]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/mtd/nand/nand_base.c
mtd: fix almost all checkpatch warnings in nand_base.c
[mv-sheeva.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *      Additional technical information is available on
10  *      http://www.linux-mtd.infradead.org/doc/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *      David Woodhouse for adding multichip support
17  *
18  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *      rework for 2K page size chips
20  *
21  *  TODO:
22  *      Enable cached programming for 2k page size chips
23  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *      if we have HW ecc support.
25  *      The AG-AND chips have nice features for speed improvement,
26  *      which are not supported yet. Read / program 4 pages in one go.
27  *      BBT table is not serialized, has to be fixed
28  *
29  * This program is free software; you can redistribute it and/or modify
30  * it under the terms of the GNU General Public License version 2 as
31  * published by the Free Software Foundation.
32  *
33  */
34
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
48 #include <linux/io.h>
49
50 #ifdef CONFIG_MTD_PARTITIONS
51 #include <linux/mtd/partitions.h>
52 #endif
53
54 /* Define default oob placement schemes for large and small page devices */
55 static struct nand_ecclayout nand_oob_8 = {
56         .eccbytes = 3,
57         .eccpos = {0, 1, 2},
58         .oobfree = {
59                 {.offset = 3,
60                  .length = 2},
61                 {.offset = 6,
62                  .length = 2} }
63 };
64
65 static struct nand_ecclayout nand_oob_16 = {
66         .eccbytes = 6,
67         .eccpos = {0, 1, 2, 3, 6, 7},
68         .oobfree = {
69                 {.offset = 8,
70                  . length = 8} }
71 };
72
73 static struct nand_ecclayout nand_oob_64 = {
74         .eccbytes = 24,
75         .eccpos = {
76                    40, 41, 42, 43, 44, 45, 46, 47,
77                    48, 49, 50, 51, 52, 53, 54, 55,
78                    56, 57, 58, 59, 60, 61, 62, 63},
79         .oobfree = {
80                 {.offset = 2,
81                  .length = 38} }
82 };
83
84 static struct nand_ecclayout nand_oob_128 = {
85         .eccbytes = 48,
86         .eccpos = {
87                    80, 81, 82, 83, 84, 85, 86, 87,
88                    88, 89, 90, 91, 92, 93, 94, 95,
89                    96, 97, 98, 99, 100, 101, 102, 103,
90                    104, 105, 106, 107, 108, 109, 110, 111,
91                    112, 113, 114, 115, 116, 117, 118, 119,
92                    120, 121, 122, 123, 124, 125, 126, 127},
93         .oobfree = {
94                 {.offset = 2,
95                  .length = 78} }
96 };
97
98 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
99                            int new_state);
100
101 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
102                              struct mtd_oob_ops *ops);
103
104 /*
105  * For devices which display every fart in the system on a separate LED. Is
106  * compiled away when LED support is disabled.
107  */
108 DEFINE_LED_TRIGGER(nand_led_trigger);
109
110 static int check_offs_len(struct mtd_info *mtd,
111                                         loff_t ofs, uint64_t len)
112 {
113         struct nand_chip *chip = mtd->priv;
114         int ret = 0;
115
116         /* Start address must align on block boundary */
117         if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
118                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
119                 ret = -EINVAL;
120         }
121
122         /* Length must align on block boundary */
123         if (len & ((1 << chip->phys_erase_shift) - 1)) {
124                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
125                                         __func__);
126                 ret = -EINVAL;
127         }
128
129         /* Do not allow past end of device */
130         if (ofs + len > mtd->size) {
131                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
132                                         __func__);
133                 ret = -EINVAL;
134         }
135
136         return ret;
137 }
138
139 /**
140  * nand_release_device - [GENERIC] release chip
141  * @mtd:        MTD device structure
142  *
143  * Deselect, release chip lock and wake up anyone waiting on the device
144  */
145 static void nand_release_device(struct mtd_info *mtd)
146 {
147         struct nand_chip *chip = mtd->priv;
148
149         /* De-select the NAND device */
150         chip->select_chip(mtd, -1);
151
152         /* Release the controller and the chip */
153         spin_lock(&chip->controller->lock);
154         chip->controller->active = NULL;
155         chip->state = FL_READY;
156         wake_up(&chip->controller->wq);
157         spin_unlock(&chip->controller->lock);
158 }
159
160 /**
161  * nand_read_byte - [DEFAULT] read one byte from the chip
162  * @mtd:        MTD device structure
163  *
164  * Default read function for 8bit buswith
165  */
166 static uint8_t nand_read_byte(struct mtd_info *mtd)
167 {
168         struct nand_chip *chip = mtd->priv;
169         return readb(chip->IO_ADDR_R);
170 }
171
172 /**
173  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
174  * @mtd:        MTD device structure
175  *
176  * Default read function for 16bit buswith with
177  * endianess conversion
178  */
179 static uint8_t nand_read_byte16(struct mtd_info *mtd)
180 {
181         struct nand_chip *chip = mtd->priv;
182         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
183 }
184
185 /**
186  * nand_read_word - [DEFAULT] read one word from the chip
187  * @mtd:        MTD device structure
188  *
189  * Default read function for 16bit buswith without
190  * endianess conversion
191  */
192 static u16 nand_read_word(struct mtd_info *mtd)
193 {
194         struct nand_chip *chip = mtd->priv;
195         return readw(chip->IO_ADDR_R);
196 }
197
198 /**
199  * nand_select_chip - [DEFAULT] control CE line
200  * @mtd:        MTD device structure
201  * @chipnr:     chipnumber to select, -1 for deselect
202  *
203  * Default select function for 1 chip devices.
204  */
205 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
206 {
207         struct nand_chip *chip = mtd->priv;
208
209         switch (chipnr) {
210         case -1:
211                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
212                 break;
213         case 0:
214                 break;
215
216         default:
217                 BUG();
218         }
219 }
220
221 /**
222  * nand_write_buf - [DEFAULT] write buffer to chip
223  * @mtd:        MTD device structure
224  * @buf:        data buffer
225  * @len:        number of bytes to write
226  *
227  * Default write function for 8bit buswith
228  */
229 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
230 {
231         int i;
232         struct nand_chip *chip = mtd->priv;
233
234         for (i = 0; i < len; i++)
235                 writeb(buf[i], chip->IO_ADDR_W);
236 }
237
238 /**
239  * nand_read_buf - [DEFAULT] read chip data into buffer
240  * @mtd:        MTD device structure
241  * @buf:        buffer to store date
242  * @len:        number of bytes to read
243  *
244  * Default read function for 8bit buswith
245  */
246 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
247 {
248         int i;
249         struct nand_chip *chip = mtd->priv;
250
251         for (i = 0; i < len; i++)
252                 buf[i] = readb(chip->IO_ADDR_R);
253 }
254
255 /**
256  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
257  * @mtd:        MTD device structure
258  * @buf:        buffer containing the data to compare
259  * @len:        number of bytes to compare
260  *
261  * Default verify function for 8bit buswith
262  */
263 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
264 {
265         int i;
266         struct nand_chip *chip = mtd->priv;
267
268         for (i = 0; i < len; i++)
269                 if (buf[i] != readb(chip->IO_ADDR_R))
270                         return -EFAULT;
271         return 0;
272 }
273
274 /**
275  * nand_write_buf16 - [DEFAULT] write buffer to chip
276  * @mtd:        MTD device structure
277  * @buf:        data buffer
278  * @len:        number of bytes to write
279  *
280  * Default write function for 16bit buswith
281  */
282 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
283 {
284         int i;
285         struct nand_chip *chip = mtd->priv;
286         u16 *p = (u16 *) buf;
287         len >>= 1;
288
289         for (i = 0; i < len; i++)
290                 writew(p[i], chip->IO_ADDR_W);
291
292 }
293
294 /**
295  * nand_read_buf16 - [DEFAULT] read chip data into buffer
296  * @mtd:        MTD device structure
297  * @buf:        buffer to store date
298  * @len:        number of bytes to read
299  *
300  * Default read function for 16bit buswith
301  */
302 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
303 {
304         int i;
305         struct nand_chip *chip = mtd->priv;
306         u16 *p = (u16 *) buf;
307         len >>= 1;
308
309         for (i = 0; i < len; i++)
310                 p[i] = readw(chip->IO_ADDR_R);
311 }
312
313 /**
314  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
315  * @mtd:        MTD device structure
316  * @buf:        buffer containing the data to compare
317  * @len:        number of bytes to compare
318  *
319  * Default verify function for 16bit buswith
320  */
321 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
322 {
323         int i;
324         struct nand_chip *chip = mtd->priv;
325         u16 *p = (u16 *) buf;
326         len >>= 1;
327
328         for (i = 0; i < len; i++)
329                 if (p[i] != readw(chip->IO_ADDR_R))
330                         return -EFAULT;
331
332         return 0;
333 }
334
335 /**
336  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
337  * @mtd:        MTD device structure
338  * @ofs:        offset from device start
339  * @getchip:    0, if the chip is already selected
340  *
341  * Check, if the block is bad.
342  */
343 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
344 {
345         int page, chipnr, res = 0;
346         struct nand_chip *chip = mtd->priv;
347         u16 bad;
348
349         if (chip->options & NAND_BBT_SCANLASTPAGE)
350                 ofs += mtd->erasesize - mtd->writesize;
351
352         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
353
354         if (getchip) {
355                 chipnr = (int)(ofs >> chip->chip_shift);
356
357                 nand_get_device(chip, mtd, FL_READING);
358
359                 /* Select the NAND device */
360                 chip->select_chip(mtd, chipnr);
361         }
362
363         if (chip->options & NAND_BUSWIDTH_16) {
364                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
365                               page);
366                 bad = cpu_to_le16(chip->read_word(mtd));
367                 if (chip->badblockpos & 0x1)
368                         bad >>= 8;
369                 else
370                         bad &= 0xFF;
371         } else {
372                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
373                 bad = chip->read_byte(mtd);
374         }
375
376         if (likely(chip->badblockbits == 8))
377                 res = bad != 0xFF;
378         else
379                 res = hweight8(bad) < chip->badblockbits;
380
381         if (getchip)
382                 nand_release_device(mtd);
383
384         return res;
385 }
386
387 /**
388  * nand_default_block_markbad - [DEFAULT] mark a block bad
389  * @mtd:        MTD device structure
390  * @ofs:        offset from device start
391  *
392  * This is the default implementation, which can be overridden by
393  * a hardware specific driver.
394 */
395 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
396 {
397         struct nand_chip *chip = mtd->priv;
398         uint8_t buf[2] = { 0, 0 };
399         int block, ret, i = 0;
400
401         if (chip->options & NAND_BBT_SCANLASTPAGE)
402                 ofs += mtd->erasesize - mtd->writesize;
403
404         /* Get block number */
405         block = (int)(ofs >> chip->bbt_erase_shift);
406         if (chip->bbt)
407                 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
408
409         /* Do we have a flash based bad block table ? */
410         if (chip->options & NAND_USE_FLASH_BBT)
411                 ret = nand_update_bbt(mtd, ofs);
412         else {
413                 nand_get_device(chip, mtd, FL_WRITING);
414
415                 /* Write to first two pages and to byte 1 and 6 if necessary.
416                  * If we write to more than one location, the first error
417                  * encountered quits the procedure. We write two bytes per
418                  * location, so we dont have to mess with 16 bit access.
