]> git.karo-electronics.de Git - mv-sheeva.git/blob - arch/x86/kernel/cpu/perf_event.c
perf_events: Fix transaction recovery in group_sched_in()
[mv-sheeva.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33
34 #if 0
35 #undef wrmsrl
36 #define wrmsrl(msr, val)                                        \
37 do {                                                            \
38         trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39                         (unsigned long)(val));                  \
40         native_write_msr((msr), (u32)((u64)(val)),              \
41                         (u32)((u64)(val) >> 32));               \
42 } while (0)
43 #endif
44
45 /*
46  * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
47  */
48 static unsigned long
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
50 {
51         unsigned long offset, addr = (unsigned long)from;
52         int type = in_nmi() ? KM_NMI : KM_IRQ0;
53         unsigned long size, len = 0;
54         struct page *page;
55         void *map;
56         int ret;
57
58         do {
59                 ret = __get_user_pages_fast(addr, 1, 0, &page);
60                 if (!ret)
61                         break;
62
63                 offset = addr & (PAGE_SIZE - 1);
64                 size = min(PAGE_SIZE - offset, n - len);
65
66                 map = kmap_atomic(page, type);
67                 memcpy(to, map+offset, size);
68                 kunmap_atomic(map, type);
69                 put_page(page);
70
71                 len  += size;
72                 to   += size;
73                 addr += size;
74
75         } while (len < n);
76
77         return len;
78 }
79
80 struct event_constraint {
81         union {
82                 unsigned long   idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
83                 u64             idxmsk64;
84         };
85         u64     code;
86         u64     cmask;
87         int     weight;
88 };
89
90 struct amd_nb {
91         int nb_id;  /* NorthBridge id */
92         int refcnt; /* reference count */
93         struct perf_event *owners[X86_PMC_IDX_MAX];
94         struct event_constraint event_constraints[X86_PMC_IDX_MAX];
95 };
96
97 #define MAX_LBR_ENTRIES         16
98
99 struct cpu_hw_events {
100         /*
101          * Generic x86 PMC bits
102          */
103         struct perf_event       *events[X86_PMC_IDX_MAX]; /* in counter order */
104         unsigned long           active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
105         unsigned long           running[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
106         int                     enabled;
107
108         int                     n_events;
109         int                     n_added;
110         int                     n_txn;
111         int                     assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
112         u64                     tags[X86_PMC_IDX_MAX];
113         struct perf_event       *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
114
115         unsigned int            group_flag;
116
117         /*
118          * Intel DebugStore bits
119          */
120         struct debug_store      *ds;
121         u64                     pebs_enabled;
122
123         /*
124          * Intel LBR bits
125          */
126         int                             lbr_users;
127         void                            *lbr_context;
128         struct perf_branch_stack        lbr_stack;
129         struct perf_branch_entry        lbr_entries[MAX_LBR_ENTRIES];
130
131         /*
132          * AMD specific bits
133          */
134         struct amd_nb           *amd_nb;
135 };
136
137 #define __EVENT_CONSTRAINT(c, n, m, w) {\
138         { .idxmsk64 = (n) },            \
139         .code = (c),                    \
140         .cmask = (m),                   \
141         .weight = (w),                  \
142 }
143
144 #define EVENT_CONSTRAINT(c, n, m)       \
145         __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
146
147 /*
148  * Constraint on the Event code.
149  */
150 #define INTEL_EVENT_CONSTRAINT(c, n)    \
151         EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
152
153 /*
154  * Constraint on the Event code + UMask + fixed-mask
155  *
156  * filter mask to validate fixed counter events.
157  * the following filters disqualify for fixed counters:
158  *  - inv
159  *  - edge
160  *  - cnt-mask
161  *  The other filters are supported by fixed counters.
162  *  The any-thread option is supported starting with v3.
163  */
164 #define FIXED_EVENT_CONSTRAINT(c, n)    \
165         EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
166
167 /*
168  * Constraint on the Event code + UMask
169  */
170 #define PEBS_EVENT_CONSTRAINT(c, n)     \
171         EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
172
173 #define EVENT_CONSTRAINT_END            \
174         EVENT_CONSTRAINT(0, 0, 0)
175
176 #define for_each_event_constraint(e, c) \
177         for ((e) = (c); (e)->weight; (e)++)
178
179 union perf_capabilities {
180         struct {
181                 u64     lbr_format    : 6;
182                 u64     pebs_trap     : 1;
183                 u64     pebs_arch_reg : 1;
184                 u64     pebs_format   : 4;
185                 u64     smm_freeze    : 1;
186         };
187         u64     capabilities;
188 };
189
190 /*
191  * struct x86_pmu - generic x86 pmu
192  */
193 struct x86_pmu {
194         /*
195          * Generic x86 PMC bits
196          */
197         const char      *name;
198         int             version;
199         int             (*handle_irq)(struct pt_regs *);
200         void            (*disable_all)(void);
201         void            (*enable_all)(int added);
202         void            (*enable)(struct perf_event *);
203         void            (*disable)(struct perf_event *);
204         int             (*hw_config)(struct perf_event *event);
205         int             (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
206         unsigned        eventsel;
207         unsigned        perfctr;
208         u64             (*event_map)(int);
209         int             max_events;
210         int             num_counters;
211         int             num_counters_fixed;
212         int             cntval_bits;
213         u64             cntval_mask;
214         int             apic;
215         u64             max_period;
216         struct event_constraint *
217                         (*get_event_constraints)(struct cpu_hw_events *cpuc,
218                                                  struct perf_event *event);
219
220         void            (*put_event_constraints)(struct cpu_hw_events *cpuc,
221                                                  struct perf_event *event);
222         struct event_constraint *event_constraints;
223         void            (*quirks)(void);
224         int             perfctr_second_write;
225
226         int             (*cpu_prepare)(int cpu);
227         void            (*cpu_starting)(int cpu);
228         void            (*cpu_dying)(int cpu);
229         void            (*cpu_dead)(int cpu);
230
231         /*
232          * Intel Arch Perfmon v2+
233          */
234         u64                     intel_ctrl;
235         union perf_capabilities intel_cap;
236
237         /*
238          * Intel DebugStore bits
239          */
240         int             bts, pebs;
241         int             pebs_record_size;
242         void            (*drain_pebs)(struct pt_regs *regs);
243         struct event_constraint *pebs_constraints;
244
245         /*
246          * Intel LBR
247          */
248         unsigned long   lbr_tos, lbr_from, lbr_to; /* MSR base regs       */
249         int             lbr_nr;                    /* hardware stack size */
250 };
251
252 static struct x86_pmu x86_pmu __read_mostly;
253
254 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
255         .enabled = 1,
256 };
257
258 static int x86_perf_event_set_period(struct perf_event *event);
259
260 /*
261  * Generalized hw caching related hw_event table, filled
262  * in on a per model basis. A value of 0 means
263  * 'not supported', -1 means 'hw_event makes no sense on
264  * this CPU', any other value means the raw hw_event
265  * ID.
