         return rc;
2893 }
2894
2895 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2896                                     struct netdev_queue *txq, int *ret)
2897 {
2898         struct sk_buff *skb = first;
2899         int rc = NETDEV_TX_OK;
2900
2901         while (skb) {
2902                 struct sk_buff *next = skb->next;
2903
2904                 skb->next = NULL;
2905                 rc = xmit_one(skb, dev, txq, next != NULL);
2906                 if (unlikely(!dev_xmit_complete(rc))) {
2907                         skb->next = next;
2908                         goto out;
2909                 }
2910
2911                 skb = next;
2912                 if (netif_xmit_stopped(txq) && skb) {
2913                         rc = NETDEV_TX_BUSY;
2914                         break;
2915                 }
2916         }
2917
2918 out:
2919         *ret = rc;
2920         return skb;
2921 }
2922
2923 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2924                                           netdev_features_t features)
2925 {
2926         if (skb_vlan_tag_present(skb) &&
2927             !vlan_hw_offload_capable(features, skb->vlan_proto))
2928                 skb = __vlan_hwaccel_push_inside(skb);
2929         return skb;
2930 }
2931
2932 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2933 {
2934         netdev_features_t features;
2935
2936         features = netif_skb_features(skb);
2937         skb = validate_xmit_vlan(skb, features);
2938         if (unlikely(!skb))
2939                 goto out_null;
2940
2941         if (netif_needs_gso(skb, features)) {
2942                 struct sk_buff *segs;
2943
2944                 segs = skb_gso_segment(skb, features);
2945                 if (IS_ERR(segs)) {
2946                         goto out_kfree_skb;
2947                 } else if (segs) {
2948                         consume_skb(skb);
2949                         skb = segs;
2950                 }
2951         } else {
2952                 if (skb_needs_linearize(skb, features) &&
2953                     __skb_linearize(skb))
2954                         goto out_kfree_skb;
2955
2956                 /* If packet is not checksummed and device does not
2957                  * support checksumming for this protocol, complete
2958                  * checksumming here.
2959                  */
2960                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2961                         if (skb->encapsulation)
2962                                 skb_set_inner_transport_header(skb,
2963                                                                skb_checksum_start_offset(skb));
2964                         else
2965                                 skb_set_transport_header(skb,
2966                                                          skb_checksum_start_offset(skb));
2967                         if (!(features & NETIF_F_CSUM_MASK) &&
2968                             skb_checksum_help(skb))
2969                                 goto out_kfree_skb;
2970                 }
2971         }
2972
2973         return skb;
2974
2975 out_kfree_skb:
2976         kfree_skb(skb);
2977 out_null:
2978         atomic_long_inc(&dev->tx_dropped);
2979         return NULL;
2980 }
2981
2982 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2983 {
2984         struct sk_buff *next, *head = NULL, *tail;
2985
2986         for (; skb != NULL; skb = next) {
2987                 next = skb->next;
2988                 skb->next = NULL;
2989
2990                 /* in case skb wont be segmented, point to itself */
2991                 skb->prev = skb;
2992
2993                 skb = validate_xmit_skb(skb, dev);
2994                 if (!skb)
2995                         continue;
2996
2997                 if (!head)
2998                         head = skb;
2999                 else
3000                         tail->next = skb;
3001                 /* If skb was segmented, skb->prev points to
3002                  * the last segment. If not, it still contains skb.
3003                  */
3004                 tail = skb->prev;
3005         }
3006         return head;
3007 }
3008 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3009
3010 static void qdisc_pkt_len_init(struct sk_buff *skb)
3011 {
3012         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3013
3014         qdisc_skb_cb(skb)->pkt_len = skb->len;
3015
3016         /* To get more precise estimation of bytes sent on wire,
3017          * we add to pkt_len the headers size of all segments
3018          */
3019         if (shinfo->gso_size)  {
3020                 unsigned int hdr_len;
3021                 u16 gso_segs = shinfo->gso_segs;
3022
3023                 /* mac layer + network layer */
3024                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3025
3026                 /* + transport layer */
3027                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3028                         hdr_len += tcp_hdrlen(skb);
3029                 else
3030                         hdr_len += sizeof(struct udphdr);
3031
3032                 if (shinfo->gso_type & SKB_GSO_DODGY)
3033                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3034                                                 shinfo->gso_size);
3035
3036                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3037         }
3038 }
3039
3040 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3041                                  struct net_device *dev,
3042                                  struct netdev_queue *txq)
3043 {
3044         spinlock_t *root_lock = qdisc_lock(q);
3045         struct sk_buff *to_free = NULL;
3046         bool contended;
3047         int rc;
3048
3049         qdisc_calculate_pkt_len(skb, q);
3050         /*
3051          * Heuristic to force contended enqueues to serialize on a
3052          * separate lock before trying to get qdisc main lock.
3053          * This permits qdisc->running owner to get the lock more
3054          * often and dequeue packets faster.
3055          */
3056         contended = qdisc_is_running(q);
3057         if (unlikely(contended))
3058                 spin_lock(&q->busylock);
3059
3060         spin_lock(root_lock);
3061         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3062                 __qdisc_drop(skb, &to_free);
3063                 rc = NET_XMIT_DROP;
3064         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3065                    qdisc_run_begin(q)) {
3066                 /*
3067                  * This is a work-conserving queue; there are no old skbs
3068                  * waiting to be sent out; and the qdisc is not running -
3069                  * xmit the skb directly.
3070                  */
3071
3072                 qdisc_bstats_update(q, skb);
3073
3074                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3075                         if (unlikely(contended)) {
3076                                 spin_unlock(&q->busylock);
3077                                 contended = false;
3078                         }
3079                         __qdisc_run(q);
3080                 } else
3081                         qdisc_run_end(q);
3082
3083                 rc = NET_XMIT_SUCCESS;
3084         } else {
3085                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3086                 if (qdisc_run_begin(q)) {
3087                         if (unlikely(contended)) {
3088                                 spin_unlock(&q->busylock);
3089                                 contended = false;
3090                         }
3091                         __qdisc_run(q);
3092                 }
3093         }
3094         spin_unlock(root_lock);
3095         if (unlikely(to_free))
3096                 kfree_skb_list(to_free);
3097         if (unlikely(contended))
3098                 spin_unlock(&q->busylock);
3099         return rc;
3100 }
3101
3102 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3103 static void skb_update_prio(struct sk_buff *skb)
3104 {
3105         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3106
3107         if (!skb->priority && skb->sk && map) {
3108                 unsigned int prioidx =
3109                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3110
3111                 if (prioidx < map->priomap_len)
3112                         skb->priority = map->priomap[prioidx];
3113         }
3114 }
3115 #else
3116 #define skb_update_prio(skb)
3117 #endif
3118
3119 DEFINE_PER_CPU(int, xmit_recursion);
3120 EXPORT_SYMBOL(xmit_recursion);
3121
3122 /**
3123  *      dev_loopback_xmit - loop back @skb
3124  *      @net: network namespace this loopback is happening in
3125  *      @sk:  sk needed to be a netfilter okfn
3126  *      @skb: buffer to transmit
3127  */
3128 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3129 {
3130         skb_reset_mac_header(skb);
3131         __skb_pull(skb, skb_network_offset(skb));
3132         skb->pkt_type = PACKET_LOOPBACK;
3133         skb->ip_summed = CHECKSUM_UNNECESSARY;
3134         WARN_ON(!skb_dst(skb));
3135         skb_dst_force(skb);
3136         netif_rx_ni(skb);
3137         return 0;
3138 }
3139 EXPORT_SYMBOL(dev_loopback_xmit);
3140
3141 #ifdef CONFIG_NET_EGRESS
3142 static struct sk_buff *
3143 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3144 {
3145         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3146         struct tcf_result cl_res;
3147
3148         if (!cl)
3149                 return skb;
3150
3151         /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3152          * earlier by the caller.
3153          */
3154         qdisc_bstats_cpu_update(cl->q, skb);
3155
3156         switch (tc_classify(skb, cl, &cl_res, false)) {
3157         case TC_ACT_OK:
3158         case TC_ACT_RECLASSIFY:
3159                 skb->tc_index = TC_H_MIN(cl_res.classid);
3160                 break;
3161         case TC_ACT_SHOT:
3162                 qdisc_qstats_cpu_drop(cl->q);
3163                 *ret = NET_XMIT_DROP;
3164                 kfree_skb(skb);
3165                 return NULL;
3166         case TC_ACT_STOLEN:
3167         case TC_ACT_QUEUED:
3168                 *ret = NET_XMIT_SUCCESS;
3169                 consume_skb(skb);
3170                 return NULL;
3171         case TC_ACT_REDIRECT:
3172                 /* No need to push/pop skb's mac_header here on egress! */
3173                 skb_do_redirect(skb);
3174                 *ret = NET_XMIT_SUCCESS;
3175                 return NULL;
3176         default:
3177                 break;
3178         }
3179
3180         return skb;
3181 }
3182 #endif /* CONFIG_NET_EGRESS */
3183
3184 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3185 {
3186 #ifdef CONFIG_XPS
3187         struct xps_dev_maps *dev_maps;
3188         struct xps_map *map;
3189         int queue_index = -1;
3190
3191         rcu_read_lock();
3192         dev_maps = rcu_dereference(dev->xps_maps);
3193         if (dev_maps) {
3194                 unsigned int tci = skb->sender_cpu - 1;
3195
3196                 if (dev->num_tc) {
3197                         tci *= dev->num_tc;
3198                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3199                 }
3200
3201                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3202                 if (map) {
3203                         if (map->len == 1)
3204                                 queue_index = map->queues[0];
3205                         else
3206                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3207                                                                            map->len)];
3208                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3209                                 queue_index = -1;
3210                 }
3211         }
3212         rcu_read_unlock();
3213
3214         return queue_index;
3215 #else
3216         return -1;
3217 #endif
3218 }
3219
3220 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3221 {
3222         struct sock *sk = skb->sk;
3223         int queue_index = sk_tx_queue_get(sk);
3224
3225         if (queue_index < 0 || skb->ooo_okay ||
3226             queue_index >= dev->real_num_tx_queues) {
3227                 int new_index = get_xps_queue(dev, skb);
3228                 if (new_index < 0)
3229                         new_index = skb_tx_hash(dev, skb);
3230
3231                 if (queue_index != new_index && sk &&
3232                     sk_fullsock(sk) &&
3233                     rcu_access_pointer(sk->sk_dst_cache))
3234                         sk_tx_queue_set(sk, new_index);
3235
3236                 queue_index = new_index;
3237         }
3238
3239         return queue_index;
3240 }
3241
3242 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3243                                     struct sk_buff *skb,
3244                                     void *accel_priv)
3245 {
3246         int queue_index = 0;
3247
3248 #ifdef CONFIG_XPS
3249         u32 sender_cpu = skb->sender_cpu - 1;
3250
3251         if (sender_cpu >= (u32)NR_CPUS)
3252                 skb->sender_cpu = raw_smp_processor_id() + 1;
3253 #endif
3254
3255         if (dev->real_num_tx_queues != 1) {
3256                 const struct net_device_ops *ops = dev->netdev_ops;
3257                 if (ops->ndo_select_queue)
3258                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3259                                                             __netdev_pick_tx);
3260                 else
3261                         queue_index = __netdev_pick_tx(dev, skb);
3262
3263                 if (!accel_priv)
3264                         queue_index = netdev_cap_txqueue(dev, queue_index);
3265         }
3266
3267         skb_set_queue_mapping(skb, queue_index);
3268         return netdev_get_tx_queue(dev, queue_index);
3269 }
3270
3271 /**
3272  *      __dev_queue_xmit - transmit a buffer
3273  *      @skb: buffer to transmit
3274  *      @accel_priv: private data used for L2 forwarding offload
3275  *
3276  *      Queue a buffer for transmission to a network device. The caller must
3277  *      have set the device and priority and built the buffer before calling
3278  *      this function. The function can be called from an interrupt.
3279  *
3280  *      A negative errno code is returned on a failure. A success does not
3281  *      guarantee the frame will be transmitted as it may be dropped due
3282  *      to congestion or traffic shaping.
3283  *
3284  * -----------------------------------------------------------------------------------
3285  *      I notice this method can also return errors from the queue disciplines,
3286  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3287  *      be positive.
3288  *
3289  *      Regardless of the return value, the skb is consumed, so it is currently
3290  *      difficult to retry a send to this method.  (You can bump the ref count
3291  *      before sending to hold a reference for retry if you are careful.)
3292  *
3293  *      When calling this method, interrupts MUST be enabled.  This is because
3294  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3295  *          --BLG
3296  */
3297 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3298 {
3299         struct net_device *dev = skb->dev;
3300         struct netdev_queue *txq;
3301         struct Qdisc *q;
3302         int rc = -ENOMEM;
3303
3304         skb_reset_mac_header(skb);
3305
3306         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3307                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3308
3309         /* Disable soft irqs for various locks below. Also
3310          * stops preemption for RCU.
3311          */
3312         rcu_read_lock_bh();
3313
3314         skb_update_prio(skb);
3315
3316         qdisc_pkt_len_init(skb);
3317 #ifdef CONFIG_NET_CLS_ACT
3318         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3319 # ifdef CONFIG_NET_EGRESS
3320         if (static_key_false(&egress_needed)) {
3321                 skb = sch_handle_egress(skb, &rc, dev);
3322                 if (!skb)
3323                         goto out;
3324         }
3325 # endif
3326 #endif
3327         /* If device/qdisc don't need skb->dst, release it right now while
3328          * its hot in this cpu cache.
3329          */
3330         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3331                 skb_dst_drop(skb);
3332         else
3333                 skb_dst_force(skb);
3334
3335         txq = netdev_pick_tx(dev, skb, accel_priv);
3336         q = rcu_dereference_bh(txq->qdisc);
3337
3338         trace_net_dev_queue(skb);
3339         if (q->enqueue) {
3340                 rc = __dev_xmit_skb(skb, q, dev, txq);
3341                 goto out;
3342         }
3343
3344         /* The device has no queue. Common case for software devices:
3345            loopback, all the sorts of tunnels...
3346
3347            Really, it is unlikely that netif_tx_lock protection is necessary
3348            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3349            counters.)
3350            However, it is possible, that they rely on protection
3351            made by us here.
3352
3353            Check this and shot the lock. It is not prone from deadlocks.
3354            Either shot noqueue qdisc, it is even simpler 8)
3355          */
3356         if (dev->flags & IFF_UP) {
3357                 int cpu = smp_processor_id(); /* ok because BHs are off */
3358
3359                 if (txq->xmit_lock_owner != cpu) {
3360                         if (unlikely(__this_cpu_read(xmit_recursion) >
3361                                      XMIT_RECURSION_LIMIT))
3362                                 goto recursion_alert;
3363
3364                         skb = validate_xmit_skb(skb, dev);
3365                         if (!skb)
3366                                 goto out;
3367
3368                         HARD_TX_LOCK(dev, txq, cpu);
3369
3370                         if (!netif_xmit_stopped(txq)) {
3371                                 __this_cpu_inc(xmit_recursion);
3372                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3373                                 __this_cpu_dec(xmit_recursion);
3374                                 if (dev_xmit_complete(rc)) {
3375                                         HARD_TX_UNLOCK(dev, txq);
3376                                         goto out;
3377                                 }
3378                         }
3379                         HARD_TX_UNLOCK(dev, txq);
3380                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3381                                              dev->name);
3382                 } else {
3383                         /* Recursion is detected! It is possible,
3384                          * unfortunately
3385                          */
3386 recursion_alert:
3387                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3388                                              dev->name);
3389                 }
3390         }
3391
3392         rc = -ENETDOWN;
3393         rcu_read_unlock_bh();
3394
3395         atomic_long_inc(&dev->tx_dropped);
3396         kfree_skb_list(skb);
3397         return rc;
3398 out:
3399         rcu_read_unlock_bh();
3400         return rc;
3401 }
3402
3403 int dev_queue_xmit(struct sk_buff *skb)
3404 {
3405         return __dev_queue_xmit(skb, NULL);
3406 }
3407 EXPORT_SYMBOL(dev_queue_xmit);
3408
3409 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3410 {
3411         return __dev_queue_xmit(skb, accel_priv);
3412 }
3413 EXPORT_SYMBOL(dev_queue_xmit_accel);
3414
3415
3416 /*=======================================================================
3417                         Receiver routines
3418   =======================================================================*/
3419
3420 int netdev_max_backlog __read_mostly = 1000;
3421 EXPORT_SYMBOL(netdev_max_backlog);
3422
3423 int netdev_tstamp_prequeue __read_mostly = 1;
3424 int netdev_budget __read_mostly = 300;
3425 int weight_p __read_mostly = 64;            /* old backlog weight */
3426
3427 /* Called with irq disabled */
3428 static inline void ____napi_schedule(struct softnet_data *sd,
3429                                      struct napi_struct *napi)
3430 {
3431         list_add_tail(&napi->poll_list, &sd->poll_list);
3432         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3433 }
3434
3435 #ifdef CONFIG_RPS
3436
3437 /* One global table that all flow-based protocols share. */
3438 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3439 EXPORT_SYMBOL(rps_sock_flow_table);
3440 u32 rps_cpu_mask __read_mostly;
3441 EXPORT_SYMBOL(rps_cpu_mask);
3442
3443 struct static_key rps_needed __read_mostly;
3444 EXPORT_SYMBOL(rps_needed);
3445 struct static_key rfs_needed __read_mostly;
3446 EXPORT_SYMBOL(rfs_needed);
3447
3448 static struct rps_dev_flow *
3449 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3450             struct rps_dev_flow *rflow, u16 next_cpu)
3451 {
3452         if (next_cpu < nr_cpu_ids) {
3453 #ifdef CONFIG_RFS_ACCEL
3454                 struct netdev_rx_queue *rxqueue;
3455                 struct rps_dev_flow_table *flow_table;
3456                 struct rps_dev_flow *old_rflow;
3457                 u32 flow_id;
3458                 u16 rxq_index;
3459                 int rc;
3460
3461                 /* Should we steer this flow to a different hardware queue? */
3462                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3463                     !(dev->features & NETIF_F_NTUPLE))
3464                         goto out;
3465                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3466                 if (rxq_index == skb_get_rx_queue(skb))
3467                         goto out;
3468
3469                 rxqueue = dev->_rx + rxq_index;
3470                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3471                 if (!flow_table)
3472                         goto out;
3473                 flow_id = skb_get_hash(skb) & flow_table->mask;
3474                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3475                                                         rxq_index, flow_id);
3476                 if (rc < 0)
3477                         goto out;
3478                 old_rflow = rflow;
3479                 rflow = &flow_table->flows[flow_id];
3480                 rflow->filter = rc;
3481                 if (old_rflow->filter == rflow->filter)
3482                         old_rflow->filter = RPS_NO_FILTER;
3483         out:
3484 #endif
3485                 rflow->last_qtail =
3486                         per_cpu(softnet_data, next_cpu).input_queue_head;
3487         }
3488
3489         rflow->cpu = next_cpu;
3490         return rflow;
3491 }
3492
3493 /*
3494  * get_rps_cpu is called from netif_receive_skb and returns the target
3495  * CPU from the RPS map of the receiving queue for a given skb.
3496  * rcu_read_lock must be held on entry.
3497  */
3498 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3499                        struct rps_dev_flow **rflowp)
3500 {
3501         const struct rps_sock_flow_table *sock_flow_table;
3502         struct netdev_rx_queue *rxqueue = dev->_rx;
3503         struct rps_dev_flow_table *flow_table;
3504         struct rps_map *map;
3505         int cpu = -1;
3506         u32 tcpu;
3507         u32 hash;
3508
3509         if (skb_rx_queue_recorded(skb)) {
3510                 u16 index = skb_get_rx_queue(skb);
3511
3512                 if (unlikely(index >= dev->real_num_rx_queues)) {
3513                         WARN_ONCE(dev->real_num_rx_queues > 1,
3514                                   "%s received packet on queue %u, but number "
3515                                   "of RX queues is %u\n",
3516                                   dev->name, index, dev->real_num_rx_queues);
3517                         goto done;
3518                 }
3519                 rxqueue += index;
3520         }
3521
3522         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3523
3524         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3525         map = rcu_dereference(rxqueue->rps_map);
3526         if (!flow_table && !map)
3527                 goto done;
3528
3529         skb_reset_network_header(skb);
3530         hash = skb_get_hash(skb);
3531         if (!hash)
3532                 goto done;
3533
3534         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3535         if (flow_table && sock_flow_table) {
3536                 struct rps_dev_flow *rflow;
3537                 u32 next_cpu;
3538                 u32 ident;
3539
3540                 /* First check into global flow table if there is a match */
3541                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3542                 if ((ident ^ hash) & ~rps_cpu_mask)
3543                         goto try_rps;
3544
3545                 next_cpu = ident & rps_cpu_mask;
3546
3547                 /* OK, now we know there is a match,
3548                  * we can look at the local (per receive queue) flow table
3549                  */
3550                 rflow = &flow_table->flows[hash & flow_table->mask];
3551                 tcpu = rflow->cpu;
3552
3553                 /*
3554                  * If the desired CPU (where last recvmsg was done) is
3555                  * different from current CPU (one in the rx-queue flow
3556                  * table entry), switch if one of the following holds:
3557                  *   - Current CPU is unset (>= nr_cpu_ids).