419                  */
420                 do {
421                         chip->ops.len = chip->ops.ooblen = 2;
422                         chip->ops.datbuf = NULL;
423                         chip->ops.oobbuf = buf;
424                         chip->ops.ooboffs = chip->badblockpos & ~0x01;
425
426                         ret = nand_do_write_oob(mtd, ofs, &chip->ops);
427
428                         if (!ret && (chip->options & NAND_BBT_SCANBYTE1AND6)) {
429                                 chip->ops.ooboffs = NAND_SMALL_BADBLOCK_POS
430                                         & ~0x01;
431                                 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
432                         }
433                         i++;
434                         ofs += mtd->writesize;
435                 } while (!ret && (chip->options & NAND_BBT_SCAN2NDPAGE) &&
436                                 i < 2);
437
438                 nand_release_device(mtd);
439         }
440         if (!ret)
441                 mtd->ecc_stats.badblocks++;
442
443         return ret;
444 }
445
446 /**
447  * nand_check_wp - [GENERIC] check if the chip is write protected
448  * @mtd:        MTD device structure
449  * Check, if the device is write protected
450  *
451  * The function expects, that the device is already selected
452  */
453 static int nand_check_wp(struct mtd_info *mtd)
454 {
455         struct nand_chip *chip = mtd->priv;
456
457         /* broken xD cards report WP despite being writable */
458         if (chip->options & NAND_BROKEN_XD)
459                 return 0;
460
461         /* Check the WP bit */
462         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
463         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
464 }
465
466 /**
467  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
468  * @mtd:        MTD device structure
469  * @ofs:        offset from device start
470  * @getchip:    0, if the chip is already selected
471  * @allowbbt:   1, if its allowed to access the bbt area
472  *
473  * Check, if the block is bad. Either by reading the bad block table or
474  * calling of the scan function.
475  */
476 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
477                                int allowbbt)
478 {
479         struct nand_chip *chip = mtd->priv;
480
481         if (!chip->bbt)
482                 return chip->block_bad(mtd, ofs, getchip);
483
484         /* Return info from the table */
485         return nand_isbad_bbt(mtd, ofs, allowbbt);
486 }
487
488 /**
489  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
490  * @mtd:        MTD device structure
491  * @timeo:      Timeout
492  *
493  * Helper function for nand_wait_ready used when needing to wait in interrupt
494  * context.
495  */
496 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
497 {
498         struct nand_chip *chip = mtd->priv;
499         int i;
500
501         /* Wait for the device to get ready */
502         for (i = 0; i < timeo; i++) {
503                 if (chip->dev_ready(mtd))
504                         break;
505                 touch_softlockup_watchdog();
506                 mdelay(1);
507         }
508 }
509
510 /*
511  * Wait for the ready pin, after a command
512  * The timeout is catched later.
513  */
514 void nand_wait_ready(struct mtd_info *mtd)
515 {
516         struct nand_chip *chip = mtd->priv;
517         unsigned long timeo = jiffies + 2;
518
519         /* 400ms timeout */
520         if (in_interrupt() || oops_in_progress)
521                 return panic_nand_wait_ready(mtd, 400);
522
523         led_trigger_event(nand_led_trigger, LED_FULL);
524         /* wait until command is processed or timeout occures */
525         do {
526                 if (chip->dev_ready(mtd))
527                         break;
528                 touch_softlockup_watchdog();
529         } while (time_before(jiffies, timeo));
530         led_trigger_event(nand_led_trigger, LED_OFF);
531 }
532 EXPORT_SYMBOL_GPL(nand_wait_ready);
533
534 /**
535  * nand_command - [DEFAULT] Send command to NAND device
536  * @mtd:        MTD device structure
537  * @command:    the command to be sent
538  * @column:     the column address for this command, -1 if none
539  * @page_addr:  the page address for this command, -1 if none
540  *
541  * Send command to NAND device. This function is used for small page
542  * devices (256/512 Bytes per page)
543  */
544 static void nand_command(struct mtd_info *mtd, unsigned int command,
545                          int column, int page_addr)
546 {
547         register struct nand_chip *chip = mtd->priv;
548         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
549
550         /*
551          * Write out the command to the device.
552          */
553         if (command == NAND_CMD_SEQIN) {
554                 int readcmd;
555
556                 if (column >= mtd->writesize) {
557                         /* OOB area */
558                         column -= mtd->writesize;
559                         readcmd = NAND_CMD_READOOB;
560                 } else if (column < 256) {
561                         /* First 256 bytes --> READ0 */
562                         readcmd = NAND_CMD_READ0;
563                 } else {
564                         column -= 256;
565                         readcmd = NAND_CMD_READ1;
566                 }
567                 chip->cmd_ctrl(mtd, readcmd, ctrl);
568                 ctrl &= ~NAND_CTRL_CHANGE;
569         }
570         chip->cmd_ctrl(mtd, command, ctrl);
571
572         /*
573          * Address cycle, when necessary
574          */
575         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
576         /* Serially input address */
577         if (column != -1) {
578                 /* Adjust columns for 16 bit buswidth */
579                 if (chip->options & NAND_BUSWIDTH_16)
580                         column >>= 1;
581                 chip->cmd_ctrl(mtd, column, ctrl);
582                 ctrl &= ~NAND_CTRL_CHANGE;
583         }
584         if (page_addr != -1) {
585                 chip->cmd_ctrl(mtd, page_addr, ctrl);
586                 ctrl &= ~NAND_CTRL_CHANGE;
587                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
588                 /* One more address cycle for devices > 32MiB */
589                 if (chip->chipsize > (32 << 20))
590                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
591         }
592         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
593
594         /*
595          * program and erase have their own busy handlers
596          * status and sequential in needs no delay
597          */
598         switch (command) {
599
600         case NAND_CMD_PAGEPROG:
601         case NAND_CMD_ERASE1:
602         case NAND_CMD_ERASE2:
603         case NAND_CMD_SEQIN:
604         case NAND_CMD_STATUS:
605                 return;
606
607         case NAND_CMD_RESET:
608                 if (chip->dev_ready)
609                         break;
610                 udelay(chip->chip_delay);
611                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
612                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
613                 chip->cmd_ctrl(mtd,
614                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
615                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
616                                 ;
617                 return;
618
619                 /* This applies to read commands */
620         default:
621                 /*
622                  * If we don't have access to the busy pin, we apply the given
623                  * command delay
624                  */
625                 if (!chip->dev_ready) {
626                         udelay(chip->chip_delay);
627                         return;
628                 }
629         }
630         /* Apply this short delay always to ensure that we do wait tWB in
631          * any case on any machine. */
632         ndelay(100);
633
634         nand_wait_ready(mtd);
635 }
636
637 /**
638  * nand_command_lp - [DEFAULT] Send command to NAND large page device
639  * @mtd:        MTD device structure
640  * @command:    the command to be sent
641  * @column:     the column address for this command, -1 if none
642  * @page_addr:  the page address for this command, -1 if none
643  *
644  * Send command to NAND device. This is the version for the new large page
645  * devices We dont have the separate regions as we have in the small page
646  * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
647  */
648 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
649                             int column, int page_addr)
650 {
651         register struct nand_chip *chip = mtd->priv;
652
653         /* Emulate NAND_CMD_READOOB */
654         if (command == NAND_CMD_READOOB) {
655                 column += mtd->writesize;
656                 command = NAND_CMD_READ0;
657         }
658
659         /* Command latch cycle */
660         chip->cmd_ctrl(mtd, command & 0xff,
661                        NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
662
663         if (column != -1 || page_addr != -1) {
664                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
665
666                 /* Serially input address */
667                 if (column != -1) {
668                         /* Adjust columns for 16 bit buswidth */
669                         if (chip->options & NAND_BUSWIDTH_16)
670                                 column >>= 1;
671                         chip->cmd_ctrl(mtd, column, ctrl);
672                         ctrl &= ~NAND_CTRL_CHANGE;
673                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
674                 }
675                 if (page_addr != -1) {
676                         chip->cmd_ctrl(mtd, page_addr, ctrl);
677                         chip->cmd_ctrl(mtd, page_addr >> 8,
678                                        NAND_NCE | NAND_ALE);
679                         /* One more address cycle for devices > 128MiB */
680                         if (chip->chipsize > (128 << 20))
681                                 chip->cmd_ctrl(mtd, page_addr >> 16,
682                                                NAND_NCE | NAND_ALE);
683                 }
684         }
685         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
686
687         /*
688          * program and erase have their own busy handlers
689          * status, sequential in, and deplete1 need no delay
690          */
691         switch (command) {
692
693         case NAND_CMD_CACHEDPROG:
694         case NAND_CMD_PAGEPROG:
695         case NAND_CMD_ERASE1:
696         case NAND_CMD_ERASE2:
697         case NAND_CMD_SEQIN:
698         case NAND_CMD_RNDIN:
699         case NAND_CMD_STATUS:
700         case NAND_CMD_DEPLETE1:
701                 return;
702
703                 /*
704                  * read error status commands require only a short delay
705                  */
706         case NAND_CMD_STATUS_ERROR:
707         case NAND_CMD_STATUS_ERROR0:
708         case NAND_CMD_STATUS_ERROR1:
709         case NAND_CMD_STATUS_ERROR2:
710         case NAND_CMD_STATUS_ERROR3:
711                 udelay(chip->chip_delay);
712                 return;
713
714         case NAND_CMD_RESET:
715                 if (chip->dev_ready)
716                         break;
717                 udelay(chip->chip_delay);
718                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
719                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
720                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
721                                NAND_NCE | NAND_CTRL_CHANGE);
722                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
723                                 ;
724                 return;
725
726         case NAND_CMD_RNDOUT:
727                 /* No ready / busy check necessary */
728                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
729                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
730                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
731                                NAND_NCE | NAND_CTRL_CHANGE);
732                 return;
733
734         case NAND_CMD_READ0:
735                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
736                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
737                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
738                                NAND_NCE | NAND_CTRL_CHANGE);
739
740                 /* This applies to read commands */
741         default:
742                 /*
743                  * If we don't have access to the busy pin, we apply the given
744                  * command delay
745                  */
746                 if (!chip->dev_ready) {
747                         udelay(chip->chip_delay);
748                         return;
749                 }
750         }
751
752         /* Apply this short delay always to ensure that we do wait tWB in
753          * any case on any machine. */
754         ndelay(100);
755
756         nand_wait_ready(mtd);
757 }
758
759 /**
760  * panic_nand_get_device - [GENERIC] Get chip for selected access
761  * @chip:       the nand chip descriptor
762  * @mtd:        MTD device structure
763  * @new_state:  the state which is requested
764  *
765  * Used when in panic, no locks are taken.