266  */
267
268 #define C(x) PERF_COUNT_HW_CACHE_##x
269
270 static u64 __read_mostly hw_cache_event_ids
271                                 [PERF_COUNT_HW_CACHE_MAX]
272                                 [PERF_COUNT_HW_CACHE_OP_MAX]
273                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
274
275 /*
276  * Propagate event elapsed time into the generic event.
277  * Can only be executed on the CPU where the event is active.
278  * Returns the delta events processed.
279  */
280 static u64
281 x86_perf_event_update(struct perf_event *event)
282 {
283         struct hw_perf_event *hwc = &event->hw;
284         int shift = 64 - x86_pmu.cntval_bits;
285         u64 prev_raw_count, new_raw_count;
286         int idx = hwc->idx;
287         s64 delta;
288
289         if (idx == X86_PMC_IDX_FIXED_BTS)
290                 return 0;
291
292         /*
293          * Careful: an NMI might modify the previous event value.
294          *
295          * Our tactic to handle this is to first atomically read and
296          * exchange a new raw count - then add that new-prev delta
297          * count to the generic event atomically:
298          */
299 again:
300         prev_raw_count = local64_read(&hwc->prev_count);
301         rdmsrl(hwc->event_base + idx, new_raw_count);
302
303         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
304                                         new_raw_count) != prev_raw_count)
305                 goto again;
306
307         /*
308          * Now we have the new raw value and have updated the prev
309          * timestamp already. We can now calculate the elapsed delta
310          * (event-)time and add that to the generic event.
311          *
312          * Careful, not all hw sign-extends above the physical width
313          * of the count.
314          */
315         delta = (new_raw_count << shift) - (prev_raw_count << shift);
316         delta >>= shift;
317
318         local64_add(delta, &event->count);
319         local64_sub(delta, &hwc->period_left);
320
321         return new_raw_count;
322 }
323
324 static atomic_t active_events;
325 static DEFINE_MUTEX(pmc_reserve_mutex);
326
327 #ifdef CONFIG_X86_LOCAL_APIC
328
329 static bool reserve_pmc_hardware(void)
330 {
331         int i;
332
333         if (nmi_watchdog == NMI_LOCAL_APIC)
334                 disable_lapic_nmi_watchdog();
335
336         for (i = 0; i < x86_pmu.num_counters; i++) {
337                 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
338                         goto perfctr_fail;
339         }
340
341         for (i = 0; i < x86_pmu.num_counters; i++) {
342                 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
343                         goto eventsel_fail;
344         }
345
346         return true;
347
348 eventsel_fail:
349         for (i--; i >= 0; i--)
350                 release_evntsel_nmi(x86_pmu.eventsel + i);
351
352         i = x86_pmu.num_counters;
353
354 perfctr_fail:
355         for (i--; i >= 0; i--)
356                 release_perfctr_nmi(x86_pmu.perfctr + i);
357
358         if (nmi_watchdog == NMI_LOCAL_APIC)
359                 enable_lapic_nmi_watchdog();
360
361         return false;
362 }
363
364 static void release_pmc_hardware(void)
365 {
366         int i;
367
368         for (i = 0; i < x86_pmu.num_counters; i++) {
369                 release_perfctr_nmi(x86_pmu.perfctr + i);
370                 release_evntsel_nmi(x86_pmu.eventsel + i);
371         }
372
373         if (nmi_watchdog == NMI_LOCAL_APIC)
374                 enable_lapic_nmi_watchdog();
375 }
376
377 #else
378
379 static bool reserve_pmc_hardware(void) { return true; }
380 static void release_pmc_hardware(void) {}
381
382 #endif
383
384 static int reserve_ds_buffers(void);
385 static void release_ds_buffers(void);
386
387 static void hw_perf_event_destroy(struct perf_event *event)
388 {
389         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
390                 release_pmc_hardware();
391                 release_ds_buffers();
392                 mutex_unlock(&pmc_reserve_mutex);
393         }
394 }
395
396 static inline int x86_pmu_initialized(void)
397 {
398         return x86_pmu.handle_irq != NULL;
399 }
400
401 static inline int
402 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
403 {
404         unsigned int cache_type, cache_op, cache_result;
405         u64 config, val;
406
407         config = attr->config;
408
409         cache_type = (config >>  0) & 0xff;
410         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
411                 return -EINVAL;
412
413         cache_op = (config >>  8) & 0xff;
414         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
415                 return -EINVAL;
416
417         cache_result = (config >> 16) & 0xff;
418         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
419                 return -EINVAL;
420
421         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
422
423         if (val == 0)
424                 return -ENOENT;
425
426         if (val == -1)
427                 return -EINVAL;
428
429         hwc->config |= val;
430
431         return 0;
432 }
433
434 static int x86_setup_perfctr(struct perf_event *event)
435 {
436         struct perf_event_attr *attr = &event->attr;
437         struct hw_perf_event *hwc = &event->hw;
438         u64 config;
439
440         if (!hwc->sample_period) {
441                 hwc->sample_period = x86_pmu.max_period;
442                 hwc->last_period = hwc->sample_period;
443                 local64_set(&hwc->period_left, hwc->sample_period);
444         } else {
445                 /*
446                  * If we have a PMU initialized but no APIC
447                  * interrupts, we cannot sample hardware
448                  * events (user-space has to fall back and
449                  * sample via a hrtimer based software event):
450                  */
451                 if (!x86_pmu.apic)
452                         return -EOPNOTSUPP;
453         }
454
455         if (attr->type == PERF_TYPE_RAW)
456                 return 0;
457
458         if (attr->type == PERF_TYPE_HW_CACHE)
459                 return set_ext_hw_attr(hwc, attr);
460
461         if (attr->config >= x86_pmu.max_events)
462                 return -EINVAL;
463
464         /*
465          * The generic map:
466          */
467         config = x86_pmu.event_map(attr->config);
468
469         if (config == 0)
470                 return -ENOENT;
471
472         if (config == -1LL)
473                 return -EINVAL;
474
475         /*
476          * Branch tracing:
477          */
478         if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
479             (hwc->sample_period == 1)) {
480                 /* BTS is not supported by this architecture. */
481                 if (!x86_pmu.bts)
482                         return -EOPNOTSUPP;
483
484                 /* BTS is currently only allowed for user-mode. */
485                 if (!attr->exclude_kernel)
486                         return -EOPNOTSUPP;
487         }
488
489         hwc->config |= config;
490
491         return 0;
492 }
493
494 static int x86_pmu_hw_config(struct perf_event *event)
495 {
496         if (event->attr.precise_ip) {
497                 int precise = 0;
498
499                 /* Support for constant skid */
500                 if (x86_pmu.pebs)
501                         precise++;
502
503                 /* Support for IP fixup */
504                 if (x86_pmu.lbr_nr)
505                         precise++;
506
507                 if (event->attr.precise_ip > precise)
508                         return -EOPNOTSUPP;
509         }
510
511         /*
512          * Generate PMC IRQs:
513          * (keep 'enabled' bit clear for now)
514          */
515         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
516
517         /*
518          * Count user and OS events unless requested not to
519          */
520         if (!event->attr.exclude_user)
521                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
522         if (!event->attr.exclude_kernel)
523                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
524
525         if (event->attr.type == PERF_TYPE_RAW)
526                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
527
528         return x86_setup_perfctr(event);
529 }
530
531 /*
532  * Setup the hardware configuration for a given attr_type
533  */
534 static int __x86_pmu_event_init(struct perf_event *event)
535 {
536         int err;
537
538         if (!x86_pmu_initialized())
539                 return -ENODEV;
540
541         err = 0;
542         if (!atomic_inc_not_zero(&active_events)) {
543                 mutex_lock(&pmc_reserve_mutex);
544                 if (atomic_read(&active_events) == 0) {
545                         if (!reserve_pmc_hardware())
546                                 err = -EBUSY;
547                         else {
548                                 err = reserve_ds_buffers();
549                                 if (err)
550                                         release_pmc_hardware();
551                         }
552                 }
553                 if (!err)
554                         atomic_inc(&active_events);
555                 mutex_unlock(&pmc_reserve_mutex);
556         }
557         if (err)
558                 return err;
559
560         event->destroy = hw_perf_event_destroy;
561
562         event->hw.idx = -1;
563         event->hw.last_cpu = -1;
564         event->hw.last_tag = ~0ULL;
565
566         return x86_pmu.hw_config(event);
567 }
568
569 static void x86_pmu_disable_all(void)
570 {
571         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
572         int idx;
573
574         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
575                 u64 val;
576
577                 if (!test_bit(idx, cpuc->active_mask))
578                         continue;
579                 rdmsrl(x86_pmu.eventsel + idx, val);
580                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
581                         continue;
582                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
583                 wrmsrl(x86_pmu.eventsel + idx, val);
584         }
585 }
586
587 static void x86_pmu_disable(struct pmu *pmu)
588 {
589         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
590
591         if (!x86_pmu_initialized())
592                 return;
593
594         if (!cpuc->enabled)
595                 return;
596
597         cpuc->n_added = 0;
598         cpuc->enabled = 0;
599         barrier();
600
601         x86_pmu.disable_all();
602 }
603
604 static void x86_pmu_enable_all(int added)
605 {
606         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
607         int idx;
608
609         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
610                 struct perf_event *event = cpuc->events[idx];
611                 u64 val;
612
613                 if (!test_bit(idx, cpuc->active_mask))
614                         continue;
615
616                 val = event->hw.config;
617                 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
618                 wrmsrl(x86_pmu.eventsel + idx, val);
619         }
620 }
621
622 static struct pmu pmu;
623
624 static inline int is_x86_event(struct perf_event *event)
625 {
626         return event->pmu == &pmu;
627 }
628
629 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
630 {
631         struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
632         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
633         int i, j, w, wmax, num = 0;
634         struct hw_perf_event *hwc;
635
636         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
637
638         for (i = 0; i < n; i++) {
639                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
640                 constraints[i] = c;
641         }
642
643         /*
644          * fastpath, try to reuse previous register
645          */
646         for (i = 0; i < n; i++) {
647                 hwc = &cpuc->event_list[i]->hw;
648                 c = constraints[i];
649
650                 /* never assigned */
651                 if (hwc->idx == -1)
652                         break;
653
654                 /* constraint still honored */
655                 if (!test_bit(hwc->idx, c->idxmsk))
656                         break;
657
658                 /* not already used */
659                 if (test_bit(hwc->idx, used_mask))
660                         break;
661
662                 __set_bit(hwc->idx, used_mask);
663                 if (assign)
664                         assign[i] = hwc->idx;
665         }
666         if (i == n)
667                 goto done;
668
669         /*
670          * begin slow path
671          */
672
673         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
674
675         /*
676          * weight = number of possible counters
677          *
678          * 1    = most constrained, only works on one counter
679          * wmax = least constrained, works on any counter
680          *
681          * assign events to counters starting with most
682          * constrained events.
