]> git.karo-electronics.de Git - mv-sheeva.git/blob - arch/x86/kernel/cpu/perf_event.c
perf: Deconstify struct pmu
[mv-sheeva.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33
34 #if 0
35 #undef wrmsrl
36 #define wrmsrl(msr, val)                                        \
37 do {                                                            \
38         trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39                         (unsigned long)(val));                  \
40         native_write_msr((msr), (u32)((u64)(val)),              \
41                         (u32)((u64)(val) >> 32));               \
42 } while (0)
43 #endif
44
45 /*
46  * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
47  */
48 static unsigned long
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
50 {
51         unsigned long offset, addr = (unsigned long)from;
52         int type = in_nmi() ? KM_NMI : KM_IRQ0;
53         unsigned long size, len = 0;
54         struct page *page;
55         void *map;
56         int ret;
57
58         do {
59                 ret = __get_user_pages_fast(addr, 1, 0, &page);
60                 if (!ret)
61                         break;
62
63                 offset = addr & (PAGE_SIZE - 1);
64                 size = min(PAGE_SIZE - offset, n - len);
65
66                 map = kmap_atomic(page, type);
67                 memcpy(to, map+offset, size);
68                 kunmap_atomic(map, type);
69                 put_page(page);
70
71                 len  += size;
72                 to   += size;
73                 addr += size;
74
75         } while (len < n);
76
77         return len;
78 }
79
80 struct event_constraint {
81         union {
82                 unsigned long   idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
83                 u64             idxmsk64;
84         };
85         u64     code;
86         u64     cmask;
87         int     weight;
88 };
89
90 struct amd_nb {
91         int nb_id;  /* NorthBridge id */
92         int refcnt; /* reference count */
93         struct perf_event *owners[X86_PMC_IDX_MAX];
94         struct event_constraint event_constraints[X86_PMC_IDX_MAX];
95 };
96
97 #define MAX_LBR_ENTRIES         16
98
99 struct cpu_hw_events {
100         /*
101          * Generic x86 PMC bits
102          */
103         struct perf_event       *events[X86_PMC_IDX_MAX]; /* in counter order */
104         unsigned long           active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
105         int                     enabled;
106
107         int                     n_events;
108         int                     n_added;
109         int                     n_txn;
110         int                     assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
111         u64                     tags[X86_PMC_IDX_MAX];
112         struct perf_event       *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
113
114         unsigned int            group_flag;
115
116         /*
117          * Intel DebugStore bits
118          */
119         struct debug_store      *ds;
120         u64                     pebs_enabled;
121
122         /*
123          * Intel LBR bits
124          */
125         int                             lbr_users;
126         void                            *lbr_context;
127         struct perf_branch_stack        lbr_stack;
128         struct perf_branch_entry        lbr_entries[MAX_LBR_ENTRIES];
129
130         /*
131          * AMD specific bits
132          */
133         struct amd_nb           *amd_nb;
134 };
135
136 #define __EVENT_CONSTRAINT(c, n, m, w) {\
137         { .idxmsk64 = (n) },            \
138         .code = (c),                    \
139         .cmask = (m),                   \
140         .weight = (w),                  \
141 }
142
143 #define EVENT_CONSTRAINT(c, n, m)       \
144         __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
145
146 /*
147  * Constraint on the Event code.
148  */
149 #define INTEL_EVENT_CONSTRAINT(c, n)    \
150         EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
151
152 /*
153  * Constraint on the Event code + UMask + fixed-mask
154  *
155  * filter mask to validate fixed counter events.
156  * the following filters disqualify for fixed counters:
157  *  - inv
158  *  - edge
159  *  - cnt-mask
160  *  The other filters are supported by fixed counters.
161  *  The any-thread option is supported starting with v3.
162  */
163 #define FIXED_EVENT_CONSTRAINT(c, n)    \
164         EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
165
166 /*
167  * Constraint on the Event code + UMask
168  */
169 #define PEBS_EVENT_CONSTRAINT(c, n)     \
170         EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
171
172 #define EVENT_CONSTRAINT_END            \
173         EVENT_CONSTRAINT(0, 0, 0)
174
175 #define for_each_event_constraint(e, c) \
176         for ((e) = (c); (e)->weight; (e)++)
177
178 union perf_capabilities {
179         struct {
180                 u64     lbr_format    : 6;
181                 u64     pebs_trap     : 1;
182                 u64     pebs_arch_reg : 1;
183                 u64     pebs_format   : 4;
184                 u64     smm_freeze    : 1;
185         };
186         u64     capabilities;
187 };
188
189 /*
190  * struct x86_pmu - generic x86 pmu
191  */
192 struct x86_pmu {
193         /*
194          * Generic x86 PMC bits
195          */
196         const char      *name;
197         int             version;
198         int             (*handle_irq)(struct pt_regs *);
199         void            (*disable_all)(void);
200         void            (*enable_all)(int added);
201         void            (*enable)(struct perf_event *);
202         void            (*disable)(struct perf_event *);
203         int             (*hw_config)(struct perf_event *event);
204         int             (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
205         unsigned        eventsel;
206         unsigned        perfctr;
207         u64             (*event_map)(int);
208         int             max_events;
209         int             num_counters;
210         int             num_counters_fixed;
211         int             cntval_bits;
212         u64             cntval_mask;
213         int             apic;
214         u64             max_period;
215         struct event_constraint *
216                         (*get_event_constraints)(struct cpu_hw_events *cpuc,
217                                                  struct perf_event *event);
218
219         void            (*put_event_constraints)(struct cpu_hw_events *cpuc,
220                                                  struct perf_event *event);
221         struct event_constraint *event_constraints;
222         void            (*quirks)(void);
223         int             perfctr_second_write;
224
225         int             (*cpu_prepare)(int cpu);
226         void            (*cpu_starting)(int cpu);
227         void            (*cpu_dying)(int cpu);
228         void            (*cpu_dead)(int cpu);
229
230         /*
231          * Intel Arch Perfmon v2+
232          */
233         u64                     intel_ctrl;
234         union perf_capabilities intel_cap;
235
236         /*
237          * Intel DebugStore bits
238          */
239         int             bts, pebs;
240         int             pebs_record_size;
241         void            (*drain_pebs)(struct pt_regs *regs);
242         struct event_constraint *pebs_constraints;
243
244         /*
245          * Intel LBR
246          */
247         unsigned long   lbr_tos, lbr_from, lbr_to; /* MSR base regs       */
248         int             lbr_nr;                    /* hardware stack size */
249 };
250
251 static struct x86_pmu x86_pmu __read_mostly;
252
253 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
254         .enabled = 1,
255 };
256
257 static int x86_perf_event_set_period(struct perf_event *event);
258
259 /*
260  * Generalized hw caching related hw_event table, filled
261  * in on a per model basis. A value of 0 means
262  * 'not supported', -1 means 'hw_event makes no sense on
263  * this CPU', any other value means the raw hw_event
264  * ID.