766  */
767 static void panic_nand_get_device(struct nand_chip *chip,
768                       struct mtd_info *mtd, int new_state)
769 {
770         /* Hardware controller shared among independend devices */
771         chip->controller->active = chip;
772         chip->state = new_state;
773 }
774
775 /**
776  * nand_get_device - [GENERIC] Get chip for selected access
777  * @chip:       the nand chip descriptor
778  * @mtd:        MTD device structure
779  * @new_state:  the state which is requested
780  *
781  * Get the device and lock it for exclusive access
782  */
783 static int
784 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
785 {
786         spinlock_t *lock = &chip->controller->lock;
787         wait_queue_head_t *wq = &chip->controller->wq;
788         DECLARE_WAITQUEUE(wait, current);
789 retry:
790         spin_lock(lock);
791
792         /* Hardware controller shared among independent devices */
793         if (!chip->controller->active)
794                 chip->controller->active = chip;
795
796         if (chip->controller->active == chip && chip->state == FL_READY) {
797                 chip->state = new_state;
798                 spin_unlock(lock);
799                 return 0;
800         }
801         if (new_state == FL_PM_SUSPENDED) {
802                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
803                         chip->state = FL_PM_SUSPENDED;
804                         spin_unlock(lock);
805                         return 0;
806                 }
807         }
808         set_current_state(TASK_UNINTERRUPTIBLE);
809         add_wait_queue(wq, &wait);
810         spin_unlock(lock);
811         schedule();
812         remove_wait_queue(wq, &wait);
813         goto retry;
814 }
815
816 /**
817  * panic_nand_wait - [GENERIC]  wait until the command is done
818  * @mtd:        MTD device structure
819  * @chip:       NAND chip structure
820  * @timeo:      Timeout
821  *
822  * Wait for command done. This is a helper function for nand_wait used when
823  * we are in interrupt context. May happen when in panic and trying to write
824  * an oops trough mtdoops.
825  */
826 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
827                             unsigned long timeo)
828 {
829         int i;
830         for (i = 0; i < timeo; i++) {
831                 if (chip->dev_ready) {
832                         if (chip->dev_ready(mtd))
833                                 break;
834                 } else {
835                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
836                                 break;
837                 }
838                 mdelay(1);
839         }
840 }
841
842 /**
843  * nand_wait - [DEFAULT]  wait until the command is done
844  * @mtd:        MTD device structure
845  * @chip:       NAND chip structure
846  *
847  * Wait for command done. This applies to erase and program only
848  * Erase can take up to 400ms and program up to 20ms according to
849  * general NAND and SmartMedia specs
850  */
851 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
852 {
853
854         unsigned long timeo = jiffies;
855         int status, state = chip->state;
856
857         if (state == FL_ERASING)
858                 timeo += (HZ * 400) / 1000;
859         else
860                 timeo += (HZ * 20) / 1000;
861
862         led_trigger_event(nand_led_trigger, LED_FULL);
863
864         /* Apply this short delay always to ensure that we do wait tWB in
865          * any case on any machine. */
866         ndelay(100);
867
868         if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
869                 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
870         else
871                 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
872
873         if (in_interrupt() || oops_in_progress)
874                 panic_nand_wait(mtd, chip, timeo);
875         else {
876                 while (time_before(jiffies, timeo)) {
877                         if (chip->dev_ready) {
878                                 if (chip->dev_ready(mtd))
879                                         break;
880                         } else {
881                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
882                                         break;
883                         }
884                         cond_resched();
885                 }
886         }
887         led_trigger_event(nand_led_trigger, LED_OFF);
888
889         status = (int)chip->read_byte(mtd);
890         return status;
891 }
892
893 /**
894  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
895  *
896  * @mtd: mtd info
897  * @ofs: offset to start unlock from
898  * @len: length to unlock
899  * @invert:   when = 0, unlock the range of blocks within the lower and
900  *                      upper boundary address
901  *            when = 1, unlock the range of blocks outside the boundaries
902  *                      of the lower and upper boundary address
903  *
904  * return - unlock status
905  */
906 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
907                                         uint64_t len, int invert)
908 {
909         int ret = 0;
910         int status, page;
911         struct nand_chip *chip = mtd->priv;
912
913         /* Submit address of first page to unlock */
914         page = ofs >> chip->page_shift;
915         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
916
917         /* Submit address of last page to unlock */
918         page = (ofs + len) >> chip->page_shift;
919         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
920                                 (page | invert) & chip->pagemask);
921
922         /* Call wait ready function */
923         status = chip->waitfunc(mtd, chip);
924         udelay(1000);
925         /* See if device thinks it succeeded */
926         if (status & 0x01) {
927                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
928                                         __func__, status);
929                 ret = -EIO;
930         }
931
932         return ret;
933 }
934
935 /**
936  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
937  *
938  * @mtd: mtd info
939  * @ofs: offset to start unlock from
940  * @len: length to unlock
941  *
942  * return - unlock status
943  */
944 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
945 {
946         int ret = 0;
947         int chipnr;
948         struct nand_chip *chip = mtd->priv;
949
950         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
951                         __func__, (unsigned long long)ofs, len);
952
953         if (check_offs_len(mtd, ofs, len))
954                 ret = -EINVAL;
955
956         /* Align to last block address if size addresses end of the device */
957         if (ofs + len == mtd->size)
958                 len -= mtd->erasesize;
959
960         nand_get_device(chip, mtd, FL_UNLOCKING);
961
962         /* Shift to get chip number */
963         chipnr = ofs >> chip->chip_shift;
964
965         chip->select_chip(mtd, chipnr);
966
967         /* Check, if it is write protected */
968         if (nand_check_wp(mtd)) {
969                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
970                                         __func__);
971                 ret = -EIO;
972                 goto out;
973         }
974
975         ret = __nand_unlock(mtd, ofs, len, 0);
976
977 out:
978         /* de-select the NAND device */
979         chip->select_chip(mtd, -1);
980
981         nand_release_device(mtd);
982
983         return ret;
984 }
985 EXPORT_SYMBOL(nand_unlock);
986
987 /**
988  * nand_lock - [REPLACEABLE] locks all blocks present in the device
989  *
990  * @mtd: mtd info
991  * @ofs: offset to start unlock from
992  * @len: length to unlock
993  *
994  * return - lock status
995  *
996  * This feature is not supported in many NAND parts. 'Micron' NAND parts
997  * do have this feature, but it allows only to lock all blocks, not for
998  * specified range for block.
999  *
1000  * Implementing 'lock' feature by making use of 'unlock', for now.
1001  */
1002 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1003 {
1004         int ret = 0;
1005         int chipnr, status, page;
1006         struct nand_chip *chip = mtd->priv;
1007
1008         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
1009                         __func__, (unsigned long long)ofs, len);
1010
1011         if (check_offs_len(mtd, ofs, len))
1012                 ret = -EINVAL;
1013
1014         nand_get_device(chip, mtd, FL_LOCKING);
1015
1016         /* Shift to get chip number */
1017         chipnr = ofs >> chip->chip_shift;
1018
1019         chip->select_chip(mtd, chipnr);
1020
1021         /* Check, if it is write protected */
1022         if (nand_check_wp(mtd)) {
1023                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1024                                         __func__);
1025                 status = MTD_ERASE_FAILED;
1026                 ret = -EIO;
1027                 goto out;
1028         }
1029
1030         /* Submit address of first page to lock */
1031         page = ofs >> chip->page_shift;
1032         chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1033
1034         /* Call wait ready function */
1035         status = chip->waitfunc(mtd, chip);
1036         udelay(1000);
1037         /* See if device thinks it succeeded */
1038         if (status & 0x01) {
1039                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1040                                         __func__, status);
1041                 ret = -EIO;
1042                 goto out;
1043         }
1044
1045         ret = __nand_unlock(mtd, ofs, len, 0x1);
1046
1047 out:
1048         /* de-select the NAND device */
1049         chip->select_chip(mtd, -1);
1050
1051         nand_release_device(mtd);
1052
1053         return ret;
1054 }
1055 EXPORT_SYMBOL(nand_lock);
1056
1057 /**
1058  * nand_read_page_raw - [Intern] read raw page data without ecc
1059  * @mtd:        mtd info structure
1060  * @chip:       nand chip info structure
1061  * @buf:        buffer to store read data
1062  * @page:       page number to read
1063  *
1064  * Not for syndrome calculating ecc controllers, which use a special oob layout
1065  */
1066 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1067                               uint8_t *buf, int page)
1068 {
1069         chip->read_buf(mtd, buf, mtd->writesize);
1070         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1071         return 0;
1072 }
1073
1074 /**
1075  * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1076  * @mtd:        mtd info structure
1077  * @chip:       nand chip info structure
1078  * @buf:        buffer to store read data
1079  * @page:       page number to read
1080  *
1081  * We need a special oob layout and handling even when OOB isn't used.
