]> git.karo-electronics.de Git - mv-sheeva.git/blob - arch/x86/kvm/mmu.c
KVM: MMU: fix mmu notifier invalidate handler for huge spte
[mv-sheeva.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affilates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "mmu.h"
22 #include "x86.h"
23 #include "kvm_cache_regs.h"
24
25 #include <linux/kvm_host.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/mm.h>
29 #include <linux/highmem.h>
30 #include <linux/module.h>
31 #include <linux/swap.h>
32 #include <linux/hugetlb.h>
33 #include <linux/compiler.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/uaccess.h>
37
38 #include <asm/page.h>
39 #include <asm/cmpxchg.h>
40 #include <asm/io.h>
41 #include <asm/vmx.h>
42
43 /*
44  * When setting this variable to true it enables Two-Dimensional-Paging
45  * where the hardware walks 2 page tables:
46  * 1. the guest-virtual to guest-physical
47  * 2. while doing 1. it walks guest-physical to host-physical
48  * If the hardware supports that we don't need to do shadow paging.
49  */
50 bool tdp_enabled = false;
51
52 #undef MMU_DEBUG
53
54 #undef AUDIT
55
56 #ifdef AUDIT
57 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
58 #else
59 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
60 #endif
61
62 #ifdef MMU_DEBUG
63
64 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
65 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
66
67 #else
68
69 #define pgprintk(x...) do { } while (0)
70 #define rmap_printk(x...) do { } while (0)
71
72 #endif
73
74 #if defined(MMU_DEBUG) || defined(AUDIT)
75 static int dbg = 0;
76 module_param(dbg, bool, 0644);
77 #endif
78
79 static int oos_shadow = 1;
80 module_param(oos_shadow, bool, 0644);
81
82 #ifndef MMU_DEBUG
83 #define ASSERT(x) do { } while (0)
84 #else
85 #define ASSERT(x)                                                       \
86         if (!(x)) {                                                     \
87                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
88                        __FILE__, __LINE__, #x);                         \
89         }
90 #endif
91
92 #define PT_FIRST_AVAIL_BITS_SHIFT 9
93 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
94
95 #define PT64_LEVEL_BITS 9
96
97 #define PT64_LEVEL_SHIFT(level) \
98                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
99
100 #define PT64_LEVEL_MASK(level) \
101                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
102
103 #define PT64_INDEX(address, level)\
104         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
105
106
107 #define PT32_LEVEL_BITS 10
108
109 #define PT32_LEVEL_SHIFT(level) \
110                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
111
112 #define PT32_LEVEL_MASK(level) \
113                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
114 #define PT32_LVL_OFFSET_MASK(level) \
115         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
116                                                 * PT32_LEVEL_BITS))) - 1))
117
118 #define PT32_INDEX(address, level)\
119         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
120
121
122 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
123 #define PT64_DIR_BASE_ADDR_MASK \
124         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
125 #define PT64_LVL_ADDR_MASK(level) \
126         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127                                                 * PT64_LEVEL_BITS))) - 1))
128 #define PT64_LVL_OFFSET_MASK(level) \
129         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
130                                                 * PT64_LEVEL_BITS))) - 1))
131
132 #define PT32_BASE_ADDR_MASK PAGE_MASK
133 #define PT32_DIR_BASE_ADDR_MASK \
134         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
135 #define PT32_LVL_ADDR_MASK(level) \
136         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
137                                             * PT32_LEVEL_BITS))) - 1))
138
139 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
140                         | PT64_NX_MASK)
141
142 #define RMAP_EXT 4
143
144 #define ACC_EXEC_MASK    1
145 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
146 #define ACC_USER_MASK    PT_USER_MASK
147 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
148
149 #include <trace/events/kvm.h>
150
151 #define CREATE_TRACE_POINTS
152 #include "mmutrace.h"
153
154 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
155
156 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
157
158 struct kvm_rmap_desc {
159         u64 *sptes[RMAP_EXT];
160         struct kvm_rmap_desc *more;
161 };
162
163 struct kvm_shadow_walk_iterator {
164         u64 addr;
165         hpa_t shadow_addr;
166         int level;
167         u64 *sptep;
168         unsigned index;
169 };
170
171 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
172         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
173              shadow_walk_okay(&(_walker));                      \
174              shadow_walk_next(&(_walker)))
175
176 typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
177
178 static struct kmem_cache *pte_chain_cache;
179 static struct kmem_cache *rmap_desc_cache;
180 static struct kmem_cache *mmu_page_header_cache;
181
182 static u64 __read_mostly shadow_trap_nonpresent_pte;
183 static u64 __read_mostly shadow_notrap_nonpresent_pte;
184 static u64 __read_mostly shadow_base_present_pte;
185 static u64 __read_mostly shadow_nx_mask;
186 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
187 static u64 __read_mostly shadow_user_mask;
188 static u64 __read_mostly shadow_accessed_mask;
189 static u64 __read_mostly shadow_dirty_mask;
190
191 static inline u64 rsvd_bits(int s, int e)
192 {
193         return ((1ULL << (e - s + 1)) - 1) << s;
194 }
195
196 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
197 {
198         shadow_trap_nonpresent_pte = trap_pte;
199         shadow_notrap_nonpresent_pte = notrap_pte;
200 }
201 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
202
203 void kvm_mmu_set_base_ptes(u64 base_pte)
204 {
205         shadow_base_present_pte = base_pte;
206 }
207 EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
208
209 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
210                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
211 {
212         shadow_user_mask = user_mask;
213         shadow_accessed_mask = accessed_mask;
214         shadow_dirty_mask = dirty_mask;
215         shadow_nx_mask = nx_mask;
216         shadow_x_mask = x_mask;
217 }
218 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
219
220 static bool is_write_protection(struct kvm_vcpu *vcpu)
221 {
222         return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
223 }
224
225 static int is_cpuid_PSE36(void)
226 {
227         return 1;
228 }
229
230 static int is_nx(struct kvm_vcpu *vcpu)
231 {
232         return vcpu->arch.efer & EFER_NX;
233 }
234
235 static int is_shadow_present_pte(u64 pte)
236 {
237         return pte != shadow_trap_nonpresent_pte
238                 && pte != shadow_notrap_nonpresent_pte;
239 }
240
241 static int is_large_pte(u64 pte)
242 {
243         return pte & PT_PAGE_SIZE_MASK;
244 }
245
246 static int is_writable_pte(unsigned long pte)
247 {
248         return pte & PT_WRITABLE_MASK;
249 }
250
251 static int is_dirty_gpte(unsigned long pte)
252 {
253         return pte & PT_DIRTY_MASK;
254 }
255
256 static int is_rmap_spte(u64 pte)
257 {
258         return is_shadow_present_pte(pte);
259 }
260
261 static int is_last_spte(u64 pte, int level)
262 {
263         if (level == PT_PAGE_TABLE_LEVEL)
264                 return 1;
265         if (is_large_pte(pte))
266                 return 1;
267         return 0;
268 }
269
270 static pfn_t spte_to_pfn(u64 pte)
271 {
272         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
273 }
274
275 static gfn_t pse36_gfn_delta(u32 gpte)
276 {
277         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
278
279         return (gpte & PT32_DIR_PSE36_MASK) << shift;
280 }
281
282 static void __set_spte(u64 *sptep, u64 spte)
283 {
284 #ifdef CONFIG_X86_64
285         set_64bit((unsigned long *)sptep, spte);
286 #else
287         set_64bit((unsigned long long *)sptep, spte);
288 #endif
289 }
290
291 static u64 __xchg_spte(u64 *sptep, u64 new_spte)
292 {
293 #ifdef CONFIG_X86_64
294         return xchg(sptep, new_spte);
295 #else
296         u64 old_spte;
297
298         do {
299                 old_spte = *sptep;
300         } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
301
302         return old_spte;
303 #endif
304 }
305
306 static void update_spte(u64 *sptep, u64 new_spte)
307 {
308         u64 old_spte;
309
310         if (!shadow_accessed_mask || (new_spte & shadow_accessed_mask)) {
311                 __set_spte(sptep, new_spte);
312         } else {
313                 old_spte = __xchg_spte(sptep, new_spte);
314                 if (old_spte & shadow_accessed_mask)
315                         mark_page_accessed(pfn_to_page(spte_to_pfn(old_spte)));
316         }
317 }
318
319 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
320                                   struct kmem_cache *base_cache, int min)
321 {
322         void *obj;
323
324         if (cache->nobjs >= min)
325                 return 0;
326         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
327                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
328                 if (!obj)
329                         return -ENOMEM;
330                 cache->objects[cache->nobjs++] = obj;
331         }
332         return 0;
333 }
334
335 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
336                                   struct kmem_cache *cache)
337 {
338         while (mc->nobjs)
339                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
340 }
341
342 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
343                                        int min)
344 {
345         struct page *page;
346
347         if (cache->nobjs >= min)
348                 return 0;
349         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
350                 page = alloc_page(GFP_KERNEL);
351                 if (!page)
352                         return -ENOMEM;
353                 cache->objects[cache->nobjs++] = page_address(page);
354         }
355         return 0;
356 }
357
358 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
359 {
360         while (mc->nobjs)
361                 free_page((unsigned long)mc->objects[--mc->nobjs]);
362 }
363
364 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
365 {
366         int r;
367
368         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
369                                    pte_chain_cache, 4);
370         if (r)
371                 goto out;
372         r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
373                                    rmap_desc_cache, 4);
374         if (r)
375                 goto out;
376         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
377         if (r)
378                 goto out;
379         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
380                                    mmu_page_header_cache, 4);
381 out:
382         return r;
383 }
384
385 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
386 {
387         mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
388         mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
389         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
390         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
391                                 mmu_page_header_cache);
392 }
393
394 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
395                                     size_t size)
396 {
397         void *p;
398
399         BUG_ON(!mc->nobjs);
400         p = mc->objects[--mc->nobjs];
401         return p;
402 }
403
404 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
405 {
406         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
407                                       sizeof(struct kvm_pte_chain));
408 }
409
410 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
411 {
412         kmem_cache_free(pte_chain_cache, pc);
413 }
414
415 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
416 {
417         return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
418                                       sizeof(struct kvm_rmap_desc));
419 }
420
421 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
422 {
423         kmem_cache_free(rmap_desc_cache, rd);
424 }
425
426 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
427 {
428         if (!sp->role.direct)
429                 return sp->gfns[index];
430
431         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
432 }
433
434 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
435 {
436         if (sp->role.direct)
437                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
438         else
439                 sp->gfns[index] = gfn;
440 }
441
442 /*
443  * Return the pointer to the largepage write count for a given
444  * gfn, handling slots that are not large page aligned.
445  */
446 static int *slot_largepage_idx(gfn_t gfn,
447                                struct kvm_memory_slot *slot,
448                                int level)
449 {
450         unsigned long idx;
451
452         idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
453               (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
454         return &slot->lpage_info[level - 2][idx].write_count;
455 }
456
457 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
458 {
459         struct kvm_memory_slot *slot;
460         int *write_count;
461         int i;
462
463         slot = gfn_to_memslot(kvm, gfn);
464         for (i = PT_DIRECTORY_LEVEL;
465              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
466                 write_count   = slot_largepage_idx(gfn, slot, i);
467                 *write_count += 1;
468         }
469 }
470
471 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
472 {
473         struct kvm_memory_slot *slot;
474         int *write_count;
475         int i;
476
477         slot = gfn_to_memslot(kvm, gfn);
478         for (i = PT_DIRECTORY_LEVEL;
479              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
480                 write_count   = slot_largepage_idx(gfn, slot, i);
481                 *write_count -= 1;
482                 WARN_ON(*write_count < 0);
483         }
484 }
485
486 static int has_wrprotected_page(struct kvm *kvm,
487                                 gfn_t gfn,
488                                 int level)
489 {
490         struct kvm_memory_slot *slot;
491         int *largepage_idx;
492
493         slot = gfn_to_memslot(kvm, gfn);
494         if (slot) {
495                 largepage_idx = slot_largepage_idx(gfn, slot, level);
496                 return *largepage_idx;
497         }
498
499         return 1;
500 }
501
502 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
503 {
504         unsigned long page_size;
505         int i, ret = 0;
506
507         page_size = kvm_host_page_size(kvm, gfn);
508
509         for (i = PT_PAGE_TABLE_LEVEL;
510              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
511                 if (page_size >= KVM_HPAGE_SIZE(i))
512                         ret = i;
513                 else
514                         break;
515         }
516
517         return ret;
518 }
519
520 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
521 {
522         struct kvm_memory_slot *slot;
523         int host_level, level, max_level;
524
525         slot = gfn_to_memslot(vcpu->kvm, large_gfn);
526         if (slot && slot->dirty_bitmap)
527                 return PT_PAGE_TABLE_LEVEL;
528
529         host_level = host_mapping_level(vcpu->kvm, large_gfn);
530
531         if (host_level == PT_PAGE_TABLE_LEVEL)
532                 return host_level;
533
534         max_level = kvm_x86_ops->get_lpage_level() < host_level ?