265  */
266
267 #define C(x) PERF_COUNT_HW_CACHE_##x
268
269 static u64 __read_mostly hw_cache_event_ids
270                                 [PERF_COUNT_HW_CACHE_MAX]
271                                 [PERF_COUNT_HW_CACHE_OP_MAX]
272                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
273
274 /*
275  * Propagate event elapsed time into the generic event.
276  * Can only be executed on the CPU where the event is active.
277  * Returns the delta events processed.
278  */
279 static u64
280 x86_perf_event_update(struct perf_event *event)
281 {
282         struct hw_perf_event *hwc = &event->hw;
283         int shift = 64 - x86_pmu.cntval_bits;
284         u64 prev_raw_count, new_raw_count;
285         int idx = hwc->idx;
286         s64 delta;
287
288         if (idx == X86_PMC_IDX_FIXED_BTS)
289                 return 0;
290
291         /*
292          * Careful: an NMI might modify the previous event value.
293          *
294          * Our tactic to handle this is to first atomically read and
295          * exchange a new raw count - then add that new-prev delta
296          * count to the generic event atomically:
297          */
298 again:
299         prev_raw_count = local64_read(&hwc->prev_count);
300         rdmsrl(hwc->event_base + idx, new_raw_count);
301
302         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
303                                         new_raw_count) != prev_raw_count)
304                 goto again;
305
306         /*
307          * Now we have the new raw value and have updated the prev
308          * timestamp already. We can now calculate the elapsed delta
309          * (event-)time and add that to the generic event.
310          *
311          * Careful, not all hw sign-extends above the physical width
312          * of the count.
313          */
314         delta = (new_raw_count << shift) - (prev_raw_count << shift);
315         delta >>= shift;
316
317         local64_add(delta, &event->count);
318         local64_sub(delta, &hwc->period_left);
319
320         return new_raw_count;
321 }
322
323 static atomic_t active_events;
324 static DEFINE_MUTEX(pmc_reserve_mutex);
325
326 #ifdef CONFIG_X86_LOCAL_APIC
327
328 static bool reserve_pmc_hardware(void)
329 {
330         int i;
331
332         if (nmi_watchdog == NMI_LOCAL_APIC)
333                 disable_lapic_nmi_watchdog();
334
335         for (i = 0; i < x86_pmu.num_counters; i++) {
336                 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
337                         goto perfctr_fail;
338         }
339
340         for (i = 0; i < x86_pmu.num_counters; i++) {
341                 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
342                         goto eventsel_fail;
343         }
344
345         return true;
346
347 eventsel_fail:
348         for (i--; i >= 0; i--)
349                 release_evntsel_nmi(x86_pmu.eventsel + i);
350
351         i = x86_pmu.num_counters;
352
353 perfctr_fail:
354         for (i--; i >= 0; i--)
355                 release_perfctr_nmi(x86_pmu.perfctr + i);
356
357         if (nmi_watchdog == NMI_LOCAL_APIC)
358                 enable_lapic_nmi_watchdog();
359
360         return false;
361 }
362
363 static void release_pmc_hardware(void)
364 {
365         int i;
366
367         for (i = 0; i < x86_pmu.num_counters; i++) {
368                 release_perfctr_nmi(x86_pmu.perfctr + i);
369                 release_evntsel_nmi(x86_pmu.eventsel + i);
370         }
371
372         if (nmi_watchdog == NMI_LOCAL_APIC)
373                 enable_lapic_nmi_watchdog();
374 }
375
376 #else
377
378 static bool reserve_pmc_hardware(void) { return true; }
379 static void release_pmc_hardware(void) {}
380
381 #endif
382
383 static int reserve_ds_buffers(void);
384 static void release_ds_buffers(void);
385
386 static void hw_perf_event_destroy(struct perf_event *event)
387 {
388         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
389                 release_pmc_hardware();
390                 release_ds_buffers();
391                 mutex_unlock(&pmc_reserve_mutex);
392         }
393 }
394
395 static inline int x86_pmu_initialized(void)
396 {
397         return x86_pmu.handle_irq != NULL;
398 }
399
400 static inline int
401 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
402 {
403         unsigned int cache_type, cache_op, cache_result;
404         u64 config, val;
405
406         config = attr->config;
407
408         cache_type = (config >>  0) & 0xff;
409         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
410                 return -EINVAL;
411
412         cache_op = (config >>  8) & 0xff;
413         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
414                 return -EINVAL;
415
416         cache_result = (config >> 16) & 0xff;
417         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
418                 return -EINVAL;
419
420         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
421
422         if (val == 0)
423                 return -ENOENT;
424
425         if (val == -1)
426                 return -EINVAL;
427
428         hwc->config |= val;
429
430         return 0;
431 }
432
433 static int x86_setup_perfctr(struct perf_event *event)
434 {
435         struct perf_event_attr *attr = &event->attr;
436         struct hw_perf_event *hwc = &event->hw;
437         u64 config;
438
439         if (!hwc->sample_period) {
440                 hwc->sample_period = x86_pmu.max_period;
441                 hwc->last_period = hwc->sample_period;
442                 local64_set(&hwc->period_left, hwc->sample_period);
443         } else {
444                 /*
445                  * If we have a PMU initialized but no APIC
446                  * interrupts, we cannot sample hardware
447                  * events (user-space has to fall back and
448                  * sample via a hrtimer based software event):
449                  */
450                 if (!x86_pmu.apic)
451                         return -EOPNOTSUPP;
452         }
453
454         if (attr->type == PERF_TYPE_RAW)
455                 return 0;
456
457         if (attr->type == PERF_TYPE_HW_CACHE)
458                 return set_ext_hw_attr(hwc, attr);
459
460         if (attr->config >= x86_pmu.max_events)
461                 return -EINVAL;
462
463         /*
464          * The generic map:
465          */
466         config = x86_pmu.event_map(attr->config);
467
468         if (config == 0)
469                 return -ENOENT;
470
471         if (config == -1LL)
472                 return -EINVAL;
473
474         /*
475          * Branch tracing:
476          */
477         if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
478             (hwc->sample_period == 1)) {
479                 /* BTS is not supported by this architecture. */
480                 if (!x86_pmu.bts)
481                         return -EOPNOTSUPP;
482
483                 /* BTS is currently only allowed for user-mode. */
484                 if (!attr->exclude_kernel)
485                         return -EOPNOTSUPP;
486         }
487
488         hwc->config |= config;
489
490         return 0;
491 }
492
493 static int x86_pmu_hw_config(struct perf_event *event)
494 {
495         if (event->attr.precise_ip) {
496                 int precise = 0;
497
498                 /* Support for constant skid */
499                 if (x86_pmu.pebs)
500                         precise++;
501
502                 /* Support for IP fixup */
503                 if (x86_pmu.lbr_nr)
504                         precise++;
505
506                 if (event->attr.precise_ip > precise)
507                         return -EOPNOTSUPP;
508         }
509
510         /*
511          * Generate PMC IRQs:
512          * (keep 'enabled' bit clear for now)
513          */
514         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
515
516         /*
517          * Count user and OS events unless requested not to
518          */
519         if (!event->attr.exclude_user)
520                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
521         if (!event->attr.exclude_kernel)
522                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
523
524         if (event->attr.type == PERF_TYPE_RAW)
525                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
526
527         return x86_setup_perfctr(event);
528 }
529
530 /*
531  * Setup the hardware configuration for a given attr_type
532  */
533 static int __hw_perf_event_init(struct perf_event *event)
534 {
535         int err;
536
537         if (!x86_pmu_initialized())
538                 return -ENODEV;
539
540         err = 0;
541         if (!atomic_inc_not_zero(&active_events)) {
542                 mutex_lock(&pmc_reserve_mutex);
543                 if (atomic_read(&active_events) == 0) {
544                         if (!reserve_pmc_hardware())
545                                 err = -EBUSY;
546                         else {
547                                 err = reserve_ds_buffers();
548                                 if (err)
549                                         release_pmc_hardware();
550                         }
551                 }
552                 if (!err)
553                         atomic_inc(&active_events);
554                 mutex_unlock(&pmc_reserve_mutex);
555         }
556         if (err)
557                 return err;
558
559         event->destroy = hw_perf_event_destroy;
560
561         event->hw.idx = -1;
562         event->hw.last_cpu = -1;
563         event->hw.last_tag = ~0ULL;
564
565         return x86_pmu.hw_config(event);
566 }
567
568 static void x86_pmu_disable_all(void)
569 {
570         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
571         int idx;
572
573         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
574                 u64 val;
575
576                 if (!test_bit(idx, cpuc->active_mask))
577                         continue;
578                 rdmsrl(x86_pmu.eventsel + idx, val);
579                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
580                         continue;
581                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
582                 wrmsrl(x86_pmu.eventsel + idx, val);
583         }
584 }
585
586 void hw_perf_disable(void)
587 {
588         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
589
590         if (!x86_pmu_initialized())
591                 return;
592
593         if (!cpuc->enabled)
594                 return;
595
596         cpuc->n_added = 0;
597         cpuc->enabled = 0;
598         barrier();
599
600         x86_pmu.disable_all();
601 }
602
603 static void x86_pmu_enable_all(int added)
604 {
605         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
606         int idx;
607
608         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
609                 struct perf_event *event = cpuc->events[idx];
610                 u64 val;
611
612                 if (!test_bit(idx, cpuc->active_mask))
613                         continue;
614
615                 val = event->hw.config;
616                 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
617                 wrmsrl(x86_pmu.eventsel + idx, val);
618         }
619 }
620
621 static struct pmu pmu;
622
623 static inline int is_x86_event(struct perf_event *event)
624 {
625         return event->pmu == &pmu;
626 }
627
628 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
629 {
630         struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
631         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
632         int i, j, w, wmax, num = 0;
633         struct hw_perf_event *hwc;
634
635         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
636
637         for (i = 0; i < n; i++) {
638                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
639                 constraints[i] = c;
640         }
641
642         /*
643          * fastpath, try to reuse previous register
644          */
645         for (i = 0; i < n; i++) {
646                 hwc = &cpuc->event_list[i]->hw;
647                 c = constraints[i];
648
649                 /* never assigned */
650                 if (hwc->idx == -1)
651                         break;
652
653                 /* constraint still honored */
654                 if (!test_bit(hwc->idx, c->idxmsk))
655                         break;
656
657                 /* not already used */
658                 if (test_bit(hwc->idx, used_mask))
659                         break;
660
661                 __set_bit(hwc->idx, used_mask);
662                 if (assign)
663                         assign[i] = hwc->idx;
664         }
665         if (i == n)
666                 goto done;
667
668         /*
669          * begin slow path
670          */
671
672         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
673
674         /*
675          * weight = number of possible counters
676          *
677          * 1    = most constrained, only works on one counter
678          * wmax = least constrained, works on any counter
679          *
680          * assign events to counters starting with most
681          * constrained events.