1082  */
1083 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1084                                         struct nand_chip *chip,
1085                                         uint8_t *buf, int page)
1086 {
1087         int eccsize = chip->ecc.size;
1088         int eccbytes = chip->ecc.bytes;
1089         uint8_t *oob = chip->oob_poi;
1090         int steps, size;
1091
1092         for (steps = chip->ecc.steps; steps > 0; steps--) {
1093                 chip->read_buf(mtd, buf, eccsize);
1094                 buf += eccsize;
1095
1096                 if (chip->ecc.prepad) {
1097                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1098                         oob += chip->ecc.prepad;
1099                 }
1100
1101                 chip->read_buf(mtd, oob, eccbytes);
1102                 oob += eccbytes;
1103
1104                 if (chip->ecc.postpad) {
1105                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1106                         oob += chip->ecc.postpad;
1107                 }
1108         }
1109
1110         size = mtd->oobsize - (oob - chip->oob_poi);
1111         if (size)
1112                 chip->read_buf(mtd, oob, size);
1113
1114         return 0;
1115 }
1116
1117 /**
1118  * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
1119  * @mtd:        mtd info structure
1120  * @chip:       nand chip info structure
1121  * @buf:        buffer to store read data
1122  * @page:       page number to read
1123  */
1124 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1125                                 uint8_t *buf, int page)
1126 {
1127         int i, eccsize = chip->ecc.size;
1128         int eccbytes = chip->ecc.bytes;
1129         int eccsteps = chip->ecc.steps;
1130         uint8_t *p = buf;
1131         uint8_t *ecc_calc = chip->buffers->ecccalc;
1132         uint8_t *ecc_code = chip->buffers->ecccode;
1133         uint32_t *eccpos = chip->ecc.layout->eccpos;
1134
1135         chip->ecc.read_page_raw(mtd, chip, buf, page);
1136
1137         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1138                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1139
1140         for (i = 0; i < chip->ecc.total; i++)
1141                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1142
1143         eccsteps = chip->ecc.steps;
1144         p = buf;
1145
1146         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1147                 int stat;
1148
1149                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1150                 if (stat < 0)
1151                         mtd->ecc_stats.failed++;
1152                 else
1153                         mtd->ecc_stats.corrected += stat;
1154         }
1155         return 0;
1156 }
1157
1158 /**
1159  * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1160  * @mtd:        mtd info structure
1161  * @chip:       nand chip info structure
1162  * @data_offs:  offset of requested data within the page
1163  * @readlen:    data length
1164  * @bufpoi:     buffer to store read data
1165  */
1166 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1167                         uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1168 {
1169         int start_step, end_step, num_steps;
1170         uint32_t *eccpos = chip->ecc.layout->eccpos;
1171         uint8_t *p;
1172         int data_col_addr, i, gaps = 0;
1173         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1174         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1175         int index = 0;
1176
1177         /* Column address wihin the page aligned to ECC size (256bytes). */
1178         start_step = data_offs / chip->ecc.size;
1179         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1180         num_steps = end_step - start_step + 1;
1181
1182         /* Data size aligned to ECC ecc.size*/
1183         datafrag_len = num_steps * chip->ecc.size;
1184         eccfrag_len = num_steps * chip->ecc.bytes;
1185
1186         data_col_addr = start_step * chip->ecc.size;
1187         /* If we read not a page aligned data */
1188         if (data_col_addr != 0)
1189                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1190
1191         p = bufpoi + data_col_addr;
1192         chip->read_buf(mtd, p, datafrag_len);
1193
1194         /* Calculate  ECC */
1195         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1196                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1197
1198         /* The performance is faster if to position offsets
1199            according to ecc.pos. Let make sure here that
1200            there are no gaps in ecc positions */
1201         for (i = 0; i < eccfrag_len - 1; i++) {
1202                 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1203                         eccpos[i + start_step * chip->ecc.bytes + 1]) {
1204                         gaps = 1;
1205                         break;
1206                 }
1207         }
1208         if (gaps) {
1209                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1210                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1211         } else {
1212                 /* send the command to read the particular ecc bytes */
1213                 /* take care about buswidth alignment in read_buf */
1214                 index = start_step * chip->ecc.bytes;
1215
1216                 aligned_pos = eccpos[index] & ~(busw - 1);
1217                 aligned_len = eccfrag_len;
1218                 if (eccpos[index] & (busw - 1))
1219                         aligned_len++;
1220                 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1221                         aligned_len++;
1222
1223                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1224                                         mtd->writesize + aligned_pos, -1);
1225                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1226         }
1227
1228         for (i = 0; i < eccfrag_len; i++)
1229                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1230
1231         p = bufpoi + data_col_addr;
1232         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1233                 int stat;
1234
1235                 stat = chip->ecc.correct(mtd, p,
1236                         &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1237                 if (stat < 0)
1238                         mtd->ecc_stats.failed++;
1239                 else
1240                         mtd->ecc_stats.corrected += stat;
1241         }
1242         return 0;
1243 }
1244
1245 /**
1246  * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1247  * @mtd:        mtd info structure
1248  * @chip:       nand chip info structure
1249  * @buf:        buffer to store read data
1250  * @page:       page number to read
1251  *
1252  * Not for syndrome calculating ecc controllers which need a special oob layout
1253  */
1254 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1255                                 uint8_t *buf, int page)
1256 {
1257         int i, eccsize = chip->ecc.size;
1258         int eccbytes = chip->ecc.bytes;
1259         int eccsteps = chip->ecc.steps;
1260         uint8_t *p = buf;
1261         uint8_t *ecc_calc = chip->buffers->ecccalc;
1262         uint8_t *ecc_code = chip->buffers->ecccode;
1263         uint32_t *eccpos = chip->ecc.layout->eccpos;
1264
1265         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1266                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1267                 chip->read_buf(mtd, p, eccsize);
1268                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1269         }
1270         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1271
1272         for (i = 0; i < chip->ecc.total; i++)
1273                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1274
1275         eccsteps = chip->ecc.steps;
1276         p = buf;
1277
1278         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1279                 int stat;
1280
1281                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1282                 if (stat < 0)
1283                         mtd->ecc_stats.failed++;
1284                 else
1285                         mtd->ecc_stats.corrected += stat;
1286         }
1287         return 0;
1288 }
1289
1290 /**
1291  * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1292  * @mtd:        mtd info structure
1293  * @chip:       nand chip info structure
1294  * @buf:        buffer to store read data
1295  * @page:       page number to read
1296  *
1297  * Hardware ECC for large page chips, require OOB to be read first.
1298  * For this ECC mode, the write_page method is re-used from ECC_HW.
1299  * These methods read/write ECC from the OOB area, unlike the
1300  * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1301  * "infix ECC" scheme and reads/writes ECC from the data area, by
1302  * overwriting the NAND manufacturer bad block markings.
1303  */
1304 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1305         struct nand_chip *chip, uint8_t *buf, int page)
1306 {
1307         int i, eccsize = chip->ecc.size;
1308         int eccbytes = chip->ecc.bytes;
1309         int eccsteps = chip->ecc.steps;
1310         uint8_t *p = buf;
1311         uint8_t *ecc_code = chip->buffers->ecccode;
1312         uint32_t *eccpos = chip->ecc.layout->eccpos;
1313         uint8_t *ecc_calc = chip->buffers->ecccalc;
1314
1315         /* Read the OOB area first */
1316         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1317         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1318         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1319
1320         for (i = 0; i < chip->ecc.total; i++)
1321                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1322
1323         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1324                 int stat;
1325
1326                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1327                 chip->read_buf(mtd, p, eccsize);
1328                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1329
1330                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1331                 if (stat < 0)
1332                         mtd->ecc_stats.failed++;
1333                 else
1334                         mtd->ecc_stats.corrected += stat;
1335         }
1336         return 0;
1337 }
1338
1339 /**
1340  * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1341  * @mtd:        mtd info structure
1342  * @chip:       nand chip info structure
1343  * @buf:        buffer to store read data
1344  * @page:       page number to read
1345  *
1346  * The hw generator calculates the error syndrome automatically. Therefor
1347  * we need a special oob layout and handling.
1348  */
1349 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1350                                    uint8_t *buf, int page)
1351 {
1352         int i, eccsize = chip->ecc.size;
1353         int eccbytes = chip->ecc.bytes;
1354         int eccsteps = chip->ecc.steps;
1355         uint8_t *p = buf;
1356         uint8_t *oob = chip->oob_poi;
1357
1358         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1359                 int stat;
1360
1361                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1362                 chip->read_buf(mtd, p, eccsize);
1363
1364                 if (chip->ecc.prepad) {
1365                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1366                         oob += chip->ecc.prepad;
1367                 }
1368
1369                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1370                 chip->read_buf(mtd, oob, eccbytes);
1371                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1372
1373                 if (stat < 0)
1374                         mtd->ecc_stats.failed++;
1375                 else
1376                         mtd->ecc_stats.corrected += stat;
1377
1378                 oob += eccbytes;
1379
1380                 if (chip->ecc.postpad) {
1381                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1382                         oob += chip->ecc.postpad;
1383                 }
1384         }
1385
1386         /* Calculate remaining oob bytes */
1387         i = mtd->oobsize - (oob - chip->oob_poi);
1388         if (i)
1389                 chip->read_buf(mtd, oob, i);
1390
1391         return 0;
1392 }
1393
1394 /**
1395  * nand_transfer_oob - [Internal] Transfer oob to client buffer
1396  * @chip:       nand chip structure
1397  * @oob:        oob destination address
1398  * @ops:        oob ops structure
1399  * @len:        size of oob to transfer
1400  */
1401 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1402                                   struct mtd_oob_ops *ops, size_t len)
1403 {
1404         switch (ops->mode) {
1405
1406         case MTD_OOB_PLACE:
1407         case MTD_OOB_RAW:
1408                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1409                 return oob + len;
1410
1411         case MTD_OOB_AUTO: {
1412                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1413                 uint32_t boffs = 0, roffs = ops->ooboffs;
1414                 size_t bytes = 0;
1415
1416                 for (; free->length && len; free++, len -= bytes) {
1417                         /* Read request not from offset 0 ? */
1418                         if (unlikely(roffs)) {
1419                                 if (roffs >= free->length) {
1420                                         roffs -= free->length;
1421                                         continue;
1422                                 }
1423                                 boffs = free->offset + roffs;
1424                                 bytes = min_t(size_t, len,
1425                                               (free->length - roffs));
1426                                 roffs = 0;
1427                         } else {
1428                                 bytes = min_t(size_t, len, free->length);
1429                                 boffs = free->offset;
1430                         }
1431                         memcpy(oob, chip->oob_poi + boffs, bytes);
1432                         oob += bytes;
1433                 }
1434                 return oob;
1435         }
1436         default:
1437                 BUG();
1438         }
1439         return NULL;
1440 }
1441
1442 /**
1443  * nand_do_read_ops - [Internal] Read data with ECC
1444  *
1445  * @mtd:        MTD device structure
1446  * @from:       offset to read from
1447  * @ops:        oob ops structure
1448  *
1449  * Internal function. Called with chip held.
1450  */
1451 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1452                             struct mtd_oob_ops *ops)
1453 {
1454         int chipnr, page, realpage, col, bytes, aligned;
1455         struct nand_chip *chip = mtd->priv;
1456         struct mtd_ecc_stats stats;
1457         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1458         int sndcmd = 1;
1459         int ret = 0;
1460         uint32_t readlen = ops->len;
1461         uint32_t oobreadlen = ops->ooblen;
1462         uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1463                 mtd->oobavail : mtd->oobsize;
1464
1465         uint8_t *bufpoi, *oob, *buf;
1466
1467         stats = mtd->ecc_stats;
1468
1469         chipnr = (int)(from >> chip->chip_shift);
1470         chip->select_chip(mtd, chipnr);
1471
1472         realpage = (int)(from >> chip->page_shift);
1473         page = realpage & chip->pagemask;
1474
1475         col = (int)(from & (mtd->writesize - 1));
1476
1477         buf = ops->datbuf;
1478         oob = ops->oobbuf;
1479
1480         while (1) {
1481                 bytes = min(mtd->writesize - col, readlen);
1482                 aligned = (bytes == mtd->writesize);
1483
1484                 /* Is the current page in the buffer ? */
1485                 if (realpage != chip->pagebuf || oob) {
1486                         bufpoi = aligned ? buf : chip->buffers->databuf;
1487
1488                         if (likely(sndcmd)) {
1489                                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1490                                 sndcmd = 0;
1491                         }
1492
1493                         /* Now read the page into the buffer */
1494                         if (unlikely(ops->mode == MTD_OOB_RAW))
1495                                 ret = chip->ecc.read_page_raw(mtd, chip,
1496                                                               bufpoi, page);
1497                         else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1498                                 ret = chip->ecc.read_subpage(mtd, chip,
1499                                                         col, bytes, bufpoi);
1500                         else
1501                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1502                                                           page);
1503                         if (ret < 0)
1504                                 break;
1505
1506                         /* Transfer not aligned data */
1507                         if (!aligned) {
1508                                 if (!NAND_SUBPAGE_READ(chip) && !oob)
1509                                         chip->pagebuf = realpage;
1510                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1511                         }
1512
1513                         buf += bytes;
1514
1515                         if (unlikely(oob)) {
1516
1517                                 int toread = min(oobreadlen, max_oobsize);
1518
1519                                 if (toread) {
1520                                         oob = nand_transfer_oob(chip,
1521                                                 oob, ops, toread);
1522                                         oobreadlen -= toread;
1523                                 }
1524                         }
1525
1526                         if (!(chip->options & NAND_NO_READRDY)) {
1527                                 /*
1528                                  * Apply delay or wait for ready/busy pin. Do
1529                                  * this before the AUTOINCR check, so no
1530                                  * problems arise if a chip which does auto
1531                                  * increment is marked as NOAUTOINCR by the
1532                                  * board driver.
1533                                  */
1534                                 if (!chip->dev_ready)
1535                                         udelay(chip->chip_delay);
1536                                 else
1537                                         nand_wait_ready(mtd);
1538                         }
1539                 } else {
1540                         memcpy(buf, chip->buffers->databuf + col, bytes);
1541                         buf += bytes;
1542                 }
1543
1544                 readlen -= bytes;
1545
1546                 if (!readlen)
1547                         break;
1548
1549                 /* For subsequent reads align to page boundary. */
1550                 col = 0;
1551                 /* Increment page address */
1552                 realpage++;
1553
1554                 page = realpage & chip->pagemask;
1555                 /* Check, if we cross a chip boundary */
1556                 if (!page) {
1557                         chipnr++;
1558                         chip->select_chip(mtd, -1);
1559                         chip->select_chip(mtd, chipnr);
1560                 }
1561
1562                 /* Check, if the chip supports auto page increment
1563                  * or if we have hit a block boundary.