535                 kvm_x86_ops->get_lpage_level() : host_level;
536
537         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
538                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
539                         break;
540
541         return level - 1;
542 }
543
544 /*
545  * Take gfn and return the reverse mapping to it.
546  */
547
548 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
549 {
550         struct kvm_memory_slot *slot;
551         unsigned long idx;
552
553         slot = gfn_to_memslot(kvm, gfn);
554         if (likely(level == PT_PAGE_TABLE_LEVEL))
555                 return &slot->rmap[gfn - slot->base_gfn];
556
557         idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
558                 (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
559
560         return &slot->lpage_info[level - 2][idx].rmap_pde;
561 }
562
563 /*
564  * Reverse mapping data structures:
565  *
566  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
567  * that points to page_address(page).
568  *
569  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
570  * containing more mappings.
571  *
572  * Returns the number of rmap entries before the spte was added or zero if
573  * the spte was not added.
574  *
575  */
576 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
577 {
578         struct kvm_mmu_page *sp;
579         struct kvm_rmap_desc *desc;
580         unsigned long *rmapp;
581         int i, count = 0;
582
583         if (!is_rmap_spte(*spte))
584                 return count;
585         sp = page_header(__pa(spte));
586         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
587         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
588         if (!*rmapp) {
589                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
590                 *rmapp = (unsigned long)spte;
591         } else if (!(*rmapp & 1)) {
592                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
593                 desc = mmu_alloc_rmap_desc(vcpu);
594                 desc->sptes[0] = (u64 *)*rmapp;
595                 desc->sptes[1] = spte;
596                 *rmapp = (unsigned long)desc | 1;
597         } else {
598                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
599                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
600                 while (desc->sptes[RMAP_EXT-1] && desc->more) {
601                         desc = desc->more;
602                         count += RMAP_EXT;
603                 }
604                 if (desc->sptes[RMAP_EXT-1]) {
605                         desc->more = mmu_alloc_rmap_desc(vcpu);
606                         desc = desc->more;
607                 }
608                 for (i = 0; desc->sptes[i]; ++i)
609                         ;
610                 desc->sptes[i] = spte;
611         }
612         return count;
613 }
614
615 static void rmap_desc_remove_entry(unsigned long *rmapp,
616                                    struct kvm_rmap_desc *desc,
617                                    int i,
618                                    struct kvm_rmap_desc *prev_desc)
619 {
620         int j;
621
622         for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
623                 ;
624         desc->sptes[i] = desc->sptes[j];
625         desc->sptes[j] = NULL;
626         if (j != 0)
627                 return;
628         if (!prev_desc && !desc->more)
629                 *rmapp = (unsigned long)desc->sptes[0];
630         else
631                 if (prev_desc)
632                         prev_desc->more = desc->more;
633                 else
634                         *rmapp = (unsigned long)desc->more | 1;
635         mmu_free_rmap_desc(desc);
636 }
637
638 static void rmap_remove(struct kvm *kvm, u64 *spte)
639 {
640         struct kvm_rmap_desc *desc;
641         struct kvm_rmap_desc *prev_desc;
642         struct kvm_mmu_page *sp;
643         gfn_t gfn;
644         unsigned long *rmapp;
645         int i;
646
647         sp = page_header(__pa(spte));
648         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
649         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
650         if (!*rmapp) {
651                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
652                 BUG();
653         } else if (!(*rmapp & 1)) {
654                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
655                 if ((u64 *)*rmapp != spte) {
656                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
657                                spte, *spte);
658                         BUG();
659                 }
660                 *rmapp = 0;
661         } else {
662                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
663                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
664                 prev_desc = NULL;
665                 while (desc) {
666                         for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
667                                 if (desc->sptes[i] == spte) {
668                                         rmap_desc_remove_entry(rmapp,
669                                                                desc, i,
670                                                                prev_desc);
671                                         return;
672                                 }
673                         prev_desc = desc;
674                         desc = desc->more;
675                 }
676                 pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
677                 BUG();
678         }
679 }
680
681 static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
682 {
683         pfn_t pfn;
684         u64 old_spte;
685
686         old_spte = __xchg_spte(sptep, new_spte);
687         if (!is_rmap_spte(old_spte))
688                 return;
689         pfn = spte_to_pfn(old_spte);
690         if (old_spte & shadow_accessed_mask)
691                 kvm_set_pfn_accessed(pfn);
692         if (is_writable_pte(old_spte))
693                 kvm_set_pfn_dirty(pfn);
694         rmap_remove(kvm, sptep);
695 }
696
697 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
698 {
699         struct kvm_rmap_desc *desc;
700         u64 *prev_spte;
701         int i;
702
703         if (!*rmapp)
704                 return NULL;
705         else if (!(*rmapp & 1)) {
706                 if (!spte)
707                         return (u64 *)*rmapp;
708                 return NULL;
709         }
710         desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
711         prev_spte = NULL;
712         while (desc) {
713                 for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
714                         if (prev_spte == spte)
715                                 return desc->sptes[i];
716                         prev_spte = desc->sptes[i];
717                 }
718                 desc = desc->more;
719         }
720         return NULL;
721 }
722
723 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
724 {
725         unsigned long *rmapp;
726         u64 *spte;
727         int i, write_protected = 0;
728
729         rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
730
731         spte = rmap_next(kvm, rmapp, NULL);
732         while (spte) {
733                 BUG_ON(!spte);
734                 BUG_ON(!(*spte & PT_PRESENT_MASK));
735                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
736                 if (is_writable_pte(*spte)) {
737                         update_spte(spte, *spte & ~PT_WRITABLE_MASK);
738                         write_protected = 1;
739                 }
740                 spte = rmap_next(kvm, rmapp, spte);
741         }
742         if (write_protected) {
743                 pfn_t pfn;
744
745                 spte = rmap_next(kvm, rmapp, NULL);
746                 pfn = spte_to_pfn(*spte);
747                 kvm_set_pfn_dirty(pfn);
748         }
749
750         /* check for huge page mappings */
751         for (i = PT_DIRECTORY_LEVEL;
752              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
753                 rmapp = gfn_to_rmap(kvm, gfn, i);
754                 spte = rmap_next(kvm, rmapp, NULL);
755                 while (spte) {
756                         BUG_ON(!spte);
757                         BUG_ON(!(*spte & PT_PRESENT_MASK));
758                         BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
759                         pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
760                         if (is_writable_pte(*spte)) {
761                                 drop_spte(kvm, spte,
762                                           shadow_trap_nonpresent_pte);
763                                 --kvm->stat.lpages;
764                                 spte = NULL;
765                                 write_protected = 1;
766                         }
767                         spte = rmap_next(kvm, rmapp, spte);
768                 }
769         }
770
771         return write_protected;
772 }
773
774 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
775                            unsigned long data)
776 {
777         u64 *spte;
778         int need_tlb_flush = 0;
779
780         while ((spte = rmap_next(kvm, rmapp, NULL))) {
781                 BUG_ON(!(*spte & PT_PRESENT_MASK));
782                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
783                 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
784                 need_tlb_flush = 1;
785         }
786         return need_tlb_flush;
787 }
788
789 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
790                              unsigned long data)
791 {
792         int need_flush = 0;
793         u64 *spte, new_spte, old_spte;
794         pte_t *ptep = (pte_t *)data;
795         pfn_t new_pfn;
796
797         WARN_ON(pte_huge(*ptep));
798         new_pfn = pte_pfn(*ptep);
799         spte = rmap_next(kvm, rmapp, NULL);
800         while (spte) {
801                 BUG_ON(!is_shadow_present_pte(*spte));
802                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
803                 need_flush = 1;
804                 if (pte_write(*ptep)) {
805                         drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
806                         spte = rmap_next(kvm, rmapp, NULL);
807                 } else {
808                         new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
809                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
810
811                         new_spte &= ~PT_WRITABLE_MASK;
812                         new_spte &= ~SPTE_HOST_WRITEABLE;
813                         new_spte &= ~shadow_accessed_mask;
814                         if (is_writable_pte(*spte))
815                                 kvm_set_pfn_dirty(spte_to_pfn(*spte));
816                         old_spte = __xchg_spte(spte, new_spte);
817                         if (is_shadow_present_pte(old_spte)
818                             && (old_spte & shadow_accessed_mask))
819                                 mark_page_accessed(pfn_to_page(spte_to_pfn(old_spte)));
820                         spte = rmap_next(kvm, rmapp, spte);
821                 }
822         }
823         if (need_flush)
824                 kvm_flush_remote_tlbs(kvm);
825
826         return 0;
827 }
828
829 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
830                           unsigned long data,
831                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
832                                          unsigned long data))
833 {
834         int i, j;
835         int ret;
836         int retval = 0;
837         struct kvm_memslots *slots;
838
839         slots = kvm_memslots(kvm);
840
841         for (i = 0; i < slots->nmemslots; i++) {
842                 struct kvm_memory_slot *memslot = &slots->memslots[i];
843                 unsigned long start = memslot->userspace_addr;
844                 unsigned long end;
845
846                 end = start + (memslot->npages << PAGE_SHIFT);
847                 if (hva >= start && hva < end) {
848                         gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
849
850                         ret = handler(kvm, &memslot->rmap[gfn_offset], data);
851
852                         for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
853                                 unsigned long idx;
854                                 int sh;
855
856                                 sh = KVM_HPAGE_GFN_SHIFT(PT_DIRECTORY_LEVEL+j);
857                                 idx = ((memslot->base_gfn+gfn_offset) >> sh) -
858                                         (memslot->base_gfn >> sh);
859                                 ret |= handler(kvm,
860                                         &memslot->lpage_info[j][idx].rmap_pde,
861                                         data);
862                         }
863                         trace_kvm_age_page(hva, memslot, ret);
864                         retval |= ret;
865                 }
866         }
867
868         return retval;
869 }
870
871 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
872 {
873         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
874 }
875
876 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
877 {
878         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
879 }
880
881 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
882                          unsigned long data)
883 {
884         u64 *spte;
885         int young = 0;
886
887         /*
888          * Emulate the accessed bit for EPT, by checking if this page has
889          * an EPT mapping, and clearing it if it does. On the next access,
890          * a new EPT mapping will be established.
891          * This has some overhead, but not as much as the cost of swapping
892          * out actively used pages or breaking up actively used hugepages.