3558                  *   - Current CPU is offline.
3559                  *   - The current CPU's queue tail has advanced beyond the
3560                  *     last packet that was enqueued using this table entry.
3561                  *     This guarantees that all previous packets for the flow
3562                  *     have been dequeued, thus preserving in order delivery.
3563                  */
3564                 if (unlikely(tcpu != next_cpu) &&
3565                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3566                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3567                       rflow->last_qtail)) >= 0)) {
3568                         tcpu = next_cpu;
3569                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3570                 }
3571
3572                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3573                         *rflowp = rflow;
3574                         cpu = tcpu;
3575                         goto done;
3576                 }
3577         }
3578
3579 try_rps:
3580
3581         if (map) {
3582                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3583                 if (cpu_online(tcpu)) {
3584                         cpu = tcpu;
3585                         goto done;
3586                 }
3587         }
3588
3589 done:
3590         return cpu;
3591 }
3592
3593 #ifdef CONFIG_RFS_ACCEL
3594
3595 /**
3596  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3597  * @dev: Device on which the filter was set
3598  * @rxq_index: RX queue index
3599  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3600  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3601  *
3602  * Drivers that implement ndo_rx_flow_steer() should periodically call
3603  * this function for each installed filter and remove the filters for
3604  * which it returns %true.
3605  */
3606 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3607                          u32 flow_id, u16 filter_id)
3608 {
3609         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3610         struct rps_dev_flow_table *flow_table;
3611         struct rps_dev_flow *rflow;
3612         bool expire = true;
3613         unsigned int cpu;
3614
3615         rcu_read_lock();
3616         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3617         if (flow_table && flow_id <= flow_table->mask) {
3618                 rflow = &flow_table->flows[flow_id];
3619                 cpu = ACCESS_ONCE(rflow->cpu);
3620                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3621                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3622                            rflow->last_qtail) <
3623                      (int)(10 * flow_table->mask)))
3624                         expire = false;
3625         }
3626         rcu_read_unlock();
3627         return expire;
3628 }
3629 EXPORT_SYMBOL(rps_may_expire_flow);
3630
3631 #endif /* CONFIG_RFS_ACCEL */
3632
3633 /* Called from hardirq (IPI) context */
3634 static void rps_trigger_softirq(void *data)
3635 {
3636         struct softnet_data *sd = data;
3637
3638         ____napi_schedule(sd, &sd->backlog);
3639         sd->received_rps++;
3640 }
3641
3642 #endif /* CONFIG_RPS */
3643
3644 /*
3645  * Check if this softnet_data structure is another cpu one
3646  * If yes, queue it to our IPI list and return 1
3647  * If no, return 0
3648  */
3649 static int rps_ipi_queued(struct softnet_data *sd)
3650 {
3651 #ifdef CONFIG_RPS
3652         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3653
3654         if (sd != mysd) {
3655                 sd->rps_ipi_next = mysd->rps_ipi_list;
3656                 mysd->rps_ipi_list = sd;
3657
3658                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3659                 return 1;
3660         }
3661 #endif /* CONFIG_RPS */
3662         return 0;
3663 }
3664
3665 #ifdef CONFIG_NET_FLOW_LIMIT
3666 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3667 #endif
3668
3669 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3670 {
3671 #ifdef CONFIG_NET_FLOW_LIMIT
3672         struct sd_flow_limit *fl;
3673         struct softnet_data *sd;
3674         unsigned int old_flow, new_flow;
3675
3676         if (qlen < (netdev_max_backlog >> 1))
3677                 return false;
3678
3679         sd = this_cpu_ptr(&softnet_data);
3680
3681         rcu_read_lock();
3682         fl = rcu_dereference(sd->flow_limit);
3683         if (fl) {
3684                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3685                 old_flow = fl->history[fl->history_head];
3686                 fl->history[fl->history_head] = new_flow;
3687
3688                 fl->history_head++;
3689                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3690
3691                 if (likely(fl->buckets[old_flow]))
3692                         fl->buckets[old_flow]--;
3693
3694                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3695                         fl->count++;
3696                         rcu_read_unlock();
3697                         return true;
3698                 }
3699         }
3700         rcu_read_unlock();
3701 #endif
3702         return false;
3703 }
3704
3705 /*
3706  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3707  * queue (may be a remote CPU queue).
3708  */
3709 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3710                               unsigned int *qtail)
3711 {
3712         struct softnet_data *sd;
3713         unsigned long flags;
3714         unsigned int qlen;
3715
3716         sd = &per_cpu(softnet_data, cpu);
3717
3718         local_irq_save(flags);
3719
3720         rps_lock(sd);
3721         if (!netif_running(skb->dev))
3722                 goto drop;
3723         qlen = skb_queue_len(&sd->input_pkt_queue);
3724         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3725                 if (qlen) {
3726 enqueue:
3727                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3728                         input_queue_tail_incr_save(sd, qtail);
3729                         rps_unlock(sd);
3730                         local_irq_restore(flags);
3731                         return NET_RX_SUCCESS;
3732                 }
3733
3734                 /* Schedule NAPI for backlog device
3735                  * We can use non atomic operation since we own the queue lock
3736                  */
3737                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3738                         if (!rps_ipi_queued(sd))
3739                                 ____napi_schedule(sd, &sd->backlog);
3740                 }
3741                 goto enqueue;
3742         }
3743
3744 drop:
3745         sd->dropped++;
3746         rps_unlock(sd);
3747
3748         local_irq_restore(flags);
3749
3750         atomic_long_inc(&skb->dev->rx_dropped);
3751         kfree_skb(skb);
3752         return NET_RX_DROP;
3753 }
3754
3755 static int netif_rx_internal(struct sk_buff *skb)
3756 {
3757         int ret;
3758
3759         net_timestamp_check(netdev_tstamp_prequeue, skb);
3760
3761         trace_netif_rx(skb);
3762 #ifdef CONFIG_RPS
3763         if (static_key_false(&rps_needed)) {
3764                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3765                 int cpu;
3766
3767                 preempt_disable();
3768                 rcu_read_lock();
3769
3770                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3771                 if (cpu < 0)
3772                         cpu = smp_processor_id();
3773
3774                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3775
3776                 rcu_read_unlock();
3777                 preempt_enable();
3778         } else
3779 #endif
3780         {
3781                 unsigned int qtail;
3782                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3783                 put_cpu();
3784         }
3785         return ret;
3786 }
3787
3788 /**
3789  *      netif_rx        -       post buffer to the network code
3790  *      @skb: buffer to post
3791  *
3792  *      This function receives a packet from a device driver and queues it for
3793  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3794  *      may be dropped during processing for congestion control or by the
3795  *      protocol layers.
3796  *
3797  *      return values:
3798  *      NET_RX_SUCCESS  (no congestion)
3799  *      NET_RX_DROP     (packet was dropped)
3800  *
3801  */
3802
3803 int netif_rx(struct sk_buff *skb)
3804 {
3805         trace_netif_rx_entry(skb);
3806
3807         return netif_rx_internal(skb);
3808 }
3809 EXPORT_SYMBOL(netif_rx);
3810
3811 int netif_rx_ni(struct sk_buff *skb)
3812 {
3813         int err;
3814
3815         trace_netif_rx_ni_entry(skb);
3816
3817         preempt_disable();
3818         err = netif_rx_internal(skb);
3819         if (local_softirq_pending())
3820                 do_softirq();
3821         preempt_enable();
3822
3823         return err;
3824 }
3825 EXPORT_SYMBOL(netif_rx_ni);
3826
3827 static __latent_entropy void net_tx_action(struct softirq_action *h)
3828 {
3829         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3830
3831         if (sd->completion_queue) {
3832                 struct sk_buff *clist;
3833
3834                 local_irq_disable();
3835                 clist = sd->completion_queue;
3836                 sd->completion_queue = NULL;
3837                 local_irq_enable();
3838
3839                 while (clist) {
3840                         struct sk_buff *skb = clist;
3841                         clist = clist->next;
3842
3843                         WARN_ON(atomic_read(&skb->users));
3844                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3845                                 trace_consume_skb(skb);
3846                         else
3847                                 trace_kfree_skb(skb, net_tx_action);
3848
3849                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3850                                 __kfree_skb(skb);
3851                         else
3852                                 __kfree_skb_defer(skb);
3853                 }
3854
3855                 __kfree_skb_flush();
3856         }
3857
3858         if (sd->output_queue) {
3859                 struct Qdisc *head;
3860
3861                 local_irq_disable();
3862                 head = sd->output_queue;
3863                 sd->output_queue = NULL;
3864                 sd->output_queue_tailp = &sd->output_queue;
3865                 local_irq_enable();
3866
3867                 while (head) {
3868                         struct Qdisc *q = head;
3869                         spinlock_t *root_lock;
3870
3871                         head = head->next_sched;
3872
3873                         root_lock = qdisc_lock(q);
3874                         spin_lock(root_lock);
3875                         /* We need to make sure head->next_sched is read
3876                          * before clearing __QDISC_STATE_SCHED
3877                          */
3878                         smp_mb__before_atomic();
3879                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3880                         qdisc_run(q);
3881                         spin_unlock(root_lock);
3882                 }
3883         }
3884 }
3885
3886 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3887 /* This hook is defined here for ATM LANE */
3888 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3889                              unsigned char *addr) __read_mostly;
3890 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3891 #endif
3892
3893 static inline struct sk_buff *
3894 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3895                    struct net_device *orig_dev)
3896 {
3897 #ifdef CONFIG_NET_CLS_ACT
3898         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3899         struct tcf_result cl_res;
3900
3901         /* If there's at least one ingress present somewhere (so
3902          * we get here via enabled static key), remaining devices
3903          * that are not configured with an ingress qdisc will bail
3904          * out here.
3905          */
3906         if (!cl)
3907                 return skb;
3908         if (*pt_prev) {
3909                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3910                 *pt_prev = NULL;
3911         }
3912
3913         qdisc_skb_cb(skb)->pkt_len = skb->len;
3914         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3915         qdisc_bstats_cpu_update(cl->q, skb);
3916
3917         switch (tc_classify(skb, cl, &cl_res, false)) {
3918         case TC_ACT_OK:
3919         case TC_ACT_RECLASSIFY:
3920                 skb->tc_index = TC_H_MIN(cl_res.classid);
3921                 break;
3922         case TC_ACT_SHOT:
3923                 qdisc_qstats_cpu_drop(cl->q);
3924                 kfree_skb(skb);
3925                 return NULL;
3926         case TC_ACT_STOLEN:
3927         case TC_ACT_QUEUED:
3928                 consume_skb(skb);
3929                 return NULL;
3930         case TC_ACT_REDIRECT:
3931                 /* skb_mac_header check was done by cls/act_bpf, so
3932                  * we can safely push the L2 header back before
3933                  * redirecting to another netdev
3934                  */
3935                 __skb_push(skb, skb->mac_len);
3936                 skb_do_redirect(skb);
3937                 return NULL;
3938         default:
3939                 break;
3940         }
3941 #endif /* CONFIG_NET_CLS_ACT */
3942         return skb;
3943 }
3944
3945 /**
3946  *      netdev_is_rx_handler_busy - check if receive handler is registered
3947  *      @dev: device to check
3948  *
3949  *      Check if a receive handler is already registered for a given device.
3950  *      Return true if there one.
3951  *
3952  *      The caller must hold the rtnl_mutex.
3953  */
3954 bool netdev_is_rx_handler_busy(struct net_device *dev)
3955 {
3956         ASSERT_RTNL();
3957         return dev && rtnl_dereference(dev->rx_handler);
3958 }
3959 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3960
3961 /**
3962  *      netdev_rx_handler_register - register receive handler
3963  *      @dev: device to register a handler for
3964  *      @rx_handler: receive handler to register
3965  *      @rx_handler_data: data pointer that is used by rx handler
3966  *
3967  *      Register a receive handler for a device. This handler will then be
3968  *      called from __netif_receive_skb. A negative errno code is returned
3969  *      on a failure.
3970  *
3971  *      The caller must hold the rtnl_mutex.
3972  *
3973  *      For a general description of rx_handler, see enum rx_handler_result.
3974  */
3975 int netdev_rx_handler_register(struct net_device *dev,
3976                                rx_handler_func_t *rx_handler,
3977                                void *rx_handler_data)
3978 {
3979         ASSERT_RTNL();
3980
3981         if (dev->rx_handler)
3982                 return -EBUSY;
3983
3984         /* Note: rx_handler_data must be set before rx_handler */
3985         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3986         rcu_assign_pointer(dev->rx_handler, rx_handler);
3987
3988         return 0;
3989 }
3990 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3991
3992 /**
3993  *      netdev_rx_handler_unregister - unregister receive handler
3994  *      @dev: device to unregister a handler from
3995  *
3996  *      Unregister a receive handler from a device.
3997  *
3998  *      The caller must hold the rtnl_mutex.
3999  */
4000 void netdev_rx_handler_unregister(struct net_device *dev)
4001 {
4002
4003         ASSERT_RTNL();
4004         RCU_INIT_POINTER(dev->rx_handler, NULL);
4005         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4006          * section has a guarantee to see a non NULL rx_handler_data
4007          * as well.
4008          */
4009         synchronize_net();
4010         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4011 }
4012 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4013
4014 /*
4015  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4016  * the special handling of PFMEMALLOC skbs.
4017  */
4018 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4019 {
4020         switch (skb->protocol) {
4021         case htons(ETH_P_ARP):
4022         case htons(ETH_P_IP):
4023         case htons(ETH_P_IPV6):
4024         case htons(ETH_P_8021Q):
4025         case htons(ETH_P_8021AD):
4026                 return true;
4027         default:
4028                 return false;
4029         }
4030 }
4031
4032 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4033                              int *ret, struct net_device *orig_dev)
4034 {
4035 #ifdef CONFIG_NETFILTER_INGRESS
4036         if (nf_hook_ingress_active(skb)) {
4037                 int ingress_retval;
4038
4039                 if (*pt_prev) {
4040                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4041                         *pt_prev = NULL;
4042                 }
4043
4044                 rcu_read_lock();
4045                 ingress_retval = nf_hook_ingress(skb);
4046                 rcu_read_unlock();
4047                 return ingress_retval;
4048         }
4049 #endif /* CONFIG_NETFILTER_INGRESS */
4050         return 0;
4051 }
4052
4053 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4054 {
4055         struct packet_type *ptype, *pt_prev;
4056         rx_handler_func_t *rx_handler;
4057         struct net_device *orig_dev;
4058         bool deliver_exact = false;
4059         int ret = NET_RX_DROP;
4060         __be16 type;
4061
4062         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4063
4064         trace_netif_receive_skb(skb);
4065
4066         orig_dev = skb->dev;
4067
4068         skb_reset_network_header(skb);
4069         if (!skb_transport_header_was_set(skb))
4070                 skb_reset_transport_header(skb);
4071         skb_reset_mac_len(skb);
4072
4073         pt_prev = NULL;
4074
4075 another_round:
4076         skb->skb_iif = skb->dev->ifindex;
4077
4078         __this_cpu_inc(softnet_data.processed);
4079
4080         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4081             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4082                 skb = skb_vlan_untag(skb);
4083                 if (unlikely(!skb))
4084                         goto out;
4085         }
4086
4087 #ifdef CONFIG_NET_CLS_ACT
4088         if (skb->tc_verd & TC_NCLS) {
4089                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4090                 goto ncls;
4091         }
4092 #endif
4093
4094         if (pfmemalloc)
4095                 goto skip_taps;
4096
4097         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4098                 if (pt_prev)
4099                         ret = deliver_skb(skb, pt_prev, orig_dev);
4100                 pt_prev = ptype;
4101         }
4102
4103         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4104                 if (pt_prev)
4105                         ret = deliver_skb(skb, pt_prev, orig_dev);
4106                 pt_prev = ptype;
4107         }
4108
4109 skip_taps:
4110 #ifdef CONFIG_NET_INGRESS
4111         if (static_key_false(&ingress_needed)) {
4112                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4113                 if (!skb)
4114                         goto out;
4115
4116                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4117                         goto out;
4118         }
4119 #endif
4120 #ifdef CONFIG_NET_CLS_ACT
4121         skb->tc_verd = 0;
4122 ncls:
4123 #endif
4124         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4125                 goto drop;
4126
4127         if (skb_vlan_tag_present(skb)) {
4128                 if (pt_prev) {
4129                         ret = deliver_skb(skb, pt_prev, orig_dev);
4130                         pt_prev = NULL;
4131                 }
4132                 if (vlan_do_receive(&skb))
4133                         goto another_round;
4134                 else if (unlikely(!skb))
4135                         goto out;
4136         }
4137
4138         rx_handler = rcu_dereference(skb->dev->rx_handler);
4139         if (rx_handler) {
4140                 if (pt_prev) {
4141                         ret = deliver_skb(skb, pt_prev, orig_dev);
4142                         pt_prev = NULL;
4143                 }
4144                 switch (rx_handler(&skb)) {
4145                 case RX_HANDLER_CONSUMED:
4146                         ret = NET_RX_SUCCESS;
4147                         goto out;
4148                 case RX_HANDLER_ANOTHER:
4149                         goto another_round;
4150                 case RX_HANDLER_EXACT:
4151                         deliver_exact = true;
4152                 case RX_HANDLER_PASS:
4153                         break;
4154                 default:
4155                         BUG();
4156                 }
4157         }
4158
4159         if (unlikely(skb_vlan_tag_present(skb))) {
4160                 if (skb_vlan_tag_get_id(skb))
4161                         skb->pkt_type = PACKET_OTHERHOST;
4162                 /* Note: we might in the future use prio bits
4163                  * and set skb->priority like in vlan_do_receive()
4164                  * For the time being, just ignore Priority Code Point
4165                  */
4166                 skb->vlan_tci = 0;
4167         }
4168
4169         type = skb->protocol;
4170
4171         /* deliver only exact match when indicated */
4172         if (likely(!deliver_exact)) {
4173                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4174                                        &ptype_base[ntohs(type) &
4175                                                    PTYPE_HASH_MASK]);
4176         }
4177
4178         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4179                                &orig_dev->ptype_specific);
4180
4181         if (unlikely(skb->dev != orig_dev)) {
4182                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4183                                        &skb->dev->ptype_specific);
4184         }
4185
4186         if (pt_prev) {
4187                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4188                         goto drop;
4189                 else
4190                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4191         } else {
4192 drop:
4193                 if (!deliver_exact)
4194                         atomic_long_inc(&skb->dev->rx_dropped);
4195                 else
4196                         atomic_long_inc(&skb->dev->rx_nohandler);
4197                 kfree_skb(skb);
4198                 /* Jamal, now you will not able to escape explaining
4199                  * me how you were going to use this. :-)
4200                  */
4201                 ret = NET_RX_DROP;
4202         }
4203
4204 out:
4205         return ret;
4206 }
4207
4208 static int __netif_receive_skb(struct sk_buff *skb)
4209 {
4210         int ret;
4211
4212         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4213                 unsigned long pflags = current->flags;
4214
4215                 /*
4216                  * PFMEMALLOC skbs are special, they should
4217                  * - be delivered to SOCK_MEMALLOC sockets only
4218                  * - stay away from userspace
4219                  * - have bounded memory usage
4220                  *
4221                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4222                  * context down to all allocation sites.
4223                  */
4224                 current->flags |= PF_MEMALLOC;
4225                 ret = __netif_receive_skb_core(skb, true);
4226                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4227         } else
4228                 ret = __netif_receive_skb_core(skb, false);
4229
4230         return ret;
4231 }
4232
4233 static int netif_receive_skb_internal(struct sk_buff *skb)
4234 {
4235         int ret;
4236
4237         net_timestamp_check(netdev_tstamp_prequeue, skb);
4238
4239         if (skb_defer_rx_timestamp(skb))
4240                 return NET_RX_SUCCESS;
4241
4242         rcu_read_lock();
4243
4244 #ifdef CONFIG_RPS
4245         if (static_key_false(&rps_needed)) {
4246                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4247                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4248
4249                 if (cpu >= 0) {
4250                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4251                         rcu_read_unlock();
4252                         return ret;
4253                 }
4254         }
4255 #endif
4256         ret = __netif_receive_skb(skb);
4257         rcu_read_unlock();
4258         return ret;
4259 }
4260
4261 /**
4262  *      netif_receive_skb - process receive buffer from network
4263  *      @skb: buffer to process
4264  *
4265  *      netif_receive_skb() is the main receive data processing function.