1564                  */
1565                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1566                         sndcmd = 1;
1567         }
1568
1569         ops->retlen = ops->len - (size_t) readlen;
1570         if (oob)
1571                 ops->oobretlen = ops->ooblen - oobreadlen;
1572
1573         if (ret)
1574                 return ret;
1575
1576         if (mtd->ecc_stats.failed - stats.failed)
1577                 return -EBADMSG;
1578
1579         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1580 }
1581
1582 /**
1583  * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1584  * @mtd:        MTD device structure
1585  * @from:       offset to read from
1586  * @len:        number of bytes to read
1587  * @retlen:     pointer to variable to store the number of read bytes
1588  * @buf:        the databuffer to put data
1589  *
1590  * Get hold of the chip and call nand_do_read
1591  */
1592 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1593                      size_t *retlen, uint8_t *buf)
1594 {
1595         struct nand_chip *chip = mtd->priv;
1596         int ret;
1597
1598         /* Do not allow reads past end of device */
1599         if ((from + len) > mtd->size)
1600                 return -EINVAL;
1601         if (!len)
1602                 return 0;
1603
1604         nand_get_device(chip, mtd, FL_READING);
1605
1606         chip->ops.len = len;
1607         chip->ops.datbuf = buf;
1608         chip->ops.oobbuf = NULL;
1609
1610         ret = nand_do_read_ops(mtd, from, &chip->ops);
1611
1612         *retlen = chip->ops.retlen;
1613
1614         nand_release_device(mtd);
1615
1616         return ret;
1617 }
1618
1619 /**
1620  * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1621  * @mtd:        mtd info structure
1622  * @chip:       nand chip info structure
1623  * @page:       page number to read
1624  * @sndcmd:     flag whether to issue read command or not
1625  */
1626 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1627                              int page, int sndcmd)
1628 {
1629         if (sndcmd) {
1630                 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1631                 sndcmd = 0;
1632         }
1633         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1634         return sndcmd;
1635 }
1636
1637 /**
1638  * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1639  *                          with syndromes
1640  * @mtd:        mtd info structure
1641  * @chip:       nand chip info structure
1642  * @page:       page number to read
1643  * @sndcmd:     flag whether to issue read command or not
1644  */
1645 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1646                                   int page, int sndcmd)
1647 {
1648         uint8_t *buf = chip->oob_poi;
1649         int length = mtd->oobsize;
1650         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1651         int eccsize = chip->ecc.size;
1652         uint8_t *bufpoi = buf;
1653         int i, toread, sndrnd = 0, pos;
1654
1655         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1656         for (i = 0; i < chip->ecc.steps; i++) {
1657                 if (sndrnd) {
1658                         pos = eccsize + i * (eccsize + chunk);
1659                         if (mtd->writesize > 512)
1660                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1661                         else
1662                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1663                 } else
1664                         sndrnd = 1;
1665                 toread = min_t(int, length, chunk);
1666                 chip->read_buf(mtd, bufpoi, toread);
1667                 bufpoi += toread;
1668                 length -= toread;
1669         }
1670         if (length > 0)
1671                 chip->read_buf(mtd, bufpoi, length);
1672
1673         return 1;
1674 }
1675
1676 /**
1677  * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1678  * @mtd:        mtd info structure
1679  * @chip:       nand chip info structure
1680  * @page:       page number to write
1681  */
1682 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1683                               int page)
1684 {
1685         int status = 0;
1686         const uint8_t *buf = chip->oob_poi;
1687         int length = mtd->oobsize;
1688
1689         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1690         chip->write_buf(mtd, buf, length);
1691         /* Send command to program the OOB data */
1692         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1693
1694         status = chip->waitfunc(mtd, chip);
1695
1696         return status & NAND_STATUS_FAIL ? -EIO : 0;
1697 }
1698
1699 /**
1700  * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1701  *                           with syndrome - only for large page flash !
1702  * @mtd:        mtd info structure
1703  * @chip:       nand chip info structure
1704  * @page:       page number to write
1705  */
1706 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1707                                    struct nand_chip *chip, int page)
1708 {
1709         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1710         int eccsize = chip->ecc.size, length = mtd->oobsize;
1711         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1712         const uint8_t *bufpoi = chip->oob_poi;
1713
1714         /*
1715          * data-ecc-data-ecc ... ecc-oob
1716          * or
1717          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1718          */
1719         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1720                 pos = steps * (eccsize + chunk);
1721                 steps = 0;
1722         } else
1723                 pos = eccsize;
1724
1725         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1726         for (i = 0; i < steps; i++) {
1727                 if (sndcmd) {
1728                         if (mtd->writesize <= 512) {
1729                                 uint32_t fill = 0xFFFFFFFF;
1730
1731                                 len = eccsize;
1732                                 while (len > 0) {
1733                                         int num = min_t(int, len, 4);
1734                                         chip->write_buf(mtd, (uint8_t *)&fill,
1735                                                         num);
1736                                         len -= num;
1737                                 }
1738                         } else {
1739                                 pos = eccsize + i * (eccsize + chunk);
1740                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1741                         }
1742                 } else
1743                         sndcmd = 1;
1744                 len = min_t(int, length, chunk);
1745                 chip->write_buf(mtd, bufpoi, len);
1746                 bufpoi += len;
1747                 length -= len;
1748         }
1749         if (length > 0)
1750                 chip->write_buf(mtd, bufpoi, length);
1751
1752         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1753         status = chip->waitfunc(mtd, chip);
1754
1755         return status & NAND_STATUS_FAIL ? -EIO : 0;
1756 }
1757
1758 /**
1759  * nand_do_read_oob - [Intern] NAND read out-of-band
1760  * @mtd:        MTD device structure
1761  * @from:       offset to read from
1762  * @ops:        oob operations description structure
1763  *
1764  * NAND read out-of-band data from the spare area
1765  */
1766 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1767                             struct mtd_oob_ops *ops)
1768 {
1769         int page, realpage, chipnr, sndcmd = 1;
1770         struct nand_chip *chip = mtd->priv;
1771         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1772         int readlen = ops->ooblen;
1773         int len;
1774         uint8_t *buf = ops->oobbuf;
1775
1776         DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1777                         __func__, (unsigned long long)from, readlen);
1778
1779         if (ops->mode == MTD_OOB_AUTO)
1780                 len = chip->ecc.layout->oobavail;
1781         else
1782                 len = mtd->oobsize;
1783
1784         if (unlikely(ops->ooboffs >= len)) {
1785                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1786                                         "outside oob\n", __func__);
1787                 return -EINVAL;
1788         }
1789
1790         /* Do not allow reads past end of device */
1791         if (unlikely(from >= mtd->size ||
1792                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1793                                         (from >> chip->page_shift)) * len)) {
1794                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1795                                         "of device\n", __func__);
1796                 return -EINVAL;
1797         }
1798
1799         chipnr = (int)(from >> chip->chip_shift);
1800         chip->select_chip(mtd, chipnr);
1801
1802         /* Shift to get page */
1803         realpage = (int)(from >> chip->page_shift);
1804         page = realpage & chip->pagemask;
1805
1806         while (1) {
1807                 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1808
1809                 len = min(len, readlen);
1810                 buf = nand_transfer_oob(chip, buf, ops, len);
1811
1812                 if (!(chip->options & NAND_NO_READRDY)) {
1813                         /*
1814                          * Apply delay or wait for ready/busy pin. Do this
1815                          * before the AUTOINCR check, so no problems arise if a
1816                          * chip which does auto increment is marked as
1817                          * NOAUTOINCR by the board driver.
1818                          */
1819                         if (!chip->dev_ready)
1820                                 udelay(chip->chip_delay);
1821                         else
1822                                 nand_wait_ready(mtd);
1823                 }
1824
1825                 readlen -= len;
1826                 if (!readlen)
1827                         break;
1828
1829                 /* Increment page address */
1830                 realpage++;
1831
1832                 page = realpage & chip->pagemask;
1833                 /* Check, if we cross a chip boundary */
1834                 if (!page) {
1835                         chipnr++;
1836                         chip->select_chip(mtd, -1);
1837                         chip->select_chip(mtd, chipnr);
1838                 }
1839
1840                 /* Check, if the chip supports auto page increment
1841                  * or if we have hit a block boundary.
1842                  */
1843                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1844                         sndcmd = 1;
1845         }
1846
1847         ops->oobretlen = ops->ooblen;
1848         return 0;
1849 }
1850
1851 /**
1852  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1853  * @mtd:        MTD device structure
1854  * @from:       offset to read from
1855  * @ops:        oob operation description structure
1856  *
1857  * NAND read data and/or out-of-band data
1858  */
1859 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1860                          struct mtd_oob_ops *ops)
1861 {
1862         struct nand_chip *chip = mtd->priv;
1863         int ret = -ENOTSUPP;
1864
1865         ops->retlen = 0;
1866
1867         /* Do not allow reads past end of device */
1868         if (ops->datbuf && (from + ops->len) > mtd->size) {
1869                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1870                                 "beyond end of device\n", __func__);
1871                 return -EINVAL;
1872         }
1873
1874         nand_get_device(chip, mtd, FL_READING);
1875
1876         switch (ops->mode) {
1877         case MTD_OOB_PLACE:
1878         case MTD_OOB_AUTO:
1879         case MTD_OOB_RAW:
1880                 break;
1881
1882         default:
1883                 goto out;
1884         }
1885
1886         if (!ops->datbuf)
1887                 ret = nand_do_read_oob(mtd, from, ops);
1888         else
1889                 ret = nand_do_read_ops(mtd, from, ops);
1890
1891 out:
1892         nand_release_device(mtd);
1893         return ret;
1894 }
1895
1896
1897 /**
1898  * nand_write_page_raw - [Intern] raw page write function
1899  * @mtd:        mtd info structure
1900  * @chip:       nand chip info structure
1901  * @buf:        data buffer
1902  *
1903  * Not for syndrome calculating ecc controllers, which use a special oob layout
1904  */
1905 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1906                                 const uint8_t *buf)
1907 {
1908         chip->write_buf(mtd, buf, mtd->writesize);
1909         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1910 }
1911
1912 /**
1913  * nand_write_page_raw_syndrome - [Intern] raw page write function
1914  * @mtd:        mtd info structure
1915  * @chip:       nand chip info structure
1916  * @buf:        data buffer
1917  *
1918  * We need a special oob layout and handling even when ECC isn't checked.