893          */
894         if (!shadow_accessed_mask)
895                 return kvm_unmap_rmapp(kvm, rmapp, data);
896
897         spte = rmap_next(kvm, rmapp, NULL);
898         while (spte) {
899                 int _young;
900                 u64 _spte = *spte;
901                 BUG_ON(!(_spte & PT_PRESENT_MASK));
902                 _young = _spte & PT_ACCESSED_MASK;
903                 if (_young) {
904                         young = 1;
905                         clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
906                 }
907                 spte = rmap_next(kvm, rmapp, spte);
908         }
909         return young;
910 }
911
912 #define RMAP_RECYCLE_THRESHOLD 1000
913
914 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
915 {
916         unsigned long *rmapp;
917         struct kvm_mmu_page *sp;
918
919         sp = page_header(__pa(spte));
920
921         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
922
923         kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
924         kvm_flush_remote_tlbs(vcpu->kvm);
925 }
926
927 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
928 {
929         return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
930 }
931
932 #ifdef MMU_DEBUG
933 static int is_empty_shadow_page(u64 *spt)
934 {
935         u64 *pos;
936         u64 *end;
937
938         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
939                 if (is_shadow_present_pte(*pos)) {
940                         printk(KERN_ERR "%s: %p %llx\n", __func__,
941                                pos, *pos);
942                         return 0;
943                 }
944         return 1;
945 }
946 #endif
947
948 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
949 {
950         ASSERT(is_empty_shadow_page(sp->spt));
951         hlist_del(&sp->hash_link);
952         list_del(&sp->link);
953         __free_page(virt_to_page(sp->spt));
954         if (!sp->role.direct)
955                 __free_page(virt_to_page(sp->gfns));
956         kmem_cache_free(mmu_page_header_cache, sp);
957         ++kvm->arch.n_free_mmu_pages;
958 }
959
960 static unsigned kvm_page_table_hashfn(gfn_t gfn)
961 {
962         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
963 }
964
965 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
966                                                u64 *parent_pte, int direct)
967 {
968         struct kvm_mmu_page *sp;
969
970         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
971         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
972         if (!direct)
973                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
974                                                   PAGE_SIZE);
975         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
976         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
977         bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
978         sp->multimapped = 0;
979         sp->parent_pte = parent_pte;
980         --vcpu->kvm->arch.n_free_mmu_pages;
981         return sp;
982 }
983
984 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
985                                     struct kvm_mmu_page *sp, u64 *parent_pte)
986 {
987         struct kvm_pte_chain *pte_chain;
988         struct hlist_node *node;
989         int i;
990
991         if (!parent_pte)
992                 return;
993         if (!sp->multimapped) {
994                 u64 *old = sp->parent_pte;
995
996                 if (!old) {
997                         sp->parent_pte = parent_pte;
998                         return;
999                 }
1000                 sp->multimapped = 1;
1001                 pte_chain = mmu_alloc_pte_chain(vcpu);
1002                 INIT_HLIST_HEAD(&sp->parent_ptes);
1003                 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1004                 pte_chain->parent_ptes[0] = old;
1005         }
1006         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
1007                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
1008                         continue;
1009                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
1010                         if (!pte_chain->parent_ptes[i]) {
1011                                 pte_chain->parent_ptes[i] = parent_pte;
1012                                 return;
1013                         }
1014         }
1015         pte_chain = mmu_alloc_pte_chain(vcpu);
1016         BUG_ON(!pte_chain);
1017         hlist_add_head(&pte_chain->link, &sp->parent_ptes);
1018         pte_chain->parent_ptes[0] = parent_pte;
1019 }
1020
1021 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1022                                        u64 *parent_pte)
1023 {
1024         struct kvm_pte_chain *pte_chain;
1025         struct hlist_node *node;
1026         int i;
1027
1028         if (!sp->multimapped) {
1029                 BUG_ON(sp->parent_pte != parent_pte);
1030                 sp->parent_pte = NULL;
1031                 return;
1032         }
1033         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1034                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1035                         if (!pte_chain->parent_ptes[i])
1036                                 break;
1037                         if (pte_chain->parent_ptes[i] != parent_pte)
1038                                 continue;
1039                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
1040                                 && pte_chain->parent_ptes[i + 1]) {
1041                                 pte_chain->parent_ptes[i]
1042                                         = pte_chain->parent_ptes[i + 1];
1043                                 ++i;
1044                         }
1045                         pte_chain->parent_ptes[i] = NULL;
1046                         if (i == 0) {
1047                                 hlist_del(&pte_chain->link);
1048                                 mmu_free_pte_chain(pte_chain);
1049                                 if (hlist_empty(&sp->parent_ptes)) {
1050                                         sp->multimapped = 0;
1051                                         sp->parent_pte = NULL;
1052                                 }
1053                         }
1054                         return;
1055                 }
1056         BUG();
1057 }
1058
1059 static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
1060 {
1061         struct kvm_pte_chain *pte_chain;
1062         struct hlist_node *node;
1063         struct kvm_mmu_page *parent_sp;
1064         int i;
1065
1066         if (!sp->multimapped && sp->parent_pte) {
1067                 parent_sp = page_header(__pa(sp->parent_pte));
1068                 fn(parent_sp, sp->parent_pte);
1069                 return;
1070         }
1071
1072         hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
1073                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
1074                         u64 *spte = pte_chain->parent_ptes[i];
1075
1076                         if (!spte)
1077                                 break;
1078                         parent_sp = page_header(__pa(spte));
1079                         fn(parent_sp, spte);
1080                 }
1081 }
1082
1083 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
1084 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1085 {
1086         mmu_parent_walk(sp, mark_unsync);
1087 }
1088
1089 static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
1090 {
1091         unsigned int index;
1092
1093         index = spte - sp->spt;
1094         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1095                 return;
1096         if (sp->unsync_children++)
1097                 return;
1098         kvm_mmu_mark_parents_unsync(sp);
1099 }
1100
1101 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1102                                     struct kvm_mmu_page *sp)
1103 {
1104         int i;
1105
1106         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1107                 sp->spt[i] = shadow_trap_nonpresent_pte;
1108 }
1109
1110 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1111                                struct kvm_mmu_page *sp, bool clear_unsync)
1112 {
1113         return 1;
1114 }
1115
1116 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1117 {
1118 }
1119
1120 #define KVM_PAGE_ARRAY_NR 16
1121
1122 struct kvm_mmu_pages {
1123         struct mmu_page_and_offset {
1124                 struct kvm_mmu_page *sp;
1125                 unsigned int idx;
1126         } page[KVM_PAGE_ARRAY_NR];
1127         unsigned int nr;
1128 };
1129
1130 #define for_each_unsync_children(bitmap, idx)           \
1131         for (idx = find_first_bit(bitmap, 512);         \
1132              idx < 512;                                 \
1133              idx = find_next_bit(bitmap, 512, idx+1))
1134
1135 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1136                          int idx)
1137 {
1138         int i;
1139
1140         if (sp->unsync)
1141                 for (i=0; i < pvec->nr; i++)
1142                         if (pvec->page[i].sp == sp)
1143                                 return 0;
1144
1145         pvec->page[pvec->nr].sp = sp;
1146         pvec->page[pvec->nr].idx = idx;
1147         pvec->nr++;
1148         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1149 }
1150
1151 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1152                            struct kvm_mmu_pages *pvec)
1153 {
1154         int i, ret, nr_unsync_leaf = 0;
1155
1156         for_each_unsync_children(sp->unsync_child_bitmap, i) {
1157                 struct kvm_mmu_page *child;
1158                 u64 ent = sp->spt[i];
1159
1160                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1161                         goto clear_child_bitmap;
1162
1163                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1164
1165                 if (child->unsync_children) {
1166                         if (mmu_pages_add(pvec, child, i))
1167                                 return -ENOSPC;
1168
1169                         ret = __mmu_unsync_walk(child, pvec);
1170                         if (!ret)
1171                                 goto clear_child_bitmap;
1172                         else if (ret > 0)
1173                                 nr_unsync_leaf += ret;
1174                         else
1175                                 return ret;
1176                 } else if (child->unsync) {
1177                         nr_unsync_leaf++;
1178                         if (mmu_pages_add(pvec, child, i))
1179                                 return -ENOSPC;
1180                 } else
1181                          goto clear_child_bitmap;
1182
1183                 continue;
1184
1185 clear_child_bitmap:
1186                 __clear_bit(i, sp->unsync_child_bitmap);
1187                 sp->unsync_children--;
1188                 WARN_ON((int)sp->unsync_children < 0);
1189         }
1190
1191
1192         return nr_unsync_leaf;
1193 }
1194
1195 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1196                            struct kvm_mmu_pages *pvec)
1197 {
1198         if (!sp->unsync_children)
1199                 return 0;
1200
1201         mmu_pages_add(pvec, sp, 0);
1202         return __mmu_unsync_walk(sp, pvec);
1203 }
1204
1205 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1206 {
1207         WARN_ON(!sp->unsync);
1208         trace_kvm_mmu_sync_page(sp);
1209         sp->unsync = 0;
1210         --kvm->stat.mmu_unsync;
1211 }
1212
1213 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1214                                     struct list_head *invalid_list);
1215 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1216                                     struct list_head *invalid_list);
1217
1218 #define for_each_gfn_sp(kvm, sp, gfn, pos)                              \
1219   hlist_for_each_entry(sp, pos,                                         \
1220    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1221         if ((sp)->gfn != (gfn)) {} else
1222
1223 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)               \
1224   hlist_for_each_entry(sp, pos,                                         \
1225    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1226                 if ((sp)->gfn != (gfn) || (sp)->role.direct ||          \
1227                         (sp)->role.invalid) {} else
1228
1229 /* @sp->gfn should be write-protected at the call site */
1230 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1231                            struct list_head *invalid_list, bool clear_unsync)
1232 {
1233         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1234                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1235                 return 1;
1236         }
1237
1238         if (clear_unsync)
1239                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1240
1241         if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
1242                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1243                 return 1;
1244         }
1245
1246         kvm_mmu_flush_tlb(vcpu);
1247         return 0;
1248 }
1249
1250 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1251                                    struct kvm_mmu_page *sp)
1252 {
1253         LIST_HEAD(invalid_list);
1254         int ret;
1255
1256         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1257         if (ret)
1258                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1259
1260         return ret;
1261 }
1262
1263 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1264                          struct list_head *invalid_list)
1265 {
1266         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1267 }
1268
1269 /* @gfn should be write-protected at the call site */
1270 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1271 {
1272         struct kvm_mmu_page *s;
1273         struct hlist_node *node;
1274         LIST_HEAD(invalid_list);
1275         bool flush = false;
1276
1277         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1278                 if (!s->unsync)
1279                         continue;
1280
1281                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1282                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1283                         (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
1284                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1285                         continue;
1286                 }
1287                 kvm_unlink_unsync_page(vcpu->kvm, s);
1288                 flush = true;
1289         }
1290
1291         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1292         if (flush)
1293                 kvm_mmu_flush_tlb(vcpu);
1294 }
1295
1296 struct mmu_page_path {
1297         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1298         unsigned int idx[PT64_ROOT_LEVEL-1];
1299 };
1300
1301 #define for_each_sp(pvec, sp, parents, i)                       \
1302                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1303                         sp = pvec.page[i].sp;                   \
1304                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1305                         i = mmu_pages_next(&pvec, &parents, i))
1306
1307 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1308                           struct mmu_page_path *parents,
1309                           int i)
1310 {
1311         int n;
1312
1313         for (n = i+1; n < pvec->nr; n++) {
1314                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1315
1316                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1317                         parents->idx[0] = pvec->page[n].idx;
1318                         return n;
1319                 }
1320
1321                 parents->parent[sp->role.level-2] = sp;
1322                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1323         }
1324
1325         return n;
1326 }
1327
1328 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1329 {
1330         struct kvm_mmu_page *sp;
1331         unsigned int level = 0;
1332
1333         do {
1334                 unsigned int idx = parents->idx[level];
1335
1336                 sp = parents->parent[level];
1337                 if (!sp)
1338                         return;
1339
1340                 --sp->unsync_children;
1341                 WARN_ON((int)sp->unsync_children < 0);
1342                 __clear_bit(idx, sp->unsync_child_bitmap);
1343                 level++;
1344         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1345 }
1346
1347 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1348                                struct mmu_page_path *parents,
1349                                struct kvm_mmu_pages *pvec)
1350 {
1351         parents->parent[parent->role.level-1] = NULL;
1352         pvec->nr = 0;
1353 }
1354
1355 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1356                               struct kvm_mmu_page *parent)
1357 {
1358         int i;
1359         struct kvm_mmu_page *sp;
1360         struct mmu_page_path parents;
1361         struct kvm_mmu_pages pages;
1362         LIST_HEAD(invalid_list);
1363
1364         kvm_mmu_pages_init(parent, &parents, &pages);
1365         while (mmu_unsync_walk(parent, &pages)) {
1366                 int protected = 0;
1367
1368                 for_each_sp(pages, sp, parents, i)
1369                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1370
1371                 if (protected)
1372                         kvm_flush_remote_tlbs(vcpu->kvm);
1373
1374                 for_each_sp(pages, sp, parents, i) {
1375                         kvm_sync_page(vcpu, sp, &invalid_list);
1376                         mmu_pages_clear_parents(&parents);
1377                 }
1378                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1379                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1380                 kvm_mmu_pages_init(parent, &parents, &pages);
1381         }
1382 }
1383
1384 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1385                                              gfn_t gfn,
1386                                              gva_t gaddr,
1387                                              unsigned level,
1388                                              int direct,
1389                                              unsigned access,
1390                                              u64 *parent_pte)
1391 {
1392         union kvm_mmu_page_role role;
1393         unsigned quadrant;
1394         struct kvm_mmu_page *sp;
1395         struct hlist_node *node;
1396         bool need_sync = false;
1397
1398         role = vcpu->arch.mmu.base_role;
1399         role.level = level;
1400         role.direct = direct;
1401         if (role.direct)
1402                 role.cr4_pae = 0;
1403         role.access = access;
1404         if (!tdp_enabled && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1405                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1406                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1407                 role.quadrant = quadrant;
1408         }
1409         for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1410                 if (!need_sync && sp->unsync)
1411                         need_sync = true;
1412
1413                 if (sp->role.word != role.word)
1414                         continue;
1415
1416                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1417                         break;
1418
1419                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1420                 if (sp->unsync_children) {
1421                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1422                         kvm_mmu_mark_parents_unsync(sp);
1423                 } else if (sp->unsync)
1424                         kvm_mmu_mark_parents_unsync(sp);
1425
1426                 trace_kvm_mmu_get_page(sp, false);
1427                 return sp;
1428         }
1429         ++vcpu->kvm->stat.mmu_cache_miss;
1430         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1431         if (!sp)
1432                 return sp;
1433         sp->gfn = gfn;
1434         sp->role = role;
1435         hlist_add_head(&sp->hash_link,
1436                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1437         if (!direct) {
1438                 if (rmap_write_protect(vcpu->kvm, gfn))
1439                         kvm_flush_remote_tlbs(vcpu->kvm);
1440                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1441                         kvm_sync_pages(vcpu, gfn);
1442
1443                 account_shadowed(vcpu->kvm, gfn);
1444         }
1445         if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1446                 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1447         else
1448                 nonpaging_prefetch_page(vcpu, sp);
1449         trace_kvm_mmu_get_page(sp, true);
1450         return sp;
1451 }
1452
1453 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1454                              struct kvm_vcpu *vcpu, u64 addr)
1455 {
1456         iterator->addr = addr;
1457         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1458         iterator->level = vcpu->arch.mmu.shadow_root_level;
1459         if (iterator->level == PT32E_ROOT_LEVEL) {
1460                 iterator->shadow_addr
1461                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1462                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1463                 --iterator->level;
1464                 if (!iterator->shadow_addr)
1465                         iterator->level = 0;
1466         }
1467 }
1468
1469 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1470 {
1471         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1472                 return false;
1473
1474         if (iterator->level == PT_PAGE_TABLE_LEVEL)
1475                 if (is_large_pte(*iterator->sptep))
1476                         return false;
1477
1478         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1479         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1480         return true;
1481 }
1482
1483 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1484 {
1485         iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1486         --iterator->level;
1487 }
1488
1489 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1490 {
1491         u64 spte;
1492
1493         spte = __pa(sp->spt)
1494                 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1495                 | PT_WRITABLE_MASK | PT_USER_MASK;
1496         __set_spte(sptep, spte);
1497 }
1498
1499 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1500 {
1501         if (is_large_pte(*sptep)) {
1502                 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1503                 kvm_flush_remote_tlbs(vcpu->kvm);
1504         }
1505 }
1506
1507 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1508                                    unsigned direct_access)
1509 {
1510         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1511                 struct kvm_mmu_page *child;
1512
1513                 /*
1514                  * For the direct sp, if the guest pte's dirty bit
1515                  * changed form clean to dirty, it will corrupt the
1516                  * sp's access: allow writable in the read-only sp,
1517                  * so we should update the spte at this point to get
1518                  * a new sp with the correct access.