682          */
683         wmax = x86_pmu.num_counters;
684
685         /*
686          * when fixed event counters are present,
687          * wmax is incremented by 1 to account
688          * for one more choice
689          */
690         if (x86_pmu.num_counters_fixed)
691                 wmax++;
692
693         for (w = 1, num = n; num && w <= wmax; w++) {
694                 /* for each event */
695                 for (i = 0; num && i < n; i++) {
696                         c = constraints[i];
697                         hwc = &cpuc->event_list[i]->hw;
698
699                         if (c->weight != w)
700                                 continue;
701
702                         for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
703                                 if (!test_bit(j, used_mask))
704                                         break;
705                         }
706
707                         if (j == X86_PMC_IDX_MAX)
708                                 break;
709
710                         __set_bit(j, used_mask);
711
712                         if (assign)
713                                 assign[i] = j;
714                         num--;
715                 }
716         }
717 done:
718         /*
719          * scheduling failed or is just a simulation,
720          * free resources if necessary
721          */
722         if (!assign || num) {
723                 for (i = 0; i < n; i++) {
724                         if (x86_pmu.put_event_constraints)
725                                 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
726                 }
727         }
728         return num ? -ENOSPC : 0;
729 }
730
731 /*
732  * dogrp: true if must collect siblings events (group)
733  * returns total number of events and error code
734  */
735 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
736 {
737         struct perf_event *event;
738         int n, max_count;
739
740         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
741
742         /* current number of events already accepted */
743         n = cpuc->n_events;
744
745         if (is_x86_event(leader)) {
746                 if (n >= max_count)
747                         return -ENOSPC;
748                 cpuc->event_list[n] = leader;
749                 n++;
750         }
751         if (!dogrp)
752                 return n;
753
754         list_for_each_entry(event, &leader->sibling_list, group_entry) {
755                 if (!is_x86_event(event) ||
756                     event->state <= PERF_EVENT_STATE_OFF)
757                         continue;
758
759                 if (n >= max_count)
760                         return -ENOSPC;
761
762                 cpuc->event_list[n] = event;
763                 n++;
764         }
765         return n;
766 }
767
768 static inline void x86_assign_hw_event(struct perf_event *event,
769                                 struct cpu_hw_events *cpuc, int i)
770 {
771         struct hw_perf_event *hwc = &event->hw;
772
773         hwc->idx = cpuc->assign[i];
774         hwc->last_cpu = smp_processor_id();
775         hwc->last_tag = ++cpuc->tags[i];
776
777         if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
778                 hwc->config_base = 0;
779                 hwc->event_base = 0;
780         } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
781                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
782                 /*
783                  * We set it so that event_base + idx in wrmsr/rdmsr maps to
784                  * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
785                  */
786                 hwc->event_base =
787                         MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
788         } else {
789                 hwc->config_base = x86_pmu.eventsel;
790                 hwc->event_base  = x86_pmu.perfctr;
791         }
792 }
793
794 static inline int match_prev_assignment(struct hw_perf_event *hwc,
795                                         struct cpu_hw_events *cpuc,
796                                         int i)
797 {
798         return hwc->idx == cpuc->assign[i] &&
799                 hwc->last_cpu == smp_processor_id() &&
800                 hwc->last_tag == cpuc->tags[i];
801 }
802
803 static int x86_pmu_start(struct perf_event *event);
804 static void x86_pmu_stop(struct perf_event *event);
805
806 void hw_perf_enable(void)
807 {
808         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
809         struct perf_event *event;
810         struct hw_perf_event *hwc;
811         int i, added = cpuc->n_added;
812
813         if (!x86_pmu_initialized())
814                 return;
815
816         if (cpuc->enabled)
817                 return;
818
819         if (cpuc->n_added) {
820                 int n_running = cpuc->n_events - cpuc->n_added;
821                 /*
822                  * apply assignment obtained either from
823                  * hw_perf_group_sched_in() or x86_pmu_enable()
824                  *
825                  * step1: save events moving to new counters
826                  * step2: reprogram moved events into new counters
827                  */
828                 for (i = 0; i < n_running; i++) {
829                         event = cpuc->event_list[i];
830                         hwc = &event->hw;
831
832                         /*
833                          * we can avoid reprogramming counter if:
834                          * - assigned same counter as last time
835                          * - running on same CPU as last time
836                          * - no other event has used the counter since
837                          */
838                         if (hwc->idx == -1 ||
839                             match_prev_assignment(hwc, cpuc, i))
840                                 continue;
841
842                         x86_pmu_stop(event);
843                 }
844
845                 for (i = 0; i < cpuc->n_events; i++) {
846                         event = cpuc->event_list[i];
847                         hwc = &event->hw;
848
849                         if (!match_prev_assignment(hwc, cpuc, i))
850                                 x86_assign_hw_event(event, cpuc, i);
851                         else if (i < n_running)
852                                 continue;
853
854                         x86_pmu_start(event);
855                 }
856                 cpuc->n_added = 0;
857                 perf_events_lapic_init();
858         }
859
860         cpuc->enabled = 1;
861         barrier();
862
863         x86_pmu.enable_all(added);
864 }
865
866 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
867                                           u64 enable_mask)
868 {
869         wrmsrl(hwc->config_base + hwc->idx, hwc->config | enable_mask);
870 }
871
872 static inline void x86_pmu_disable_event(struct perf_event *event)
873 {
874         struct hw_perf_event *hwc = &event->hw;
875
876         wrmsrl(hwc->config_base + hwc->idx, hwc->config);
877 }
878
879 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
880
881 /*
882  * Set the next IRQ period, based on the hwc->period_left value.