4266  *      It always succeeds. The buffer may be dropped during processing
4267  *      for congestion control or by the protocol layers.
4268  *
4269  *      This function may only be called from softirq context and interrupts
4270  *      should be enabled.
4271  *
4272  *      Return values (usually ignored):
4273  *      NET_RX_SUCCESS: no congestion
4274  *      NET_RX_DROP: packet was dropped
4275  */
4276 int netif_receive_skb(struct sk_buff *skb)
4277 {
4278         trace_netif_receive_skb_entry(skb);
4279
4280         return netif_receive_skb_internal(skb);
4281 }
4282 EXPORT_SYMBOL(netif_receive_skb);
4283
4284 DEFINE_PER_CPU(struct work_struct, flush_works);
4285
4286 /* Network device is going away, flush any packets still pending */
4287 static void flush_backlog(struct work_struct *work)
4288 {
4289         struct sk_buff *skb, *tmp;
4290         struct softnet_data *sd;
4291
4292         local_bh_disable();
4293         sd = this_cpu_ptr(&softnet_data);
4294
4295         local_irq_disable();
4296         rps_lock(sd);
4297         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4298                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4299                         __skb_unlink(skb, &sd->input_pkt_queue);
4300                         kfree_skb(skb);
4301                         input_queue_head_incr(sd);
4302                 }
4303         }
4304         rps_unlock(sd);
4305         local_irq_enable();
4306
4307         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4308                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4309                         __skb_unlink(skb, &sd->process_queue);
4310                         kfree_skb(skb);
4311                         input_queue_head_incr(sd);
4312                 }
4313         }
4314         local_bh_enable();
4315 }
4316
4317 static void flush_all_backlogs(void)
4318 {
4319         unsigned int cpu;
4320
4321         get_online_cpus();
4322
4323         for_each_online_cpu(cpu)
4324                 queue_work_on(cpu, system_highpri_wq,
4325                               per_cpu_ptr(&flush_works, cpu));
4326
4327         for_each_online_cpu(cpu)
4328                 flush_work(per_cpu_ptr(&flush_works, cpu));
4329
4330         put_online_cpus();
4331 }
4332
4333 static int napi_gro_complete(struct sk_buff *skb)
4334 {
4335         struct packet_offload *ptype;
4336         __be16 type = skb->protocol;
4337         struct list_head *head = &offload_base;
4338         int err = -ENOENT;
4339
4340         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4341
4342         if (NAPI_GRO_CB(skb)->count == 1) {
4343                 skb_shinfo(skb)->gso_size = 0;
4344                 goto out;
4345         }
4346
4347         rcu_read_lock();
4348         list_for_each_entry_rcu(ptype, head, list) {
4349                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4350                         continue;
4351
4352                 err = ptype->callbacks.gro_complete(skb, 0);
4353                 break;
4354         }
4355         rcu_read_unlock();
4356
4357         if (err) {
4358                 WARN_ON(&ptype->list == head);
4359                 kfree_skb(skb);
4360                 return NET_RX_SUCCESS;
4361         }
4362
4363 out:
4364         return netif_receive_skb_internal(skb);
4365 }
4366
4367 /* napi->gro_list contains packets ordered by age.
4368  * youngest packets at the head of it.
4369  * Complete skbs in reverse order to reduce latencies.
4370  */
4371 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4372 {
4373         struct sk_buff *skb, *prev = NULL;
4374
4375         /* scan list and build reverse chain */
4376         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4377                 skb->prev = prev;
4378                 prev = skb;
4379         }
4380
4381         for (skb = prev; skb; skb = prev) {
4382                 skb->next = NULL;
4383
4384                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4385                         return;
4386
4387                 prev = skb->prev;
4388                 napi_gro_complete(skb);
4389                 napi->gro_count--;
4390         }
4391
4392         napi->gro_list = NULL;
4393 }
4394 EXPORT_SYMBOL(napi_gro_flush);
4395
4396 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4397 {
4398         struct sk_buff *p;
4399         unsigned int maclen = skb->dev->hard_header_len;
4400         u32 hash = skb_get_hash_raw(skb);
4401
4402         for (p = napi->gro_list; p; p = p->next) {
4403                 unsigned long diffs;
4404
4405                 NAPI_GRO_CB(p)->flush = 0;
4406
4407                 if (hash != skb_get_hash_raw(p)) {
4408                         NAPI_GRO_CB(p)->same_flow = 0;
4409                         continue;
4410                 }
4411
4412                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4413                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4414                 diffs |= skb_metadata_dst_cmp(p, skb);
4415                 if (maclen == ETH_HLEN)
4416                         diffs |= compare_ether_header(skb_mac_header(p),
4417                                                       skb_mac_header(skb));
4418                 else if (!diffs)
4419                         diffs = memcmp(skb_mac_header(p),
4420                                        skb_mac_header(skb),
4421                                        maclen);
4422                 NAPI_GRO_CB(p)->same_flow = !diffs;
4423         }
4424 }
4425
4426 static void skb_gro_reset_offset(struct sk_buff *skb)
4427 {
4428         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4429         const skb_frag_t *frag0 = &pinfo->frags[0];
4430
4431         NAPI_GRO_CB(skb)->data_offset = 0;
4432         NAPI_GRO_CB(skb)->frag0 = NULL;
4433         NAPI_GRO_CB(skb)->frag0_len = 0;
4434
4435         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4436             pinfo->nr_frags &&
4437             !PageHighMem(skb_frag_page(frag0))) {
4438                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4439                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4440                                                     skb_frag_size(frag0),
4441                                                     skb->end - skb->tail);
4442         }
4443 }
4444
4445 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4446 {
4447         struct skb_shared_info *pinfo = skb_shinfo(skb);
4448
4449         BUG_ON(skb->end - skb->tail < grow);
4450
4451         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4452
4453         skb->data_len -= grow;
4454         skb->tail += grow;
4455
4456         pinfo->frags[0].page_offset += grow;
4457         skb_frag_size_sub(&pinfo->frags[0], grow);
4458
4459         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4460                 skb_frag_unref(skb, 0);
4461                 memmove(pinfo->frags, pinfo->frags + 1,
4462                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4463         }
4464 }
4465
4466 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4467 {
4468         struct sk_buff **pp = NULL;
4469         struct packet_offload *ptype;
4470         __be16 type = skb->protocol;
4471         struct list_head *head = &offload_base;
4472         int same_flow;
4473         enum gro_result ret;
4474         int grow;
4475
4476         if (!(skb->dev->features & NETIF_F_GRO))
4477                 goto normal;
4478
4479         if (skb->csum_bad)
4480                 goto normal;
4481
4482         gro_list_prepare(napi, skb);
4483
4484         rcu_read_lock();
4485         list_for_each_entry_rcu(ptype, head, list) {
4486                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4487                         continue;
4488
4489                 skb_set_network_header(skb, skb_gro_offset(skb));
4490                 skb_reset_mac_len(skb);
4491                 NAPI_GRO_CB(skb)->same_flow = 0;
4492                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4493                 NAPI_GRO_CB(skb)->free = 0;
4494                 NAPI_GRO_CB(skb)->encap_mark = 0;
4495                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4496                 NAPI_GRO_CB(skb)->is_fou = 0;
4497                 NAPI_GRO_CB(skb)->is_atomic = 1;
4498                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4499
4500                 /* Setup for GRO checksum validation */
4501                 switch (skb->ip_summed) {
4502                 case CHECKSUM_COMPLETE:
4503                         NAPI_GRO_CB(skb)->csum = skb->csum;
4504                         NAPI_GRO_CB(skb)->csum_valid = 1;
4505                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4506                         break;
4507                 case CHECKSUM_UNNECESSARY:
4508                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4509                         NAPI_GRO_CB(skb)->csum_valid = 0;
4510                         break;
4511                 default:
4512                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4513                         NAPI_GRO_CB(skb)->csum_valid = 0;
4514                 }
4515
4516                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4517                 break;
4518         }
4519         rcu_read_unlock();
4520
4521         if (&ptype->list == head)
4522                 goto normal;
4523
4524         same_flow = NAPI_GRO_CB(skb)->same_flow;
4525         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4526
4527         if (pp) {
4528                 struct sk_buff *nskb = *pp;
4529
4530                 *pp = nskb->next;
4531                 nskb->next = NULL;
4532                 napi_gro_complete(nskb);
4533                 napi->gro_count--;
4534         }
4535
4536         if (same_flow)
4537                 goto ok;
4538
4539         if (NAPI_GRO_CB(skb)->flush)
4540                 goto normal;
4541
4542         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4543                 struct sk_buff *nskb = napi->gro_list;
4544
4545                 /* locate the end of the list to select the 'oldest' flow */
4546                 while (nskb->next) {
4547                         pp = &nskb->next;
4548                         nskb = *pp;
4549                 }
4550                 *pp = NULL;
4551                 nskb->next = NULL;
4552                 napi_gro_complete(nskb);
4553         } else {
4554                 napi->gro_count++;
4555         }
4556         NAPI_GRO_CB(skb)->count = 1;
4557         NAPI_GRO_CB(skb)->age = jiffies;
4558         NAPI_GRO_CB(skb)->last = skb;
4559         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4560         skb->next = napi->gro_list;
4561         napi->gro_list = skb;
4562         ret = GRO_HELD;
4563
4564 pull:
4565         grow = skb_gro_offset(skb) - skb_headlen(skb);
4566         if (grow > 0)
4567                 gro_pull_from_frag0(skb, grow);
4568 ok:
4569         return ret;
4570
4571 normal:
4572         ret = GRO_NORMAL;
4573         goto pull;
4574 }
4575
4576 struct packet_offload *gro_find_receive_by_type(__be16 type)
4577 {
4578         struct list_head *offload_head = &offload_base;
4579         struct packet_offload *ptype;
4580
4581         list_for_each_entry_rcu(ptype, offload_head, list) {
4582                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4583                         continue;
4584                 return ptype;
4585         }
4586         return NULL;
4587 }
4588 EXPORT_SYMBOL(gro_find_receive_by_type);
4589
4590 struct packet_offload *gro_find_complete_by_type(__be16 type)
4591 {
4592         struct list_head *offload_head = &offload_base;
4593         struct packet_offload *ptype;
4594
4595         list_for_each_entry_rcu(ptype, offload_head, list) {
4596                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4597                         continue;
4598                 return ptype;
4599         }
4600         return NULL;
4601 }
4602 EXPORT_SYMBOL(gro_find_complete_by_type);
4603
4604 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4605 {
4606         switch (ret) {
4607         case GRO_NORMAL:
4608                 if (netif_receive_skb_internal(skb))
4609                         ret = GRO_DROP;
4610                 break;
4611
4612         case GRO_DROP:
4613                 kfree_skb(skb);
4614                 break;
4615
4616         case GRO_MERGED_FREE:
4617                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4618                         skb_dst_drop(skb);
4619                         kmem_cache_free(skbuff_head_cache, skb);
4620                 } else {
4621                         __kfree_skb(skb);
4622                 }
4623                 break;
4624
4625         case GRO_HELD:
4626         case GRO_MERGED:
4627                 break;
4628         }
4629
4630         return ret;
4631 }
4632
4633 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4634 {
4635         skb_mark_napi_id(skb, napi);
4636         trace_napi_gro_receive_entry(skb);
4637
4638         skb_gro_reset_offset(skb);
4639
4640         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4641 }
4642 EXPORT_SYMBOL(napi_gro_receive);
4643
4644 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4645 {
4646         if (unlikely(skb->pfmemalloc)) {
4647                 consume_skb(skb);
4648                 return;
4649         }
4650         __skb_pull(skb, skb_headlen(skb));
4651         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4652         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4653         skb->vlan_tci = 0;
4654         skb->dev = napi->dev;
4655         skb->skb_iif = 0;
4656         skb->encapsulation = 0;
4657         skb_shinfo(skb)->gso_type = 0;
4658         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4659
4660         napi->skb = skb;
4661 }
4662
4663 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4664 {
4665         struct sk_buff *skb = napi->skb;
4666
4667         if (!skb) {
4668                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4669                 if (skb) {
4670                         napi->skb = skb;
4671                         skb_mark_napi_id(skb, napi);
4672                 }
4673         }
4674         return skb;
4675 }
4676 EXPORT_SYMBOL(napi_get_frags);
4677
4678 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4679                                       struct sk_buff *skb,
4680                                       gro_result_t ret)
4681 {
4682         switch (ret) {
4683         case GRO_NORMAL:
4684         case GRO_HELD:
4685                 __skb_push(skb, ETH_HLEN);
4686                 skb->protocol = eth_type_trans(skb, skb->dev);
4687                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4688                         ret = GRO_DROP;
4689                 break;
4690
4691         case GRO_DROP:
4692         case GRO_MERGED_FREE:
4693                 napi_reuse_skb(napi, skb);
4694                 break;
4695
4696         case GRO_MERGED:
4697                 break;
4698         }
4699
4700         return ret;
4701 }
4702
4703 /* Upper GRO stack assumes network header starts at gro_offset=0
4704  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4705  * We copy ethernet header into skb->data to have a common layout.
4706  */
4707 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4708 {
4709         struct sk_buff *skb = napi->skb;
4710         const struct ethhdr *eth;
4711         unsigned int hlen = sizeof(*eth);
4712
4713         napi->skb = NULL;
4714
4715         skb_reset_mac_header(skb);
4716         skb_gro_reset_offset(skb);
4717
4718         eth = skb_gro_header_fast(skb, 0);
4719         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4720                 eth = skb_gro_header_slow(skb, hlen, 0);
4721                 if (unlikely(!eth)) {
4722                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4723                                              __func__, napi->dev->name);
4724                         napi_reuse_skb(napi, skb);
4725                         return NULL;
4726                 }
4727         } else {
4728                 gro_pull_from_frag0(skb, hlen);
4729                 NAPI_GRO_CB(skb)->frag0 += hlen;
4730                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4731         }
4732         __skb_pull(skb, hlen);
4733
4734         /*
4735          * This works because the only protocols we care about don't require
4736          * special handling.
4737          * We'll fix it up properly in napi_frags_finish()
4738          */
4739         skb->protocol = eth->h_proto;
4740
4741         return skb;
4742 }
4743
4744 gro_result_t napi_gro_frags(struct napi_struct *napi)
4745 {
4746         struct sk_buff *skb = napi_frags_skb(napi);
4747
4748         if (!skb)
4749                 return GRO_DROP;
4750
4751         trace_napi_gro_frags_entry(skb);
4752
4753         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4754 }
4755 EXPORT_SYMBOL(napi_gro_frags);
4756
4757 /* Compute the checksum from gro_offset and return the folded value
4758  * after adding in any pseudo checksum.
4759  */
4760 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4761 {
4762         __wsum wsum;
4763         __sum16 sum;
4764
4765         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4766
4767         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4768         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4769         if (likely(!sum)) {
4770                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4771                     !skb->csum_complete_sw)
4772                         netdev_rx_csum_fault(skb->dev);
4773         }
4774
4775         NAPI_GRO_CB(skb)->csum = wsum;
4776         NAPI_GRO_CB(skb)->csum_valid = 1;
4777
4778         return sum;
4779 }
4780 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4781
4782 /*
4783  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4784  * Note: called with local irq disabled, but exits with local irq enabled.
4785  */
4786 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4787 {
4788 #ifdef CONFIG_RPS
4789         struct softnet_data *remsd = sd->rps_ipi_list;
4790
4791         if (remsd) {
4792                 sd->rps_ipi_list = NULL;
4793
4794                 local_irq_enable();
4795
4796                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4797                 while (remsd) {
4798                         struct softnet_data *next = remsd->rps_ipi_next;
4799
4800                         if (cpu_online(remsd->cpu))
4801                                 smp_call_function_single_async(remsd->cpu,
4802                                                            &remsd->csd);
4803                         remsd = next;
4804                 }
4805         } else
4806 #endif
4807                 local_irq_enable();
4808 }
4809
4810 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4811 {
4812 #ifdef CONFIG_RPS
4813         return sd->rps_ipi_list != NULL;
4814 #else
4815         return false;
4816 #endif
4817 }
4818
4819 static int process_backlog(struct napi_struct *napi, int quota)
4820 {
4821         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4822         bool again = true;
4823         int work = 0;
4824
4825         /* Check if we have pending ipi, its better to send them now,
4826          * not waiting net_rx_action() end.
4827          */
4828         if (sd_has_rps_ipi_waiting(sd)) {
4829                 local_irq_disable();
4830                 net_rps_action_and_irq_enable(sd);
4831         }
4832
4833         napi->weight = weight_p;
4834         while (again) {
4835                 struct sk_buff *skb;
4836
4837                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4838                         rcu_read_lock();
4839                         __netif_receive_skb(skb);
4840                         rcu_read_unlock();
4841                         input_queue_head_incr(sd);
4842                         if (++work >= quota)
4843                                 return work;
4844
4845                 }
4846
4847                 local_irq_disable();
4848                 rps_lock(sd);
4849                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4850                         /*
4851                          * Inline a custom version of __napi_complete().
4852                          * only current cpu owns and manipulates this napi,
4853                          * and NAPI_STATE_SCHED is the only possible flag set
4854                          * on backlog.
4855                          * We can use a plain write instead of clear_bit(),
4856                          * and we dont need an smp_mb() memory barrier.
4857                          */
4858                         napi->state = 0;
4859                         again = false;
4860                 } else {
4861                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
4862                                                    &sd->process_queue);
4863                 }
4864                 rps_unlock(sd);
4865                 local_irq_enable();
4866         }
4867
4868         return work;
4869 }
4870
4871 /**
4872  * __napi_schedule - schedule for receive
4873  * @n: entry to schedule
4874  *
4875  * The entry's receive function will be scheduled to run.
4876  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4877  */
4878 void __napi_schedule(struct napi_struct *n)
4879 {
4880         unsigned long flags;
4881
4882         local_irq_save(flags);
4883         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4884         local_irq_restore(flags);
4885 }
4886 EXPORT_SYMBOL(__napi_schedule);
4887
4888 /**
4889  * __napi_schedule_irqoff - schedule for receive
4890  * @n: entry to schedule
4891  *
4892  * Variant of __napi_schedule() assuming hard irqs are masked
4893  */
4894 void __napi_schedule_irqoff(struct napi_struct *n)
4895 {
4896         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4897 }
4898 EXPORT_SYMBOL(__napi_schedule_irqoff);
4899
4900 bool __napi_complete(struct napi_struct *n)
4901 {
4902         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4903
4904         /* Some drivers call us directly, instead of calling
4905          * napi_complete_done().
4906          */
4907         if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
4908                 return false;
4909
4910         list_del_init(&n->poll_list);
4911         smp_mb__before_atomic();
4912         clear_bit(NAPI_STATE_SCHED, &n->state);
4913         return true;
4914 }
4915 EXPORT_SYMBOL(__napi_complete);
4916
4917 bool napi_complete_done(struct napi_struct *n, int work_done)
4918 {
4919         unsigned long flags;
4920
4921         /*
4922          * 1) Don't let napi dequeue from the cpu poll list
4923          *    just in case its running on a different cpu.
4924          * 2) If we are busy polling, do nothing here, we have
4925          *    the guarantee we will be called later.
4926          */
4927         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4928                                  NAPIF_STATE_IN_BUSY_POLL)))
4929                 return false;
4930
4931         if (n->gro_list) {
4932                 unsigned long timeout = 0;
4933
4934                 if (work_done)
4935                         timeout = n->dev->gro_flush_timeout;
4936
4937                 if (timeout)
4938                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4939                                       HRTIMER_MODE_REL_PINNED);
4940                 else
4941                         napi_gro_flush(n, false);
4942         }
4943         if (likely(list_empty(&n->poll_list))) {
4944                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4945         } else {
4946                 /* If n->poll_list is not empty, we need to mask irqs */
4947                 local_irq_save(flags);
4948                 __napi_complete(n);
4949                 local_irq_restore(flags);
4950         }
4951         return true;
4952 }
4953 EXPORT_SYMBOL(napi_complete_done);
4954
4955 /* must be called under rcu_read_lock(), as we dont take a reference */
4956 static struct napi_struct *napi_by_id(unsigned int napi_id)
4957 {
4958         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4959         struct napi_struct *napi;
4960
4961         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4962                 if (napi->napi_id == napi_id)
4963                         return napi;
4964
4965         return NULL;
4966 }
4967
4968 #if defined(CONFIG_NET_RX_BUSY_POLL)
4969
4970 #define BUSY_POLL_BUDGET 8
4971
4972 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4973 {
4974         int rc;
4975
4976         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4977
4978         local_bh_disable();
4979
4980         /* All we really want here is to re-enable device interrupts.