683          */
684         wmax = x86_pmu.num_counters;
685
686         /*
687          * when fixed event counters are present,
688          * wmax is incremented by 1 to account
689          * for one more choice
690          */
691         if (x86_pmu.num_counters_fixed)
692                 wmax++;
693
694         for (w = 1, num = n; num && w <= wmax; w++) {
695                 /* for each event */
696                 for (i = 0; num && i < n; i++) {
697                         c = constraints[i];
698                         hwc = &cpuc->event_list[i]->hw;
699
700                         if (c->weight != w)
701                                 continue;
702
703                         for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
704                                 if (!test_bit(j, used_mask))
705                                         break;
706                         }
707
708                         if (j == X86_PMC_IDX_MAX)
709                                 break;
710
711                         __set_bit(j, used_mask);
712
713                         if (assign)
714                                 assign[i] = j;
715                         num--;
716                 }
717         }
718 done:
719         /*
720          * scheduling failed or is just a simulation,
721          * free resources if necessary
722          */
723         if (!assign || num) {
724                 for (i = 0; i < n; i++) {
725                         if (x86_pmu.put_event_constraints)
726                                 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
727                 }
728         }
729         return num ? -ENOSPC : 0;
730 }
731
732 /*
733  * dogrp: true if must collect siblings events (group)
734  * returns total number of events and error code
735  */
736 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
737 {
738         struct perf_event *event;
739         int n, max_count;
740
741         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
742
743         /* current number of events already accepted */
744         n = cpuc->n_events;
745
746         if (is_x86_event(leader)) {
747                 if (n >= max_count)
748                         return -ENOSPC;
749                 cpuc->event_list[n] = leader;
750                 n++;
751         }
752         if (!dogrp)
753                 return n;
754
755         list_for_each_entry(event, &leader->sibling_list, group_entry) {
756                 if (!is_x86_event(event) ||
757                     event->state <= PERF_EVENT_STATE_OFF)
758                         continue;
759
760                 if (n >= max_count)
761                         return -ENOSPC;
762
763                 cpuc->event_list[n] = event;
764                 n++;
765         }
766         return n;
767 }
768
769 static inline void x86_assign_hw_event(struct perf_event *event,
770                                 struct cpu_hw_events *cpuc, int i)
771 {
772         struct hw_perf_event *hwc = &event->hw;
773
774         hwc->idx = cpuc->assign[i];
775         hwc->last_cpu = smp_processor_id();
776         hwc->last_tag = ++cpuc->tags[i];
777
778         if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
779                 hwc->config_base = 0;
780                 hwc->event_base = 0;
781         } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
782                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
783                 /*
784                  * We set it so that event_base + idx in wrmsr/rdmsr maps to
785                  * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
786                  */
787                 hwc->event_base =
788                         MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
789         } else {
790                 hwc->config_base = x86_pmu.eventsel;
791                 hwc->event_base  = x86_pmu.perfctr;
792         }
793 }
794
795 static inline int match_prev_assignment(struct hw_perf_event *hwc,
796                                         struct cpu_hw_events *cpuc,
797                                         int i)
798 {
799         return hwc->idx == cpuc->assign[i] &&
800                 hwc->last_cpu == smp_processor_id() &&
801                 hwc->last_tag == cpuc->tags[i];
802 }
803
804 static void x86_pmu_start(struct perf_event *event, int flags);
805 static void x86_pmu_stop(struct perf_event *event, int flags);
806
807 static void x86_pmu_enable(struct pmu *pmu)
808 {
809         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
810         struct perf_event *event;
811         struct hw_perf_event *hwc;
812         int i, added = cpuc->n_added;
813
814         if (!x86_pmu_initialized())
815                 return;
816
817         if (cpuc->enabled)
818                 return;
819
820         if (cpuc->n_added) {
821                 int n_running = cpuc->n_events - cpuc->n_added;
822                 /*
823                  * apply assignment obtained either from
824                  * hw_perf_group_sched_in() or x86_pmu_enable()
825                  *
826                  * step1: save events moving to new counters
827                  * step2: reprogram moved events into new counters
828                  */
829                 for (i = 0; i < n_running; i++) {
830                         event = cpuc->event_list[i];
831                         hwc = &event->hw;
832
833                         /*
834                          * we can avoid reprogramming counter if:
835                          * - assigned same counter as last time
836                          * - running on same CPU as last time
837                          * - no other event has used the counter since
838                          */
839                         if (hwc->idx == -1 ||
840                             match_prev_assignment(hwc, cpuc, i))
841                                 continue;
842
843                         /*
844                          * Ensure we don't accidentally enable a stopped
845                          * counter simply because we rescheduled.
846                          */
847                         if (hwc->state & PERF_HES_STOPPED)
848                                 hwc->state |= PERF_HES_ARCH;
849
850                         x86_pmu_stop(event, PERF_EF_UPDATE);
851                 }
852
853                 for (i = 0; i < cpuc->n_events; i++) {
854                         event = cpuc->event_list[i];
855                         hwc = &event->hw;
856
857                         if (!match_prev_assignment(hwc, cpuc, i))
858                                 x86_assign_hw_event(event, cpuc, i);
859                         else if (i < n_running)
860                                 continue;
861
862                         if (hwc->state & PERF_HES_ARCH)
863                                 continue;
864
865                         x86_pmu_start(event, PERF_EF_RELOAD);
866                 }
867                 cpuc->n_added = 0;
868                 perf_events_lapic_init();
869         }
870
871         cpuc->enabled = 1;
872         barrier();
873
874         x86_pmu.enable_all(added);
875 }
876
877 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
878                                           u64 enable_mask)
879 {
880         wrmsrl(hwc->config_base + hwc->idx, hwc->config | enable_mask);
881 }
882
883 static inline void x86_pmu_disable_event(struct perf_event *event)
884 {
885         struct hw_perf_event *hwc = &event->hw;
886
887         wrmsrl(hwc->config_base + hwc->idx, hwc->config);
888 }
889
890 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
891
892 /*
893  * Set the next IRQ period, based on the hwc->period_left value.