883  * To be called with the event disabled in hw:
884  */
885 static int
886 x86_perf_event_set_period(struct perf_event *event)
887 {
888         struct hw_perf_event *hwc = &event->hw;
889         s64 left = local64_read(&hwc->period_left);
890         s64 period = hwc->sample_period;
891         int ret = 0, idx = hwc->idx;
892
893         if (idx == X86_PMC_IDX_FIXED_BTS)
894                 return 0;
895
896         /*
897          * If we are way outside a reasonable range then just skip forward:
898          */
899         if (unlikely(left <= -period)) {
900                 left = period;
901                 local64_set(&hwc->period_left, left);
902                 hwc->last_period = period;
903                 ret = 1;
904         }
905
906         if (unlikely(left <= 0)) {
907                 left += period;
908                 local64_set(&hwc->period_left, left);
909                 hwc->last_period = period;
910                 ret = 1;
911         }
912         /*
913          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
914          */
915         if (unlikely(left < 2))
916                 left = 2;
917
918         if (left > x86_pmu.max_period)
919                 left = x86_pmu.max_period;
920
921         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
922
923         /*
924          * The hw event starts counting from this event offset,
925          * mark it to be able to extra future deltas:
926          */
927         local64_set(&hwc->prev_count, (u64)-left);
928
929         wrmsrl(hwc->event_base + idx, (u64)(-left) & x86_pmu.cntval_mask);
930
931         /*
932          * Due to erratum on certan cpu we need
933          * a second write to be sure the register
934          * is updated properly
935          */
936         if (x86_pmu.perfctr_second_write) {
937                 wrmsrl(hwc->event_base + idx,
938                         (u64)(-left) & x86_pmu.cntval_mask);
939         }
940
941         perf_event_update_userpage(event);
942
943         return ret;
944 }
945
946 static void x86_pmu_enable_event(struct perf_event *event)
947 {
948         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
949         if (cpuc->enabled)
950                 __x86_pmu_enable_event(&event->hw,
951                                        ARCH_PERFMON_EVENTSEL_ENABLE);
952 }
953
954 /*
955  * activate a single event
956  *
957  * The event is added to the group of enabled events
958  * but only if it can be scehduled with existing events.
959  *
960  * Called with PMU disabled. If successful and return value 1,
961  * then guaranteed to call perf_enable() and hw_perf_enable()
962  */
963 static int x86_pmu_enable(struct perf_event *event)
964 {
965         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
966         struct hw_perf_event *hwc;
967         int assign[X86_PMC_IDX_MAX];
968         int n, n0, ret;
969
970         hwc = &event->hw;
971
972         n0 = cpuc->n_events;
973         n = collect_events(cpuc, event, false);
974         if (n < 0)
975                 return n;
976
977         /*
978          * If group events scheduling transaction was started,
979          * skip the schedulability test here, it will be peformed
980          * at commit time(->commit_txn) as a whole
981          */
982         if (cpuc->group_flag & PERF_EVENT_TXN)
983                 goto out;
984
985         ret = x86_pmu.schedule_events(cpuc, n, assign);
986         if (ret)
987                 return ret;
988         /*
989          * copy new assignment, now we know it is possible
990          * will be used by hw_perf_enable()
991          */
992         memcpy(cpuc->assign, assign, n*sizeof(int));
993
994 out:
995         cpuc->n_events = n;
996         cpuc->n_added += n - n0;
997         cpuc->n_txn += n - n0;
998
999         return 0;
1000 }
1001
1002 static int x86_pmu_start(struct perf_event *event)
1003 {
1004         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1005         int idx = event->hw.idx;
1006
1007         if (idx == -1)
1008                 return -EAGAIN;
1009
1010         x86_perf_event_set_period(event);
1011         cpuc->events[idx] = event;
1012         __set_bit(idx, cpuc->active_mask);
1013         x86_pmu.enable(event);
1014         perf_event_update_userpage(event);
1015
1016         return 0;
1017 }
1018
1019 static void x86_pmu_unthrottle(struct perf_event *event)
1020 {
1021         int ret = x86_pmu_start(event);
1022         WARN_ON_ONCE(ret);
1023 }
1024
1025 void perf_event_print_debug(void)
1026 {
1027         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1028         u64 pebs;
1029         struct cpu_hw_events *cpuc;
1030         unsigned long flags;
1031         int cpu, idx;
1032
1033         if (!x86_pmu.num_counters)
1034                 return;
1035
1036         local_irq_save(flags);
1037
1038         cpu = smp_processor_id();
1039         cpuc = &per_cpu(cpu_hw_events, cpu);
1040
1041         if (x86_pmu.version >= 2) {
1042                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1043                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1044                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1045                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1046                 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1047
1048                 pr_info("\n");
1049                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1050                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1051                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1052                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1053                 pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1054         }
1055         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1056
1057         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1058                 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1059                 rdmsrl(x86_pmu.perfctr  + idx, pmc_count);
1060
1061                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1062
1063                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1064                         cpu, idx, pmc_ctrl);
1065                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1066                         cpu, idx, pmc_count);
1067                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1068                         cpu, idx, prev_left);
1069         }
1070         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1071                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1072
1073                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1074                         cpu, idx, pmc_count);
1075         }
1076         local_irq_restore(flags);
1077 }
1078
1079 static void x86_pmu_stop(struct perf_event *event)
1080 {
1081         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1082         struct hw_perf_event *hwc = &event->hw;
1083         int idx = hwc->idx;
1084
1085         if (!__test_and_clear_bit(idx, cpuc->active_mask))
1086                 return;
1087
1088         x86_pmu.disable(event);
1089
1090         /*
1091          * Drain the remaining delta count out of a event
1092          * that we are disabling:
1093          */
1094         x86_perf_event_update(event);
1095
1096         cpuc->events[idx] = NULL;
1097 }
1098
1099 static void x86_pmu_disable(struct perf_event *event)
1100 {
1101         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1102         int i;
1103
1104         /*
1105          * If we're called during a txn, we don't need to do anything.
1106          * The events never got scheduled and ->cancel_txn will truncate
1107          * the event_list.