1919  */
1920 static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
1921                                         struct nand_chip *chip,
1922                                         const uint8_t *buf)
1923 {
1924         int eccsize = chip->ecc.size;
1925         int eccbytes = chip->ecc.bytes;
1926         uint8_t *oob = chip->oob_poi;
1927         int steps, size;
1928
1929         for (steps = chip->ecc.steps; steps > 0; steps--) {
1930                 chip->write_buf(mtd, buf, eccsize);
1931                 buf += eccsize;
1932
1933                 if (chip->ecc.prepad) {
1934                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1935                         oob += chip->ecc.prepad;
1936                 }
1937
1938                 chip->read_buf(mtd, oob, eccbytes);
1939                 oob += eccbytes;
1940
1941                 if (chip->ecc.postpad) {
1942                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1943                         oob += chip->ecc.postpad;
1944                 }
1945         }
1946
1947         size = mtd->oobsize - (oob - chip->oob_poi);
1948         if (size)
1949                 chip->write_buf(mtd, oob, size);
1950 }
1951 /**
1952  * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1953  * @mtd:        mtd info structure
1954  * @chip:       nand chip info structure
1955  * @buf:        data buffer
1956  */
1957 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1958                                   const uint8_t *buf)
1959 {
1960         int i, eccsize = chip->ecc.size;
1961         int eccbytes = chip->ecc.bytes;
1962         int eccsteps = chip->ecc.steps;
1963         uint8_t *ecc_calc = chip->buffers->ecccalc;
1964         const uint8_t *p = buf;
1965         uint32_t *eccpos = chip->ecc.layout->eccpos;
1966
1967         /* Software ecc calculation */
1968         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1969                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1970
1971         for (i = 0; i < chip->ecc.total; i++)
1972                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1973
1974         chip->ecc.write_page_raw(mtd, chip, buf);
1975 }
1976
1977 /**
1978  * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1979  * @mtd:        mtd info structure
1980  * @chip:       nand chip info structure
1981  * @buf:        data buffer
1982  */
1983 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1984                                   const uint8_t *buf)
1985 {
1986         int i, eccsize = chip->ecc.size;
1987         int eccbytes = chip->ecc.bytes;
1988         int eccsteps = chip->ecc.steps;
1989         uint8_t *ecc_calc = chip->buffers->ecccalc;
1990         const uint8_t *p = buf;
1991         uint32_t *eccpos = chip->ecc.layout->eccpos;
1992
1993         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1994                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1995                 chip->write_buf(mtd, p, eccsize);
1996                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1997         }
1998
1999         for (i = 0; i < chip->ecc.total; i++)
2000                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2001
2002         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2003 }
2004
2005 /**
2006  * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
2007  * @mtd:        mtd info structure
2008  * @chip:       nand chip info structure
2009  * @buf:        data buffer
2010  *
2011  * The hw generator calculates the error syndrome automatically. Therefor
2012  * we need a special oob layout and handling.
2013  */
2014 static void nand_write_page_syndrome(struct mtd_info *mtd,
2015                                     struct nand_chip *chip, const uint8_t *buf)
2016 {
2017         int i, eccsize = chip->ecc.size;
2018         int eccbytes = chip->ecc.bytes;
2019         int eccsteps = chip->ecc.steps;
2020         const uint8_t *p = buf;
2021         uint8_t *oob = chip->oob_poi;
2022
2023         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2024
2025                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2026                 chip->write_buf(mtd, p, eccsize);
2027
2028                 if (chip->ecc.prepad) {
2029                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2030                         oob += chip->ecc.prepad;
2031                 }
2032
2033                 chip->ecc.calculate(mtd, p, oob);
2034                 chip->write_buf(mtd, oob, eccbytes);
2035                 oob += eccbytes;
2036
2037                 if (chip->ecc.postpad) {
2038                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2039                         oob += chip->ecc.postpad;
2040                 }
2041         }
2042
2043         /* Calculate remaining oob bytes */
2044         i = mtd->oobsize - (oob - chip->oob_poi);
2045         if (i)
2046                 chip->write_buf(mtd, oob, i);
2047 }
2048
2049 /**
2050  * nand_write_page - [REPLACEABLE] write one page
2051  * @mtd:        MTD device structure
2052  * @chip:       NAND chip descriptor
2053  * @buf:        the data to write
2054  * @page:       page number to write
2055  * @cached:     cached programming
2056  * @raw:        use _raw version of write_page
2057  */
2058 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2059                            const uint8_t *buf, int page, int cached, int raw)
2060 {
2061         int status;
2062
2063         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2064
2065         if (unlikely(raw))
2066                 chip->ecc.write_page_raw(mtd, chip, buf);
2067         else
2068                 chip->ecc.write_page(mtd, chip, buf);
2069
2070         /*
2071          * Cached progamming disabled for now, Not sure if its worth the
2072          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2073          */
2074         cached = 0;
2075
2076         if (!cached || !(chip->options & NAND_CACHEPRG)) {
2077
2078                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2079                 status = chip->waitfunc(mtd, chip);
2080                 /*
2081                  * See if operation failed and additional status checks are
2082                  * available
2083                  */
2084                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2085                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2086                                                page);
2087
2088                 if (status & NAND_STATUS_FAIL)
2089                         return -EIO;
2090         } else {
2091                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2092                 status = chip->waitfunc(mtd, chip);
2093         }
2094
2095 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2096         /* Send command to read back the data */
2097         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2098
2099         if (chip->verify_buf(mtd, buf, mtd->writesize))
2100                 return -EIO;
2101 #endif
2102         return 0;
2103 }
2104
2105 /**
2106  * nand_fill_oob - [Internal] Transfer client buffer to oob
2107  * @chip:       nand chip structure
2108  * @oob:        oob data buffer
2109  * @len:        oob data write length
2110  * @ops:        oob ops structure
2111  */
2112 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
2113                                                 struct mtd_oob_ops *ops)
2114 {
2115         switch (ops->mode) {
2116
2117         case MTD_OOB_PLACE:
2118         case MTD_OOB_RAW:
2119                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2120                 return oob + len;
2121
2122         case MTD_OOB_AUTO: {
2123                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2124                 uint32_t boffs = 0, woffs = ops->ooboffs;
2125                 size_t bytes = 0;
2126
2127                 for (; free->length && len; free++, len -= bytes) {
2128                         /* Write request not from offset 0 ? */
2129                         if (unlikely(woffs)) {
2130                                 if (woffs >= free->length) {
2131                                         woffs -= free->length;
2132                                         continue;
2133                                 }
2134                                 boffs = free->offset + woffs;
2135                                 bytes = min_t(size_t, len,
2136                                               (free->length - woffs));
2137                                 woffs = 0;
2138                         } else {
2139                                 bytes = min_t(size_t, len, free->length);
2140                                 boffs = free->offset;
2141                         }
2142                         memcpy(chip->oob_poi + boffs, oob, bytes);
2143                         oob += bytes;
2144                 }
2145                 return oob;
2146         }
2147         default:
2148                 BUG();
2149         }
2150         return NULL;
2151 }
2152
2153 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2154
2155 /**
2156  * nand_do_write_ops - [Internal] NAND write with ECC
2157  * @mtd:        MTD device structure
2158  * @to:         offset to write to
2159  * @ops:        oob operations description structure
2160  *
2161  * NAND write with ECC
2162  */
2163 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2164                              struct mtd_oob_ops *ops)
2165 {
2166         int chipnr, realpage, page, blockmask, column;
2167         struct nand_chip *chip = mtd->priv;
2168         uint32_t writelen = ops->len;
2169
2170         uint32_t oobwritelen = ops->ooblen;
2171         uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2172                                 mtd->oobavail : mtd->oobsize;
2173
2174         uint8_t *oob = ops->oobbuf;
2175         uint8_t *buf = ops->datbuf;
2176         int ret, subpage;
2177
2178         ops->retlen = 0;
2179         if (!writelen)
2180                 return 0;
2181
2182         /* reject writes, which are not page aligned */
2183         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2184                 printk(KERN_NOTICE "%s: Attempt to write not "
2185                                 "page aligned data\n", __func__);
2186                 return -EINVAL;
2187         }
2188
2189         column = to & (mtd->writesize - 1);
2190         subpage = column || (writelen & (mtd->writesize - 1));
2191
2192         if (subpage && oob)
2193                 return -EINVAL;
2194
2195         chipnr = (int)(to >> chip->chip_shift);
2196         chip->select_chip(mtd, chipnr);
2197
2198         /* Check, if it is write protected */
2199         if (nand_check_wp(mtd))
2200                 return -EIO;
2201
2202         realpage = (int)(to >> chip->page_shift);
2203         page = realpage & chip->pagemask;
2204         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2205
2206         /* Invalidate the page cache, when we write to the cached page */
2207         if (to <= (chip->pagebuf << chip->page_shift) &&
2208             (chip->pagebuf << chip->page_shift) < (to + ops->len))
2209                 chip->pagebuf = -1;
2210
2211         /* If we're not given explicit OOB data, let it be 0xFF */
2212         if (likely(!oob))
2213                 memset(chip->oob_poi, 0xff, mtd->oobsize);
2214
2215         /* Don't allow multipage oob writes with offset */
2216         if (ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2217                 return -EINVAL;
2218
2219         while (1) {
2220                 int bytes = mtd->writesize;
2221                 int cached = writelen > bytes && page != blockmask;
2222                 uint8_t *wbuf = buf;
2223
2224                 /* Partial page write ? */
2225                 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2226                         cached = 0;
2227                         bytes = min_t(int, bytes - column, (int) writelen);
2228                         chip->pagebuf = -1;
2229                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2230                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2231                         wbuf = chip->buffers->databuf;
2232                 }
2233
2234                 if (unlikely(oob)) {
2235                         size_t len = min(oobwritelen, oobmaxlen);
2236                         oob = nand_fill_oob(chip, oob, len, ops);
2237                         oobwritelen -= len;
2238                 }
2239
2240                 ret = chip->write_page(mtd, chip, wbuf, page, cached,
2241                                        (ops->mode == MTD_OOB_RAW));
2242                 if (ret)
2243                         break;
2244
2245                 writelen -= bytes;
2246                 if (!writelen)
2247                         break;
2248
2249                 column = 0;
2250                 buf += bytes;
2251                 realpage++;
2252
2253                 page = realpage & chip->pagemask;
2254                 /* Check, if we cross a chip boundary */
2255                 if (!page) {
2256                         chipnr++;
2257                         chip->select_chip(mtd, -1);
2258                         chip->select_chip(mtd, chipnr);
2259                 }
2260         }
2261
2262         ops->retlen = ops->len - writelen;
2263         if (unlikely(oob))
2264                 ops->oobretlen = ops->ooblen;
2265         return ret;
2266 }
2267
2268 /**
2269  * panic_nand_write - [MTD Interface] NAND write with ECC
2270  * @mtd:        MTD device structure
2271  * @to:         offset to write to
2272  * @len:        number of bytes to write
2273  * @retlen:     pointer to variable to store the number of written bytes
2274  * @buf:        the data to write
2275  *
2276  * NAND write with ECC. Used when performing writes in interrupt context, this
2277  * may for example be called by mtdoops when writing an oops while in panic.