894  * To be called with the event disabled in hw:
895  */
896 static int
897 x86_perf_event_set_period(struct perf_event *event)
898 {
899         struct hw_perf_event *hwc = &event->hw;
900         s64 left = local64_read(&hwc->period_left);
901         s64 period = hwc->sample_period;
902         int ret = 0, idx = hwc->idx;
903
904         if (idx == X86_PMC_IDX_FIXED_BTS)
905                 return 0;
906
907         /*
908          * If we are way outside a reasonable range then just skip forward:
909          */
910         if (unlikely(left <= -period)) {
911                 left = period;
912                 local64_set(&hwc->period_left, left);
913                 hwc->last_period = period;
914                 ret = 1;
915         }
916
917         if (unlikely(left <= 0)) {
918                 left += period;
919                 local64_set(&hwc->period_left, left);
920                 hwc->last_period = period;
921                 ret = 1;
922         }
923         /*
924          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
925          */
926         if (unlikely(left < 2))
927                 left = 2;
928
929         if (left > x86_pmu.max_period)
930                 left = x86_pmu.max_period;
931
932         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
933
934         /*
935          * The hw event starts counting from this event offset,
936          * mark it to be able to extra future deltas:
937          */
938         local64_set(&hwc->prev_count, (u64)-left);
939
940         wrmsrl(hwc->event_base + idx, (u64)(-left) & x86_pmu.cntval_mask);
941
942         /*
943          * Due to erratum on certan cpu we need
944          * a second write to be sure the register
945          * is updated properly
946          */
947         if (x86_pmu.perfctr_second_write) {
948                 wrmsrl(hwc->event_base + idx,
949                         (u64)(-left) & x86_pmu.cntval_mask);
950         }
951
952         perf_event_update_userpage(event);
953
954         return ret;
955 }
956
957 static void x86_pmu_enable_event(struct perf_event *event)
958 {
959         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
960         if (cpuc->enabled)
961                 __x86_pmu_enable_event(&event->hw,
962                                        ARCH_PERFMON_EVENTSEL_ENABLE);
963 }
964
965 /*
966  * Add a single event to the PMU.
967  *
968  * The event is added to the group of enabled events
969  * but only if it can be scehduled with existing events.
970  */
971 static int x86_pmu_add(struct perf_event *event, int flags)
972 {
973         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
974         struct hw_perf_event *hwc;
975         int assign[X86_PMC_IDX_MAX];
976         int n, n0, ret;
977
978         hwc = &event->hw;
979
980         perf_pmu_disable(event->pmu);
981         n0 = cpuc->n_events;
982         ret = n = collect_events(cpuc, event, false);
983         if (ret < 0)
984                 goto out;
985
986         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
987         if (!(flags & PERF_EF_START))
988                 hwc->state |= PERF_HES_ARCH;
989
990         /*
991          * If group events scheduling transaction was started,
992          * skip the schedulability test here, it will be peformed
993          * at commit time (->commit_txn) as a whole
994          */
995         if (cpuc->group_flag & PERF_EVENT_TXN)
996                 goto done_collect;
997
998         ret = x86_pmu.schedule_events(cpuc, n, assign);
999         if (ret)
1000                 goto out;
1001         /*
1002          * copy new assignment, now we know it is possible
1003          * will be used by hw_perf_enable()
1004          */
1005         memcpy(cpuc->assign, assign, n*sizeof(int));
1006
1007 done_collect:
1008         cpuc->n_events = n;
1009         cpuc->n_added += n - n0;
1010         cpuc->n_txn += n - n0;
1011
1012         ret = 0;
1013 out:
1014         perf_pmu_enable(event->pmu);
1015         return ret;
1016 }
1017
1018 static void x86_pmu_start(struct perf_event *event, int flags)
1019 {
1020         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1021         int idx = event->hw.idx;
1022
1023         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1024                 return;
1025
1026         if (WARN_ON_ONCE(idx == -1))
1027                 return;
1028
1029         if (flags & PERF_EF_RELOAD) {
1030                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1031                 x86_perf_event_set_period(event);
1032         }
1033
1034         event->hw.state = 0;
1035
1036         cpuc->events[idx] = event;
1037         __set_bit(idx, cpuc->active_mask);
1038         __set_bit(idx, cpuc->running);
1039         x86_pmu.enable(event);
1040         perf_event_update_userpage(event);
1041 }
1042
1043 void perf_event_print_debug(void)
1044 {
1045         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1046         u64 pebs;
1047         struct cpu_hw_events *cpuc;
1048         unsigned long flags;
1049         int cpu, idx;
1050
1051         if (!x86_pmu.num_counters)
1052                 return;
1053
1054         local_irq_save(flags);
1055
1056         cpu = smp_processor_id();
1057         cpuc = &per_cpu(cpu_hw_events, cpu);
1058
1059         if (x86_pmu.version >= 2) {
1060                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1061                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1062                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1063                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1064                 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1065
1066                 pr_info("\n");
1067                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1068                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1069                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1070                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1071                 pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1072         }
1073         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1074
1075         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1076                 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1077                 rdmsrl(x86_pmu.perfctr  + idx, pmc_count);
1078
1079                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1080
1081                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1082                         cpu, idx, pmc_ctrl);
1083                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1084                         cpu, idx, pmc_count);
1085                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1086                         cpu, idx, prev_left);
1087         }
1088         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1089                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1090
1091                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1092                         cpu, idx, pmc_count);
1093         }
1094         local_irq_restore(flags);
1095 }
1096
1097 static void x86_pmu_stop(struct perf_event *event, int flags)
1098 {
1099         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1100         struct hw_perf_event *hwc = &event->hw;
1101
1102         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1103                 x86_pmu.disable(event);
1104                 cpuc->events[hwc->idx] = NULL;
1105                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1106                 hwc->state |= PERF_HES_STOPPED;
1107         }
1108
1109         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1110                 /*
1111                  * Drain the remaining delta count out of a event
1112                  * that we are disabling:
1113                  */
1114                 x86_perf_event_update(event);
1115                 hwc->state |= PERF_HES_UPTODATE;
1116         }
1117 }
1118
1119 static void x86_pmu_del(struct perf_event *event, int flags)
1120 {
1121         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1122         int i;
1123
1124         /*
1125          * If we're called during a txn, we don't need to do anything.
1126          * The events never got scheduled and ->cancel_txn will truncate
1127          * the event_list.