4981          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4982          */
4983         rc = napi->poll(napi, BUSY_POLL_BUDGET);
4984         netpoll_poll_unlock(have_poll_lock);
4985         if (rc == BUSY_POLL_BUDGET)
4986                 __napi_schedule(napi);
4987         local_bh_enable();
4988         if (local_softirq_pending())
4989                 do_softirq();
4990 }
4991
4992 bool sk_busy_loop(struct sock *sk, int nonblock)
4993 {
4994         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4995         int (*napi_poll)(struct napi_struct *napi, int budget);
4996         int (*busy_poll)(struct napi_struct *dev);
4997         void *have_poll_lock = NULL;
4998         struct napi_struct *napi;
4999         int rc;
5000
5001 restart:
5002         rc = false;
5003         napi_poll = NULL;
5004
5005         rcu_read_lock();
5006
5007         napi = napi_by_id(sk->sk_napi_id);
5008         if (!napi)
5009                 goto out;
5010
5011         /* Note: ndo_busy_poll method is optional in linux-4.5 */
5012         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
5013
5014         preempt_disable();
5015         for (;;) {
5016                 rc = 0;
5017                 local_bh_disable();
5018                 if (busy_poll) {
5019                         rc = busy_poll(napi);
5020                         goto count;
5021                 }
5022                 if (!napi_poll) {
5023                         unsigned long val = READ_ONCE(napi->state);
5024
5025                         /* If multiple threads are competing for this napi,
5026                          * we avoid dirtying napi->state as much as we can.
5027                          */
5028                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5029                                    NAPIF_STATE_IN_BUSY_POLL))
5030                                 goto count;
5031                         if (cmpxchg(&napi->state, val,
5032                                     val | NAPIF_STATE_IN_BUSY_POLL |
5033                                           NAPIF_STATE_SCHED) != val)
5034                                 goto count;
5035                         have_poll_lock = netpoll_poll_lock(napi);
5036                         napi_poll = napi->poll;
5037                 }
5038                 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5039                 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5040 count:
5041                 if (rc > 0)
5042                         __NET_ADD_STATS(sock_net(sk),
5043                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5044                 local_bh_enable();
5045
5046                 if (rc == LL_FLUSH_FAILED)
5047                         break; /* permanent failure */
5048
5049                 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5050                     busy_loop_timeout(end_time))
5051                         break;
5052
5053                 if (unlikely(need_resched())) {
5054                         if (napi_poll)
5055                                 busy_poll_stop(napi, have_poll_lock);
5056                         preempt_enable();
5057                         rcu_read_unlock();
5058                         cond_resched();
5059                         rc = !skb_queue_empty(&sk->sk_receive_queue);
5060                         if (rc || busy_loop_timeout(end_time))
5061                                 return rc;
5062                         goto restart;
5063                 }
5064                 cpu_relax();
5065         }
5066         if (napi_poll)
5067                 busy_poll_stop(napi, have_poll_lock);
5068         preempt_enable();
5069         rc = !skb_queue_empty(&sk->sk_receive_queue);
5070 out:
5071         rcu_read_unlock();
5072         return rc;
5073 }
5074 EXPORT_SYMBOL(sk_busy_loop);
5075
5076 #endif /* CONFIG_NET_RX_BUSY_POLL */
5077
5078 static void napi_hash_add(struct napi_struct *napi)
5079 {
5080         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5081             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5082                 return;
5083
5084         spin_lock(&napi_hash_lock);
5085
5086         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5087         do {
5088                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5089                         napi_gen_id = NR_CPUS + 1;
5090         } while (napi_by_id(napi_gen_id));
5091         napi->napi_id = napi_gen_id;
5092
5093         hlist_add_head_rcu(&napi->napi_hash_node,
5094                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5095
5096         spin_unlock(&napi_hash_lock);
5097 }
5098
5099 /* Warning : caller is responsible to make sure rcu grace period
5100  * is respected before freeing memory containing @napi
5101  */
5102 bool napi_hash_del(struct napi_struct *napi)
5103 {
5104         bool rcu_sync_needed = false;
5105
5106         spin_lock(&napi_hash_lock);
5107
5108         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5109                 rcu_sync_needed = true;
5110                 hlist_del_rcu(&napi->napi_hash_node);
5111         }
5112         spin_unlock(&napi_hash_lock);
5113         return rcu_sync_needed;
5114 }
5115 EXPORT_SYMBOL_GPL(napi_hash_del);
5116
5117 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5118 {
5119         struct napi_struct *napi;
5120
5121         napi = container_of(timer, struct napi_struct, timer);
5122         if (napi->gro_list)
5123                 napi_schedule(napi);
5124
5125         return HRTIMER_NORESTART;
5126 }
5127
5128 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5129                     int (*poll)(struct napi_struct *, int), int weight)
5130 {
5131         INIT_LIST_HEAD(&napi->poll_list);
5132         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5133         napi->timer.function = napi_watchdog;
5134         napi->gro_count = 0;
5135         napi->gro_list = NULL;
5136         napi->skb = NULL;
5137         napi->poll = poll;
5138         if (weight > NAPI_POLL_WEIGHT)
5139                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5140                             weight, dev->name);
5141         napi->weight = weight;
5142         list_add(&napi->dev_list, &dev->napi_list);
5143         napi->dev = dev;
5144 #ifdef CONFIG_NETPOLL
5145         napi->poll_owner = -1;
5146 #endif
5147         set_bit(NAPI_STATE_SCHED, &napi->state);
5148         napi_hash_add(napi);
5149 }
5150 EXPORT_SYMBOL(netif_napi_add);
5151
5152 void napi_disable(struct napi_struct *n)
5153 {
5154         might_sleep();
5155         set_bit(NAPI_STATE_DISABLE, &n->state);
5156
5157         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5158                 msleep(1);
5159         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5160                 msleep(1);
5161
5162         hrtimer_cancel(&n->timer);
5163
5164         clear_bit(NAPI_STATE_DISABLE, &n->state);
5165 }
5166 EXPORT_SYMBOL(napi_disable);
5167
5168 /* Must be called in process context */
5169 void netif_napi_del(struct napi_struct *napi)
5170 {
5171         might_sleep();
5172         if (napi_hash_del(napi))
5173                 synchronize_net();
5174         list_del_init(&napi->dev_list);
5175         napi_free_frags(napi);
5176
5177         kfree_skb_list(napi->gro_list);
5178         napi->gro_list = NULL;
5179         napi->gro_count = 0;
5180 }
5181 EXPORT_SYMBOL(netif_napi_del);
5182
5183 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5184 {
5185         void *have;
5186         int work, weight;
5187
5188         list_del_init(&n->poll_list);
5189
5190         have = netpoll_poll_lock(n);
5191
5192         weight = n->weight;
5193
5194         /* This NAPI_STATE_SCHED test is for avoiding a race
5195          * with netpoll's poll_napi().  Only the entity which
5196          * obtains the lock and sees NAPI_STATE_SCHED set will
5197          * actually make the ->poll() call.  Therefore we avoid
5198          * accidentally calling ->poll() when NAPI is not scheduled.
5199          */
5200         work = 0;
5201         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5202                 work = n->poll(n, weight);
5203                 trace_napi_poll(n, work, weight);
5204         }
5205
5206         WARN_ON_ONCE(work > weight);
5207
5208         if (likely(work < weight))
5209                 goto out_unlock;
5210
5211         /* Drivers must not modify the NAPI state if they
5212          * consume the entire weight.  In such cases this code
5213          * still "owns" the NAPI instance and therefore can
5214          * move the instance around on the list at-will.
5215          */
5216         if (unlikely(napi_disable_pending(n))) {
5217                 napi_complete(n);
5218                 goto out_unlock;
5219         }
5220
5221         if (n->gro_list) {
5222                 /* flush too old packets
5223                  * If HZ < 1000, flush all packets.
5224                  */
5225                 napi_gro_flush(n, HZ >= 1000);
5226         }
5227
5228         /* Some drivers may have called napi_schedule
5229          * prior to exhausting their budget.
5230          */
5231         if (unlikely(!list_empty(&n->poll_list))) {
5232                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5233                              n->dev ? n->dev->name : "backlog");
5234                 goto out_unlock;
5235         }
5236
5237         list_add_tail(&n->poll_list, repoll);
5238
5239 out_unlock:
5240         netpoll_poll_unlock(have);
5241
5242         return work;
5243 }
5244
5245 static __latent_entropy void net_rx_action(struct softirq_action *h)
5246 {
5247         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5248         unsigned long time_limit = jiffies + 2;
5249         int budget = netdev_budget;
5250         LIST_HEAD(list);
5251         LIST_HEAD(repoll);
5252
5253         local_irq_disable();
5254         list_splice_init(&sd->poll_list, &list);
5255         local_irq_enable();
5256
5257         for (;;) {
5258                 struct napi_struct *n;
5259
5260                 if (list_empty(&list)) {
5261                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5262                                 goto out;
5263                         break;
5264                 }
5265
5266                 n = list_first_entry(&list, struct napi_struct, poll_list);
5267                 budget -= napi_poll(n, &repoll);
5268
5269                 /* If softirq window is exhausted then punt.
5270                  * Allow this to run for 2 jiffies since which will allow
5271                  * an average latency of 1.5/HZ.
5272                  */
5273                 if (unlikely(budget <= 0 ||
5274                              time_after_eq(jiffies, time_limit))) {
5275                         sd->time_squeeze++;
5276                         break;
5277                 }
5278         }
5279
5280         local_irq_disable();
5281
5282         list_splice_tail_init(&sd->poll_list, &list);
5283         list_splice_tail(&repoll, &list);
5284         list_splice(&list, &sd->poll_list);
5285         if (!list_empty(&sd->poll_list))
5286                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5287
5288         net_rps_action_and_irq_enable(sd);
5289 out:
5290         __kfree_skb_flush();
5291 }
5292
5293 struct netdev_adjacent {
5294         struct net_device *dev;
5295
5296         /* upper master flag, there can only be one master device per list */
5297         bool master;
5298
5299         /* counter for the number of times this device was added to us */
5300         u16 ref_nr;
5301
5302         /* private field for the users */
5303         void *private;
5304
5305         struct list_head list;
5306         struct rcu_head rcu;
5307 };
5308
5309 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5310                                                  struct list_head *adj_list)
5311 {
5312         struct netdev_adjacent *adj;
5313
5314         list_for_each_entry(adj, adj_list, list) {
5315                 if (adj->dev == adj_dev)
5316                         return adj;
5317         }
5318         return NULL;
5319 }
5320
5321 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5322 {
5323         struct net_device *dev = data;
5324
5325         return upper_dev == dev;
5326 }
5327
5328 /**
5329  * netdev_has_upper_dev - Check if device is linked to an upper device
5330  * @dev: device
5331  * @upper_dev: upper device to check
5332  *
5333  * Find out if a device is linked to specified upper device and return true
5334  * in case it is. Note that this checks only immediate upper device,
5335  * not through a complete stack of devices. The caller must hold the RTNL lock.
5336  */
5337 bool netdev_has_upper_dev(struct net_device *dev,
5338                           struct net_device *upper_dev)
5339 {
5340         ASSERT_RTNL();
5341
5342         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5343                                              upper_dev);
5344 }
5345 EXPORT_SYMBOL(netdev_has_upper_dev);
5346
5347 /**
5348  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5349  * @dev: device
5350  * @upper_dev: upper device to check
5351  *
5352  * Find out if a device is linked to specified upper device and return true
5353  * in case it is. Note that this checks the entire upper device chain.
5354  * The caller must hold rcu lock.
5355  */
5356
5357 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5358                                   struct net_device *upper_dev)
5359 {
5360         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5361                                                upper_dev);
5362 }
5363 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5364
5365 /**
5366  * netdev_has_any_upper_dev - Check if device is linked to some device
5367  * @dev: device
5368  *
5369  * Find out if a device is linked to an upper device and return true in case
5370  * it is. The caller must hold the RTNL lock.
5371  */
5372 static bool netdev_has_any_upper_dev(struct net_device *dev)
5373 {
5374         ASSERT_RTNL();
5375
5376         return !list_empty(&dev->adj_list.upper);
5377 }
5378
5379 /**
5380  * netdev_master_upper_dev_get - Get master upper device
5381  * @dev: device
5382  *
5383  * Find a master upper device and return pointer to it or NULL in case
5384  * it's not there. The caller must hold the RTNL lock.
5385  */
5386 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5387 {
5388         struct netdev_adjacent *upper;
5389
5390         ASSERT_RTNL();
5391
5392         if (list_empty(&dev->adj_list.upper))
5393                 return NULL;
5394
5395         upper = list_first_entry(&dev->adj_list.upper,
5396                                  struct netdev_adjacent, list);
5397         if (likely(upper->master))
5398                 return upper->dev;
5399         return NULL;
5400 }
5401 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5402
5403 /**
5404  * netdev_has_any_lower_dev - Check if device is linked to some device
5405  * @dev: device
5406  *
5407  * Find out if a device is linked to a lower device and return true in case
5408  * it is. The caller must hold the RTNL lock.
5409  */
5410 static bool netdev_has_any_lower_dev(struct net_device *dev)
5411 {
5412         ASSERT_RTNL();
5413
5414         return !list_empty(&dev->adj_list.lower);
5415 }
5416
5417 void *netdev_adjacent_get_private(struct list_head *adj_list)
5418 {
5419         struct netdev_adjacent *adj;
5420
5421         adj = list_entry(adj_list, struct netdev_adjacent, list);
5422
5423         return adj->private;
5424 }
5425 EXPORT_SYMBOL(netdev_adjacent_get_private);
5426
5427 /**
5428  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5429  * @dev: device
5430  * @iter: list_head ** of the current position
5431  *
5432  * Gets the next device from the dev's upper list, starting from iter
5433  * position. The caller must hold RCU read lock.
5434  */
5435 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5436                                                  struct list_head **iter)
5437 {
5438         struct netdev_adjacent *upper;
5439
5440         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5441
5442         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5443
5444         if (&upper->list == &dev->adj_list.upper)
5445                 return NULL;
5446
5447         *iter = &upper->list;
5448
5449         return upper->dev;
5450 }
5451 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5452
5453 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5454                                                     struct list_head **iter)
5455 {
5456         struct netdev_adjacent *upper;
5457
5458         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5459
5460         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5461
5462         if (&upper->list == &dev->adj_list.upper)
5463                 return NULL;
5464
5465         *iter = &upper->list;
5466
5467         return upper->dev;
5468 }
5469
5470 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5471                                   int (*fn)(struct net_device *dev,
5472                                             void *data),
5473                                   void *data)
5474 {
5475         struct net_device *udev;
5476         struct list_head *iter;
5477         int ret;
5478
5479         for (iter = &dev->adj_list.upper,
5480              udev = netdev_next_upper_dev_rcu(dev, &iter);
5481              udev;
5482              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5483                 /* first is the upper device itself */
5484                 ret = fn(udev, data);
5485                 if (ret)
5486                         return ret;
5487
5488                 /* then look at all of its upper devices */
5489                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5490                 if (ret)
5491                         return ret;
5492         }
5493
5494         return 0;
5495 }
5496 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5497
5498 /**
5499  * netdev_lower_get_next_private - Get the next ->private from the
5500  *                                 lower neighbour list
5501  * @dev: device
5502  * @iter: list_head ** of the current position
5503  *
5504  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5505  * list, starting from iter position. The caller must hold either hold the
5506  * RTNL lock or its own locking that guarantees that the neighbour lower
5507  * list will remain unchanged.
5508  */
5509 void *netdev_lower_get_next_private(struct net_device *dev,
5510                                     struct list_head **iter)
5511 {
5512         struct netdev_adjacent *lower;
5513
5514         lower = list_entry(*iter, struct netdev_adjacent, list);
5515
5516         if (&lower->list == &dev->adj_list.lower)
5517                 return NULL;
5518
5519         *iter = lower->list.next;
5520
5521         return lower->private;
5522 }
5523 EXPORT_SYMBOL(netdev_lower_get_next_private);
5524
5525 /**
5526  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5527  *                                     lower neighbour list, RCU
5528  *                                     variant
5529  * @dev: device
5530  * @iter: list_head ** of the current position
5531  *
5532  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5533  * list, starting from iter position. The caller must hold RCU read lock.
5534  */
5535 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5536                                         struct list_head **iter)
5537 {
5538         struct netdev_adjacent *lower;
5539
5540         WARN_ON_ONCE(!rcu_read_lock_held());
5541
5542         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5543
5544         if (&lower->list == &dev->adj_list.lower)
5545                 return NULL;
5546
5547         *iter = &lower->list;
5548
5549         return lower->private;
5550 }
5551 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5552
5553 /**
5554  * netdev_lower_get_next - Get the next device from the lower neighbour
5555  *                         list
5556  * @dev: device
5557  * @iter: list_head ** of the current position
5558  *
5559  * Gets the next netdev_adjacent from the dev's lower neighbour
5560  * list, starting from iter position. The caller must hold RTNL lock or
5561  * its own locking that guarantees that the neighbour lower
5562  * list will remain unchanged.
5563  */
5564 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5565 {
5566         struct netdev_adjacent *lower;
5567
5568         lower = list_entry(*iter, struct netdev_adjacent, list);
5569
5570         if (&lower->list == &dev->adj_list.lower)
5571                 return NULL;
5572
5573         *iter = lower->list.next;
5574
5575         return lower->dev;
5576 }
5577 EXPORT_SYMBOL(netdev_lower_get_next);
5578
5579 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5580                                                 struct list_head **iter)
5581 {
5582         struct netdev_adjacent *lower;
5583
5584         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5585
5586         if (&lower->list == &dev->adj_list.lower)
5587                 return NULL;
5588
5589         *iter = &lower->list;
5590
5591         return lower->dev;
5592 }
5593
5594 int netdev_walk_all_lower_dev(struct net_device *dev,
5595                               int (*fn)(struct net_device *dev,
5596                                         void *data),
5597                               void *data)
5598 {
5599         struct net_device *ldev;
5600         struct list_head *iter;
5601         int ret;
5602
5603         for (iter = &dev->adj_list.lower,
5604              ldev = netdev_next_lower_dev(dev, &iter);
5605              ldev;
5606              ldev = netdev_next_lower_dev(dev, &iter)) {
5607                 /* first is the lower device itself */
5608                 ret = fn(ldev, data);
5609                 if (ret)
5610                         return ret;
5611
5612                 /* then look at all of its lower devices */
5613                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5614                 if (ret)
5615                         return ret;
5616         }
5617
5618         return 0;
5619 }
5620 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5621
5622 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5623                                                     struct list_head **iter)
5624 {
5625         struct netdev_adjacent *lower;
5626
5627         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5628         if (&lower->list == &dev->adj_list.lower)
5629                 return NULL;
5630
5631         *iter = &lower->list;
5632
5633         return lower->dev;
5634 }
5635
5636 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5637                                   int (*fn)(struct net_device *dev,
5638                                             void *data),
5639                                   void *data)
5640 {
5641         struct net_device *ldev;
5642         struct list_head *iter;
5643         int ret;
5644
5645         for (iter = &dev->adj_list.lower,
5646              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5647              ldev;
5648              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5649                 /* first is the lower device itself */
5650                 ret = fn(ldev, data);
5651                 if (ret)
5652                         return ret;
5653
5654                 /* then look at all of its lower devices */
5655                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5656                 if (ret)
5657                         return ret;
5658         }
5659
5660         return 0;
5661 }
5662 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5663
5664 /**
5665  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5666  *                                     lower neighbour list, RCU
5667  *                                     variant
5668  * @dev: device
5669  *
5670  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5671  * list. The caller must hold RCU read lock.
5672  */
5673 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5674 {
5675         struct netdev_adjacent *lower;
5676
5677         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5678                         struct netdev_adjacent, list);
5679         if (lower)
5680                 return lower->private;
5681         return NULL;
5682 }
5683 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5684
5685 /**
5686  * netdev_master_upper_dev_get_rcu - Get master upper device
5687  * @dev: device
5688  *
5689  * Find a master upper device and return pointer to it or NULL in case
5690  * it's not there. The caller must hold the RCU read lock.