2278  */
2279 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2280                             size_t *retlen, const uint8_t *buf)
2281 {
2282         struct nand_chip *chip = mtd->priv;
2283         int ret;
2284
2285         /* Do not allow reads past end of device */
2286         if ((to + len) > mtd->size)
2287                 return -EINVAL;
2288         if (!len)
2289                 return 0;
2290
2291         /* Wait for the device to get ready.  */
2292         panic_nand_wait(mtd, chip, 400);
2293
2294         /* Grab the device.  */
2295         panic_nand_get_device(chip, mtd, FL_WRITING);
2296
2297         chip->ops.len = len;
2298         chip->ops.datbuf = (uint8_t *)buf;
2299         chip->ops.oobbuf = NULL;
2300
2301         ret = nand_do_write_ops(mtd, to, &chip->ops);
2302
2303         *retlen = chip->ops.retlen;
2304         return ret;
2305 }
2306
2307 /**
2308  * nand_write - [MTD Interface] NAND write with ECC
2309  * @mtd:        MTD device structure
2310  * @to:         offset to write to
2311  * @len:        number of bytes to write
2312  * @retlen:     pointer to variable to store the number of written bytes
2313  * @buf:        the data to write
2314  *
2315  * NAND write with ECC
2316  */
2317 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2318                           size_t *retlen, const uint8_t *buf)
2319 {
2320         struct nand_chip *chip = mtd->priv;
2321         int ret;
2322
2323         /* Do not allow reads past end of device */
2324         if ((to + len) > mtd->size)
2325                 return -EINVAL;
2326         if (!len)
2327                 return 0;
2328
2329         nand_get_device(chip, mtd, FL_WRITING);
2330
2331         chip->ops.len = len;
2332         chip->ops.datbuf = (uint8_t *)buf;
2333         chip->ops.oobbuf = NULL;
2334
2335         ret = nand_do_write_ops(mtd, to, &chip->ops);
2336
2337         *retlen = chip->ops.retlen;
2338
2339         nand_release_device(mtd);
2340
2341         return ret;
2342 }
2343
2344 /**
2345  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2346  * @mtd:        MTD device structure
2347  * @to:         offset to write to
2348  * @ops:        oob operation description structure
2349  *
2350  * NAND write out-of-band
2351  */
2352 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2353                              struct mtd_oob_ops *ops)
2354 {
2355         int chipnr, page, status, len;
2356         struct nand_chip *chip = mtd->priv;
2357
2358         DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2359                          __func__, (unsigned int)to, (int)ops->ooblen);
2360
2361         if (ops->mode == MTD_OOB_AUTO)
2362                 len = chip->ecc.layout->oobavail;
2363         else
2364                 len = mtd->oobsize;
2365
2366         /* Do not allow write past end of page */
2367         if ((ops->ooboffs + ops->ooblen) > len) {
2368                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2369                                 "past end of page\n", __func__);
2370                 return -EINVAL;
2371         }
2372
2373         if (unlikely(ops->ooboffs >= len)) {
2374                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2375                                 "write outside oob\n", __func__);
2376                 return -EINVAL;
2377         }
2378
2379         /* Do not allow reads past end of device */
2380         if (unlikely(to >= mtd->size ||
2381                      ops->ooboffs + ops->ooblen >
2382                         ((mtd->size >> chip->page_shift) -
2383                          (to >> chip->page_shift)) * len)) {
2384                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2385                                 "end of device\n", __func__);
2386                 return -EINVAL;
2387         }
2388
2389         chipnr = (int)(to >> chip->chip_shift);
2390         chip->select_chip(mtd, chipnr);
2391
2392         /* Shift to get page */
2393         page = (int)(to >> chip->page_shift);
2394
2395         /*
2396          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2397          * of my DiskOnChip 2000 test units) will clear the whole data page too
2398          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2399          * it in the doc2000 driver in August 1999.  dwmw2.
2400          */
2401         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2402
2403         /* Check, if it is write protected */
2404         if (nand_check_wp(mtd))
2405                 return -EROFS;
2406
2407         /* Invalidate the page cache, if we write to the cached page */
2408         if (page == chip->pagebuf)
2409                 chip->pagebuf = -1;
2410
2411         memset(chip->oob_poi, 0xff, mtd->oobsize);
2412         nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
2413         status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2414         memset(chip->oob_poi, 0xff, mtd->oobsize);
2415
2416         if (status)
2417                 return status;
2418
2419         ops->oobretlen = ops->ooblen;
2420
2421         return 0;
2422 }
2423
2424 /**
2425  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2426  * @mtd:        MTD device structure
2427  * @to:         offset to write to
2428  * @ops:        oob operation description structure
2429  */
2430 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2431                           struct mtd_oob_ops *ops)
2432 {
2433         struct nand_chip *chip = mtd->priv;
2434         int ret = -ENOTSUPP;
2435
2436         ops->retlen = 0;
2437
2438         /* Do not allow writes past end of device */
2439         if (ops->datbuf && (to + ops->len) > mtd->size) {
2440                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2441                                 "end of device\n", __func__);
2442                 return -EINVAL;
2443         }
2444
2445         nand_get_device(chip, mtd, FL_WRITING);
2446
2447         switch (ops->mode) {
2448         case MTD_OOB_PLACE:
2449         case MTD_OOB_AUTO:
2450         case MTD_OOB_RAW:
2451                 break;
2452
2453         default:
2454                 goto out;
2455         }
2456
2457         if (!ops->datbuf)
2458                 ret = nand_do_write_oob(mtd, to, ops);
2459         else
2460                 ret = nand_do_write_ops(mtd, to, ops);
2461
2462 out:
2463         nand_release_device(mtd);
2464         return ret;
2465 }
2466
2467 /**
2468  * single_erease_cmd - [GENERIC] NAND standard block erase command function
2469  * @mtd:        MTD device structure
2470  * @page:       the page address of the block which will be erased
2471  *
2472  * Standard erase command for NAND chips
2473  */
2474 static void single_erase_cmd(struct mtd_info *mtd, int page)
2475 {
2476         struct nand_chip *chip = mtd->priv;
2477         /* Send commands to erase a block */
2478         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2479         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2480 }
2481
2482 /**
2483  * multi_erease_cmd - [GENERIC] AND specific block erase command function
2484  * @mtd:        MTD device structure
2485  * @page:       the page address of the block which will be erased
2486  *
2487  * AND multi block erase command function
2488  * Erase 4 consecutive blocks
2489  */
2490 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2491 {
2492         struct nand_chip *chip = mtd->priv;
2493         /* Send commands to erase a block */
2494         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2495         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2496         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2497         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2498         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2499 }
2500
2501 /**
2502  * nand_erase - [MTD Interface] erase block(s)
2503  * @mtd:        MTD device structure
2504  * @instr:      erase instruction
2505  *
2506  * Erase one ore more blocks
2507  */
2508 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2509 {
2510         return nand_erase_nand(mtd, instr, 0);
2511 }
2512
2513 #define BBT_PAGE_MASK   0xffffff3f
2514 /**
2515  * nand_erase_nand - [Internal] erase block(s)
2516  * @mtd:        MTD device structure
2517  * @instr:      erase instruction
2518  * @allowbbt:   allow erasing the bbt area
2519  *
2520  * Erase one ore more blocks
2521  */
2522 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2523                     int allowbbt)
2524 {
2525         int page, status, pages_per_block, ret, chipnr;
2526         struct nand_chip *chip = mtd->priv;
2527         loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2528         unsigned int bbt_masked_page = 0xffffffff;
2529         loff_t len;
2530
2531         DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2532                                 __func__, (unsigned long long)instr->addr,
2533                                 (unsigned long long)instr->len);
2534
2535         if (check_offs_len(mtd, instr->addr, instr->len))
2536                 return -EINVAL;
2537
2538         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2539
2540         /* Grab the lock and see if the device is available */
2541         nand_get_device(chip, mtd, FL_ERASING);
2542
2543         /* Shift to get first page */
2544         page = (int)(instr->addr >> chip->page_shift);
2545         chipnr = (int)(instr->addr >> chip->chip_shift);
2546
2547         /* Calculate pages in each block */
2548         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2549
2550         /* Select the NAND device */
2551         chip->select_chip(mtd, chipnr);
2552
2553         /* Check, if it is write protected */
2554         if (nand_check_wp(mtd)) {
2555                 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2556                                         __func__);
2557                 instr->state = MTD_ERASE_FAILED;
2558                 goto erase_exit;
2559         }
2560
2561         /*
2562          * If BBT requires refresh, set the BBT page mask to see if the BBT
2563          * should be rewritten. Otherwise the mask is set to 0xffffffff which
2564          * can not be matched. This is also done when the bbt is actually
2565          * erased to avoid recusrsive updates
2566          */
2567         if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2568                 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2569
2570         /* Loop through the pages */
2571         len = instr->len;
2572
2573         instr->state = MTD_ERASING;
2574
2575         while (len) {
2576                 /*
2577                  * heck if we have a bad block, we do not erase bad blocks !