1128          */
1129         if (cpuc->group_flag & PERF_EVENT_TXN)
1130                 return;
1131
1132         x86_pmu_stop(event, PERF_EF_UPDATE);
1133
1134         for (i = 0; i < cpuc->n_events; i++) {
1135                 if (event == cpuc->event_list[i]) {
1136
1137                         if (x86_pmu.put_event_constraints)
1138                                 x86_pmu.put_event_constraints(cpuc, event);
1139
1140                         while (++i < cpuc->n_events)
1141                                 cpuc->event_list[i-1] = cpuc->event_list[i];
1142
1143                         --cpuc->n_events;
1144                         break;
1145                 }
1146         }
1147         perf_event_update_userpage(event);
1148 }
1149
1150 static int x86_pmu_handle_irq(struct pt_regs *regs)
1151 {
1152         struct perf_sample_data data;
1153         struct cpu_hw_events *cpuc;
1154         struct perf_event *event;
1155         int idx, handled = 0;
1156         u64 val;
1157
1158         perf_sample_data_init(&data, 0);
1159
1160         cpuc = &__get_cpu_var(cpu_hw_events);
1161
1162         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1163                 if (!test_bit(idx, cpuc->active_mask)) {
1164                         /*
1165                          * Though we deactivated the counter some cpus
1166                          * might still deliver spurious interrupts still
1167                          * in flight. Catch them:
1168                          */
1169                         if (__test_and_clear_bit(idx, cpuc->running))
1170                                 handled++;
1171                         continue;
1172                 }
1173
1174                 event = cpuc->events[idx];
1175
1176                 val = x86_perf_event_update(event);
1177                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1178                         continue;
1179
1180                 /*
1181                  * event overflow
1182                  */
1183                 handled++;
1184                 data.period     = event->hw.last_period;
1185
1186                 if (!x86_perf_event_set_period(event))
1187                         continue;
1188
1189                 if (perf_event_overflow(event, 1, &data, regs))
1190                         x86_pmu_stop(event, 0);
1191         }
1192
1193         if (handled)
1194                 inc_irq_stat(apic_perf_irqs);
1195
1196         return handled;
1197 }
1198
1199 void smp_perf_pending_interrupt(struct pt_regs *regs)
1200 {
1201         irq_enter();
1202         ack_APIC_irq();
1203         inc_irq_stat(apic_pending_irqs);
1204         perf_event_do_pending();
1205         irq_exit();
1206 }
1207
1208 void set_perf_event_pending(void)
1209 {
1210 #ifdef CONFIG_X86_LOCAL_APIC
1211         if (!x86_pmu.apic || !x86_pmu_initialized())
1212                 return;
1213
1214         apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1215 #endif
1216 }
1217
1218 void perf_events_lapic_init(void)
1219 {
1220         if (!x86_pmu.apic || !x86_pmu_initialized())
1221                 return;
1222
1223         /*
1224          * Always use NMI for PMU
1225          */
1226         apic_write(APIC_LVTPC, APIC_DM_NMI);
1227 }
1228
1229 struct pmu_nmi_state {
1230         unsigned int    marked;
1231         int             handled;
1232 };
1233
1234 static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1235
1236 static int __kprobes
1237 perf_event_nmi_handler(struct notifier_block *self,
1238                          unsigned long cmd, void *__args)
1239 {
1240         struct die_args *args = __args;
1241         unsigned int this_nmi;
1242         int handled;
1243
1244         if (!atomic_read(&active_events))
1245                 return NOTIFY_DONE;
1246
1247         switch (cmd) {
1248         case DIE_NMI:
1249         case DIE_NMI_IPI:
1250                 break;
1251         case DIE_NMIUNKNOWN:
1252                 this_nmi = percpu_read(irq_stat.__nmi_count);
1253                 if (this_nmi != __get_cpu_var(pmu_nmi).marked)
1254                         /* let the kernel handle the unknown nmi */
1255                         return NOTIFY_DONE;
1256                 /*
1257                  * This one is a PMU back-to-back nmi. Two events
1258                  * trigger 'simultaneously' raising two back-to-back
1259                  * NMIs. If the first NMI handles both, the latter
1260                  * will be empty and daze the CPU. So, we drop it to
1261                  * avoid false-positive 'unknown nmi' messages.
1262                  */
1263                 return NOTIFY_STOP;
1264         default:
1265                 return NOTIFY_DONE;
1266         }
1267
1268         apic_write(APIC_LVTPC, APIC_DM_NMI);
1269
1270         handled = x86_pmu.handle_irq(args->regs);
1271         if (!handled)
1272                 return NOTIFY_DONE;
1273
1274         this_nmi = percpu_read(irq_stat.__nmi_count);
1275         if ((handled > 1) ||
1276                 /* the next nmi could be a back-to-back nmi */
1277             ((__get_cpu_var(pmu_nmi).marked == this_nmi) &&
1278              (__get_cpu_var(pmu_nmi).handled > 1))) {
1279                 /*
1280                  * We could have two subsequent back-to-back nmis: The
1281                  * first handles more than one counter, the 2nd
1282                  * handles only one counter and the 3rd handles no
1283                  * counter.
1284                  *
1285                  * This is the 2nd nmi because the previous was
1286                  * handling more than one counter. We will mark the
1287                  * next (3rd) and then drop it if unhandled.