1519                  */
1520                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1521                 if (child->role.access == direct_access)
1522                         return;
1523
1524                 mmu_page_remove_parent_pte(child, sptep);
1525                 __set_spte(sptep, shadow_trap_nonpresent_pte);
1526                 kvm_flush_remote_tlbs(vcpu->kvm);
1527         }
1528 }
1529
1530 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1531                                          struct kvm_mmu_page *sp)
1532 {
1533         unsigned i;
1534         u64 *pt;
1535         u64 ent;
1536
1537         pt = sp->spt;
1538
1539         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1540                 ent = pt[i];
1541
1542                 if (is_shadow_present_pte(ent)) {
1543                         if (!is_last_spte(ent, sp->role.level)) {
1544                                 ent &= PT64_BASE_ADDR_MASK;
1545                                 mmu_page_remove_parent_pte(page_header(ent),
1546                                                            &pt[i]);
1547                         } else {
1548                                 if (is_large_pte(ent))
1549                                         --kvm->stat.lpages;
1550                                 drop_spte(kvm, &pt[i],
1551                                           shadow_trap_nonpresent_pte);
1552                         }
1553                 }
1554                 pt[i] = shadow_trap_nonpresent_pte;
1555         }
1556 }
1557
1558 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1559 {
1560         mmu_page_remove_parent_pte(sp, parent_pte);
1561 }
1562
1563 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1564 {
1565         int i;
1566         struct kvm_vcpu *vcpu;
1567
1568         kvm_for_each_vcpu(i, vcpu, kvm)
1569                 vcpu->arch.last_pte_updated = NULL;
1570 }
1571
1572 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1573 {
1574         u64 *parent_pte;
1575
1576         while (sp->multimapped || sp->parent_pte) {
1577                 if (!sp->multimapped)
1578                         parent_pte = sp->parent_pte;
1579                 else {
1580                         struct kvm_pte_chain *chain;
1581
1582                         chain = container_of(sp->parent_ptes.first,
1583                                              struct kvm_pte_chain, link);
1584                         parent_pte = chain->parent_ptes[0];
1585                 }
1586                 BUG_ON(!parent_pte);
1587                 kvm_mmu_put_page(sp, parent_pte);
1588                 __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1589         }
1590 }
1591
1592 static int mmu_zap_unsync_children(struct kvm *kvm,
1593                                    struct kvm_mmu_page *parent,
1594                                    struct list_head *invalid_list)
1595 {
1596         int i, zapped = 0;
1597         struct mmu_page_path parents;
1598         struct kvm_mmu_pages pages;
1599
1600         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1601                 return 0;
1602
1603         kvm_mmu_pages_init(parent, &parents, &pages);
1604         while (mmu_unsync_walk(parent, &pages)) {
1605                 struct kvm_mmu_page *sp;
1606
1607                 for_each_sp(pages, sp, parents, i) {
1608                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1609                         mmu_pages_clear_parents(&parents);
1610                         zapped++;
1611                 }
1612                 kvm_mmu_pages_init(parent, &parents, &pages);
1613         }
1614
1615         return zapped;
1616 }
1617
1618 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1619                                     struct list_head *invalid_list)
1620 {
1621         int ret;
1622
1623         trace_kvm_mmu_prepare_zap_page(sp);
1624         ++kvm->stat.mmu_shadow_zapped;
1625         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1626         kvm_mmu_page_unlink_children(kvm, sp);
1627         kvm_mmu_unlink_parents(kvm, sp);
1628         if (!sp->role.invalid && !sp->role.direct)
1629                 unaccount_shadowed(kvm, sp->gfn);
1630         if (sp->unsync)
1631                 kvm_unlink_unsync_page(kvm, sp);
1632         if (!sp->root_count) {
1633                 /* Count self */
1634                 ret++;
1635                 list_move(&sp->link, invalid_list);
1636         } else {
1637                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1638                 kvm_reload_remote_mmus(kvm);
1639         }
1640
1641         sp->role.invalid = 1;
1642         kvm_mmu_reset_last_pte_updated(kvm);
1643         return ret;
1644 }
1645
1646 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1647                                     struct list_head *invalid_list)
1648 {
1649         struct kvm_mmu_page *sp;
1650
1651         if (list_empty(invalid_list))
1652                 return;
1653
1654         kvm_flush_remote_tlbs(kvm);
1655
1656         do {
1657                 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1658                 WARN_ON(!sp->role.invalid || sp->root_count);
1659                 kvm_mmu_free_page(kvm, sp);
1660         } while (!list_empty(invalid_list));
1661
1662 }
1663
1664 /*
1665  * Changing the number of mmu pages allocated to the vm
1666  * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
1667  */
1668 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
1669 {
1670         int used_pages;
1671         LIST_HEAD(invalid_list);
1672
1673         used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
1674         used_pages = max(0, used_pages);
1675
1676         /*
1677          * If we set the number of mmu pages to be smaller be than the
1678          * number of actived pages , we must to free some mmu pages before we
1679          * change the value
1680          */
1681
1682         if (used_pages > kvm_nr_mmu_pages) {
1683                 while (used_pages > kvm_nr_mmu_pages &&
1684                         !list_empty(&kvm->arch.active_mmu_pages)) {
1685                         struct kvm_mmu_page *page;
1686
1687                         page = container_of(kvm->arch.active_mmu_pages.prev,
1688                                             struct kvm_mmu_page, link);
1689                         used_pages -= kvm_mmu_prepare_zap_page(kvm, page,
1690                                                                &invalid_list);
1691                 }
1692                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1693                 kvm_nr_mmu_pages = used_pages;
1694                 kvm->arch.n_free_mmu_pages = 0;
1695         }
1696         else
1697                 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
1698                                          - kvm->arch.n_alloc_mmu_pages;
1699
1700         kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
1701 }
1702
1703 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1704 {
1705         struct kvm_mmu_page *sp;
1706         struct hlist_node *node;
1707         LIST_HEAD(invalid_list);
1708         int r;
1709
1710         pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
1711         r = 0;
1712
1713         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1714                 pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
1715                          sp->role.word);
1716                 r = 1;
1717                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1718         }
1719         kvm_mmu_commit_zap_page(kvm, &invalid_list);
1720         return r;
1721 }
1722
1723 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1724 {
1725         struct kvm_mmu_page *sp;
1726         struct hlist_node *node;
1727         LIST_HEAD(invalid_list);
1728
1729         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1730                 pgprintk("%s: zap %lx %x\n",
1731                          __func__, gfn, sp->role.word);
1732                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1733         }
1734         kvm_mmu_commit_zap_page(kvm, &invalid_list);
1735 }
1736
1737 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1738 {
1739         int slot = memslot_id(kvm, gfn);
1740         struct kvm_mmu_page *sp = page_header(__pa(pte));
1741
1742         __set_bit(slot, sp->slot_bitmap);
1743 }
1744
1745 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1746 {
1747         int i;
1748         u64 *pt = sp->spt;
1749
1750         if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1751                 return;
1752
1753         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1754                 if (pt[i] == shadow_notrap_nonpresent_pte)
1755                         __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1756         }
1757 }
1758
1759 /*
1760  * The function is based on mtrr_type_lookup() in
1761  * arch/x86/kernel/cpu/mtrr/generic.c
1762  */
1763 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1764                          u64 start, u64 end)
1765 {
1766         int i;
1767         u64 base, mask;
1768         u8 prev_match, curr_match;
1769         int num_var_ranges = KVM_NR_VAR_MTRR;
1770
1771         if (!mtrr_state->enabled)
1772                 return 0xFF;
1773
1774         /* Make end inclusive end, instead of exclusive */
1775         end--;
1776
1777         /* Look in fixed ranges. Just return the type as per start */
1778         if (mtrr_state->have_fixed && (start < 0x100000)) {
1779                 int idx;
1780
1781                 if (start < 0x80000) {
1782                         idx = 0;
1783                         idx += (start >> 16);
1784                         return mtrr_state->fixed_ranges[idx];
1785                 } else if (start < 0xC0000) {
1786                         idx = 1 * 8;
1787                         idx += ((start - 0x80000) >> 14);
1788                         return mtrr_state->fixed_ranges[idx];
1789                 } else if (start < 0x1000000) {
1790                         idx = 3 * 8;
1791                         idx += ((start - 0xC0000) >> 12);
1792                         return mtrr_state->fixed_ranges[idx];
1793                 }
1794         }
1795
1796         /*
1797          * Look in variable ranges
1798          * Look of multiple ranges matching this address and pick type
1799          * as per MTRR precedence
1800          */
1801         if (!(mtrr_state->enabled & 2))
1802                 return mtrr_state->def_type;
1803
1804         prev_match = 0xFF;
1805         for (i = 0; i < num_var_ranges; ++i) {
1806                 unsigned short start_state, end_state;
1807
1808                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1809                         continue;
1810
1811                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1812                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1813                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1814                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1815
1816                 start_state = ((start & mask) == (base & mask));
1817                 end_state = ((end & mask) == (base & mask));
1818                 if (start_state != end_state)
1819                         return 0xFE;
1820
1821                 if ((start & mask) != (base & mask))
1822                         continue;
1823
1824                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1825                 if (prev_match == 0xFF) {
1826                         prev_match = curr_match;
1827                         continue;
1828                 }
1829
1830                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1831                     curr_match == MTRR_TYPE_UNCACHABLE)
1832                         return MTRR_TYPE_UNCACHABLE;
1833
1834                 if ((prev_match == MTRR_TYPE_WRBACK &&
1835                      curr_match == MTRR_TYPE_WRTHROUGH) ||
1836                     (prev_match == MTRR_TYPE_WRTHROUGH &&
1837                      curr_match == MTRR_TYPE_WRBACK)) {
1838                         prev_match = MTRR_TYPE_WRTHROUGH;
1839                         curr_match = MTRR_TYPE_WRTHROUGH;
1840                 }
1841
1842                 if (prev_match != curr_match)
1843                         return MTRR_TYPE_UNCACHABLE;
1844         }
1845
1846         if (prev_match != 0xFF)
1847                 return prev_match;
1848
1849         return mtrr_state->def_type;
1850 }
1851
1852 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1853 {
1854         u8 mtrr;
1855
1856         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1857                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
1858         if (mtrr == 0xfe || mtrr == 0xff)
1859                 mtrr = MTRR_TYPE_WRBACK;
1860         return mtrr;
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1863
1864 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1865 {
1866         trace_kvm_mmu_unsync_page(sp);
1867         ++vcpu->kvm->stat.mmu_unsync;
1868         sp->unsync = 1;
1869
1870         kvm_mmu_mark_parents_unsync(sp);
1871         mmu_convert_notrap(sp);
1872 }
1873
1874 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1875 {
1876         struct kvm_mmu_page *s;
1877         struct hlist_node *node;
1878
1879         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1880                 if (s->unsync)
1881                         continue;
1882                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1883                 __kvm_unsync_page(vcpu, s);
1884         }
1885 }
1886
1887 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1888                                   bool can_unsync)
1889 {
1890         struct kvm_mmu_page *s;
1891         struct hlist_node *node;
1892         bool need_unsync = false;
1893
1894         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1895                 if (!can_unsync)
1896                         return 1;
1897
1898                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1899                         return 1;
1900
1901                 if (!need_unsync && !s->unsync) {
1902                         if (!oos_shadow)
1903                                 return 1;
1904                         need_unsync = true;
1905                 }
1906         }
1907         if (need_unsync)
1908                 kvm_unsync_pages(vcpu, gfn);
1909         return 0;
1910 }
1911
1912 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1913                     unsigned pte_access, int user_fault,
1914                     int write_fault, int dirty, int level,
1915                     gfn_t gfn, pfn_t pfn, bool speculative,
1916                     bool can_unsync, bool reset_host_protection)
1917 {
1918         u64 spte;
1919         int ret = 0;
1920
1921         /*
1922          * We don't set the accessed bit, since we sometimes want to see
1923          * whether the guest actually used the pte (in order to detect
1924          * demand paging).