5691  */
5692 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5693 {
5694         struct netdev_adjacent *upper;
5695
5696         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5697                                        struct netdev_adjacent, list);
5698         if (upper && likely(upper->master))
5699                 return upper->dev;
5700         return NULL;
5701 }
5702 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5703
5704 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5705                               struct net_device *adj_dev,
5706                               struct list_head *dev_list)
5707 {
5708         char linkname[IFNAMSIZ+7];
5709         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5710                 "upper_%s" : "lower_%s", adj_dev->name);
5711         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5712                                  linkname);
5713 }
5714 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5715                                char *name,
5716                                struct list_head *dev_list)
5717 {
5718         char linkname[IFNAMSIZ+7];
5719         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5720                 "upper_%s" : "lower_%s", name);
5721         sysfs_remove_link(&(dev->dev.kobj), linkname);
5722 }
5723
5724 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5725                                                  struct net_device *adj_dev,
5726                                                  struct list_head *dev_list)
5727 {
5728         return (dev_list == &dev->adj_list.upper ||
5729                 dev_list == &dev->adj_list.lower) &&
5730                 net_eq(dev_net(dev), dev_net(adj_dev));
5731 }
5732
5733 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5734                                         struct net_device *adj_dev,
5735                                         struct list_head *dev_list,
5736                                         void *private, bool master)
5737 {
5738         struct netdev_adjacent *adj;
5739         int ret;
5740
5741         adj = __netdev_find_adj(adj_dev, dev_list);
5742
5743         if (adj) {
5744                 adj->ref_nr += 1;
5745                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5746                          dev->name, adj_dev->name, adj->ref_nr);
5747
5748                 return 0;
5749         }
5750
5751         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5752         if (!adj)
5753                 return -ENOMEM;
5754
5755         adj->dev = adj_dev;
5756         adj->master = master;
5757         adj->ref_nr = 1;
5758         adj->private = private;
5759         dev_hold(adj_dev);
5760
5761         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5762                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5763
5764         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5765                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5766                 if (ret)
5767                         goto free_adj;
5768         }
5769
5770         /* Ensure that master link is always the first item in list. */
5771         if (master) {
5772                 ret = sysfs_create_link(&(dev->dev.kobj),
5773                                         &(adj_dev->dev.kobj), "master");
5774                 if (ret)
5775                         goto remove_symlinks;
5776
5777                 list_add_rcu(&adj->list, dev_list);
5778         } else {
5779                 list_add_tail_rcu(&adj->list, dev_list);
5780         }
5781
5782         return 0;
5783
5784 remove_symlinks:
5785         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5786                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5787 free_adj:
5788         kfree(adj);
5789         dev_put(adj_dev);
5790
5791         return ret;
5792 }
5793
5794 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5795                                          struct net_device *adj_dev,
5796                                          u16 ref_nr,
5797                                          struct list_head *dev_list)
5798 {
5799         struct netdev_adjacent *adj;
5800
5801         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5802                  dev->name, adj_dev->name, ref_nr);
5803
5804         adj = __netdev_find_adj(adj_dev, dev_list);
5805
5806         if (!adj) {
5807                 pr_err("Adjacency does not exist for device %s from %s\n",
5808                        dev->name, adj_dev->name);
5809                 WARN_ON(1);
5810                 return;
5811         }
5812
5813         if (adj->ref_nr > ref_nr) {
5814                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5815                          dev->name, adj_dev->name, ref_nr,
5816                          adj->ref_nr - ref_nr);
5817                 adj->ref_nr -= ref_nr;
5818                 return;
5819         }
5820
5821         if (adj->master)
5822                 sysfs_remove_link(&(dev->dev.kobj), "master");
5823
5824         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5825                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5826
5827         list_del_rcu(&adj->list);
5828         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5829                  adj_dev->name, dev->name, adj_dev->name);
5830         dev_put(adj_dev);
5831         kfree_rcu(adj, rcu);
5832 }
5833
5834 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5835                                             struct net_device *upper_dev,
5836                                             struct list_head *up_list,
5837                                             struct list_head *down_list,
5838                                             void *private, bool master)
5839 {
5840         int ret;
5841
5842         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5843                                            private, master);
5844         if (ret)
5845                 return ret;
5846
5847         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5848                                            private, false);
5849         if (ret) {
5850                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5851                 return ret;
5852         }
5853
5854         return 0;
5855 }
5856
5857 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5858                                                struct net_device *upper_dev,
5859                                                u16 ref_nr,
5860                                                struct list_head *up_list,
5861                                                struct list_head *down_list)
5862 {
5863         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5864         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5865 }
5866
5867 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5868                                                 struct net_device *upper_dev,
5869                                                 void *private, bool master)
5870 {
5871         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5872                                                 &dev->adj_list.upper,
5873                                                 &upper_dev->adj_list.lower,
5874                                                 private, master);
5875 }
5876
5877 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5878                                                    struct net_device *upper_dev)
5879 {
5880         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5881                                            &dev->adj_list.upper,
5882                                            &upper_dev->adj_list.lower);
5883 }
5884
5885 static int __netdev_upper_dev_link(struct net_device *dev,
5886                                    struct net_device *upper_dev, bool master,
5887                                    void *upper_priv, void *upper_info)
5888 {
5889         struct netdev_notifier_changeupper_info changeupper_info;
5890         int ret = 0;
5891
5892         ASSERT_RTNL();
5893
5894         if (dev == upper_dev)
5895                 return -EBUSY;
5896
5897         /* To prevent loops, check if dev is not upper device to upper_dev. */
5898         if (netdev_has_upper_dev(upper_dev, dev))
5899                 return -EBUSY;
5900
5901         if (netdev_has_upper_dev(dev, upper_dev))
5902                 return -EEXIST;
5903
5904         if (master && netdev_master_upper_dev_get(dev))
5905                 return -EBUSY;
5906
5907         changeupper_info.upper_dev = upper_dev;
5908         changeupper_info.master = master;
5909         changeupper_info.linking = true;
5910         changeupper_info.upper_info = upper_info;
5911
5912         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5913                                             &changeupper_info.info);
5914         ret = notifier_to_errno(ret);
5915         if (ret)
5916                 return ret;
5917
5918         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5919                                                    master);
5920         if (ret)
5921                 return ret;
5922
5923         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5924                                             &changeupper_info.info);
5925         ret = notifier_to_errno(ret);
5926         if (ret)
5927                 goto rollback;
5928
5929         return 0;
5930
5931 rollback:
5932         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5933
5934         return ret;
5935 }
5936
5937 /**
5938  * netdev_upper_dev_link - Add a link to the upper device
5939  * @dev: device
5940  * @upper_dev: new upper device
5941  *
5942  * Adds a link to device which is upper to this one. The caller must hold
5943  * the RTNL lock. On a failure a negative errno code is returned.
5944  * On success the reference counts are adjusted and the function
5945  * returns zero.
5946  */
5947 int netdev_upper_dev_link(struct net_device *dev,
5948                           struct net_device *upper_dev)
5949 {
5950         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5951 }
5952 EXPORT_SYMBOL(netdev_upper_dev_link);
5953
5954 /**
5955  * netdev_master_upper_dev_link - Add a master link to the upper device
5956  * @dev: device
5957  * @upper_dev: new upper device
5958  * @upper_priv: upper device private
5959  * @upper_info: upper info to be passed down via notifier
5960  *
5961  * Adds a link to device which is upper to this one. In this case, only
5962  * one master upper device can be linked, although other non-master devices
5963  * might be linked as well. The caller must hold the RTNL lock.
5964  * On a failure a negative errno code is returned. On success the reference
5965  * counts are adjusted and the function returns zero.
5966  */
5967 int netdev_master_upper_dev_link(struct net_device *dev,
5968                                  struct net_device *upper_dev,
5969                                  void *upper_priv, void *upper_info)
5970 {
5971         return __netdev_upper_dev_link(dev, upper_dev, true,
5972                                        upper_priv, upper_info);
5973 }
5974 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5975
5976 /**
5977  * netdev_upper_dev_unlink - Removes a link to upper device
5978  * @dev: device
5979  * @upper_dev: new upper device
5980  *
5981  * Removes a link to device which is upper to this one. The caller must hold
5982  * the RTNL lock.
5983  */
5984 void netdev_upper_dev_unlink(struct net_device *dev,
5985                              struct net_device *upper_dev)
5986 {
5987         struct netdev_notifier_changeupper_info changeupper_info;
5988         ASSERT_RTNL();
5989
5990         changeupper_info.upper_dev = upper_dev;
5991         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5992         changeupper_info.linking = false;
5993
5994         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5995                                       &changeupper_info.info);
5996
5997         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5998
5999         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6000                                       &changeupper_info.info);
6001 }
6002 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6003
6004 /**
6005  * netdev_bonding_info_change - Dispatch event about slave change
6006  * @dev: device
6007  * @bonding_info: info to dispatch
6008  *
6009  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6010  * The caller must hold the RTNL lock.
6011  */
6012 void netdev_bonding_info_change(struct net_device *dev,
6013                                 struct netdev_bonding_info *bonding_info)
6014 {
6015         struct netdev_notifier_bonding_info     info;
6016
6017         memcpy(&info.bonding_info, bonding_info,
6018                sizeof(struct netdev_bonding_info));
6019         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6020                                       &info.info);
6021 }
6022 EXPORT_SYMBOL(netdev_bonding_info_change);
6023
6024 static void netdev_adjacent_add_links(struct net_device *dev)
6025 {
6026         struct netdev_adjacent *iter;
6027
6028         struct net *net = dev_net(dev);
6029
6030         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6031                 if (!net_eq(net, dev_net(iter->dev)))
6032                         continue;
6033                 netdev_adjacent_sysfs_add(iter->dev, dev,
6034                                           &iter->dev->adj_list.lower);
6035                 netdev_adjacent_sysfs_add(dev, iter->dev,
6036                                           &dev->adj_list.upper);
6037         }
6038
6039         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6040                 if (!net_eq(net, dev_net(iter->dev)))
6041                         continue;
6042                 netdev_adjacent_sysfs_add(iter->dev, dev,
6043                                           &iter->dev->adj_list.upper);
6044                 netdev_adjacent_sysfs_add(dev, iter->dev,
6045                                           &dev->adj_list.lower);
6046         }
6047 }
6048
6049 static void netdev_adjacent_del_links(struct net_device *dev)
6050 {
6051         struct netdev_adjacent *iter;
6052
6053         struct net *net = dev_net(dev);
6054
6055         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6056                 if (!net_eq(net, dev_net(iter->dev)))
6057                         continue;
6058                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6059                                           &iter->dev->adj_list.lower);
6060                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6061                                           &dev->adj_list.upper);
6062         }
6063
6064         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6065                 if (!net_eq(net, dev_net(iter->dev)))
6066                         continue;
6067                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6068                                           &iter->dev->adj_list.upper);
6069                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6070                                           &dev->adj_list.lower);
6071         }
6072 }
6073
6074 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6075 {
6076         struct netdev_adjacent *iter;
6077
6078         struct net *net = dev_net(dev);
6079
6080         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6081                 if (!net_eq(net, dev_net(iter->dev)))
6082                         continue;
6083                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6084                                           &iter->dev->adj_list.lower);
6085                 netdev_adjacent_sysfs_add(iter->dev, dev,
6086                                           &iter->dev->adj_list.lower);
6087         }
6088
6089         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6090                 if (!net_eq(net, dev_net(iter->dev)))
6091                         continue;
6092                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6093                                           &iter->dev->adj_list.upper);
6094                 netdev_adjacent_sysfs_add(iter->dev, dev,
6095                                           &iter->dev->adj_list.upper);
6096         }
6097 }
6098
6099 void *netdev_lower_dev_get_private(struct net_device *dev,
6100                                    struct net_device *lower_dev)
6101 {
6102         struct netdev_adjacent *lower;
6103
6104         if (!lower_dev)
6105                 return NULL;
6106         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6107         if (!lower)
6108                 return NULL;
6109
6110         return lower->private;
6111 }
6112 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6113
6114
6115 int dev_get_nest_level(struct net_device *dev)
6116 {
6117         struct net_device *lower = NULL;
6118         struct list_head *iter;
6119         int max_nest = -1;
6120         int nest;
6121
6122         ASSERT_RTNL();
6123
6124         netdev_for_each_lower_dev(dev, lower, iter) {
6125                 nest = dev_get_nest_level(lower);
6126                 if (max_nest < nest)
6127                         max_nest = nest;
6128         }
6129
6130         return max_nest + 1;
6131 }
6132 EXPORT_SYMBOL(dev_get_nest_level);
6133
6134 /**
6135  * netdev_lower_change - Dispatch event about lower device state change
6136  * @lower_dev: device
6137  * @lower_state_info: state to dispatch
6138  *
6139  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6140  * The caller must hold the RTNL lock.
6141  */
6142 void netdev_lower_state_changed(struct net_device *lower_dev,
6143                                 void *lower_state_info)
6144 {
6145         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6146
6147         ASSERT_RTNL();
6148         changelowerstate_info.lower_state_info = lower_state_info;
6149         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6150                                       &changelowerstate_info.info);
6151 }
6152 EXPORT_SYMBOL(netdev_lower_state_changed);
6153
6154 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6155                                            struct neighbour *n)
6156 {
6157         struct net_device *lower_dev, *stop_dev;
6158         struct list_head *iter;
6159         int err;
6160
6161         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6162                 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6163                         continue;
6164                 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6165                 if (err) {
6166                         stop_dev = lower_dev;
6167                         goto rollback;
6168                 }
6169         }
6170         return 0;
6171
6172 rollback:
6173         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6174                 if (lower_dev == stop_dev)
6175                         break;
6176                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6177                         continue;
6178                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6179         }
6180         return err;
6181 }
6182 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6183
6184 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6185                                           struct neighbour *n)
6186 {
6187         struct net_device *lower_dev;
6188         struct list_head *iter;
6189
6190         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6191                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6192                         continue;
6193                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6194         }
6195 }
6196 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6197
6198 static void dev_change_rx_flags(struct net_device *dev, int flags)
6199 {
6200         const struct net_device_ops *ops = dev->netdev_ops;
6201
6202         if (ops->ndo_change_rx_flags)
6203                 ops->ndo_change_rx_flags(dev, flags);
6204 }
6205
6206 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6207 {
6208         unsigned int old_flags = dev->flags;
6209         kuid_t uid;
6210         kgid_t gid;
6211
6212         ASSERT_RTNL();
6213
6214         dev->flags |= IFF_PROMISC;
6215         dev->promiscuity += inc;
6216         if (dev->promiscuity == 0) {
6217                 /*
6218                  * Avoid overflow.
6219                  * If inc causes overflow, untouch promisc and return error.
6220                  */
6221                 if (inc < 0)
6222                         dev->flags &= ~IFF_PROMISC;
6223                 else {
6224                         dev->promiscuity -= inc;
6225                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6226                                 dev->name);
6227                         return -EOVERFLOW;
6228                 }
6229         }
6230         if (dev->flags != old_flags) {
6231                 pr_info("device %s %s promiscuous mode\n",
6232                         dev->name,
6233                         dev->flags & IFF_PROMISC ? "entered" : "left");
6234                 if (audit_enabled) {
6235                         current_uid_gid(&uid, &gid);
6236                         audit_log(current->audit_context, GFP_ATOMIC,
6237                                 AUDIT_ANOM_PROMISCUOUS,
6238                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6239                                 dev->name, (dev->flags & IFF_PROMISC),
6240                                 (old_flags & IFF_PROMISC),
6241                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6242                                 from_kuid(&init_user_ns, uid),
6243                                 from_kgid(&init_user_ns, gid),
6244                                 audit_get_sessionid(current));
6245                 }
6246
6247                 dev_change_rx_flags(dev, IFF_PROMISC);
6248         }
6249         if (notify)
6250                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6251         return 0;
6252 }
6253
6254 /**
6255  *      dev_set_promiscuity     - update promiscuity count on a device
6256  *      @dev: device
6257  *      @inc: modifier
6258  *
6259  *      Add or remove promiscuity from a device. While the count in the device
6260  *      remains above zero the interface remains promiscuous. Once it hits zero
6261  *      the device reverts back to normal filtering operation. A negative inc
6262  *      value is used to drop promiscuity on the device.
6263  *      Return 0 if successful or a negative errno code on error.
6264  */
6265 int dev_set_promiscuity(struct net_device *dev, int inc)
6266 {
6267         unsigned int old_flags = dev->flags;
6268         int err;
6269
6270         err = __dev_set_promiscuity(dev, inc, true);
6271         if (err < 0)
6272                 return err;
6273         if (dev->flags != old_flags)
6274                 dev_set_rx_mode(dev);
6275         return err;
6276 }
6277 EXPORT_SYMBOL(dev_set_promiscuity);
6278
6279 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6280 {
6281         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6282
6283         ASSERT_RTNL();
6284
6285         dev->flags |= IFF_ALLMULTI;
6286         dev->allmulti += inc;
6287         if (dev->allmulti == 0) {
6288                 /*
6289                  * Avoid overflow.
6290                  * If inc causes overflow, untouch allmulti and return error.
6291                  */
6292                 if (inc < 0)
6293                         dev->flags &= ~IFF_ALLMULTI;
6294                 else {
6295                         dev->allmulti -= inc;
6296                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6297                                 dev->name);
6298                         return -EOVERFLOW;
6299                 }
6300         }
6301         if (dev->flags ^ old_flags) {
6302                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6303                 dev_set_rx_mode(dev);
6304                 if (notify)
6305                         __dev_notify_flags(dev, old_flags,
6306                                            dev->gflags ^ old_gflags);
6307         }
6308         return 0;
6309 }
6310
6311 /**
6312  *      dev_set_allmulti        - update allmulti count on a device
6313  *      @dev: device
6314  *      @inc: modifier
6315  *
6316  *      Add or remove reception of all multicast frames to a device. While the
6317  *      count in the device remains above zero the interface remains listening
6318  *      to all interfaces. Once it hits zero the device reverts back to normal
6319  *      filtering operation. A negative @inc value is used to drop the counter
6320  *      when releasing a resource needing all multicasts.
6321  *      Return 0 if successful or a negative errno code on error.
6322  */
6323
6324 int dev_set_allmulti(struct net_device *dev, int inc)
6325 {
6326         return __dev_set_allmulti(dev, inc, true);
6327 }
6328 EXPORT_SYMBOL(dev_set_allmulti);
6329
6330 /*
6331  *      Upload unicast and multicast address lists to device and
6332  *      configure RX filtering. When the device doesn't support unicast
6333  *      filtering it is put in promiscuous mode while unicast addresses
6334  *      are present.
6335  */
6336 void __dev_set_rx_mode(struct net_device *dev)
6337 {
6338         const struct net_device_ops *ops = dev->netdev_ops;
6339
6340         /* dev_open will call this function so the list will stay sane. */
6341         if (!(dev->flags&IFF_UP))
6342                 return;
6343
6344         if (!netif_device_present(dev))
6345                 return;
6346
6347         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6348                 /* Unicast addresses changes may only happen under the rtnl,
6349                  * therefore calling __dev_set_promiscuity here is safe.
6350                  */
6351                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6352                         __dev_set_promiscuity(dev, 1, false);
6353                         dev->uc_promisc = true;
6354                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6355                         __dev_set_promiscuity(dev, -1, false);
6356                         dev->uc_promisc = false;
6357                 }
6358         }
6359
6360         if (ops->ndo_set_rx_mode)
6361                 ops->ndo_set_rx_mode(dev);
6362 }
6363
6364 void dev_set_rx_mode(struct net_device *dev)
6365 {
6366         netif_addr_lock_bh(dev);
6367         __dev_set_rx_mode(dev);
6368         netif_addr_unlock_bh(dev);
6369 }
6370
6371 /**
6372  *      dev_get_flags - get flags reported to userspace
6373  *      @dev: device
6374  *
6375  *      Get the combination of flag bits exported through APIs to userspace.
6376  */
6377 unsigned int dev_get_flags(const struct net_device *dev)
6378 {
6379         unsigned int flags;
6380
6381         flags = (dev->flags & ~(IFF_PROMISC |
6382                                 IFF_ALLMULTI |
6383                                 IFF_RUNNING |
6384                                 IFF_LOWER_UP |
6385                                 IFF_DORMANT)) |
6386                 (dev->gflags & (IFF_PROMISC |
6387                                 IFF_ALLMULTI));
6388
6389         if (netif_running(dev)) {
6390                 if (netif_oper_up(dev))
6391                         flags |= IFF_RUNNING;
6392                 if (netif_carrier_ok(dev))
6393                         flags |= IFF_LOWER_UP;
6394                 if (netif_dormant(dev))
6395                         flags |= IFF_DORMANT;
6396         }
6397
6398         return flags;
6399 }
6400 EXPORT_SYMBOL(dev_get_flags);
6401
6402 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6403 {
6404         unsigned int old_flags = dev->flags;
6405         int ret;
6406
6407         ASSERT_RTNL();
6408
6409         /*
6410          *      Set the flags on our device.