1288                  */
1289                 __get_cpu_var(pmu_nmi).marked   = this_nmi + 1;
1290                 __get_cpu_var(pmu_nmi).handled  = handled;
1291         }
1292
1293         return NOTIFY_STOP;
1294 }
1295
1296 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1297         .notifier_call          = perf_event_nmi_handler,
1298         .next                   = NULL,
1299         .priority               = 1
1300 };
1301
1302 static struct event_constraint unconstrained;
1303 static struct event_constraint emptyconstraint;
1304
1305 static struct event_constraint *
1306 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1307 {
1308         struct event_constraint *c;
1309
1310         if (x86_pmu.event_constraints) {
1311                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1312                         if ((event->hw.config & c->cmask) == c->code)
1313                                 return c;
1314                 }
1315         }
1316
1317         return &unconstrained;
1318 }
1319
1320 #include "perf_event_amd.c"
1321 #include "perf_event_p6.c"
1322 #include "perf_event_p4.c"
1323 #include "perf_event_intel_lbr.c"
1324 #include "perf_event_intel_ds.c"
1325 #include "perf_event_intel.c"
1326
1327 static int __cpuinit
1328 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1329 {
1330         unsigned int cpu = (long)hcpu;
1331         int ret = NOTIFY_OK;
1332
1333         switch (action & ~CPU_TASKS_FROZEN) {
1334         case CPU_UP_PREPARE:
1335                 if (x86_pmu.cpu_prepare)
1336                         ret = x86_pmu.cpu_prepare(cpu);
1337                 break;
1338
1339         case CPU_STARTING:
1340                 if (x86_pmu.cpu_starting)
1341                         x86_pmu.cpu_starting(cpu);
1342                 break;
1343
1344         case CPU_DYING:
1345                 if (x86_pmu.cpu_dying)
1346                         x86_pmu.cpu_dying(cpu);
1347                 break;
1348
1349         case CPU_UP_CANCELED:
1350         case CPU_DEAD:
1351                 if (x86_pmu.cpu_dead)
1352                         x86_pmu.cpu_dead(cpu);
1353                 break;
1354
1355         default:
1356                 break;
1357         }
1358
1359         return ret;
1360 }
1361
1362 static void __init pmu_check_apic(void)
1363 {
1364         if (cpu_has_apic)
1365                 return;
1366
1367         x86_pmu.apic = 0;
1368         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1369         pr_info("no hardware sampling interrupt available.\n");
1370 }
1371
1372 void __init init_hw_perf_events(void)
1373 {
1374         struct event_constraint *c;
1375         int err;
1376
1377         pr_info("Performance Events: ");
1378
1379         switch (boot_cpu_data.x86_vendor) {
1380         case X86_VENDOR_INTEL:
1381                 err = intel_pmu_init();
1382                 break;
1383         case X86_VENDOR_AMD:
1384                 err = amd_pmu_init();
1385                 break;
1386         default:
1387                 return;
1388         }
1389         if (err != 0) {
1390                 pr_cont("no PMU driver, software events only.\n");
1391                 return;
1392         }
1393
1394         pmu_check_apic();
1395
1396         pr_cont("%s PMU driver.\n", x86_pmu.name);
1397
1398         if (x86_pmu.quirks)
1399                 x86_pmu.quirks();
1400
1401         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1402                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1403                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1404                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1405         }
1406         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1407
1408         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1409                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1410                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1411                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1412         }
1413
1414         x86_pmu.intel_ctrl |=
1415                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1416
1417         perf_events_lapic_init();
1418         register_die_notifier(&perf_event_nmi_notifier);
1419
1420         unconstrained = (struct event_constraint)
1421                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1422                                    0, x86_pmu.num_counters);
1423
1424         if (x86_pmu.event_constraints) {
1425                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1426                         if (c->cmask != X86_RAW_EVENT_MASK)
1427                                 continue;
1428
1429                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1430                         c->weight += x86_pmu.num_counters;
1431                 }
1432         }
1433
1434         pr_info("... version:                %d\n",     x86_pmu.version);
1435         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1436         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1437         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1438         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1439         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1440         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1441
1442         perf_pmu_register(&pmu);
1443         perf_cpu_notifier(x86_pmu_notifier);
1444 }
1445
1446 static inline void x86_pmu_read(struct perf_event *event)
1447 {
1448         x86_perf_event_update(event);
1449 }
1450
1451 /*
1452  * Start group events scheduling transaction
1453  * Set the flag to make pmu::enable() not perform the
1454  * schedulability test, it will be performed at commit time
1455  */
1456 static void x86_pmu_start_txn(struct pmu *pmu)
1457 {
1458         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1459
1460         perf_pmu_disable(pmu);
1461         cpuc->group_flag |= PERF_EVENT_TXN;
1462         cpuc->n_txn = 0;
1463 }
1464
1465 /*
1466  * Stop group events scheduling transaction
1467  * Clear the flag and pmu::enable() will perform the
1468  * schedulability test.
1469  */
1470 static void x86_pmu_cancel_txn(struct pmu *pmu)
1471 {
1472         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1473
1474         cpuc->group_flag &= ~PERF_EVENT_TXN;
1475         /*
1476          * Truncate the collected events.
1477          */
1478         cpuc->n_added -= cpuc->n_txn;
1479         cpuc->n_events -= cpuc->n_txn;
1480         perf_pmu_enable(pmu);
1481 }
1482
1483 /*
1484  * Commit group events scheduling transaction
1485  * Perform the group schedulability test as a whole
1486  * Return 0 if success
1487  */
1488 static int x86_pmu_commit_txn(struct pmu *pmu)
1489 {
1490         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1491         int assign[X86_PMC_IDX_MAX];
1492         int n, ret;
1493
1494         n = cpuc->n_events;
1495
1496         if (!x86_pmu_initialized())
1497                 return -EAGAIN;
1498
1499         ret = x86_pmu.schedule_events(cpuc, n, assign);
1500         if (ret)
1501                 return ret;
1502
1503         /*
1504          * copy new assignment, now we know it is possible
1505          * will be used by hw_perf_enable()
1506          */
1507         memcpy(cpuc->assign, assign, n*sizeof(int));
1508
1509         cpuc->group_flag &= ~PERF_EVENT_TXN;
1510         perf_pmu_enable(pmu);
1511         return 0;
1512 }
1513
1514 /*
1515  * validate that we can schedule this event
1516  */
1517 static int validate_event(struct perf_event *event)
1518 {
1519         struct cpu_hw_events *fake_cpuc;
1520         struct event_constraint *c;
1521         int ret = 0;
1522
1523         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1524         if (!fake_cpuc)
1525                 return -ENOMEM;
1526
1527         c = x86_pmu.get_event_constraints(fake_cpuc, event);
1528
1529         if (!c || !c->weight)
1530                 ret = -ENOSPC;
1531
1532         if (x86_pmu.put_event_constraints)
1533                 x86_pmu.put_event_constraints(fake_cpuc, event);
1534
1535         kfree(fake_cpuc);
1536
1537         return ret;
1538 }
1539
1540 /*
1541  * validate a single event group
1542  *
1543  * validation include:
1544  *      - check events are compatible which each other
1545  *      - events do not compete for the same counter
1546  *      - number of events <= number of counters
1547  *
1548  * validation ensures the group can be loaded onto the
1549  * PMU if it was the only group available.