1108          */
1109         if (cpuc->group_flag & PERF_EVENT_TXN)
1110                 return;
1111
1112         x86_pmu_stop(event);
1113
1114         for (i = 0; i < cpuc->n_events; i++) {
1115                 if (event == cpuc->event_list[i]) {
1116
1117                         if (x86_pmu.put_event_constraints)
1118                                 x86_pmu.put_event_constraints(cpuc, event);
1119
1120                         while (++i < cpuc->n_events)
1121                                 cpuc->event_list[i-1] = cpuc->event_list[i];
1122
1123                         --cpuc->n_events;
1124                         break;
1125                 }
1126         }
1127         perf_event_update_userpage(event);
1128 }
1129
1130 static int x86_pmu_handle_irq(struct pt_regs *regs)
1131 {
1132         struct perf_sample_data data;
1133         struct cpu_hw_events *cpuc;
1134         struct perf_event *event;
1135         struct hw_perf_event *hwc;
1136         int idx, handled = 0;
1137         u64 val;
1138
1139         perf_sample_data_init(&data, 0);
1140
1141         cpuc = &__get_cpu_var(cpu_hw_events);
1142
1143         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1144                 if (!test_bit(idx, cpuc->active_mask))
1145                         continue;
1146
1147                 event = cpuc->events[idx];
1148                 hwc = &event->hw;
1149
1150                 val = x86_perf_event_update(event);
1151                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1152                         continue;
1153
1154                 /*
1155                  * event overflow
1156                  */
1157                 handled++;
1158                 data.period     = event->hw.last_period;
1159
1160                 if (!x86_perf_event_set_period(event))
1161                         continue;
1162
1163                 if (perf_event_overflow(event, 1, &data, regs))
1164                         x86_pmu_stop(event);
1165         }
1166
1167         if (handled)
1168                 inc_irq_stat(apic_perf_irqs);
1169
1170         return handled;
1171 }
1172
1173 void smp_perf_pending_interrupt(struct pt_regs *regs)
1174 {
1175         irq_enter();
1176         ack_APIC_irq();
1177         inc_irq_stat(apic_pending_irqs);
1178         perf_event_do_pending();
1179         irq_exit();
1180 }
1181
1182 void set_perf_event_pending(void)
1183 {
1184 #ifdef CONFIG_X86_LOCAL_APIC
1185         if (!x86_pmu.apic || !x86_pmu_initialized())
1186                 return;
1187
1188         apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1189 #endif
1190 }
1191
1192 void perf_events_lapic_init(void)
1193 {
1194         if (!x86_pmu.apic || !x86_pmu_initialized())
1195                 return;
1196
1197         /*
1198          * Always use NMI for PMU
1199          */
1200         apic_write(APIC_LVTPC, APIC_DM_NMI);
1201 }
1202
1203 struct pmu_nmi_state {
1204         unsigned int    marked;
1205         int             handled;
1206 };
1207
1208 static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1209
1210 static int __kprobes
1211 perf_event_nmi_handler(struct notifier_block *self,
1212                          unsigned long cmd, void *__args)
1213 {
1214         struct die_args *args = __args;
1215         unsigned int this_nmi;
1216         int handled;
1217
1218         if (!atomic_read(&active_events))
1219                 return NOTIFY_DONE;
1220
1221         switch (cmd) {
1222         case DIE_NMI:
1223         case DIE_NMI_IPI:
1224                 break;
1225         case DIE_NMIUNKNOWN:
1226                 this_nmi = percpu_read(irq_stat.__nmi_count);
1227                 if (this_nmi != __get_cpu_var(pmu_nmi).marked)
1228                         /* let the kernel handle the unknown nmi */
1229                         return NOTIFY_DONE;
1230                 /*
1231                  * This one is a PMU back-to-back nmi. Two events
1232                  * trigger 'simultaneously' raising two back-to-back
1233                  * NMIs. If the first NMI handles both, the latter
1234                  * will be empty and daze the CPU. So, we drop it to
1235                  * avoid false-positive 'unknown nmi' messages.
1236                  */
1237                 return NOTIFY_STOP;
1238         default:
1239                 return NOTIFY_DONE;
1240         }
1241
1242         apic_write(APIC_LVTPC, APIC_DM_NMI);
1243
1244         handled = x86_pmu.handle_irq(args->regs);
1245         if (!handled)
1246                 return NOTIFY_DONE;
1247
1248         this_nmi = percpu_read(irq_stat.__nmi_count);
1249         if ((handled > 1) ||
1250                 /* the next nmi could be a back-to-back nmi */
1251             ((__get_cpu_var(pmu_nmi).marked == this_nmi) &&
1252              (__get_cpu_var(pmu_nmi).handled > 1))) {
1253                 /*
1254                  * We could have two subsequent back-to-back nmis: The
1255                  * first handles more than one counter, the 2nd
1256                  * handles only one counter and the 3rd handles no
1257                  * counter.
1258                  *
1259                  * This is the 2nd nmi because the previous was
1260                  * handling more than one counter. We will mark the
1261                  * next (3rd) and then drop it if unhandled.