6411          */
6412
6413         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6414                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6415                                IFF_AUTOMEDIA)) |
6416                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6417                                     IFF_ALLMULTI));
6418
6419         /*
6420          *      Load in the correct multicast list now the flags have changed.
6421          */
6422
6423         if ((old_flags ^ flags) & IFF_MULTICAST)
6424                 dev_change_rx_flags(dev, IFF_MULTICAST);
6425
6426         dev_set_rx_mode(dev);
6427
6428         /*
6429          *      Have we downed the interface. We handle IFF_UP ourselves
6430          *      according to user attempts to set it, rather than blindly
6431          *      setting it.
6432          */
6433
6434         ret = 0;
6435         if ((old_flags ^ flags) & IFF_UP)
6436                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6437
6438         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6439                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6440                 unsigned int old_flags = dev->flags;
6441
6442                 dev->gflags ^= IFF_PROMISC;
6443
6444                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6445                         if (dev->flags != old_flags)
6446                                 dev_set_rx_mode(dev);
6447         }
6448
6449         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6450            is important. Some (broken) drivers set IFF_PROMISC, when
6451            IFF_ALLMULTI is requested not asking us and not reporting.
6452          */
6453         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6454                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6455
6456                 dev->gflags ^= IFF_ALLMULTI;
6457                 __dev_set_allmulti(dev, inc, false);
6458         }
6459
6460         return ret;
6461 }
6462
6463 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6464                         unsigned int gchanges)
6465 {
6466         unsigned int changes = dev->flags ^ old_flags;
6467
6468         if (gchanges)
6469                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6470
6471         if (changes & IFF_UP) {
6472                 if (dev->flags & IFF_UP)
6473                         call_netdevice_notifiers(NETDEV_UP, dev);
6474                 else
6475                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6476         }
6477
6478         if (dev->flags & IFF_UP &&
6479             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6480                 struct netdev_notifier_change_info change_info;
6481
6482                 change_info.flags_changed = changes;
6483                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6484                                               &change_info.info);
6485         }
6486 }
6487
6488 /**
6489  *      dev_change_flags - change device settings
6490  *      @dev: device
6491  *      @flags: device state flags
6492  *
6493  *      Change settings on device based state flags. The flags are
6494  *      in the userspace exported format.
6495  */
6496 int dev_change_flags(struct net_device *dev, unsigned int flags)
6497 {
6498         int ret;
6499         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6500
6501         ret = __dev_change_flags(dev, flags);
6502         if (ret < 0)
6503                 return ret;
6504
6505         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6506         __dev_notify_flags(dev, old_flags, changes);
6507         return ret;
6508 }
6509 EXPORT_SYMBOL(dev_change_flags);
6510
6511 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6512 {
6513         const struct net_device_ops *ops = dev->netdev_ops;
6514
6515         if (ops->ndo_change_mtu)
6516                 return ops->ndo_change_mtu(dev, new_mtu);
6517
6518         dev->mtu = new_mtu;
6519         return 0;
6520 }
6521
6522 /**
6523  *      dev_set_mtu - Change maximum transfer unit
6524  *      @dev: device
6525  *      @new_mtu: new transfer unit
6526  *
6527  *      Change the maximum transfer size of the network device.
6528  */
6529 int dev_set_mtu(struct net_device *dev, int new_mtu)
6530 {
6531         int err, orig_mtu;
6532
6533         if (new_mtu == dev->mtu)
6534                 return 0;
6535
6536         /* MTU must be positive, and in range */
6537         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6538                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6539                                     dev->name, new_mtu, dev->min_mtu);
6540                 return -EINVAL;
6541         }
6542
6543         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6544                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6545                                     dev->name, new_mtu, dev->max_mtu);
6546                 return -EINVAL;
6547         }
6548
6549         if (!netif_device_present(dev))
6550                 return -ENODEV;
6551
6552         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6553         err = notifier_to_errno(err);
6554         if (err)
6555                 return err;
6556
6557         orig_mtu = dev->mtu;
6558         err = __dev_set_mtu(dev, new_mtu);
6559
6560         if (!err) {
6561                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6562                 err = notifier_to_errno(err);
6563                 if (err) {
6564                         /* setting mtu back and notifying everyone again,
6565                          * so that they have a chance to revert changes.
6566                          */
6567                         __dev_set_mtu(dev, orig_mtu);
6568                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6569                 }
6570         }
6571         return err;
6572 }
6573 EXPORT_SYMBOL(dev_set_mtu);
6574
6575 /**
6576  *      dev_set_group - Change group this device belongs to
6577  *      @dev: device
6578  *      @new_group: group this device should belong to
6579  */
6580 void dev_set_group(struct net_device *dev, int new_group)
6581 {
6582         dev->group = new_group;
6583 }
6584 EXPORT_SYMBOL(dev_set_group);
6585
6586 /**
6587  *      dev_set_mac_address - Change Media Access Control Address
6588  *      @dev: device
6589  *      @sa: new address
6590  *
6591  *      Change the hardware (MAC) address of the device
6592  */
6593 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6594 {
6595         const struct net_device_ops *ops = dev->netdev_ops;
6596         int err;
6597
6598         if (!ops->ndo_set_mac_address)
6599                 return -EOPNOTSUPP;
6600         if (sa->sa_family != dev->type)
6601                 return -EINVAL;
6602         if (!netif_device_present(dev))
6603                 return -ENODEV;
6604         err = ops->ndo_set_mac_address(dev, sa);
6605         if (err)
6606                 return err;
6607         dev->addr_assign_type = NET_ADDR_SET;
6608         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6609         add_device_randomness(dev->dev_addr, dev->addr_len);
6610         return 0;
6611 }
6612 EXPORT_SYMBOL(dev_set_mac_address);
6613
6614 /**
6615  *      dev_change_carrier - Change device carrier
6616  *      @dev: device
6617  *      @new_carrier: new value
6618  *
6619  *      Change device carrier
6620  */
6621 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6622 {
6623         const struct net_device_ops *ops = dev->netdev_ops;
6624
6625         if (!ops->ndo_change_carrier)
6626                 return -EOPNOTSUPP;
6627         if (!netif_device_present(dev))
6628                 return -ENODEV;
6629         return ops->ndo_change_carrier(dev, new_carrier);
6630 }
6631 EXPORT_SYMBOL(dev_change_carrier);
6632
6633 /**
6634  *      dev_get_phys_port_id - Get device physical port ID
6635  *      @dev: device
6636  *      @ppid: port ID
6637  *
6638  *      Get device physical port ID
6639  */
6640 int dev_get_phys_port_id(struct net_device *dev,
6641                          struct netdev_phys_item_id *ppid)
6642 {
6643         const struct net_device_ops *ops = dev->netdev_ops;
6644
6645         if (!ops->ndo_get_phys_port_id)
6646                 return -EOPNOTSUPP;
6647         return ops->ndo_get_phys_port_id(dev, ppid);
6648 }
6649 EXPORT_SYMBOL(dev_get_phys_port_id);
6650
6651 /**
6652  *      dev_get_phys_port_name - Get device physical port name
6653  *      @dev: device
6654  *      @name: port name
6655  *      @len: limit of bytes to copy to name
6656  *
6657  *      Get device physical port name
6658  */
6659 int dev_get_phys_port_name(struct net_device *dev,
6660                            char *name, size_t len)
6661 {
6662         const struct net_device_ops *ops = dev->netdev_ops;
6663
6664         if (!ops->ndo_get_phys_port_name)
6665                 return -EOPNOTSUPP;
6666         return ops->ndo_get_phys_port_name(dev, name, len);
6667 }
6668 EXPORT_SYMBOL(dev_get_phys_port_name);
6669
6670 /**
6671  *      dev_change_proto_down - update protocol port state information
6672  *      @dev: device
6673  *      @proto_down: new value
6674  *
6675  *      This info can be used by switch drivers to set the phys state of the
6676  *      port.
6677  */
6678 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6679 {
6680         const struct net_device_ops *ops = dev->netdev_ops;
6681
6682         if (!ops->ndo_change_proto_down)
6683                 return -EOPNOTSUPP;
6684         if (!netif_device_present(dev))
6685                 return -ENODEV;
6686         return ops->ndo_change_proto_down(dev, proto_down);
6687 }
6688 EXPORT_SYMBOL(dev_change_proto_down);
6689
6690 /**
6691  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6692  *      @dev: device
6693  *      @fd: new program fd or negative value to clear
6694  *      @flags: xdp-related flags
6695  *
6696  *      Set or clear a bpf program for a device
6697  */
6698 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6699 {
6700         const struct net_device_ops *ops = dev->netdev_ops;
6701         struct bpf_prog *prog = NULL;
6702         struct netdev_xdp xdp;
6703         int err;
6704
6705         ASSERT_RTNL();
6706
6707         if (!ops->ndo_xdp)
6708                 return -EOPNOTSUPP;
6709         if (fd >= 0) {
6710                 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6711                         memset(&xdp, 0, sizeof(xdp));
6712                         xdp.command = XDP_QUERY_PROG;
6713
6714                         err = ops->ndo_xdp(dev, &xdp);
6715                         if (err < 0)
6716                                 return err;
6717                         if (xdp.prog_attached)
6718                                 return -EBUSY;
6719                 }
6720
6721                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6722                 if (IS_ERR(prog))
6723                         return PTR_ERR(prog);
6724         }
6725
6726         memset(&xdp, 0, sizeof(xdp));
6727         xdp.command = XDP_SETUP_PROG;
6728         xdp.prog = prog;
6729
6730         err = ops->ndo_xdp(dev, &xdp);
6731         if (err < 0 && prog)
6732                 bpf_prog_put(prog);
6733
6734         return err;
6735 }
6736 EXPORT_SYMBOL(dev_change_xdp_fd);
6737
6738 /**
6739  *      dev_new_index   -       allocate an ifindex
6740  *      @net: the applicable net namespace
6741  *
6742  *      Returns a suitable unique value for a new device interface
6743  *      number.  The caller must hold the rtnl semaphore or the
6744  *      dev_base_lock to be sure it remains unique.
6745  */
6746 static int dev_new_index(struct net *net)
6747 {
6748         int ifindex = net->ifindex;
6749         for (;;) {
6750                 if (++ifindex <= 0)
6751                         ifindex = 1;
6752                 if (!__dev_get_by_index(net, ifindex))
6753                         return net->ifindex = ifindex;
6754         }
6755 }
6756
6757 /* Delayed registration/unregisteration */
6758 static LIST_HEAD(net_todo_list);
6759 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6760
6761 static void net_set_todo(struct net_device *dev)
6762 {
6763         list_add_tail(&dev->todo_list, &net_todo_list);
6764         dev_net(dev)->dev_unreg_count++;
6765 }
6766
6767 static void rollback_registered_many(struct list_head *head)
6768 {
6769         struct net_device *dev, *tmp;
6770         LIST_HEAD(close_head);
6771
6772         BUG_ON(dev_boot_phase);
6773         ASSERT_RTNL();
6774
6775         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6776                 /* Some devices call without registering
6777                  * for initialization unwind. Remove those
6778                  * devices and proceed with the remaining.
6779                  */
6780                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6781                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6782                                  dev->name, dev);
6783
6784                         WARN_ON(1);
6785                         list_del(&dev->unreg_list);
6786                         continue;
6787                 }
6788                 dev->dismantle = true;
6789                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6790         }
6791
6792         /* If device is running, close it first. */
6793         list_for_each_entry(dev, head, unreg_list)
6794                 list_add_tail(&dev->close_list, &close_head);
6795         dev_close_many(&close_head, true);
6796
6797         list_for_each_entry(dev, head, unreg_list) {
6798                 /* And unlink it from device chain. */
6799                 unlist_netdevice(dev);
6800
6801                 dev->reg_state = NETREG_UNREGISTERING;
6802         }
6803         flush_all_backlogs();
6804
6805         synchronize_net();
6806
6807         list_for_each_entry(dev, head, unreg_list) {
6808                 struct sk_buff *skb = NULL;
6809
6810                 /* Shutdown queueing discipline. */
6811                 dev_shutdown(dev);
6812
6813
6814                 /* Notify protocols, that we are about to destroy
6815                    this device. They should clean all the things.
6816                 */
6817                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6818
6819                 if (!dev->rtnl_link_ops ||
6820                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6821                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6822                                                      GFP_KERNEL);
6823
6824                 /*
6825                  *      Flush the unicast and multicast chains
6826                  */
6827                 dev_uc_flush(dev);
6828                 dev_mc_flush(dev);
6829
6830                 if (dev->netdev_ops->ndo_uninit)
6831                         dev->netdev_ops->ndo_uninit(dev);
6832
6833                 if (skb)
6834                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6835
6836                 /* Notifier chain MUST detach us all upper devices. */
6837                 WARN_ON(netdev_has_any_upper_dev(dev));
6838                 WARN_ON(netdev_has_any_lower_dev(dev));
6839
6840                 /* Remove entries from kobject tree */
6841                 netdev_unregister_kobject(dev);
6842 #ifdef CONFIG_XPS
6843                 /* Remove XPS queueing entries */
6844                 netif_reset_xps_queues_gt(dev, 0);
6845 #endif
6846         }
6847
6848         synchronize_net();
6849
6850         list_for_each_entry(dev, head, unreg_list)
6851                 dev_put(dev);
6852 }
6853
6854 static void rollback_registered(struct net_device *dev)
6855 {
6856         LIST_HEAD(single);
6857
6858         list_add(&dev->unreg_list, &single);
6859         rollback_registered_many(&single);
6860         list_del(&single);
6861 }
6862
6863 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6864         struct net_device *upper, netdev_features_t features)
6865 {
6866         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6867         netdev_features_t feature;
6868         int feature_bit;
6869
6870         for_each_netdev_feature(&upper_disables, feature_bit) {
6871                 feature = __NETIF_F_BIT(feature_bit);
6872                 if (!(upper->wanted_features & feature)
6873                     && (features & feature)) {
6874                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6875                                    &feature, upper->name);
6876                         features &= ~feature;
6877                 }
6878         }
6879
6880         return features;
6881 }
6882
6883 static void netdev_sync_lower_features(struct net_device *upper,
6884         struct net_device *lower, netdev_features_t features)
6885 {
6886         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6887         netdev_features_t feature;
6888         int feature_bit;
6889
6890         for_each_netdev_feature(&upper_disables, feature_bit) {
6891                 feature = __NETIF_F_BIT(feature_bit);
6892                 if (!(features & feature) && (lower->features & feature)) {
6893                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6894                                    &feature, lower->name);
6895                         lower->wanted_features &= ~feature;
6896                         netdev_update_features(lower);
6897
6898                         if (unlikely(lower->features & feature))
6899                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6900                                             &feature, lower->name);
6901                 }
6902         }
6903 }
6904
6905 static netdev_features_t netdev_fix_features(struct net_device *dev,
6906         netdev_features_t features)
6907 {
6908         /* Fix illegal checksum combinations */
6909         if ((features & NETIF_F_HW_CSUM) &&
6910             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6911                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6912                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6913         }
6914
6915         /* TSO requires that SG is present as well. */
6916         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6917                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6918                 features &= ~NETIF_F_ALL_TSO;
6919         }
6920
6921         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6922                                         !(features & NETIF_F_IP_CSUM)) {
6923                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6924                 features &= ~NETIF_F_TSO;
6925                 features &= ~NETIF_F_TSO_ECN;
6926         }
6927
6928         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6929                                          !(features & NETIF_F_IPV6_CSUM)) {
6930                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6931                 features &= ~NETIF_F_TSO6;
6932         }
6933
6934         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6935         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6936                 features &= ~NETIF_F_TSO_MANGLEID;
6937
6938         /* TSO ECN requires that TSO is present as well. */
6939         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6940                 features &= ~NETIF_F_TSO_ECN;
6941
6942         /* Software GSO depends on SG. */
6943         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6944                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6945                 features &= ~NETIF_F_GSO;
6946         }
6947
6948         /* UFO needs SG and checksumming */
6949         if (features & NETIF_F_UFO) {
6950                 /* maybe split UFO into V4 and V6? */
6951                 if (!(features & NETIF_F_HW_CSUM) &&
6952                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6953                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6954                         netdev_dbg(dev,
6955                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6956                         features &= ~NETIF_F_UFO;
6957                 }
6958
6959                 if (!(features & NETIF_F_SG)) {
6960                         netdev_dbg(dev,
6961                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6962                         features &= ~NETIF_F_UFO;
6963                 }
6964         }
6965
6966         /* GSO partial features require GSO partial be set */
6967         if ((features & dev->gso_partial_features) &&
6968             !(features & NETIF_F_GSO_PARTIAL)) {
6969                 netdev_dbg(dev,
6970                            "Dropping partially supported GSO features since no GSO partial.\n");
6971                 features &= ~dev->gso_partial_features;
6972         }
6973
6974 #ifdef CONFIG_NET_RX_BUSY_POLL
6975         if (dev->netdev_ops->ndo_busy_poll)
6976                 features |= NETIF_F_BUSY_POLL;
6977         else
6978 #endif
6979                 features &= ~NETIF_F_BUSY_POLL;
6980
6981         return features;
6982 }
6983
6984 int __netdev_update_features(struct net_device *dev)
6985 {
6986         struct net_device *upper, *lower;
6987         netdev_features_t features;
6988         struct list_head *iter;
6989         int err = -1;
6990
6991         ASSERT_RTNL();
6992
6993         features = netdev_get_wanted_features(dev);
6994
6995         if (dev->netdev_ops->ndo_fix_features)
6996                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6997
6998         /* driver might be less strict about feature dependencies */
6999         features = netdev_fix_features(dev, features);
7000
7001         /* some features can't be enabled if they're off an an upper device */
7002         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7003                 features = netdev_sync_upper_features(dev, upper, features);
7004
7005         if (dev->features == features)
7006                 goto sync_lower;
7007
7008         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7009                 &dev->features, &features);
7010
7011         if (dev->netdev_ops->ndo_set_features)
7012                 err = dev->netdev_ops->ndo_set_features(dev, features);
7013         else
7014                 err = 0;
7015
7016         if (unlikely(err < 0)) {
7017                 netdev_err(dev,
7018                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7019                         err, &features, &dev->features);
7020                 /* return non-0 since some features might have changed and
7021                  * it's better to fire a spurious notification than miss it
7022                  */
7023                 return -1;
7024         }
7025
7026 sync_lower:
7027         /* some features must be disabled on lower devices when disabled
7028          * on an upper device (think: bonding master or bridge)
7029          */
7030         netdev_for_each_lower_dev(dev, lower, iter)
7031                 netdev_sync_lower_features(dev, lower, features);
7032
7033         if (!err)
7034                 dev->features = features;
7035
7036         return err < 0 ? 0 : 1;
7037 }
7038
7039 /**
7040  *      netdev_update_features - recalculate device features
7041  *      @dev: the device to check
7042  *
7043  *      Recalculate dev->features set and send notifications if it
7044  *      has changed. Should be called after driver or hardware dependent
7045  *      conditions might have changed that influence the features.
7046  */
7047 void netdev_update_features(struct net_device *dev)
7048 {
7049         if (__netdev_update_features(dev))
7050                 netdev_features_change(dev);
7051 }
7052 EXPORT_SYMBOL(netdev_update_features);
7053
7054 /**
7055  *      netdev_change_features - recalculate device features
7056  *      @dev: the device to check
7057  *
7058  *      Recalculate dev->features set and send notifications even
7059  *      if they have not changed. Should be called instead of
7060  *      netdev_update_features() if also dev->vlan_features might
7061  *      have changed to allow the changes to be propagated to stacked
7062  *      VLAN devices.
7063  */
7064 void netdev_change_features(struct net_device *dev)
7065 {
7066         __netdev_update_features(dev);
7067         netdev_features_change(dev);
7068 }
7069 EXPORT_SYMBOL(netdev_change_features);
7070
7071 /**
7072  *      netif_stacked_transfer_operstate -      transfer operstate
7073  *      @rootdev: the root or lower level device to transfer state from
7074  *      @dev: the device to transfer operstate to
7075  *
7076  *      Transfer operational state from root to device. This is normally
7077  *      called when a stacking relationship exists between the root
7078  *      device and the device(a leaf device).