1925          */
1926         spte = shadow_base_present_pte | shadow_dirty_mask;
1927         if (!speculative)
1928                 spte |= shadow_accessed_mask;
1929         if (!dirty)
1930                 pte_access &= ~ACC_WRITE_MASK;
1931         if (pte_access & ACC_EXEC_MASK)
1932                 spte |= shadow_x_mask;
1933         else
1934                 spte |= shadow_nx_mask;
1935         if (pte_access & ACC_USER_MASK)
1936                 spte |= shadow_user_mask;
1937         if (level > PT_PAGE_TABLE_LEVEL)
1938                 spte |= PT_PAGE_SIZE_MASK;
1939         if (tdp_enabled)
1940                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1941                         kvm_is_mmio_pfn(pfn));
1942
1943         if (reset_host_protection)
1944                 spte |= SPTE_HOST_WRITEABLE;
1945
1946         spte |= (u64)pfn << PAGE_SHIFT;
1947
1948         if ((pte_access & ACC_WRITE_MASK)
1949             || (!tdp_enabled && write_fault && !is_write_protection(vcpu)
1950                 && !user_fault)) {
1951
1952                 if (level > PT_PAGE_TABLE_LEVEL &&
1953                     has_wrprotected_page(vcpu->kvm, gfn, level)) {
1954                         ret = 1;
1955                         drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1956                         goto done;
1957                 }
1958
1959                 spte |= PT_WRITABLE_MASK;
1960
1961                 if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
1962                         spte &= ~PT_USER_MASK;
1963
1964                 /*
1965                  * Optimization: for pte sync, if spte was writable the hash
1966                  * lookup is unnecessary (and expensive). Write protection
1967                  * is responsibility of mmu_get_page / kvm_sync_page.
1968                  * Same reasoning can be applied to dirty page accounting.
1969                  */
1970                 if (!can_unsync && is_writable_pte(*sptep))
1971                         goto set_pte;
1972
1973                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
1974                         pgprintk("%s: found shadow page for %lx, marking ro\n",
1975                                  __func__, gfn);
1976                         ret = 1;
1977                         pte_access &= ~ACC_WRITE_MASK;
1978                         if (is_writable_pte(spte))
1979                                 spte &= ~PT_WRITABLE_MASK;
1980                 }
1981         }
1982
1983         if (pte_access & ACC_WRITE_MASK)
1984                 mark_page_dirty(vcpu->kvm, gfn);
1985
1986 set_pte:
1987         update_spte(sptep, spte);
1988 done:
1989         return ret;
1990 }
1991
1992 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1993                          unsigned pt_access, unsigned pte_access,
1994                          int user_fault, int write_fault, int dirty,
1995                          int *ptwrite, int level, gfn_t gfn,
1996                          pfn_t pfn, bool speculative,
1997                          bool reset_host_protection)
1998 {
1999         int was_rmapped = 0;
2000         int was_writable = is_writable_pte(*sptep);
2001         int rmap_count;
2002
2003         pgprintk("%s: spte %llx access %x write_fault %d"
2004                  " user_fault %d gfn %lx\n",
2005                  __func__, *sptep, pt_access,
2006                  write_fault, user_fault, gfn);
2007
2008         if (is_rmap_spte(*sptep)) {
2009                 /*
2010                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2011                  * the parent of the now unreachable PTE.
2012                  */
2013                 if (level > PT_PAGE_TABLE_LEVEL &&
2014                     !is_large_pte(*sptep)) {
2015                         struct kvm_mmu_page *child;
2016                         u64 pte = *sptep;
2017
2018                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2019                         mmu_page_remove_parent_pte(child, sptep);
2020                         __set_spte(sptep, shadow_trap_nonpresent_pte);
2021                         kvm_flush_remote_tlbs(vcpu->kvm);
2022                 } else if (pfn != spte_to_pfn(*sptep)) {
2023                         pgprintk("hfn old %lx new %lx\n",
2024                                  spte_to_pfn(*sptep), pfn);
2025                         drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2026                         kvm_flush_remote_tlbs(vcpu->kvm);
2027                 } else
2028                         was_rmapped = 1;
2029         }
2030
2031         if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2032                       dirty, level, gfn, pfn, speculative, true,
2033                       reset_host_protection)) {
2034                 if (write_fault)
2035                         *ptwrite = 1;
2036                 kvm_mmu_flush_tlb(vcpu);
2037         }
2038
2039         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2040         pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
2041                  is_large_pte(*sptep)? "2MB" : "4kB",
2042                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2043                  *sptep, sptep);
2044         if (!was_rmapped && is_large_pte(*sptep))
2045                 ++vcpu->kvm->stat.lpages;
2046
2047         page_header_update_slot(vcpu->kvm, sptep, gfn);
2048         if (!was_rmapped) {
2049                 rmap_count = rmap_add(vcpu, sptep, gfn);
2050                 kvm_release_pfn_clean(pfn);
2051                 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2052                         rmap_recycle(vcpu, sptep, gfn);
2053         } else {
2054                 if (was_writable)
2055                         kvm_release_pfn_dirty(pfn);
2056                 else
2057                         kvm_release_pfn_clean(pfn);
2058         }
2059         if (speculative) {
2060                 vcpu->arch.last_pte_updated = sptep;
2061                 vcpu->arch.last_pte_gfn = gfn;
2062         }
2063 }
2064
2065 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2066 {
2067 }
2068
2069 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2070                         int level, gfn_t gfn, pfn_t pfn)
2071 {
2072         struct kvm_shadow_walk_iterator iterator;
2073         struct kvm_mmu_page *sp;
2074         int pt_write = 0;
2075         gfn_t pseudo_gfn;
2076
2077         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2078                 if (iterator.level == level) {
2079                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
2080                                      0, write, 1, &pt_write,
2081                                      level, gfn, pfn, false, true);
2082                         ++vcpu->stat.pf_fixed;
2083                         break;
2084                 }
2085
2086                 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2087                         u64 base_addr = iterator.addr;
2088
2089                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2090                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2091                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2092                                               iterator.level - 1,
2093                                               1, ACC_ALL, iterator.sptep);
2094                         if (!sp) {
2095                                 pgprintk("nonpaging_map: ENOMEM\n");
2096                                 kvm_release_pfn_clean(pfn);
2097                                 return -ENOMEM;
2098                         }
2099
2100                         __set_spte(iterator.sptep,
2101                                    __pa(sp->spt)
2102                                    | PT_PRESENT_MASK | PT_WRITABLE_MASK
2103                                    | shadow_user_mask | shadow_x_mask);
2104                 }
2105         }
2106         return pt_write;
2107 }
2108
2109 static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
2110 {
2111         char buf[1];
2112         void __user *hva;
2113         int r;
2114
2115         /* Touch the page, so send SIGBUS */
2116         hva = (void __user *)gfn_to_hva(kvm, gfn);
2117         r = copy_from_user(buf, hva, 1);
2118 }
2119
2120 static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
2121 {
2122         kvm_release_pfn_clean(pfn);
2123         if (is_hwpoison_pfn(pfn)) {
2124                 kvm_send_hwpoison_signal(kvm, gfn);
2125                 return 0;
2126         } else if (is_fault_pfn(pfn))
2127                 return -EFAULT;
2128
2129         return 1;
2130 }
2131
2132 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
2133 {
2134         int r;
2135         int level;
2136         pfn_t pfn;
2137         unsigned long mmu_seq;
2138
2139         level = mapping_level(vcpu, gfn);
2140
2141         /*
2142          * This path builds a PAE pagetable - so we can map 2mb pages at
2143          * maximum. Therefore check if the level is larger than that.
2144          */
2145         if (level > PT_DIRECTORY_LEVEL)
2146                 level = PT_DIRECTORY_LEVEL;
2147
2148         gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2149
2150         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2151         smp_rmb();
2152         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2153
2154         /* mmio */
2155         if (is_error_pfn(pfn))
2156                 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2157
2158         spin_lock(&vcpu->kvm->mmu_lock);
2159         if (mmu_notifier_retry(vcpu, mmu_seq))
2160                 goto out_unlock;
2161         kvm_mmu_free_some_pages(vcpu);
2162         r = __direct_map(vcpu, v, write, level, gfn, pfn);
2163         spin_unlock(&vcpu->kvm->mmu_lock);
2164
2165
2166         return r;
2167
2168 out_unlock:
2169         spin_unlock(&vcpu->kvm->mmu_lock);
2170         kvm_release_pfn_clean(pfn);
2171         return 0;
2172 }
2173
2174
2175 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2176 {
2177         int i;
2178         struct kvm_mmu_page *sp;
2179         LIST_HEAD(invalid_list);
2180
2181         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2182                 return;
2183         spin_lock(&vcpu->kvm->mmu_lock);
2184         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2185                 hpa_t root = vcpu->arch.mmu.root_hpa;
2186
2187                 sp = page_header(root);
2188                 --sp->root_count;
2189                 if (!sp->root_count && sp->role.invalid) {
2190                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2191                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2192                 }
2193                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2194                 spin_unlock(&vcpu->kvm->mmu_lock);
2195                 return;
2196         }
2197         for (i = 0; i < 4; ++i) {
2198                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2199
2200                 if (root) {
2201                         root &= PT64_BASE_ADDR_MASK;
2202                         sp = page_header(root);
2203                         --sp->root_count;
2204                         if (!sp->root_count && sp->role.invalid)
2205                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2206                                                          &invalid_list);
2207                 }
2208                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2209         }
2210         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2211         spin_unlock(&vcpu->kvm->mmu_lock);
2212         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2213 }
2214
2215 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2216 {
2217         int ret = 0;
2218
2219         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2220                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2221                 ret = 1;
2222         }
2223
2224         return ret;
2225 }
2226
2227 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2228 {
2229         int i;
2230         gfn_t root_gfn;
2231         struct kvm_mmu_page *sp;
2232         int direct = 0;
2233         u64 pdptr;
2234
2235         root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
2236
2237         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2238                 hpa_t root = vcpu->arch.mmu.root_hpa;
2239
2240                 ASSERT(!VALID_PAGE(root));
2241                 if (mmu_check_root(vcpu, root_gfn))
2242                         return 1;
2243                 if (tdp_enabled) {
2244                         direct = 1;
2245                         root_gfn = 0;
2246                 }
2247                 spin_lock(&vcpu->kvm->mmu_lock);
2248                 kvm_mmu_free_some_pages(vcpu);
2249                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
2250                                       PT64_ROOT_LEVEL, direct,
2251                                       ACC_ALL, NULL);
2252                 root = __pa(sp->spt);
2253                 ++sp->root_count;
2254                 spin_unlock(&vcpu->kvm->mmu_lock);
2255                 vcpu->arch.mmu.root_hpa = root;
2256                 return 0;
2257         }
2258         direct = !is_paging(vcpu);
2259         for (i = 0; i < 4; ++i) {
2260                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2261
2262                 ASSERT(!VALID_PAGE(root));
2263                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2264                         pdptr = kvm_pdptr_read(vcpu, i);
2265                         if (!is_present_gpte(pdptr)) {
2266                                 vcpu->arch.mmu.pae_root[i] = 0;
2267                                 continue;
2268                         }
2269                         root_gfn = pdptr >> PAGE_SHIFT;
2270                 } else if (vcpu->arch.mmu.root_level == 0)
2271                         root_gfn = 0;
2272                 if (mmu_check_root(vcpu, root_gfn))
2273                         return 1;
2274                 if (tdp_enabled) {
2275                         direct = 1;
2276                         root_gfn = i << 30;
2277                 }
2278                 spin_lock(&vcpu->kvm->mmu_lock);
2279                 kvm_mmu_free_some_pages(vcpu);
2280                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2281                                       PT32_ROOT_LEVEL, direct,
2282                                       ACC_ALL, NULL);
2283                 root = __pa(sp->spt);
2284                 ++sp->root_count;
2285                 spin_unlock(&vcpu->kvm->mmu_lock);
2286
2287                 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2288         }
2289         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2290         return 0;
2291 }
2292
2293 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2294 {
2295         int i;
2296         struct kvm_mmu_page *sp;
2297
2298         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2299                 return;
2300         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2301                 hpa_t root = vcpu->arch.mmu.root_hpa;
2302                 sp = page_header(root);
2303                 mmu_sync_children(vcpu, sp);
2304                 return;
2305         }
2306         for (i = 0; i < 4; ++i) {
2307                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2308
2309                 if (root && VALID_PAGE(root)) {
2310                         root &= PT64_BASE_ADDR_MASK;
2311                         sp = page_header(root);
2312                         mmu_sync_children(vcpu, sp);
2313                 }
2314         }
2315 }
2316
2317 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2318 {
2319         spin_lock(&vcpu->kvm->mmu_lock);
2320         mmu_sync_roots(vcpu);
2321         spin_unlock(&vcpu->kvm->mmu_lock);
2322 }
2323
2324 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2325                                   u32 access, u32 *error)
2326 {
2327         if (error)
2328                 *error = 0;
2329         return vaddr;
2330 }
2331
2332 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2333                                 u32 error_code)
2334 {
2335         gfn_t gfn;
2336         int r;
2337
2338         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2339         r = mmu_topup_memory_caches(vcpu);
2340         if (r)
2341                 return r;
2342
2343         ASSERT(vcpu);
2344         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2345
2346         gfn = gva >> PAGE_SHIFT;
2347
2348         return nonpaging_map(vcpu, gva & PAGE_MASK,
2349                              error_code & PFERR_WRITE_MASK, gfn);
2350 }