1550  */
1551 static int validate_group(struct perf_event *event)
1552 {
1553         struct perf_event *leader = event->group_leader;
1554         struct cpu_hw_events *fake_cpuc;
1555         int ret, n;
1556
1557         ret = -ENOMEM;
1558         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1559         if (!fake_cpuc)
1560                 goto out;
1561
1562         /*
1563          * the event is not yet connected with its
1564          * siblings therefore we must first collect
1565          * existing siblings, then add the new event
1566          * before we can simulate the scheduling
1567          */
1568         ret = -ENOSPC;
1569         n = collect_events(fake_cpuc, leader, true);
1570         if (n < 0)
1571                 goto out_free;
1572
1573         fake_cpuc->n_events = n;
1574         n = collect_events(fake_cpuc, event, false);
1575         if (n < 0)
1576                 goto out_free;
1577
1578         fake_cpuc->n_events = n;
1579
1580         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1581
1582 out_free:
1583         kfree(fake_cpuc);
1584 out:
1585         return ret;
1586 }
1587
1588 int x86_pmu_event_init(struct perf_event *event)
1589 {
1590         struct pmu *tmp;
1591         int err;
1592
1593         switch (event->attr.type) {
1594         case PERF_TYPE_RAW:
1595         case PERF_TYPE_HARDWARE:
1596         case PERF_TYPE_HW_CACHE:
1597                 break;
1598
1599         default:
1600                 return -ENOENT;
1601         }
1602
1603         err = __x86_pmu_event_init(event);
1604         if (!err) {
1605                 /*
1606                  * we temporarily connect event to its pmu
1607                  * such that validate_group() can classify
1608                  * it as an x86 event using is_x86_event()
1609                  */
1610                 tmp = event->pmu;
1611                 event->pmu = &pmu;
1612
1613                 if (event->group_leader != event)
1614                         err = validate_group(event);
1615                 else
1616                         err = validate_event(event);
1617
1618                 event->pmu = tmp;
1619         }
1620         if (err) {
1621                 if (event->destroy)
1622                         event->destroy(event);
1623         }
1624
1625         return err;
1626 }
1627
1628 static struct pmu pmu = {
1629         .pmu_enable     = x86_pmu_enable,
1630         .pmu_disable    = x86_pmu_disable,
1631
1632         .event_init     = x86_pmu_event_init,
1633
1634         .add            = x86_pmu_add,
1635         .del            = x86_pmu_del,
1636         .start          = x86_pmu_start,
1637         .stop           = x86_pmu_stop,
1638         .read           = x86_pmu_read,
1639
1640         .start_txn      = x86_pmu_start_txn,
1641         .cancel_txn     = x86_pmu_cancel_txn,
1642         .commit_txn     = x86_pmu_commit_txn,
1643 };
1644
1645 /*
1646  * callchain support
1647  */
1648
1649 static void
1650 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1651 {
1652         /* Ignore warnings */
1653 }
1654
1655 static void backtrace_warning(void *data, char *msg)
1656 {
1657         /* Ignore warnings */
1658 }
1659
1660 static int backtrace_stack(void *data, char *name)
1661 {
1662         return 0;
1663 }
1664
1665 static void backtrace_address(void *data, unsigned long addr, int reliable)
1666 {
1667         struct perf_callchain_entry *entry = data;
1668
1669         perf_callchain_store(entry, addr);
1670 }
1671
1672 static const struct stacktrace_ops backtrace_ops = {
1673         .warning                = backtrace_warning,
1674         .warning_symbol         = backtrace_warning_symbol,
1675         .stack                  = backtrace_stack,
1676         .address                = backtrace_address,
1677         .walk_stack             = print_context_stack_bp,
1678 };
1679
1680 void
1681 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1682 {
1683         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1684                 /* TODO: We don't support guest os callchain now */
1685                 return;
1686         }
1687
1688         perf_callchain_store(entry, regs->ip);
1689
1690         dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1691 }
1692
1693 #ifdef CONFIG_COMPAT
1694 static inline int
1695 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1696 {
1697         /* 32-bit process in 64-bit kernel. */
1698         struct stack_frame_ia32 frame;
1699         const void __user *fp;
1700
1701         if (!test_thread_flag(TIF_IA32))
1702                 return 0;
1703
1704         fp = compat_ptr(regs->bp);
1705         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1706                 unsigned long bytes;
1707                 frame.next_frame     = 0;
1708                 frame.return_address = 0;
1709
1710                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1711                 if (bytes != sizeof(frame))
1712                         break;
1713
1714                 if (fp < compat_ptr(regs->sp))
1715                         break;
1716
1717                 perf_callchain_store(entry, frame.return_address);
1718                 fp = compat_ptr(frame.next_frame);
1719         }
1720         return 1;
1721 }
1722 #else
1723 static inline int
1724 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1725 {
1726     return 0;
1727 }
1728 #endif
1729
1730 void
1731 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1732 {
1733         struct stack_frame frame;
1734         const void __user *fp;
1735
1736         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1737                 /* TODO: We don't support guest os callchain now */
1738                 return;
1739         }
1740
1741         fp = (void __user *)regs->bp;
1742
1743         perf_callchain_store(entry, regs->ip);
1744
1745         if (perf_callchain_user32(regs, entry))
1746                 return;
1747
1748         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1749                 unsigned long bytes;
1750                 frame.next_frame             = NULL;
1751                 frame.return_address = 0;
1752
1753                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1754                 if (bytes != sizeof(frame))
1755                         break;
1756
1757                 if ((unsigned long)fp < regs->sp)
1758                         break;
1759
1760                 perf_callchain_store(entry, frame.return_address);
1761                 fp = frame.next_frame;
1762         }
1763 }
1764
1765 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1766 {
1767         unsigned long ip;
1768
1769         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1770                 ip = perf_guest_cbs->get_guest_ip();
1771         else
1772                 ip = instruction_pointer(regs);
1773
1774         return ip;
1775 }
1776
1777 unsigned long perf_misc_flags(struct pt_regs *regs)
1778 {
1779         int misc = 0;
1780
1781         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1782                 if (perf_guest_cbs->is_user_mode())
1783                         misc |= PERF_RECORD_MISC_GUEST_USER;
1784                 else
1785                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1786         } else {
1787                 if (user_mode(regs))
1788                         misc |= PERF_RECORD_MISC_USER;
1789                 else
1790                         misc |= PERF_RECORD_MISC_KERNEL;
1791         }
1792
1793         if (regs->flags & PERF_EFLAGS_EXACT)
1794                 misc |= PERF_RECORD_MISC_EXACT_IP;
1795
1796         return misc;
1797 }