7079  */
7080 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7081                                         struct net_device *dev)
7082 {
7083         if (rootdev->operstate == IF_OPER_DORMANT)
7084                 netif_dormant_on(dev);
7085         else
7086                 netif_dormant_off(dev);
7087
7088         if (netif_carrier_ok(rootdev)) {
7089                 if (!netif_carrier_ok(dev))
7090                         netif_carrier_on(dev);
7091         } else {
7092                 if (netif_carrier_ok(dev))
7093                         netif_carrier_off(dev);
7094         }
7095 }
7096 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7097
7098 #ifdef CONFIG_SYSFS
7099 static int netif_alloc_rx_queues(struct net_device *dev)
7100 {
7101         unsigned int i, count = dev->num_rx_queues;
7102         struct netdev_rx_queue *rx;
7103         size_t sz = count * sizeof(*rx);
7104
7105         BUG_ON(count < 1);
7106
7107         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7108         if (!rx) {
7109                 rx = vzalloc(sz);
7110                 if (!rx)
7111                         return -ENOMEM;
7112         }
7113         dev->_rx = rx;
7114
7115         for (i = 0; i < count; i++)
7116                 rx[i].dev = dev;
7117         return 0;
7118 }
7119 #endif
7120
7121 static void netdev_init_one_queue(struct net_device *dev,
7122                                   struct netdev_queue *queue, void *_unused)
7123 {
7124         /* Initialize queue lock */
7125         spin_lock_init(&queue->_xmit_lock);
7126         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7127         queue->xmit_lock_owner = -1;
7128         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7129         queue->dev = dev;
7130 #ifdef CONFIG_BQL
7131         dql_init(&queue->dql, HZ);
7132 #endif
7133 }
7134
7135 static void netif_free_tx_queues(struct net_device *dev)
7136 {
7137         kvfree(dev->_tx);
7138 }
7139
7140 static int netif_alloc_netdev_queues(struct net_device *dev)
7141 {
7142         unsigned int count = dev->num_tx_queues;
7143         struct netdev_queue *tx;
7144         size_t sz = count * sizeof(*tx);
7145
7146         if (count < 1 || count > 0xffff)
7147                 return -EINVAL;
7148
7149         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7150         if (!tx) {
7151                 tx = vzalloc(sz);
7152                 if (!tx)
7153                         return -ENOMEM;
7154         }
7155         dev->_tx = tx;
7156
7157         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7158         spin_lock_init(&dev->tx_global_lock);
7159
7160         return 0;
7161 }
7162
7163 void netif_tx_stop_all_queues(struct net_device *dev)
7164 {
7165         unsigned int i;
7166
7167         for (i = 0; i < dev->num_tx_queues; i++) {
7168                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7169                 netif_tx_stop_queue(txq);
7170         }
7171 }
7172 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7173
7174 /**
7175  *      register_netdevice      - register a network device
7176  *      @dev: device to register
7177  *
7178  *      Take a completed network device structure and add it to the kernel
7179  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7180  *      chain. 0 is returned on success. A negative errno code is returned
7181  *      on a failure to set up the device, or if the name is a duplicate.
7182  *
7183  *      Callers must hold the rtnl semaphore. You may want
7184  *      register_netdev() instead of this.
7185  *
7186  *      BUGS:
7187  *      The locking appears insufficient to guarantee two parallel registers
7188  *      will not get the same name.
7189  */
7190
7191 int register_netdevice(struct net_device *dev)
7192 {
7193         int ret;
7194         struct net *net = dev_net(dev);
7195
7196         BUG_ON(dev_boot_phase);
7197         ASSERT_RTNL();
7198
7199         might_sleep();
7200
7201         /* When net_device's are persistent, this will be fatal. */
7202         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7203         BUG_ON(!net);
7204
7205         spin_lock_init(&dev->addr_list_lock);
7206         netdev_set_addr_lockdep_class(dev);
7207
7208         ret = dev_get_valid_name(net, dev, dev->name);
7209         if (ret < 0)
7210                 goto out;
7211
7212         /* Init, if this function is available */
7213         if (dev->netdev_ops->ndo_init) {
7214                 ret = dev->netdev_ops->ndo_init(dev);
7215                 if (ret) {
7216                         if (ret > 0)
7217                                 ret = -EIO;
7218                         goto out;
7219                 }
7220         }
7221
7222         if (((dev->hw_features | dev->features) &
7223              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7224             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7225              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7226                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7227                 ret = -EINVAL;
7228                 goto err_uninit;
7229         }
7230
7231         ret = -EBUSY;
7232         if (!dev->ifindex)
7233                 dev->ifindex = dev_new_index(net);
7234         else if (__dev_get_by_index(net, dev->ifindex))
7235                 goto err_uninit;
7236
7237         /* Transfer changeable features to wanted_features and enable
7238          * software offloads (GSO and GRO).
7239          */
7240         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7241         dev->features |= NETIF_F_SOFT_FEATURES;
7242         dev->wanted_features = dev->features & dev->hw_features;
7243
7244         if (!(dev->flags & IFF_LOOPBACK))
7245                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7246
7247         /* If IPv4 TCP segmentation offload is supported we should also
7248          * allow the device to enable segmenting the frame with the option
7249          * of ignoring a static IP ID value.  This doesn't enable the
7250          * feature itself but allows the user to enable it later.
7251          */
7252         if (dev->hw_features & NETIF_F_TSO)
7253                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7254         if (dev->vlan_features & NETIF_F_TSO)
7255                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7256         if (dev->mpls_features & NETIF_F_TSO)
7257                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7258         if (dev->hw_enc_features & NETIF_F_TSO)
7259                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7260
7261         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7262          */
7263         dev->vlan_features |= NETIF_F_HIGHDMA;
7264
7265         /* Make NETIF_F_SG inheritable to tunnel devices.
7266          */
7267         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7268
7269         /* Make NETIF_F_SG inheritable to MPLS.
7270          */
7271         dev->mpls_features |= NETIF_F_SG;
7272
7273         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7274         ret = notifier_to_errno(ret);
7275         if (ret)
7276                 goto err_uninit;
7277
7278         ret = netdev_register_kobject(dev);
7279         if (ret)
7280                 goto err_uninit;
7281         dev->reg_state = NETREG_REGISTERED;
7282
7283         __netdev_update_features(dev);
7284
7285         /*
7286          *      Default initial state at registry is that the
7287          *      device is present.
7288          */
7289
7290         set_bit(__LINK_STATE_PRESENT, &dev->state);
7291
7292         linkwatch_init_dev(dev);
7293
7294         dev_init_scheduler(dev);
7295         dev_hold(dev);
7296         list_netdevice(dev);
7297         add_device_randomness(dev->dev_addr, dev->addr_len);
7298
7299         /* If the device has permanent device address, driver should
7300          * set dev_addr and also addr_assign_type should be set to
7301          * NET_ADDR_PERM (default value).
7302          */
7303         if (dev->addr_assign_type == NET_ADDR_PERM)
7304                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7305
7306         /* Notify protocols, that a new device appeared. */
7307         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7308         ret = notifier_to_errno(ret);
7309         if (ret) {
7310                 rollback_registered(dev);
7311                 dev->reg_state = NETREG_UNREGISTERED;
7312         }
7313         /*
7314          *      Prevent userspace races by waiting until the network
7315          *      device is fully setup before sending notifications.
7316          */
7317         if (!dev->rtnl_link_ops ||
7318             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7319                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7320
7321 out:
7322         return ret;
7323
7324 err_uninit:
7325         if (dev->netdev_ops->ndo_uninit)
7326                 dev->netdev_ops->ndo_uninit(dev);
7327         goto out;
7328 }
7329 EXPORT_SYMBOL(register_netdevice);
7330
7331 /**
7332  *      init_dummy_netdev       - init a dummy network device for NAPI
7333  *      @dev: device to init
7334  *
7335  *      This takes a network device structure and initialize the minimum
7336  *      amount of fields so it can be used to schedule NAPI polls without
7337  *      registering a full blown interface. This is to be used by drivers
7338  *      that need to tie several hardware interfaces to a single NAPI
7339  *      poll scheduler due to HW limitations.
7340  */
7341 int init_dummy_netdev(struct net_device *dev)
7342 {
7343         /* Clear everything. Note we don't initialize spinlocks
7344          * are they aren't supposed to be taken by any of the
7345          * NAPI code and this dummy netdev is supposed to be
7346          * only ever used for NAPI polls
7347          */
7348         memset(dev, 0, sizeof(struct net_device));
7349
7350         /* make sure we BUG if trying to hit standard
7351          * register/unregister code path
7352          */
7353         dev->reg_state = NETREG_DUMMY;
7354
7355         /* NAPI wants this */
7356         INIT_LIST_HEAD(&dev->napi_list);
7357
7358         /* a dummy interface is started by default */
7359         set_bit(__LINK_STATE_PRESENT, &dev->state);
7360         set_bit(__LINK_STATE_START, &dev->state);
7361
7362         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7363          * because users of this 'device' dont need to change
7364          * its refcount.
7365          */
7366
7367         return 0;
7368 }
7369 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7370
7371
7372 /**
7373  *      register_netdev - register a network device
7374  *      @dev: device to register
7375  *
7376  *      Take a completed network device structure and add it to the kernel
7377  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7378  *      chain. 0 is returned on success. A negative errno code is returned
7379  *      on a failure to set up the device, or if the name is a duplicate.
7380  *
7381  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7382  *      and expands the device name if you passed a format string to
7383  *      alloc_netdev.
7384  */
7385 int register_netdev(struct net_device *dev)
7386 {
7387         int err;
7388
7389         rtnl_lock();
7390         err = register_netdevice(dev);
7391         rtnl_unlock();
7392         return err;
7393 }
7394 EXPORT_SYMBOL(register_netdev);
7395
7396 int netdev_refcnt_read(const struct net_device *dev)
7397 {
7398         int i, refcnt = 0;
7399
7400         for_each_possible_cpu(i)
7401                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7402         return refcnt;
7403 }
7404 EXPORT_SYMBOL(netdev_refcnt_read);
7405
7406 /**
7407  * netdev_wait_allrefs - wait until all references are gone.
7408  * @dev: target net_device
7409  *
7410  * This is called when unregistering network devices.
7411  *
7412  * Any protocol or device that holds a reference should register
7413  * for netdevice notification, and cleanup and put back the
7414  * reference if they receive an UNREGISTER event.
7415  * We can get stuck here if buggy protocols don't correctly
7416  * call dev_put.
7417  */
7418 static void netdev_wait_allrefs(struct net_device *dev)
7419 {
7420         unsigned long rebroadcast_time, warning_time;
7421         int refcnt;
7422
7423         linkwatch_forget_dev(dev);
7424
7425         rebroadcast_time = warning_time = jiffies;
7426         refcnt = netdev_refcnt_read(dev);
7427
7428         while (refcnt != 0) {
7429                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7430                         rtnl_lock();
7431
7432                         /* Rebroadcast unregister notification */
7433                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7434
7435                         __rtnl_unlock();
7436                         rcu_barrier();
7437                         rtnl_lock();
7438
7439                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7440                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7441                                      &dev->state)) {
7442                                 /* We must not have linkwatch events
7443                                  * pending on unregister. If this
7444                                  * happens, we simply run the queue
7445                                  * unscheduled, resulting in a noop
7446                                  * for this device.
7447                                  */
7448                                 linkwatch_run_queue();
7449                         }
7450
7451                         __rtnl_unlock();
7452
7453                         rebroadcast_time = jiffies;
7454                 }
7455
7456                 msleep(250);
7457
7458                 refcnt = netdev_refcnt_read(dev);
7459
7460                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7461                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7462                                  dev->name, refcnt);
7463                         warning_time = jiffies;
7464                 }
7465         }
7466 }
7467
7468 /* The sequence is:
7469  *
7470  *      rtnl_lock();
7471  *      ...
7472  *      register_netdevice(x1);
7473  *      register_netdevice(x2);
7474  *      ...
7475  *      unregister_netdevice(y1);
7476  *      unregister_netdevice(y2);
7477  *      ...
7478  *      rtnl_unlock();
7479  *      free_netdev(y1);
7480  *      free_netdev(y2);
7481  *
7482  * We are invoked by rtnl_unlock().
7483  * This allows us to deal with problems:
7484  * 1) We can delete sysfs objects which invoke hotplug
7485  *    without deadlocking with linkwatch via keventd.
7486  * 2) Since we run with the RTNL semaphore not held, we can sleep
7487  *    safely in order to wait for the netdev refcnt to drop to zero.
7488  *
7489  * We must not return until all unregister events added during
7490  * the interval the lock was held have been completed.
7491  */
7492 void netdev_run_todo(void)
7493 {
7494         struct list_head list;
7495
7496         /* Snapshot list, allow later requests */
7497         list_replace_init(&net_todo_list, &list);
7498
7499         __rtnl_unlock();
7500
7501
7502         /* Wait for rcu callbacks to finish before next phase */
7503         if (!list_empty(&list))
7504                 rcu_barrier();
7505
7506         while (!list_empty(&list)) {
7507                 struct net_device *dev
7508                         = list_first_entry(&list, struct net_device, todo_list);
7509                 list_del(&dev->todo_list);
7510
7511                 rtnl_lock();
7512                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7513                 __rtnl_unlock();
7514
7515                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7516                         pr_err("network todo '%s' but state %d\n",
7517                                dev->name, dev->reg_state);
7518                         dump_stack();
7519                         continue;
7520                 }
7521
7522                 dev->reg_state = NETREG_UNREGISTERED;
7523
7524                 netdev_wait_allrefs(dev);
7525
7526                 /* paranoia */
7527                 BUG_ON(netdev_refcnt_read(dev));
7528                 BUG_ON(!list_empty(&dev->ptype_all));
7529                 BUG_ON(!list_empty(&dev->ptype_specific));
7530                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7531                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7532                 WARN_ON(dev->dn_ptr);
7533
7534                 if (dev->destructor)
7535                         dev->destructor(dev);
7536
7537                 /* Report a network device has been unregistered */
7538                 rtnl_lock();
7539                 dev_net(dev)->dev_unreg_count--;
7540                 __rtnl_unlock();
7541                 wake_up(&netdev_unregistering_wq);
7542
7543                 /* Free network device */
7544                 kobject_put(&dev->dev.kobj);
7545         }
7546 }
7547
7548 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7549  * all the same fields in the same order as net_device_stats, with only
7550  * the type differing, but rtnl_link_stats64 may have additional fields
7551  * at the end for newer counters.
7552  */
7553 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7554                              const struct net_device_stats *netdev_stats)
7555 {
7556 #if BITS_PER_LONG == 64
7557         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7558         memcpy(stats64, netdev_stats, sizeof(*stats64));
7559         /* zero out counters that only exist in rtnl_link_stats64 */
7560         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7561                sizeof(*stats64) - sizeof(*netdev_stats));
7562 #else
7563         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7564         const unsigned long *src = (const unsigned long *)netdev_stats;
7565         u64 *dst = (u64 *)stats64;
7566
7567         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7568         for (i = 0; i < n; i++)
7569                 dst[i] = src[i];
7570         /* zero out counters that only exist in rtnl_link_stats64 */
7571         memset((char *)stats64 + n * sizeof(u64), 0,
7572                sizeof(*stats64) - n * sizeof(u64));
7573 #endif
7574 }
7575 EXPORT_SYMBOL(netdev_stats_to_stats64);
7576
7577 /**
7578  *      dev_get_stats   - get network device statistics
7579  *      @dev: device to get statistics from
7580  *      @storage: place to store stats
7581  *
7582  *      Get network statistics from device. Return @storage.
7583  *      The device driver may provide its own method by setting
7584  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7585  *      otherwise the internal statistics structure is used.
7586  */
7587 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7588                                         struct rtnl_link_stats64 *storage)
7589 {
7590         const struct net_device_ops *ops = dev->netdev_ops;
7591
7592         if (ops->ndo_get_stats64) {
7593                 memset(storage, 0, sizeof(*storage));
7594                 ops->ndo_get_stats64(dev, storage);
7595         } else if (ops->ndo_get_stats) {
7596                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7597         } else {
7598                 netdev_stats_to_stats64(storage, &dev->stats);
7599         }
7600         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7601         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7602         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7603         return storage;
7604 }
7605 EXPORT_SYMBOL(dev_get_stats);
7606
7607 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7608 {
7609         struct netdev_queue *queue = dev_ingress_queue(dev);
7610
7611 #ifdef CONFIG_NET_CLS_ACT
7612         if (queue)
7613                 return queue;
7614         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7615         if (!queue)
7616                 return NULL;
7617         netdev_init_one_queue(dev, queue, NULL);
7618         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7619         queue->qdisc_sleeping = &noop_qdisc;
7620         rcu_assign_pointer(dev->ingress_queue, queue);
7621 #endif
7622         return queue;
7623 }
7624
7625 static const struct ethtool_ops default_ethtool_ops;
7626
7627 void netdev_set_default_ethtool_ops(struct net_device *dev,
7628                                     const struct ethtool_ops *ops)
7629 {
7630         if (dev->ethtool_ops == &default_ethtool_ops)
7631                 dev->ethtool_ops = ops;
7632 }
7633 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7634
7635 void netdev_freemem(struct net_device *dev)
7636 {
7637         char *addr = (char *)dev - dev->padded;
7638
7639         kvfree(addr);
7640 }
7641
7642 /**
7643  *      alloc_netdev_mqs - allocate network device
7644  *      @sizeof_priv:           size of private data to allocate space for
7645  *      @name:                  device name format string
7646  *      @name_assign_type:      origin of device name
7647  *      @setup:                 callback to initialize device
7648  *      @txqs:                  the number of TX subqueues to allocate
7649  *      @rxqs:                  the number of RX subqueues to allocate
7650  *
7651  *      Allocates a struct net_device with private data area for driver use
7652  *      and performs basic initialization.  Also allocates subqueue structs
7653  *      for each queue on the device.
7654  */
7655 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7656                 unsigned char name_assign_type,
7657                 void (*setup)(struct net_device *),
7658                 unsigned int txqs, unsigned int rxqs)
7659 {
7660         struct net_device *dev;
7661         size_t alloc_size;
7662         struct net_device *p;
7663
7664         BUG_ON(strlen(name) >= sizeof(dev->name));
7665
7666         if (txqs < 1) {
7667                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7668                 return NULL;
7669         }
7670
7671 #ifdef CONFIG_SYSFS
7672         if (rxqs < 1) {
7673                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7674                 return NULL;
7675         }
7676 #endif
7677
7678         alloc_size = sizeof(struct net_device);
7679         if (sizeof_priv) {
7680                 /* ensure 32-byte alignment of private area */
7681                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7682                 alloc_size += sizeof_priv;
7683         }
7684         /* ensure 32-byte alignment of whole construct */
7685         alloc_size += NETDEV_ALIGN - 1;
7686
7687         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7688         if (!p)
7689                 p = vzalloc(alloc_size);
7690         if (!p)
7691                 return NULL;
7692
7693         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7694         dev->padded = (char *)dev - (char *)p;
7695
7696         dev->pcpu_refcnt = alloc_percpu(int);
7697         if (!dev->pcpu_refcnt)
7698                 goto free_dev;
7699
7700         if (dev_addr_init(dev))
7701                 goto free_pcpu;
7702
7703         dev_mc_init(dev);
7704         dev_uc_init(dev);
7705
7706         dev_net_set(dev, &init_net);
7707
7708         dev->gso_max_size = GSO_MAX_SIZE;
7709         dev->gso_max_segs = GSO_MAX_SEGS;
7710
7711         INIT_LIST_HEAD(&dev->napi_list);
7712         INIT_LIST_HEAD(&dev->unreg_list);
7713         INIT_LIST_HEAD(&dev->close_list);
7714         INIT_LIST_HEAD(&dev->link_watch_list);
7715         INIT_LIST_HEAD(&dev->adj_list.upper);
7716         INIT_LIST_HEAD(&dev->adj_list.lower);
7717         INIT_LIST_HEAD(&dev->ptype_all);
7718         INIT_LIST_HEAD(&dev->ptype_specific);
7719 #ifdef CONFIG_NET_SCHED
7720         hash_init(dev->qdisc_hash);
7721 #endif
7722         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7723         setup(dev);
7724
7725         if (!dev->tx_queue_len) {
7726                 dev->priv_flags |= IFF_NO_QUEUE;
7727                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7728         }
7729
7730         dev->num_tx_queues = txqs;
7731         dev->real_num_tx_queues = txqs;
7732         if (netif_alloc_netdev_queues(dev))
7733                 goto free_all;
7734
7735 #ifdef CONFIG_SYSFS
7736         dev->num_rx_queues = rxqs;
7737         dev->real_num_rx_queues = rxqs;
7738         if (netif_alloc_rx_queues(dev))
7739                 goto free_all;
7740 #endif
7741
7742         strcpy(dev->name, name);
7743         dev->name_assign_type = name_assign_type;
7744         dev->group = INIT_NETDEV_GROUP;
7745         if (!dev->ethtool_ops)
7746                 dev->ethtool_ops = &default_ethtool_ops;
7747
7748         nf_hook_ingress_init(dev);
7749
7750         return dev;
7751
7752 free_all:
7753         free_netdev(dev);
7754         return NULL;
7755
7756 free_pcpu:
7757         free_percpu(dev->pcpu_refcnt);
7758 free_dev:
7759         netdev_freemem(dev);
7760         return NULL;
7761 }
7762 EXPORT_SYMBOL(alloc_netdev_mqs);
7763
7764 /**
7765  *      free_netdev - free network device
7766  *      @dev: device
7767  *
7768  *      This function does the last stage of destroying an allocated device
7769  *      interface. The reference to the device object is released.