2351
2352 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
2353                                 u32 error_code)
2354 {
2355         pfn_t pfn;
2356         int r;
2357         int level;
2358         gfn_t gfn = gpa >> PAGE_SHIFT;
2359         unsigned long mmu_seq;
2360
2361         ASSERT(vcpu);
2362         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2363
2364         r = mmu_topup_memory_caches(vcpu);
2365         if (r)
2366                 return r;
2367
2368         level = mapping_level(vcpu, gfn);
2369
2370         gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2371
2372         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2373         smp_rmb();
2374         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2375         if (is_error_pfn(pfn))
2376                 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2377         spin_lock(&vcpu->kvm->mmu_lock);
2378         if (mmu_notifier_retry(vcpu, mmu_seq))
2379                 goto out_unlock;
2380         kvm_mmu_free_some_pages(vcpu);
2381         r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
2382                          level, gfn, pfn);
2383         spin_unlock(&vcpu->kvm->mmu_lock);
2384
2385         return r;
2386
2387 out_unlock:
2388         spin_unlock(&vcpu->kvm->mmu_lock);
2389         kvm_release_pfn_clean(pfn);
2390         return 0;
2391 }
2392
2393 static void nonpaging_free(struct kvm_vcpu *vcpu)
2394 {
2395         mmu_free_roots(vcpu);
2396 }
2397
2398 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
2399 {
2400         struct kvm_mmu *context = &vcpu->arch.mmu;
2401
2402         context->new_cr3 = nonpaging_new_cr3;
2403         context->page_fault = nonpaging_page_fault;
2404         context->gva_to_gpa = nonpaging_gva_to_gpa;
2405         context->free = nonpaging_free;
2406         context->prefetch_page = nonpaging_prefetch_page;
2407         context->sync_page = nonpaging_sync_page;
2408         context->invlpg = nonpaging_invlpg;
2409         context->root_level = 0;
2410         context->shadow_root_level = PT32E_ROOT_LEVEL;
2411         context->root_hpa = INVALID_PAGE;
2412         return 0;
2413 }
2414
2415 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2416 {
2417         ++vcpu->stat.tlb_flush;
2418         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2419 }
2420
2421 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2422 {
2423         pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
2424         mmu_free_roots(vcpu);
2425 }
2426
2427 static void inject_page_fault(struct kvm_vcpu *vcpu,
2428                               u64 addr,
2429                               u32 err_code)
2430 {
2431         kvm_inject_page_fault(vcpu, addr, err_code);
2432 }
2433
2434 static void paging_free(struct kvm_vcpu *vcpu)
2435 {
2436         nonpaging_free(vcpu);
2437 }
2438
2439 static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
2440 {
2441         int bit7;
2442
2443         bit7 = (gpte >> 7) & 1;
2444         return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
2445 }
2446
2447 #define PTTYPE 64
2448 #include "paging_tmpl.h"
2449 #undef PTTYPE
2450
2451 #define PTTYPE 32
2452 #include "paging_tmpl.h"
2453 #undef PTTYPE
2454
2455 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
2456 {
2457         struct kvm_mmu *context = &vcpu->arch.mmu;
2458         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2459         u64 exb_bit_rsvd = 0;
2460
2461         if (!is_nx(vcpu))
2462                 exb_bit_rsvd = rsvd_bits(63, 63);
2463         switch (level) {
2464         case PT32_ROOT_LEVEL:
2465                 /* no rsvd bits for 2 level 4K page table entries */
2466                 context->rsvd_bits_mask[0][1] = 0;
2467                 context->rsvd_bits_mask[0][0] = 0;
2468                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2469
2470                 if (!is_pse(vcpu)) {
2471                         context->rsvd_bits_mask[1][1] = 0;
2472                         break;
2473                 }
2474
2475                 if (is_cpuid_PSE36())
2476                         /* 36bits PSE 4MB page */
2477                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2478                 else
2479                         /* 32 bits PSE 4MB page */
2480                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2481                 break;
2482         case PT32E_ROOT_LEVEL:
2483                 context->rsvd_bits_mask[0][2] =
2484                         rsvd_bits(maxphyaddr, 63) |
2485                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
2486                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2487                         rsvd_bits(maxphyaddr, 62);      /* PDE */
2488                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2489                         rsvd_bits(maxphyaddr, 62);      /* PTE */
2490                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2491                         rsvd_bits(maxphyaddr, 62) |
2492                         rsvd_bits(13, 20);              /* large page */
2493                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2494                 break;
2495         case PT64_ROOT_LEVEL:
2496                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2497                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2498                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2499                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2500                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2501                         rsvd_bits(maxphyaddr, 51);
2502                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2503                         rsvd_bits(maxphyaddr, 51);
2504                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2505                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2506                         rsvd_bits(maxphyaddr, 51) |
2507                         rsvd_bits(13, 29);
2508                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2509                         rsvd_bits(maxphyaddr, 51) |
2510                         rsvd_bits(13, 20);              /* large page */
2511                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2512                 break;
2513         }
2514 }
2515
2516 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
2517 {
2518         struct kvm_mmu *context = &vcpu->arch.mmu;
2519
2520         ASSERT(is_pae(vcpu));
2521         context->new_cr3 = paging_new_cr3;
2522         context->page_fault = paging64_page_fault;
2523         context->gva_to_gpa = paging64_gva_to_gpa;
2524         context->prefetch_page = paging64_prefetch_page;
2525         context->sync_page = paging64_sync_page;
2526         context->invlpg = paging64_invlpg;
2527         context->free = paging_free;
2528         context->root_level = level;
2529         context->shadow_root_level = level;
2530         context->root_hpa = INVALID_PAGE;
2531         return 0;
2532 }
2533
2534 static int paging64_init_context(struct kvm_vcpu *vcpu)
2535 {
2536         reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
2537         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
2538 }
2539
2540 static int paging32_init_context(struct kvm_vcpu *vcpu)
2541 {
2542         struct kvm_mmu *context = &vcpu->arch.mmu;
2543
2544         reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
2545         context->new_cr3 = paging_new_cr3;
2546         context->page_fault = paging32_page_fault;
2547         context->gva_to_gpa = paging32_gva_to_gpa;
2548         context->free = paging_free;
2549         context->prefetch_page = paging32_prefetch_page;
2550         context->sync_page = paging32_sync_page;
2551         context->invlpg = paging32_invlpg;
2552         context->root_level = PT32_ROOT_LEVEL;
2553         context->shadow_root_level = PT32E_ROOT_LEVEL;
2554         context->root_hpa = INVALID_PAGE;
2555         return 0;
2556 }
2557
2558 static int paging32E_init_context(struct kvm_vcpu *vcpu)
2559 {
2560         reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
2561         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
2562 }
2563
2564 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2565 {
2566         struct kvm_mmu *context = &vcpu->arch.mmu;
2567
2568         context->new_cr3 = nonpaging_new_cr3;
2569         context->page_fault = tdp_page_fault;
2570         context->free = nonpaging_free;
2571         context->prefetch_page = nonpaging_prefetch_page;
2572         context->sync_page = nonpaging_sync_page;
2573         context->invlpg = nonpaging_invlpg;
2574         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2575         context->root_hpa = INVALID_PAGE;
2576
2577         if (!is_paging(vcpu)) {
2578                 context->gva_to_gpa = nonpaging_gva_to_gpa;
2579                 context->root_level = 0;
2580         } else if (is_long_mode(vcpu)) {
2581                 reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
2582                 context->gva_to_gpa = paging64_gva_to_gpa;
2583                 context->root_level = PT64_ROOT_LEVEL;
2584         } else if (is_pae(vcpu)) {
2585                 reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
2586                 context->gva_to_gpa = paging64_gva_to_gpa;
2587                 context->root_level = PT32E_ROOT_LEVEL;
2588         } else {
2589                 reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
2590                 context->gva_to_gpa = paging32_gva_to_gpa;
2591                 context->root_level = PT32_ROOT_LEVEL;
2592         }
2593
2594         return 0;
2595 }
2596
2597 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2598 {
2599         int r;
2600
2601         ASSERT(vcpu);
2602         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2603
2604         if (!is_paging(vcpu))
2605                 r = nonpaging_init_context(vcpu);
2606         else if (is_long_mode(vcpu))
2607                 r = paging64_init_context(vcpu);
2608         else if (is_pae(vcpu))
2609                 r = paging32E_init_context(vcpu);
2610         else
2611                 r = paging32_init_context(vcpu);
2612
2613         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
2614         vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
2615
2616         return r;
2617 }
2618
2619 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
2620 {
2621         vcpu->arch.update_pte.pfn = bad_pfn;
2622
2623         if (tdp_enabled)
2624                 return init_kvm_tdp_mmu(vcpu);
2625         else
2626                 return init_kvm_softmmu(vcpu);
2627 }
2628
2629 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
2630 {
2631         ASSERT(vcpu);
2632         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
2633                 /* mmu.free() should set root_hpa = INVALID_PAGE */
2634                 vcpu->arch.mmu.free(vcpu);
2635 }
2636
2637 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
2638 {
2639         destroy_kvm_mmu(vcpu);
2640         return init_kvm_mmu(vcpu);
2641 }
2642 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
2643
2644 int kvm_mmu_load(struct kvm_vcpu *vcpu)
2645 {
2646         int r;
2647
2648         r = mmu_topup_memory_caches(vcpu);
2649         if (r)
2650                 goto out;
2651         r = mmu_alloc_roots(vcpu);
2652         spin_lock(&vcpu->kvm->mmu_lock);
2653         mmu_sync_roots(vcpu);
2654         spin_unlock(&vcpu->kvm->mmu_lock);
2655         if (r)
2656                 goto out;
2657         /* set_cr3() should ensure TLB has been flushed */
2658         kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
2659 out:
2660         return r;
2661 }
2662 EXPORT_SYMBOL_GPL(kvm_mmu_load);
2663
2664 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
2665 {
2666         mmu_free_roots(vcpu);
2667 }
2668
2669 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
2670                                   struct kvm_mmu_page *sp,
2671                                   u64 *spte)
2672 {
2673         u64 pte;
2674         struct kvm_mmu_page *child;
2675
2676         pte = *spte;
2677         if (is_shadow_present_pte(pte)) {
2678                 if (is_last_spte(pte, sp->role.level))
2679                         drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
2680                 else {
2681                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2682                         mmu_page_remove_parent_pte(child, spte);
2683                 }
2684         }
2685         __set_spte(spte, shadow_trap_nonpresent_pte);
2686         if (is_large_pte(pte))
2687                 --vcpu->kvm->stat.lpages;
2688 }
2689
2690 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
2691                                   struct kvm_mmu_page *sp,
2692                                   u64 *spte,
2693                                   const void *new)
2694 {
2695         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
2696                 ++vcpu->kvm->stat.mmu_pde_zapped;
2697                 return;
2698         }
2699
2700         ++vcpu->kvm->stat.mmu_pte_updated;
2701         if (!sp->role.cr4_pae)
2702                 paging32_update_pte(vcpu, sp, spte, new);
2703         else
2704                 paging64_update_pte(vcpu, sp, spte, new);
2705 }
2706
2707 static bool need_remote_flush(u64 old, u64 new)
2708 {
2709         if (!is_shadow_present_pte(old))
2710                 return false;
2711         if (!is_shadow_present_pte(new))
2712                 return true;
2713         if ((old ^ new) & PT64_BASE_ADDR_MASK)
2714                 return true;
2715         old ^= PT64_NX_MASK;
2716         new ^= PT64_NX_MASK;
2717         return (old & ~new & PT64_PERM_MASK) != 0;
2718 }
2719
2720 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
2721                                     bool remote_flush, bool local_flush)
2722 {
2723         if (zap_page)
2724                 return;
2725
2726         if (remote_flush)
2727                 kvm_flush_remote_tlbs(vcpu->kvm);
2728         else if (local_flush)
2729                 kvm_mmu_flush_tlb(vcpu);
2730 }
2731
2732 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
2733 {
2734         u64 *spte = vcpu->arch.last_pte_updated;
2735
2736         return !!(spte && (*spte & shadow_accessed_mask));
2737 }
2738
2739 static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2740                                           u64 gpte)
2741 {
2742         gfn_t gfn;
2743         pfn_t pfn;
2744
2745         if (!is_present_gpte(gpte))
2746                 return;
2747         gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
2748
2749         vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
2750         smp_rmb();
2751         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2752
2753         if (is_error_pfn(pfn)) {
2754                 kvm_release_pfn_clean(pfn);
2755                 return;
2756         }
2757         vcpu->arch.update_pte.gfn = gfn;
2758         vcpu->arch.update_pte.pfn = pfn;
2759 }
2760
2761 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2762 {
2763         u64 *spte = vcpu->arch.last_pte_updated;
2764
2765         if (spte
2766             && vcpu->arch.last_pte_gfn == gfn
2767             && shadow_accessed_mask
2768             && !(*spte & shadow_accessed_mask)
2769             && is_shadow_present_pte(*spte))
2770                 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
2771 }
2772
2773 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
2774                        const u8 *new, int bytes,
2775                        bool guest_initiated)
2776 {
2777         gfn_t gfn = gpa >> PAGE_SHIFT;
2778         struct kvm_mmu_page *sp;
2779         struct hlist_node *node;
2780         LIST_HEAD(invalid_list);
2781         u64 entry, gentry;
2782         u64 *spte;
2783         unsigned offset = offset_in_page(gpa);
2784         unsigned pte_size;
2785         unsigned page_offset;
2786         unsigned misaligned;
2787         unsigned quadrant;
2788         int level;
2789         int flooded = 0;
2790         int npte;
2791         int r;
2792         int invlpg_counter;
2793         bool remote_flush, local_flush, zap_page;
2794
2795         zap_page = remote_flush = local_flush = false;
2796
2797         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
2798
2799         invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
2800
2801         /*
2802          * Assume that the pte write on a page table of the same type
2803          * as the current vcpu paging mode.  This is nearly always true
2804          * (might be false while changing modes).  Note it is verified later
2805          * by update_pte().