1262                  */
1263                 __get_cpu_var(pmu_nmi).marked   = this_nmi + 1;
1264                 __get_cpu_var(pmu_nmi).handled  = handled;
1265         }
1266
1267         return NOTIFY_STOP;
1268 }
1269
1270 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1271         .notifier_call          = perf_event_nmi_handler,
1272         .next                   = NULL,
1273         .priority               = 1
1274 };
1275
1276 static struct event_constraint unconstrained;
1277 static struct event_constraint emptyconstraint;
1278
1279 static struct event_constraint *
1280 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1281 {
1282         struct event_constraint *c;
1283
1284         if (x86_pmu.event_constraints) {
1285                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1286                         if ((event->hw.config & c->cmask) == c->code)
1287                                 return c;
1288                 }
1289         }
1290
1291         return &unconstrained;
1292 }
1293
1294 #include "perf_event_amd.c"
1295 #include "perf_event_p6.c"
1296 #include "perf_event_p4.c"
1297 #include "perf_event_intel_lbr.c"
1298 #include "perf_event_intel_ds.c"
1299 #include "perf_event_intel.c"
1300
1301 static int __cpuinit
1302 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1303 {
1304         unsigned int cpu = (long)hcpu;
1305         int ret = NOTIFY_OK;
1306
1307         switch (action & ~CPU_TASKS_FROZEN) {
1308         case CPU_UP_PREPARE:
1309                 if (x86_pmu.cpu_prepare)
1310                         ret = x86_pmu.cpu_prepare(cpu);
1311                 break;
1312
1313         case CPU_STARTING:
1314                 if (x86_pmu.cpu_starting)
1315                         x86_pmu.cpu_starting(cpu);
1316                 break;
1317
1318         case CPU_DYING:
1319                 if (x86_pmu.cpu_dying)
1320                         x86_pmu.cpu_dying(cpu);
1321                 break;
1322
1323         case CPU_UP_CANCELED:
1324         case CPU_DEAD:
1325                 if (x86_pmu.cpu_dead)
1326                         x86_pmu.cpu_dead(cpu);
1327                 break;
1328
1329         default:
1330                 break;
1331         }
1332
1333         return ret;
1334 }
1335
1336 static void __init pmu_check_apic(void)
1337 {
1338         if (cpu_has_apic)
1339                 return;
1340
1341         x86_pmu.apic = 0;
1342         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1343         pr_info("no hardware sampling interrupt available.\n");
1344 }
1345
1346 void __init init_hw_perf_events(void)
1347 {
1348         struct event_constraint *c;
1349         int err;
1350
1351         pr_info("Performance Events: ");
1352
1353         switch (boot_cpu_data.x86_vendor) {
1354         case X86_VENDOR_INTEL:
1355                 err = intel_pmu_init();
1356                 break;
1357         case X86_VENDOR_AMD:
1358                 err = amd_pmu_init();
1359                 break;
1360         default:
1361                 return;
1362         }
1363         if (err != 0) {
1364                 pr_cont("no PMU driver, software events only.\n");
1365                 return;
1366         }
1367
1368         pmu_check_apic();
1369
1370         pr_cont("%s PMU driver.\n", x86_pmu.name);
1371
1372         if (x86_pmu.quirks)
1373                 x86_pmu.quirks();
1374
1375         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1376                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1377                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1378                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1379         }
1380         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1381         perf_max_events = x86_pmu.num_counters;
1382
1383         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1384                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1385                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1386                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1387         }
1388
1389         x86_pmu.intel_ctrl |=
1390                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1391
1392         perf_events_lapic_init();
1393         register_die_notifier(&perf_event_nmi_notifier);
1394
1395         unconstrained = (struct event_constraint)
1396                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1397                                    0, x86_pmu.num_counters);
1398
1399         if (x86_pmu.event_constraints) {
1400                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1401                         if (c->cmask != X86_RAW_EVENT_MASK)
1402                                 continue;
1403
1404                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1405                         c->weight += x86_pmu.num_counters;
1406                 }
1407         }
1408
1409         pr_info("... version:                %d\n",     x86_pmu.version);
1410         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1411         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1412         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1413         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1414         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1415         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1416
1417         perf_cpu_notifier(x86_pmu_notifier);
1418 }
1419
1420 static inline void x86_pmu_read(struct perf_event *event)
1421 {
1422         x86_perf_event_update(event);
1423 }
1424
1425 /*
1426  * Start group events scheduling transaction
1427  * Set the flag to make pmu::enable() not perform the
1428  * schedulability test, it will be performed at commit time
1429  */
1430 static void x86_pmu_start_txn(struct pmu *pmu)
1431 {
1432         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1433
1434         cpuc->group_flag |= PERF_EVENT_TXN;
1435         cpuc->n_txn = 0;
1436 }
1437
1438 /*
1439  * Stop group events scheduling transaction
1440  * Clear the flag and pmu::enable() will perform the
1441  * schedulability test.
1442  */
1443 static void x86_pmu_cancel_txn(struct pmu *pmu)
1444 {
1445         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1446
1447         cpuc->group_flag &= ~PERF_EVENT_TXN;
1448         /*
1449          * Truncate the collected events.
1450          */
1451         cpuc->n_added -= cpuc->n_txn;
1452         cpuc->n_events -= cpuc->n_txn;
1453 }
1454
1455 /*
1456  * Commit group events scheduling transaction
1457  * Perform the group schedulability test as a whole
1458  * Return 0 if success
1459  */
1460 static int x86_pmu_commit_txn(struct pmu *pmu)
1461 {
1462         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1463         int assign[X86_PMC_IDX_MAX];
1464         int n, ret;
1465
1466         n = cpuc->n_events;
1467
1468         if (!x86_pmu_initialized())
1469                 return -EAGAIN;
1470
1471         ret = x86_pmu.schedule_events(cpuc, n, assign);
1472         if (ret)
1473                 return ret;
1474
1475         /*
1476          * copy new assignment, now we know it is possible
1477          * will be used by hw_perf_enable()
1478          */
1479         memcpy(cpuc->assign, assign, n*sizeof(int));
1480
1481         cpuc->group_flag &= ~PERF_EVENT_TXN;
1482
1483         return 0;
1484 }
1485
1486 static struct pmu pmu = {
1487         .enable         = x86_pmu_enable,
1488         .disable        = x86_pmu_disable,
1489         .start          = x86_pmu_start,
1490         .stop           = x86_pmu_stop,
1491         .read           = x86_pmu_read,
1492         .unthrottle     = x86_pmu_unthrottle,
1493         .start_txn      = x86_pmu_start_txn,
1494         .cancel_txn     = x86_pmu_cancel_txn,
1495         .commit_txn     = x86_pmu_commit_txn,
1496 };
1497
1498 /*
1499  * validate that we can schedule this event
1500  */
1501 static int validate_event(struct perf_event *event)
1502 {
1503         struct cpu_hw_events *fake_cpuc;
1504         struct event_constraint *c;
1505         int ret = 0;
1506
1507         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1508         if (!fake_cpuc)
1509                 return -ENOMEM;
1510
1511         c = x86_pmu.get_event_constraints(fake_cpuc, event);
1512
1513         if (!c || !c->weight)
1514                 ret = -ENOSPC;
1515
1516         if (x86_pmu.put_event_constraints)
1517                 x86_pmu.put_event_constraints(fake_cpuc, event);
1518
1519         kfree(fake_cpuc);
1520
1521         return ret;
1522 }
1523
1524 /*
1525  * validate a single event group
1526  *
1527  * validation include:
1528  *      - check events are compatible which each other
1529  *      - events do not compete for the same counter
1530  *      - number of events <= number of counters
1531  *
1532  * validation ensures the group can be loaded onto the
1533  * PMU if it was the only group available.