7770  *      If this is the last reference then it will be freed.
7771  *      Must be called in process context.
7772  */
7773 void free_netdev(struct net_device *dev)
7774 {
7775         struct napi_struct *p, *n;
7776
7777         might_sleep();
7778         netif_free_tx_queues(dev);
7779 #ifdef CONFIG_SYSFS
7780         kvfree(dev->_rx);
7781 #endif
7782
7783         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7784
7785         /* Flush device addresses */
7786         dev_addr_flush(dev);
7787
7788         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7789                 netif_napi_del(p);
7790
7791         free_percpu(dev->pcpu_refcnt);
7792         dev->pcpu_refcnt = NULL;
7793
7794         /*  Compatibility with error handling in drivers */
7795         if (dev->reg_state == NETREG_UNINITIALIZED) {
7796                 netdev_freemem(dev);
7797                 return;
7798         }
7799
7800         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7801         dev->reg_state = NETREG_RELEASED;
7802
7803         /* will free via device release */
7804         put_device(&dev->dev);
7805 }
7806 EXPORT_SYMBOL(free_netdev);
7807
7808 /**
7809  *      synchronize_net -  Synchronize with packet receive processing
7810  *
7811  *      Wait for packets currently being received to be done.
7812  *      Does not block later packets from starting.
7813  */
7814 void synchronize_net(void)
7815 {
7816         might_sleep();
7817         if (rtnl_is_locked())
7818                 synchronize_rcu_expedited();
7819         else
7820                 synchronize_rcu();
7821 }
7822 EXPORT_SYMBOL(synchronize_net);
7823
7824 /**
7825  *      unregister_netdevice_queue - remove device from the kernel
7826  *      @dev: device
7827  *      @head: list
7828  *
7829  *      This function shuts down a device interface and removes it
7830  *      from the kernel tables.
7831  *      If head not NULL, device is queued to be unregistered later.
7832  *
7833  *      Callers must hold the rtnl semaphore.  You may want
7834  *      unregister_netdev() instead of this.
7835  */
7836
7837 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7838 {
7839         ASSERT_RTNL();
7840
7841         if (head) {
7842                 list_move_tail(&dev->unreg_list, head);
7843         } else {
7844                 rollback_registered(dev);
7845                 /* Finish processing unregister after unlock */
7846                 net_set_todo(dev);
7847         }
7848 }
7849 EXPORT_SYMBOL(unregister_netdevice_queue);
7850
7851 /**
7852  *      unregister_netdevice_many - unregister many devices
7853  *      @head: list of devices
7854  *
7855  *  Note: As most callers use a stack allocated list_head,
7856  *  we force a list_del() to make sure stack wont be corrupted later.
7857  */
7858 void unregister_netdevice_many(struct list_head *head)
7859 {
7860         struct net_device *dev;
7861
7862         if (!list_empty(head)) {
7863                 rollback_registered_many(head);
7864                 list_for_each_entry(dev, head, unreg_list)
7865                         net_set_todo(dev);
7866                 list_del(head);
7867         }
7868 }
7869 EXPORT_SYMBOL(unregister_netdevice_many);
7870
7871 /**
7872  *      unregister_netdev - remove device from the kernel
7873  *      @dev: device
7874  *
7875  *      This function shuts down a device interface and removes it
7876  *      from the kernel tables.
7877  *
7878  *      This is just a wrapper for unregister_netdevice that takes
7879  *      the rtnl semaphore.  In general you want to use this and not
7880  *      unregister_netdevice.
7881  */
7882 void unregister_netdev(struct net_device *dev)
7883 {
7884         rtnl_lock();
7885         unregister_netdevice(dev);
7886         rtnl_unlock();
7887 }
7888 EXPORT_SYMBOL(unregister_netdev);
7889
7890 /**
7891  *      dev_change_net_namespace - move device to different nethost namespace
7892  *      @dev: device
7893  *      @net: network namespace
7894  *      @pat: If not NULL name pattern to try if the current device name
7895  *            is already taken in the destination network namespace.
7896  *
7897  *      This function shuts down a device interface and moves it
7898  *      to a new network namespace. On success 0 is returned, on
7899  *      a failure a netagive errno code is returned.
7900  *
7901  *      Callers must hold the rtnl semaphore.
7902  */
7903
7904 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7905 {
7906         int err;
7907
7908         ASSERT_RTNL();
7909
7910         /* Don't allow namespace local devices to be moved. */
7911         err = -EINVAL;
7912         if (dev->features & NETIF_F_NETNS_LOCAL)
7913                 goto out;
7914
7915         /* Ensure the device has been registrered */
7916         if (dev->reg_state != NETREG_REGISTERED)
7917                 goto out;
7918
7919         /* Get out if there is nothing todo */
7920         err = 0;
7921         if (net_eq(dev_net(dev), net))
7922                 goto out;
7923
7924         /* Pick the destination device name, and ensure
7925          * we can use it in the destination network namespace.
7926          */
7927         err = -EEXIST;
7928         if (__dev_get_by_name(net, dev->name)) {
7929                 /* We get here if we can't use the current device name */
7930                 if (!pat)
7931                         goto out;
7932                 if (dev_get_valid_name(net, dev, pat) < 0)
7933                         goto out;
7934         }
7935
7936         /*
7937          * And now a mini version of register_netdevice unregister_netdevice.
7938          */
7939
7940         /* If device is running close it first. */
7941         dev_close(dev);
7942
7943         /* And unlink it from device chain */
7944         err = -ENODEV;
7945         unlist_netdevice(dev);
7946
7947         synchronize_net();
7948
7949         /* Shutdown queueing discipline. */
7950         dev_shutdown(dev);
7951
7952         /* Notify protocols, that we are about to destroy
7953            this device. They should clean all the things.
7954
7955            Note that dev->reg_state stays at NETREG_REGISTERED.
7956            This is wanted because this way 8021q and macvlan know
7957            the device is just moving and can keep their slaves up.
7958         */
7959         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7960         rcu_barrier();
7961         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7962         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7963
7964         /*
7965          *      Flush the unicast and multicast chains
7966          */
7967         dev_uc_flush(dev);
7968         dev_mc_flush(dev);
7969
7970         /* Send a netdev-removed uevent to the old namespace */
7971         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7972         netdev_adjacent_del_links(dev);
7973
7974         /* Actually switch the network namespace */
7975         dev_net_set(dev, net);
7976
7977         /* If there is an ifindex conflict assign a new one */
7978         if (__dev_get_by_index(net, dev->ifindex))
7979                 dev->ifindex = dev_new_index(net);
7980
7981         /* Send a netdev-add uevent to the new namespace */
7982         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7983         netdev_adjacent_add_links(dev);
7984
7985         /* Fixup kobjects */
7986         err = device_rename(&dev->dev, dev->name);
7987         WARN_ON(err);
7988
7989         /* Add the device back in the hashes */
7990         list_netdevice(dev);
7991
7992         /* Notify protocols, that a new device appeared. */
7993         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7994
7995         /*
7996          *      Prevent userspace races by waiting until the network
7997          *      device is fully setup before sending notifications.
7998          */
7999         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8000
8001         synchronize_net();
8002         err = 0;
8003 out:
8004         return err;
8005 }
8006 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8007
8008 static int dev_cpu_dead(unsigned int oldcpu)
8009 {
8010         struct sk_buff **list_skb;
8011         struct sk_buff *skb;
8012         unsigned int cpu;
8013         struct softnet_data *sd, *oldsd;
8014
8015         local_irq_disable();
8016         cpu = smp_processor_id();
8017         sd = &per_cpu(softnet_data, cpu);
8018         oldsd = &per_cpu(softnet_data, oldcpu);
8019
8020         /* Find end of our completion_queue. */
8021         list_skb = &sd->completion_queue;
8022         while (*list_skb)
8023                 list_skb = &(*list_skb)->next;
8024         /* Append completion queue from offline CPU. */
8025         *list_skb = oldsd->completion_queue;
8026         oldsd->completion_queue = NULL;
8027
8028         /* Append output queue from offline CPU. */
8029         if (oldsd->output_queue) {
8030                 *sd->output_queue_tailp = oldsd->output_queue;
8031                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8032                 oldsd->output_queue = NULL;
8033                 oldsd->output_queue_tailp = &oldsd->output_queue;
8034         }
8035         /* Append NAPI poll list from offline CPU, with one exception :
8036          * process_backlog() must be called by cpu owning percpu backlog.
8037          * We properly handle process_queue & input_pkt_queue later.
8038          */
8039         while (!list_empty(&oldsd->poll_list)) {
8040                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8041                                                             struct napi_struct,
8042                                                             poll_list);
8043
8044                 list_del_init(&napi->poll_list);
8045                 if (napi->poll == process_backlog)
8046                         napi->state = 0;
8047                 else
8048                         ____napi_schedule(sd, napi);
8049         }
8050
8051         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8052         local_irq_enable();
8053
8054         /* Process offline CPU's input_pkt_queue */
8055         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8056                 netif_rx_ni(skb);
8057                 input_queue_head_incr(oldsd);
8058         }
8059         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8060                 netif_rx_ni(skb);
8061                 input_queue_head_incr(oldsd);
8062         }
8063
8064         return 0;
8065 }
8066
8067 /**
8068  *      netdev_increment_features - increment feature set by one
8069  *      @all: current feature set
8070  *      @one: new feature set
8071  *      @mask: mask feature set
8072  *
8073  *      Computes a new feature set after adding a device with feature set
8074  *      @one to the master device with current feature set @all.  Will not
8075  *      enable anything that is off in @mask. Returns the new feature set.
8076  */
8077 netdev_features_t netdev_increment_features(netdev_features_t all,
8078         netdev_features_t one, netdev_features_t mask)
8079 {
8080         if (mask & NETIF_F_HW_CSUM)
8081                 mask |= NETIF_F_CSUM_MASK;
8082         mask |= NETIF_F_VLAN_CHALLENGED;
8083
8084         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8085         all &= one | ~NETIF_F_ALL_FOR_ALL;
8086
8087         /* If one device supports hw checksumming, set for all. */
8088         if (all & NETIF_F_HW_CSUM)
8089                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8090
8091         return all;
8092 }
8093 EXPORT_SYMBOL(netdev_increment_features);
8094
8095 static struct hlist_head * __net_init netdev_create_hash(void)
8096 {
8097         int i;
8098         struct hlist_head *hash;
8099
8100         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8101         if (hash != NULL)
8102                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8103                         INIT_HLIST_HEAD(&hash[i]);
8104
8105         return hash;
8106 }
8107
8108 /* Initialize per network namespace state */
8109 static int __net_init netdev_init(struct net *net)
8110 {
8111         if (net != &init_net)
8112                 INIT_LIST_HEAD(&net->dev_base_head);
8113
8114         net->dev_name_head = netdev_create_hash();
8115         if (net->dev_name_head == NULL)
8116                 goto err_name;
8117
8118         net->dev_index_head = netdev_create_hash();
8119         if (net->dev_index_head == NULL)
8120                 goto err_idx;
8121
8122         return 0;
8123
8124 err_idx:
8125         kfree(net->dev_name_head);
8126 err_name:
8127         return -ENOMEM;
8128 }
8129
8130 /**
8131  *      netdev_drivername - network driver for the device
8132  *      @dev: network device
8133  *
8134  *      Determine network driver for device.
8135  */
8136 const char *netdev_drivername(const struct net_device *dev)
8137 {
8138         const struct device_driver *driver;
8139         const struct device *parent;
8140         const char *empty = "";
8141
8142         parent = dev->dev.parent;
8143         if (!parent)
8144                 return empty;
8145
8146         driver = parent->driver;
8147         if (driver && driver->name)
8148                 return driver->name;
8149         return empty;
8150 }
8151
8152 static void __netdev_printk(const char *level, const struct net_device *dev,
8153                             struct va_format *vaf)
8154 {
8155         if (dev && dev->dev.parent) {
8156                 dev_printk_emit(level[1] - '0',
8157                                 dev->dev.parent,
8158                                 "%s %s %s%s: %pV",
8159                                 dev_driver_string(dev->dev.parent),
8160                                 dev_name(dev->dev.parent),
8161                                 netdev_name(dev), netdev_reg_state(dev),
8162                                 vaf);
8163         } else if (dev) {
8164                 printk("%s%s%s: %pV",
8165                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8166         } else {
8167                 printk("%s(NULL net_device): %pV", level, vaf);
8168         }
8169 }
8170
8171 void netdev_printk(const char *level, const struct net_device *dev,
8172                    const char *format, ...)
8173 {
8174         struct va_format vaf;
8175         va_list args;
8176
8177         va_start(args, format);
8178
8179         vaf.fmt = format;
8180         vaf.va = &args;
8181
8182         __netdev_printk(level, dev, &vaf);
8183
8184         va_end(args);
8185 }
8186 EXPORT_SYMBOL(netdev_printk);
8187
8188 #define define_netdev_printk_level(func, level)                 \
8189 void func(const struct net_device *dev, const char *fmt, ...)   \
8190 {                                                               \
8191         struct va_format vaf;                                   \
8192         va_list args;                                           \
8193                                                                 \
8194         va_start(args, fmt);                                    \
8195                                                                 \
8196         vaf.fmt = fmt;                                          \
8197         vaf.va = &args;                                         \
8198                                                                 \
8199         __netdev_printk(level, dev, &vaf);                      \
8200                                                                 \
8201         va_end(args);                                           \
8202 }                                                               \
8203 EXPORT_SYMBOL(func);
8204
8205 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8206 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8207 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8208 define_netdev_printk_level(netdev_err, KERN_ERR);
8209 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8210 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8211 define_netdev_printk_level(netdev_info, KERN_INFO);
8212
8213 static void __net_exit netdev_exit(struct net *net)
8214 {
8215         kfree(net->dev_name_head);
8216         kfree(net->dev_index_head);
8217 }
8218
8219 static struct pernet_operations __net_initdata netdev_net_ops = {
8220         .init = netdev_init,
8221         .exit = netdev_exit,
8222 };
8223
8224 static void __net_exit default_device_exit(struct net *net)
8225 {
8226         struct net_device *dev, *aux;
8227         /*
8228          * Push all migratable network devices back to the
8229          * initial network namespace
8230          */
8231         rtnl_lock();
8232         for_each_netdev_safe(net, dev, aux) {
8233                 int err;
8234                 char fb_name[IFNAMSIZ];
8235
8236                 /* Ignore unmoveable devices (i.e. loopback) */
8237                 if (dev->features & NETIF_F_NETNS_LOCAL)
8238                         continue;
8239
8240                 /* Leave virtual devices for the generic cleanup */
8241                 if (dev->rtnl_link_ops)
8242                         continue;
8243
8244                 /* Push remaining network devices to init_net */
8245                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8246                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8247                 if (err) {
8248                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8249                                  __func__, dev->name, err);
8250                         BUG();
8251                 }
8252         }
8253         rtnl_unlock();
8254 }
8255
8256 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8257 {
8258         /* Return with the rtnl_lock held when there are no network
8259          * devices unregistering in any network namespace in net_list.
8260          */
8261         struct net *net;
8262         bool unregistering;
8263         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8264
8265         add_wait_queue(&netdev_unregistering_wq, &wait);
8266         for (;;) {
8267                 unregistering = false;
8268                 rtnl_lock();
8269                 list_for_each_entry(net, net_list, exit_list) {
8270                         if (net->dev_unreg_count > 0) {
8271                                 unregistering = true;
8272                                 break;
8273                         }
8274                 }
8275                 if (!unregistering)
8276                         break;
8277                 __rtnl_unlock();
8278
8279                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8280         }
8281         remove_wait_queue(&netdev_unregistering_wq, &wait);
8282 }
8283
8284 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8285 {
8286         /* At exit all network devices most be removed from a network
8287          * namespace.  Do this in the reverse order of registration.
8288          * Do this across as many network namespaces as possible to
8289          * improve batching efficiency.
8290          */
8291         struct net_device *dev;
8292         struct net *net;
8293         LIST_HEAD(dev_kill_list);
8294
8295         /* To prevent network device cleanup code from dereferencing
8296          * loopback devices or network devices that have been freed
8297          * wait here for all pending unregistrations to complete,
8298          * before unregistring the loopback device and allowing the
8299          * network namespace be freed.
8300          *
8301          * The netdev todo list containing all network devices
8302          * unregistrations that happen in default_device_exit_batch
8303          * will run in the rtnl_unlock() at the end of
8304          * default_device_exit_batch.
8305          */
8306         rtnl_lock_unregistering(net_list);
8307         list_for_each_entry(net, net_list, exit_list) {
8308                 for_each_netdev_reverse(net, dev) {
8309                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8310                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8311                         else
8312                                 unregister_netdevice_queue(dev, &dev_kill_list);
8313                 }
8314         }
8315         unregister_netdevice_many(&dev_kill_list);
8316         rtnl_unlock();
8317 }
8318
8319 static struct pernet_operations __net_initdata default_device_ops = {
8320         .exit = default_device_exit,
8321         .exit_batch = default_device_exit_batch,
8322 };
8323
8324 /*
8325  *      Initialize the DEV module. At boot time this walks the device list and
8326  *      unhooks any devices that fail to initialise (normally hardware not
8327  *      present) and leaves us with a valid list of present and active devices.
8328  *
8329  */
8330
8331 /*
8332  *       This is called single threaded during boot, so no need
8333  *       to take the rtnl semaphore.
8334  */
8335 static int __init net_dev_init(void)
8336 {
8337         int i, rc = -ENOMEM;
8338
8339         BUG_ON(!dev_boot_phase);
8340
8341         if (dev_proc_init())
8342                 goto out;
8343
8344         if (netdev_kobject_init())
8345                 goto out;
8346
8347         INIT_LIST_HEAD(&ptype_all);
8348         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8349                 INIT_LIST_HEAD(&ptype_base[i]);
8350
8351         INIT_LIST_HEAD(&offload_base);
8352
8353         if (register_pernet_subsys(&netdev_net_ops))
8354                 goto out;
8355
8356         /*
8357          *      Initialise the packet receive queues.
8358          */
8359
8360         for_each_possible_cpu(i) {
8361                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8362                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8363
8364                 INIT_WORK(flush, flush_backlog);
8365
8366                 skb_queue_head_init(&sd->input_pkt_queue);
8367                 skb_queue_head_init(&sd->process_queue);
8368                 INIT_LIST_HEAD(&sd->poll_list);
8369                 sd->output_queue_tailp = &sd->output_queue;
8370 #ifdef CONFIG_RPS
8371                 sd->csd.func = rps_trigger_softirq;
8372                 sd->csd.info = sd;
8373                 sd->cpu = i;
8374 #endif
8375
8376                 sd->backlog.poll = process_backlog;
8377                 sd->backlog.weight = weight_p;
8378         }
8379
8380         dev_boot_phase = 0;
8381
8382         /* The loopback device is special if any other network devices
8383          * is present in a network namespace the loopback device must
8384          * be present. Since we now dynamically allocate and free the
8385          * loopback device ensure this invariant is maintained by
8386          * keeping the loopback device as the first device on the
8387          * list of network devices.  Ensuring the loopback devices
8388          * is the first device that appears and the last network device
8389          * that disappears.
8390          */
8391         if (register_pernet_device(&loopback_net_ops))
8392                 goto out;
8393
8394         if (register_pernet_device(&default_device_ops))
8395                 goto out;
8396
8397         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8398         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8399
8400         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8401                                        NULL, dev_cpu_dead);
8402         WARN_ON(rc < 0);
8403         dst_subsys_init();
8404         rc = 0;
8405 out:
8406         return rc;
8407 }
8408
8409 subsys_initcall(net_dev_init);