2806          */
2807         if ((is_pae(vcpu) && bytes == 4) || !new) {
2808                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
2809                 if (is_pae(vcpu)) {
2810                         gpa &= ~(gpa_t)7;
2811                         bytes = 8;
2812                 }
2813                 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
2814                 if (r)
2815                         gentry = 0;
2816                 new = (const u8 *)&gentry;
2817         }
2818
2819         switch (bytes) {
2820         case 4:
2821                 gentry = *(const u32 *)new;
2822                 break;
2823         case 8:
2824                 gentry = *(const u64 *)new;
2825                 break;
2826         default:
2827                 gentry = 0;
2828                 break;
2829         }
2830
2831         mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
2832         spin_lock(&vcpu->kvm->mmu_lock);
2833         if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
2834                 gentry = 0;
2835         kvm_mmu_access_page(vcpu, gfn);
2836         kvm_mmu_free_some_pages(vcpu);
2837         ++vcpu->kvm->stat.mmu_pte_write;
2838         kvm_mmu_audit(vcpu, "pre pte write");
2839         if (guest_initiated) {
2840                 if (gfn == vcpu->arch.last_pt_write_gfn
2841                     && !last_updated_pte_accessed(vcpu)) {
2842                         ++vcpu->arch.last_pt_write_count;
2843                         if (vcpu->arch.last_pt_write_count >= 3)
2844                                 flooded = 1;
2845                 } else {
2846                         vcpu->arch.last_pt_write_gfn = gfn;
2847                         vcpu->arch.last_pt_write_count = 1;
2848                         vcpu->arch.last_pte_updated = NULL;
2849                 }
2850         }
2851
2852         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
2853                 pte_size = sp->role.cr4_pae ? 8 : 4;
2854                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
2855                 misaligned |= bytes < 4;
2856                 if (misaligned || flooded) {
2857                         /*
2858                          * Misaligned accesses are too much trouble to fix
2859                          * up; also, they usually indicate a page is not used
2860                          * as a page table.
2861                          *
2862                          * If we're seeing too many writes to a page,
2863                          * it may no longer be a page table, or we may be
2864                          * forking, in which case it is better to unmap the
2865                          * page.
2866                          */
2867                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
2868                                  gpa, bytes, sp->role.word);
2869                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2870                                                      &invalid_list);
2871                         ++vcpu->kvm->stat.mmu_flooded;
2872                         continue;
2873                 }
2874                 page_offset = offset;
2875                 level = sp->role.level;
2876                 npte = 1;
2877                 if (!sp->role.cr4_pae) {
2878                         page_offset <<= 1;      /* 32->64 */
2879                         /*
2880                          * A 32-bit pde maps 4MB while the shadow pdes map
2881                          * only 2MB.  So we need to double the offset again
2882                          * and zap two pdes instead of one.
2883                          */
2884                         if (level == PT32_ROOT_LEVEL) {
2885                                 page_offset &= ~7; /* kill rounding error */
2886                                 page_offset <<= 1;
2887                                 npte = 2;
2888                         }
2889                         quadrant = page_offset >> PAGE_SHIFT;
2890                         page_offset &= ~PAGE_MASK;
2891                         if (quadrant != sp->role.quadrant)
2892                                 continue;
2893                 }
2894                 local_flush = true;
2895                 spte = &sp->spt[page_offset / sizeof(*spte)];
2896                 while (npte--) {
2897                         entry = *spte;
2898                         mmu_pte_write_zap_pte(vcpu, sp, spte);
2899                         if (gentry)
2900                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
2901                         if (!remote_flush && need_remote_flush(entry, *spte))
2902                                 remote_flush = true;
2903                         ++spte;
2904                 }
2905         }
2906         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
2907         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2908         kvm_mmu_audit(vcpu, "post pte write");
2909         spin_unlock(&vcpu->kvm->mmu_lock);
2910         if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
2911                 kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
2912                 vcpu->arch.update_pte.pfn = bad_pfn;
2913         }
2914 }
2915
2916 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2917 {
2918         gpa_t gpa;
2919         int r;
2920
2921         if (tdp_enabled)
2922                 return 0;
2923
2924         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2925
2926         spin_lock(&vcpu->kvm->mmu_lock);
2927         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2928         spin_unlock(&vcpu->kvm->mmu_lock);
2929         return r;
2930 }
2931 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
2932
2933 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
2934 {
2935         int free_pages;
2936         LIST_HEAD(invalid_list);
2937
2938         free_pages = vcpu->kvm->arch.n_free_mmu_pages;
2939         while (free_pages < KVM_REFILL_PAGES &&
2940                !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
2941                 struct kvm_mmu_page *sp;
2942
2943                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
2944                                   struct kvm_mmu_page, link);
2945                 free_pages += kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2946                                                        &invalid_list);
2947                 ++vcpu->kvm->stat.mmu_recycled;
2948         }
2949         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2950 }
2951
2952 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
2953 {
2954         int r;
2955         enum emulation_result er;
2956
2957         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
2958         if (r < 0)
2959                 goto out;
2960
2961         if (!r) {
2962                 r = 1;
2963                 goto out;
2964         }
2965
2966         r = mmu_topup_memory_caches(vcpu);
2967         if (r)
2968                 goto out;
2969
2970         er = emulate_instruction(vcpu, cr2, error_code, 0);
2971
2972         switch (er) {
2973         case EMULATE_DONE:
2974                 return 1;
2975         case EMULATE_DO_MMIO:
2976                 ++vcpu->stat.mmio_exits;
2977                 /* fall through */
2978         case EMULATE_FAIL:
2979                 return 0;
2980         default:
2981                 BUG();
2982         }
2983 out:
2984         return r;
2985 }
2986 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
2987
2988 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
2989 {
2990         vcpu->arch.mmu.invlpg(vcpu, gva);
2991         kvm_mmu_flush_tlb(vcpu);
2992         ++vcpu->stat.invlpg;
2993 }
2994 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
2995
2996 void kvm_enable_tdp(void)
2997 {
2998         tdp_enabled = true;
2999 }
3000 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3001
3002 void kvm_disable_tdp(void)
3003 {
3004         tdp_enabled = false;
3005 }
3006 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3007
3008 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3009 {
3010         free_page((unsigned long)vcpu->arch.mmu.pae_root);
3011 }
3012
3013 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3014 {
3015         struct page *page;
3016         int i;
3017
3018         ASSERT(vcpu);
3019
3020         /*
3021          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3022          * Therefore we need to allocate shadow page tables in the first
3023          * 4GB of memory, which happens to fit the DMA32 zone.
3024          */
3025         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3026         if (!page)
3027                 return -ENOMEM;
3028
3029         vcpu->arch.mmu.pae_root = page_address(page);
3030         for (i = 0; i < 4; ++i)
3031                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3032
3033         return 0;
3034 }
3035
3036 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3037 {
3038         ASSERT(vcpu);
3039         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3040
3041         return alloc_mmu_pages(vcpu);
3042 }
3043
3044 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3045 {
3046         ASSERT(vcpu);
3047         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3048
3049         return init_kvm_mmu(vcpu);
3050 }
3051
3052 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3053 {
3054         ASSERT(vcpu);
3055
3056         destroy_kvm_mmu(vcpu);
3057         free_mmu_pages(vcpu);
3058         mmu_free_memory_caches(vcpu);
3059 }
3060
3061 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3062 {
3063         struct kvm_mmu_page *sp;
3064
3065         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3066                 int i;
3067                 u64 *pt;
3068
3069                 if (!test_bit(slot, sp->slot_bitmap))
3070                         continue;
3071
3072                 pt = sp->spt;
3073                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
3074                         /* avoid RMW */
3075                         if (is_writable_pte(pt[i]))
3076                                 pt[i] &= ~PT_WRITABLE_MASK;
3077         }
3078         kvm_flush_remote_tlbs(kvm);
3079 }
3080
3081 void kvm_mmu_zap_all(struct kvm *kvm)
3082 {
3083         struct kvm_mmu_page *sp, *node;
3084         LIST_HEAD(invalid_list);
3085
3086         spin_lock(&kvm->mmu_lock);
3087 restart:
3088         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3089                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3090                         goto restart;
3091
3092         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3093         spin_unlock(&kvm->mmu_lock);
3094 }
3095
3096 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3097                                                struct list_head *invalid_list)
3098 {
3099         struct kvm_mmu_page *page;
3100
3101         page = container_of(kvm->arch.active_mmu_pages.prev,
3102                             struct kvm_mmu_page, link);
3103         return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3104 }
3105
3106 static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
3107 {
3108         struct kvm *kvm;
3109         struct kvm *kvm_freed = NULL;
3110         int cache_count = 0;
3111
3112         spin_lock(&kvm_lock);
3113
3114         list_for_each_entry(kvm, &vm_list, vm_list) {
3115                 int npages, idx, freed_pages;
3116                 LIST_HEAD(invalid_list);
3117
3118                 idx = srcu_read_lock(&kvm->srcu);
3119                 spin_lock(&kvm->mmu_lock);
3120                 npages = kvm->arch.n_alloc_mmu_pages -
3121                          kvm->arch.n_free_mmu_pages;
3122                 cache_count += npages;
3123                 if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
3124                         freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3125                                                           &invalid_list);
3126                         cache_count -= freed_pages;
3127                         kvm_freed = kvm;
3128                 }
3129                 nr_to_scan--;
3130
3131                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3132                 spin_unlock(&kvm->mmu_lock);
3133                 srcu_read_unlock(&kvm->srcu, idx);
3134         }
3135         if (kvm_freed)
3136                 list_move_tail(&kvm_freed->vm_list, &vm_list);
3137
3138         spin_unlock(&kvm_lock);
3139
3140         return cache_count;
3141 }
3142
3143 static struct shrinker mmu_shrinker = {
3144         .shrink = mmu_shrink,
3145         .seeks = DEFAULT_SEEKS * 10,
3146 };
3147
3148 static void mmu_destroy_caches(void)
3149 {
3150         if (pte_chain_cache)
3151                 kmem_cache_destroy(pte_chain_cache);
3152         if (rmap_desc_cache)
3153                 kmem_cache_destroy(rmap_desc_cache);
3154         if (mmu_page_header_cache)
3155                 kmem_cache_destroy(mmu_page_header_cache);
3156 }
3157
3158 void kvm_mmu_module_exit(void)
3159 {
3160         mmu_destroy_caches();
3161         unregister_shrinker(&mmu_shrinker);
3162 }
3163
3164 int kvm_mmu_module_init(void)
3165 {
3166         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
3167                                             sizeof(struct kvm_pte_chain),
3168                                             0, 0, NULL);
3169         if (!pte_chain_cache)
3170                 goto nomem;
3171         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
3172                                             sizeof(struct kvm_rmap_desc),
3173                                             0, 0, NULL);
3174         if (!rmap_desc_cache)
3175                 goto nomem;
3176
3177         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3178                                                   sizeof(struct kvm_mmu_page),
3179                                                   0, 0, NULL);
3180         if (!mmu_page_header_cache)
3181                 goto nomem;
3182
3183         register_shrinker(&mmu_shrinker);
3184
3185         return 0;
3186
3187 nomem:
3188         mmu_destroy_caches();
3189         return -ENOMEM;
3190 }
3191
3192 /*
3193  * Caculate mmu pages needed for kvm.