1534  */
1535 static int validate_group(struct perf_event *event)
1536 {
1537         struct perf_event *leader = event->group_leader;
1538         struct cpu_hw_events *fake_cpuc;
1539         int ret, n;
1540
1541         ret = -ENOMEM;
1542         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1543         if (!fake_cpuc)
1544                 goto out;
1545
1546         /*
1547          * the event is not yet connected with its
1548          * siblings therefore we must first collect
1549          * existing siblings, then add the new event
1550          * before we can simulate the scheduling
1551          */
1552         ret = -ENOSPC;
1553         n = collect_events(fake_cpuc, leader, true);
1554         if (n < 0)
1555                 goto out_free;
1556
1557         fake_cpuc->n_events = n;
1558         n = collect_events(fake_cpuc, event, false);
1559         if (n < 0)
1560                 goto out_free;
1561
1562         fake_cpuc->n_events = n;
1563
1564         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1565
1566 out_free:
1567         kfree(fake_cpuc);
1568 out:
1569         return ret;
1570 }
1571
1572 struct pmu *hw_perf_event_init(struct perf_event *event)
1573 {
1574         struct pmu *tmp;
1575         int err;
1576
1577         err = __hw_perf_event_init(event);
1578         if (!err) {
1579                 /*
1580                  * we temporarily connect event to its pmu
1581                  * such that validate_group() can classify
1582                  * it as an x86 event using is_x86_event()
1583                  */
1584                 tmp = event->pmu;
1585                 event->pmu = &pmu;
1586
1587                 if (event->group_leader != event)
1588                         err = validate_group(event);
1589                 else
1590                         err = validate_event(event);
1591
1592                 event->pmu = tmp;
1593         }
1594         if (err) {
1595                 if (event->destroy)
1596                         event->destroy(event);
1597                 return ERR_PTR(err);
1598         }
1599
1600         return &pmu;
1601 }
1602
1603 /*
1604  * callchain support
1605  */
1606
1607 static void
1608 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1609 {
1610         /* Ignore warnings */
1611 }
1612
1613 static void backtrace_warning(void *data, char *msg)
1614 {
1615         /* Ignore warnings */
1616 }
1617
1618 static int backtrace_stack(void *data, char *name)
1619 {
1620         return 0;
1621 }
1622
1623 static void backtrace_address(void *data, unsigned long addr, int reliable)
1624 {
1625         struct perf_callchain_entry *entry = data;
1626
1627         perf_callchain_store(entry, addr);
1628 }
1629
1630 static const struct stacktrace_ops backtrace_ops = {
1631         .warning                = backtrace_warning,
1632         .warning_symbol         = backtrace_warning_symbol,
1633         .stack                  = backtrace_stack,
1634         .address                = backtrace_address,
1635         .walk_stack             = print_context_stack_bp,
1636 };
1637
1638 void
1639 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1640 {
1641         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1642                 /* TODO: We don't support guest os callchain now */
1643                 return;
1644         }
1645
1646         perf_callchain_store(entry, regs->ip);
1647
1648         dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1649 }
1650
1651 #ifdef CONFIG_COMPAT
1652 static inline int
1653 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1654 {
1655         /* 32-bit process in 64-bit kernel. */
1656         struct stack_frame_ia32 frame;
1657         const void __user *fp;
1658
1659         if (!test_thread_flag(TIF_IA32))
1660                 return 0;
1661
1662         fp = compat_ptr(regs->bp);
1663         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1664                 unsigned long bytes;
1665                 frame.next_frame     = 0;
1666                 frame.return_address = 0;
1667
1668                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1669                 if (bytes != sizeof(frame))
1670                         break;
1671
1672                 if (fp < compat_ptr(regs->sp))
1673                         break;
1674
1675                 perf_callchain_store(entry, frame.return_address);
1676                 fp = compat_ptr(frame.next_frame);
1677         }
1678         return 1;
1679 }
1680 #else
1681 static inline int
1682 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1683 {
1684     return 0;
1685 }
1686 #endif
1687
1688 void
1689 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1690 {
1691         struct stack_frame frame;
1692         const void __user *fp;
1693
1694         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1695                 /* TODO: We don't support guest os callchain now */
1696                 return;
1697         }
1698
1699         fp = (void __user *)regs->bp;
1700
1701         perf_callchain_store(entry, regs->ip);
1702
1703         if (perf_callchain_user32(regs, entry))
1704                 return;
1705
1706         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1707                 unsigned long bytes;
1708                 frame.next_frame             = NULL;
1709                 frame.return_address = 0;
1710
1711                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1712                 if (bytes != sizeof(frame))
1713                         break;
1714
1715                 if ((unsigned long)fp < regs->sp)
1716                         break;
1717
1718                 perf_callchain_store(entry, frame.return_address);
1719                 fp = frame.next_frame;
1720         }
1721 }
1722
1723 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1724 {
1725         unsigned long ip;
1726
1727         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1728                 ip = perf_guest_cbs->get_guest_ip();
1729         else
1730                 ip = instruction_pointer(regs);
1731
1732         return ip;
1733 }
1734
1735 unsigned long perf_misc_flags(struct pt_regs *regs)
1736 {
1737         int misc = 0;
1738
1739         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1740                 if (perf_guest_cbs->is_user_mode())
1741                         misc |= PERF_RECORD_MISC_GUEST_USER;
1742                 else
1743                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1744         } else {
1745                 if (user_mode(regs))
1746                         misc |= PERF_RECORD_MISC_USER;
1747                 else
1748                         misc |= PERF_RECORD_MISC_KERNEL;
1749         }
1750
1751         if (regs->flags & PERF_EFLAGS_EXACT)
1752                 misc |= PERF_RECORD_MISC_EXACT_IP;
1753
1754         return misc;
1755 }