3194  */
3195 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3196 {
3197         int i;
3198         unsigned int nr_mmu_pages;
3199         unsigned int  nr_pages = 0;
3200         struct kvm_memslots *slots;
3201
3202         slots = kvm_memslots(kvm);
3203
3204         for (i = 0; i < slots->nmemslots; i++)
3205                 nr_pages += slots->memslots[i].npages;
3206
3207         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3208         nr_mmu_pages = max(nr_mmu_pages,
3209                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3210
3211         return nr_mmu_pages;
3212 }
3213
3214 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3215                                 unsigned len)
3216 {
3217         if (len > buffer->len)
3218                 return NULL;
3219         return buffer->ptr;
3220 }
3221
3222 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3223                                 unsigned len)
3224 {
3225         void *ret;
3226
3227         ret = pv_mmu_peek_buffer(buffer, len);
3228         if (!ret)
3229                 return ret;
3230         buffer->ptr += len;
3231         buffer->len -= len;
3232         buffer->processed += len;
3233         return ret;
3234 }
3235
3236 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3237                              gpa_t addr, gpa_t value)
3238 {
3239         int bytes = 8;
3240         int r;
3241
3242         if (!is_long_mode(vcpu) && !is_pae(vcpu))
3243                 bytes = 4;
3244
3245         r = mmu_topup_memory_caches(vcpu);
3246         if (r)
3247                 return r;
3248
3249         if (!emulator_write_phys(vcpu, addr, &value, bytes))
3250                 return -EFAULT;
3251
3252         return 1;
3253 }
3254
3255 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3256 {
3257         (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
3258         return 1;
3259 }
3260
3261 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3262 {
3263         spin_lock(&vcpu->kvm->mmu_lock);
3264         mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3265         spin_unlock(&vcpu->kvm->mmu_lock);
3266         return 1;
3267 }
3268
3269 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3270                              struct kvm_pv_mmu_op_buffer *buffer)
3271 {
3272         struct kvm_mmu_op_header *header;
3273
3274         header = pv_mmu_peek_buffer(buffer, sizeof *header);
3275         if (!header)
3276                 return 0;
3277         switch (header->op) {
3278         case KVM_MMU_OP_WRITE_PTE: {
3279                 struct kvm_mmu_op_write_pte *wpte;
3280
3281                 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3282                 if (!wpte)
3283                         return 0;
3284                 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3285                                         wpte->pte_val);
3286         }
3287         case KVM_MMU_OP_FLUSH_TLB: {
3288                 struct kvm_mmu_op_flush_tlb *ftlb;
3289
3290                 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3291                 if (!ftlb)
3292                         return 0;
3293                 return kvm_pv_mmu_flush_tlb(vcpu);
3294         }
3295         case KVM_MMU_OP_RELEASE_PT: {
3296                 struct kvm_mmu_op_release_pt *rpt;
3297
3298                 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3299                 if (!rpt)
3300                         return 0;
3301                 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3302         }
3303         default: return 0;
3304         }
3305 }
3306
3307 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3308                   gpa_t addr, unsigned long *ret)
3309 {
3310         int r;
3311         struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3312
3313         buffer->ptr = buffer->buf;
3314         buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3315         buffer->processed = 0;
3316
3317         r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3318         if (r)
3319                 goto out;
3320
3321         while (buffer->len) {
3322                 r = kvm_pv_mmu_op_one(vcpu, buffer);
3323                 if (r < 0)
3324                         goto out;
3325                 if (r == 0)
3326                         break;
3327         }
3328
3329         r = 1;
3330 out:
3331         *ret = buffer->processed;
3332         return r;
3333 }
3334
3335 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3336 {
3337         struct kvm_shadow_walk_iterator iterator;
3338         int nr_sptes = 0;
3339
3340         spin_lock(&vcpu->kvm->mmu_lock);
3341         for_each_shadow_entry(vcpu, addr, iterator) {
3342                 sptes[iterator.level-1] = *iterator.sptep;
3343                 nr_sptes++;
3344                 if (!is_shadow_present_pte(*iterator.sptep))
3345                         break;
3346         }
3347         spin_unlock(&vcpu->kvm->mmu_lock);
3348
3349         return nr_sptes;
3350 }
3351 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3352
3353 #ifdef AUDIT
3354
3355 static const char *audit_msg;
3356
3357 static gva_t canonicalize(gva_t gva)
3358 {
3359 #ifdef CONFIG_X86_64
3360         gva = (long long)(gva << 16) >> 16;
3361 #endif
3362         return gva;
3363 }
3364
3365
3366 typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
3367
3368 static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
3369                             inspect_spte_fn fn)
3370 {
3371         int i;
3372
3373         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3374                 u64 ent = sp->spt[i];
3375
3376                 if (is_shadow_present_pte(ent)) {
3377                         if (!is_last_spte(ent, sp->role.level)) {
3378                                 struct kvm_mmu_page *child;
3379                                 child = page_header(ent & PT64_BASE_ADDR_MASK);
3380                                 __mmu_spte_walk(kvm, child, fn);
3381                         } else
3382                                 fn(kvm, &sp->spt[i]);
3383                 }
3384         }
3385 }
3386
3387 static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
3388 {
3389         int i;
3390         struct kvm_mmu_page *sp;
3391
3392         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3393                 return;
3394         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3395                 hpa_t root = vcpu->arch.mmu.root_hpa;
3396                 sp = page_header(root);
3397                 __mmu_spte_walk(vcpu->kvm, sp, fn);
3398                 return;
3399         }
3400         for (i = 0; i < 4; ++i) {
3401                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3402
3403                 if (root && VALID_PAGE(root)) {
3404                         root &= PT64_BASE_ADDR_MASK;
3405                         sp = page_header(root);
3406                         __mmu_spte_walk(vcpu->kvm, sp, fn);
3407                 }
3408         }
3409         return;
3410 }
3411
3412 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
3413                                 gva_t va, int level)
3414 {
3415         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
3416         int i;
3417         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
3418
3419         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
3420                 u64 ent = pt[i];
3421
3422                 if (ent == shadow_trap_nonpresent_pte)
3423                         continue;
3424
3425                 va = canonicalize(va);
3426                 if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
3427                         audit_mappings_page(vcpu, ent, va, level - 1);
3428                 else {
3429                         gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
3430                         gfn_t gfn = gpa >> PAGE_SHIFT;
3431                         pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
3432                         hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
3433
3434                         if (is_error_pfn(pfn)) {
3435                                 kvm_release_pfn_clean(pfn);
3436                                 continue;
3437                         }
3438
3439                         if (is_shadow_present_pte(ent)
3440                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
3441                                 printk(KERN_ERR "xx audit error: (%s) levels %d"
3442                                        " gva %lx gpa %llx hpa %llx ent %llx %d\n",
3443                                        audit_msg, vcpu->arch.mmu.root_level,
3444                                        va, gpa, hpa, ent,
3445                                        is_shadow_present_pte(ent));
3446                         else if (ent == shadow_notrap_nonpresent_pte
3447                                  && !is_error_hpa(hpa))
3448                                 printk(KERN_ERR "audit: (%s) notrap shadow,"
3449                                        " valid guest gva %lx\n", audit_msg, va);
3450                         kvm_release_pfn_clean(pfn);
3451
3452                 }
3453         }
3454 }
3455
3456 static void audit_mappings(struct kvm_vcpu *vcpu)
3457 {
3458         unsigned i;
3459
3460         if (vcpu->arch.mmu.root_level == 4)
3461                 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
3462         else
3463                 for (i = 0; i < 4; ++i)
3464                         if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
3465                                 audit_mappings_page(vcpu,
3466                                                     vcpu->arch.mmu.pae_root[i],
3467                                                     i << 30,
3468                                                     2);
3469 }
3470
3471 static int count_rmaps(struct kvm_vcpu *vcpu)
3472 {
3473         struct kvm *kvm = vcpu->kvm;
3474         struct kvm_memslots *slots;
3475         int nmaps = 0;
3476         int i, j, k, idx;
3477
3478         idx = srcu_read_lock(&kvm->srcu);
3479         slots = kvm_memslots(kvm);
3480         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
3481                 struct kvm_memory_slot *m = &slots->memslots[i];
3482                 struct kvm_rmap_desc *d;
3483
3484                 for (j = 0; j < m->npages; ++j) {
3485                         unsigned long *rmapp = &m->rmap[j];
3486
3487                         if (!*rmapp)
3488                                 continue;
3489                         if (!(*rmapp & 1)) {
3490                                 ++nmaps;
3491                                 continue;
3492                         }
3493                         d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
3494                         while (d) {
3495                                 for (k = 0; k < RMAP_EXT; ++k)
3496                                         if (d->sptes[k])
3497                                                 ++nmaps;
3498                                         else
3499                                                 break;
3500                                 d = d->more;
3501                         }
3502                 }
3503         }
3504         srcu_read_unlock(&kvm->srcu, idx);
3505         return nmaps;
3506 }
3507
3508 void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
3509 {
3510         unsigned long *rmapp;
3511         struct kvm_mmu_page *rev_sp;
3512         gfn_t gfn;
3513
3514         if (is_writable_pte(*sptep)) {
3515                 rev_sp = page_header(__pa(sptep));
3516                 gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
3517
3518                 if (!gfn_to_memslot(kvm, gfn)) {
3519                         if (!printk_ratelimit())
3520                                 return;
3521                         printk(KERN_ERR "%s: no memslot for gfn %ld\n",
3522                                          audit_msg, gfn);
3523                         printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
3524                                audit_msg, (long int)(sptep - rev_sp->spt),
3525                                         rev_sp->gfn);
3526                         dump_stack();
3527                         return;
3528                 }
3529
3530                 rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level);
3531                 if (!*rmapp) {
3532                         if (!printk_ratelimit())
3533                                 return;
3534                         printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
3535                                          audit_msg, *sptep);
3536                         dump_stack();
3537                 }
3538         }
3539
3540 }
3541
3542 void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
3543 {
3544         mmu_spte_walk(vcpu, inspect_spte_has_rmap);
3545 }
3546
3547 static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
3548 {
3549         struct kvm_mmu_page *sp;
3550         int i;
3551
3552         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3553                 u64 *pt = sp->spt;
3554
3555                 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
3556                         continue;
3557
3558                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3559                         u64 ent = pt[i];
3560
3561                         if (!(ent & PT_PRESENT_MASK))
3562                                 continue;
3563                         if (!is_writable_pte(ent))
3564                                 continue;
3565                         inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
3566                 }
3567         }
3568         return;
3569 }
3570
3571 static void audit_rmap(struct kvm_vcpu *vcpu)
3572 {
3573         check_writable_mappings_rmap(vcpu);
3574         count_rmaps(vcpu);
3575 }
3576
3577 static void audit_write_protection(struct kvm_vcpu *vcpu)
3578 {
3579         struct kvm_mmu_page *sp;
3580         struct kvm_memory_slot *slot;
3581         unsigned long *rmapp;
3582         u64 *spte;
3583         gfn_t gfn;
3584
3585         list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
3586                 if (sp->role.direct)
3587                         continue;
3588                 if (sp->unsync)
3589                         continue;
3590
3591                 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
3592                 rmapp = &slot->rmap[gfn - slot->base_gfn];
3593
3594                 spte = rmap_next(vcpu->kvm, rmapp, NULL);
3595                 while (spte) {
3596                         if (is_writable_pte(*spte))
3597                                 printk(KERN_ERR "%s: (%s) shadow page has "
3598                                 "writable mappings: gfn %lx role %x\n",
3599                                __func__, audit_msg, sp->gfn,
3600                                sp->role.word);
3601                         spte = rmap_next(vcpu->kvm, rmapp, spte);
3602                 }
3603         }
3604 }
3605
3606 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
3607 {
3608         int olddbg = dbg;
3609
3610         dbg = 0;
3611         audit_msg = msg;
3612         audit_rmap(vcpu);
3613         audit_write_protection(vcpu);
3614         if (strcmp("pre pte write", audit_msg) != 0)
3615                 audit_mappings(vcpu);
3616         audit_writable_sptes_have_rmaps(vcpu);
3617         dbg = olddbg;
3618 }
3619
3620 #endif