2578                  */
2579                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2580                                         chip->page_shift, 0, allowbbt)) {
2581                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2582                                         "at page 0x%08x\n", __func__, page);
2583                         instr->state = MTD_ERASE_FAILED;
2584                         goto erase_exit;
2585                 }
2586
2587                 /*
2588                  * Invalidate the page cache, if we erase the block which
2589                  * contains the current cached page
2590                  */
2591                 if (page <= chip->pagebuf && chip->pagebuf <
2592                     (page + pages_per_block))
2593                         chip->pagebuf = -1;
2594
2595                 chip->erase_cmd(mtd, page & chip->pagemask);
2596
2597                 status = chip->waitfunc(mtd, chip);
2598
2599                 /*
2600                  * See if operation failed and additional status checks are
2601                  * available
2602                  */
2603                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2604                         status = chip->errstat(mtd, chip, FL_ERASING,
2605                                                status, page);
2606
2607                 /* See if block erase succeeded */
2608                 if (status & NAND_STATUS_FAIL) {
2609                         DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2610                                         "page 0x%08x\n", __func__, page);
2611                         instr->state = MTD_ERASE_FAILED;
2612                         instr->fail_addr =
2613                                 ((loff_t)page << chip->page_shift);
2614                         goto erase_exit;
2615                 }
2616
2617                 /*
2618                  * If BBT requires refresh, set the BBT rewrite flag to the
2619                  * page being erased
2620                  */
2621                 if (bbt_masked_page != 0xffffffff &&
2622                     (page & BBT_PAGE_MASK) == bbt_masked_page)
2623                             rewrite_bbt[chipnr] =
2624                                         ((loff_t)page << chip->page_shift);
2625
2626                 /* Increment page address and decrement length */
2627                 len -= (1 << chip->phys_erase_shift);
2628                 page += pages_per_block;
2629
2630                 /* Check, if we cross a chip boundary */
2631                 if (len && !(page & chip->pagemask)) {
2632                         chipnr++;
2633                         chip->select_chip(mtd, -1);
2634                         chip->select_chip(mtd, chipnr);
2635
2636                         /*
2637                          * If BBT requires refresh and BBT-PERCHIP, set the BBT
2638                          * page mask to see if this BBT should be rewritten
2639                          */
2640                         if (bbt_masked_page != 0xffffffff &&
2641                             (chip->bbt_td->options & NAND_BBT_PERCHIP))
2642                                 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2643                                         BBT_PAGE_MASK;
2644                 }
2645         }
2646         instr->state = MTD_ERASE_DONE;
2647
2648 erase_exit:
2649
2650         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2651
2652         /* Deselect and wake up anyone waiting on the device */
2653         nand_release_device(mtd);
2654
2655         /* Do call back function */
2656         if (!ret)
2657                 mtd_erase_callback(instr);
2658
2659         /*
2660          * If BBT requires refresh and erase was successful, rewrite any
2661          * selected bad block tables
2662          */
2663         if (bbt_masked_page == 0xffffffff || ret)
2664                 return ret;
2665
2666         for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2667                 if (!rewrite_bbt[chipnr])
2668                         continue;
2669                 /* update the BBT for chip */
2670                 DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2671                         "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2672                         rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
2673                 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2674         }
2675
2676         /* Return more or less happy */
2677         return ret;
2678 }
2679
2680 /**
2681  * nand_sync - [MTD Interface] sync
2682  * @mtd:        MTD device structure
2683  *
2684  * Sync is actually a wait for chip ready function
2685  */
2686 static void nand_sync(struct mtd_info *mtd)
2687 {
2688         struct nand_chip *chip = mtd->priv;
2689
2690         DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2691
2692         /* Grab the lock and see if the device is available */
2693         nand_get_device(chip, mtd, FL_SYNCING);
2694         /* Release it and go back */
2695         nand_release_device(mtd);
2696 }
2697
2698 /**
2699  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2700  * @mtd:        MTD device structure
2701  * @offs:       offset relative to mtd start
2702  */
2703 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2704 {
2705         /* Check for invalid offset */
2706         if (offs > mtd->size)
2707                 return -EINVAL;
2708
2709         return nand_block_checkbad(mtd, offs, 1, 0);
2710 }
2711
2712 /**
2713  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2714  * @mtd:        MTD device structure
2715  * @ofs:        offset relative to mtd start
2716  */
2717 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2718 {
2719         struct nand_chip *chip = mtd->priv;
2720         int ret;
2721
2722         ret = nand_block_isbad(mtd, ofs);
2723         if (ret) {
2724                 /* If it was bad already, return success and do nothing. */
2725                 if (ret > 0)
2726                         return 0;
2727                 return ret;
2728         }
2729
2730         return chip->block_markbad(mtd, ofs);
2731 }
2732
2733 /**
2734  * nand_suspend - [MTD Interface] Suspend the NAND flash
2735  * @mtd:        MTD device structure
2736  */
2737 static int nand_suspend(struct mtd_info *mtd)
2738 {
2739         struct nand_chip *chip = mtd->priv;
2740
2741         return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2742 }
2743
2744 /**
2745  * nand_resume - [MTD Interface] Resume the NAND flash
2746  * @mtd:        MTD device structure
2747  */
2748 static void nand_resume(struct mtd_info *mtd)
2749 {
2750         struct nand_chip *chip = mtd->priv;
2751
2752         if (chip->state == FL_PM_SUSPENDED)
2753                 nand_release_device(mtd);
2754         else
2755                 printk(KERN_ERR "%s called for a chip which is not "
2756                        "in suspended state\n", __func__);
2757 }
2758
2759 /*
2760  * Set default functions
2761  */
2762 static void nand_set_defaults(struct nand_chip *chip, int busw)
2763 {
2764         /* check for proper chip_delay setup, set 20us if not */
2765         if (!chip->chip_delay)
2766                 chip->chip_delay = 20;
2767
2768         /* check, if a user supplied command function given */
2769         if (chip->cmdfunc == NULL)
2770                 chip->cmdfunc = nand_command;
2771
2772         /* check, if a user supplied wait function given */
2773         if (chip->waitfunc == NULL)
2774                 chip->waitfunc = nand_wait;
2775
2776         if (!chip->select_chip)
2777                 chip->select_chip = nand_select_chip;
2778         if (!chip->read_byte)
2779                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2780         if (!chip->read_word)
2781                 chip->read_word = nand_read_word;
2782         if (!chip->block_bad)
2783                 chip->block_bad = nand_block_bad;
2784         if (!chip->block_markbad)
2785                 chip->block_markbad = nand_default_block_markbad;
2786         if (!chip->write_buf)
2787                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2788         if (!chip->read_buf)
2789                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2790         if (!chip->verify_buf)
2791                 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2792         if (!chip->scan_bbt)
2793                 chip->scan_bbt = nand_default_bbt;
2794
2795         if (!chip->controller) {
2796                 chip->controller = &chip->hwcontrol;
2797                 spin_lock_init(&chip->controller->lock);
2798                 init_waitqueue_head(&chip->controller->wq);
2799         }
2800
2801 }
2802
2803 /*
2804  * sanitize ONFI strings so we can safely print them
2805  */
2806 static void sanitize_string(uint8_t *s, size_t len)
2807 {
2808         ssize_t i;
2809
2810         /* null terminate */
2811         s[len - 1] = 0;
2812
2813         /* remove non printable chars */
2814         for (i = 0; i < len - 1; i++) {
2815                 if (s[i] < ' ' || s[i] > 127)
2816                         s[i] = '?';
2817         }
2818
2819         /* remove trailing spaces */
2820         strim(s);
2821 }
2822
2823 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2824 {
2825         int i;
2826         while (len--) {
2827                 crc ^= *p++ << 8;
2828                 for (i = 0; i < 8; i++)
2829                         crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2830         }
2831
2832         return crc;
2833 }
2834
2835 /*
2836  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise
2837  */
2838 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2839                                         int busw)
2840 {
2841         struct nand_onfi_params *p = &chip->onfi_params;
2842         int i;
2843         int val;
2844
2845         /* try ONFI for unknow chip or LP */
2846         chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2847         if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2848                 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2849                 return 0;
2850
2851         printk(KERN_INFO "ONFI flash detected\n");
2852         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2853         for (i = 0; i < 3; i++) {
2854                 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2855                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2856                                 le16_to_cpu(p->crc)) {
2857                         printk(KERN_INFO "ONFI param page %d valid\n", i);
2858                         break;
2859                 }
2860         }
2861
2862         if (i == 3)
2863                 return 0;
2864
2865         /* check version */
2866         val = le16_to_cpu(p->revision);
2867         if (val == 1 || val > (1 << 4)) {
2868                 printk(KERN_INFO "%s: unsupported ONFI version: %d\n",
2869                                                                 __func__, val);
2870                 return 0;
2871         }
2872
2873         if (val & (1 << 4))
2874                 chip->onfi_version = 22;
2875         else if (val & (1 << 3))
2876                 chip->onfi_version = 21;
2877         else if (val & (1 << 2))
2878                 chip->onfi_version = 20;
2879         else
2880                 chip->onfi_version = 10;
2881
2882         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2883         sanitize_string(p->model, sizeof(p->model));
2884         if (!mtd->name)
2885                 mtd->name = p->model;
2886         mtd->writesize = le32_to_cpu(p->byte_per_page);
2887         mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2888         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2889         chip->chipsize = le32_to_cpu(p->blocks_per_lun) * mtd->erasesize;
2890         busw = 0;
2891         if (le16_to_cpu(p->features) & 1)
2892                 busw = NAND_BUSWIDTH_16;
2893
2894         chip->options &= ~NAND_CHIPOPTIONS_MSK;
2895         chip->options |= (NAND_NO_READRDY |
2896                         NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK;
2897
2898         return 1;
2899 }
2900
2901 /*
2902  * Get the flash and manufacturer id and lookup if the type is supported
2903  */
2904 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2905                                                   struct nand_chip *chip,
2906                                                   int busw,
2907                                                   int *maf_id, int *dev_id,
2908                                                   struct nand_flash_dev *type)
2909 {
2910         int i, maf_idx;
2911         u8 id_data[8];
2912         int ret;
2913
2914         /* Select the device */
2915         chip->select_chip(mtd, 0);
2916
2917         /*
2918          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2919          * after power-up
2920          */
2921         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2922
2923         /* Send the command for reading device ID */
2924         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2925
2926         /* Read manufacturer and device IDs */
2927         *maf_id = chip->read_byte(mtd);
2928         *dev_id = chip->read_byte(mtd);
2929
2930         /* Try again to make sure, as some systems the bus-hold or other
2931          * interface concerns can cause random data which looks like a
2932          * possibly credible NAND flash to appear. If the two results do
2933          * not match, ignore the device completely.
2934          */
2935
2936         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2937
2938         for (i = 0; i < 2; i++)
2939                 id_data[i] = chip->read_byte(mtd);
2940
2941         if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
2942                 printk(KERN_INFO "%s: second ID read did not match "
2943                        "%02x,%02x against %02x,%02x\n", __func__,
2944                        *maf_id, *dev_id, id_data[0], id_data[1]);
2945                 return ERR_PTR(-ENODEV);
2946         }
2947
2948         if (!type)
2949                 type = nand_flash_ids;
2950
2951         for (; type->name != NULL; type++)
2952                 if (*dev_id == type->id)
2953                         break;
2954
2955         chip->onfi_version = 0;
2956         if (!type->name || !type->pagesize) {
2957                 /* Check is chip is ONFI compliant */
2958                 ret = nand_flash_detect_onfi(mtd, chip, busw);
2959                 if (ret)
2960                         goto ident_done;
2961         }
2962
2963         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2964
2965         /* Read entire ID string */
2966
2967         for (i = 0; i < 8; i++)
2968                 id_data[i] = chip->read_byte(mtd);
2969
2970         if (!type->name)
2971                 return ERR_PTR(-ENODEV);
2972
2973         if (!mtd->name)
2974                 mtd->name = type->name;
2975
2976         chip->chipsize = (uint64_t)type->chipsize << 20;
2977
2978         /* Newer devices have all the information in additional id bytes */
2979         if (!type->pagesize) {
2980                 int extid;
2981                 /* The 3rd id byte holds MLC / multichip data */
2982                 chip->cellinfo = id_data[2];
2983                 /* The 4th id byte is the important one */
2984                 extid = id_data[3];
2985
2986                 /*
2987                  * Field definitions are in the following datasheets:
2988                  * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2989                  * New style   (6 byte ID): Samsung K9GBG08U0M (p.40)
2990                  *
2991                  * Check for wraparound + Samsung ID + nonzero 6th byte
2992                  * to decide what to do.
2993                  */
2994                 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
2995                                 id_data[0] == NAND_MFR_SAMSUNG &&
2996                                 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2997                                 id_data[5] != 0x00) {
2998                         /* Calc pagesize */
2999                         mtd->writesize = 2048 << (extid & 0x03);
3000                         extid >>= 2;
3001                         /* Calc oobsize */
3002                         switch (extid & 0x03) {
3003                         case 1:
3004                                 mtd->oobsize = 128;
3005                                 break;
3006                         case 2:
3007                                 mtd->oobsize = 218;
3008                                 break;
3009                         case 3:
3010                                 mtd->oobsize = 400;
3011                                 break;
3012                         default:
3013                                 mtd->oobsize = 436;
3014                                 break;
3015                         }
3016                         extid >>= 2;
3017                         /* Calc blocksize */
3018                         mtd->erasesize = (128 * 1024) <<
3019                                 (((extid >> 1) & 0x04) | (extid & 0x03));
3020                         busw = 0;
3021                 } else {
3022                         /* Calc pagesize */
3023                         mtd->writesize = 1024 << (extid & 0x03);
3024                         extid >>= 2;
3025                         /* Calc oobsize */
3026                         mtd->oobsize = (8 << (extid & 0x01)) *
3027                                 (mtd->writesize >> 9);
3028                         extid >>= 2;
3029                         /* Calc blocksize. Blocksize is multiples of 64KiB */
3030                         mtd->erasesize = (64 * 1024) << (extid & 0x03);
3031                         extid >>= 2;
3032                         /* Get buswidth information */
3033                         busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3034                 }
3035         } else {
3036                 /*
3037                  * Old devices have chip data hardcoded in the device id table
3038                  */
3039                 mtd->erasesize = type->erasesize;
3040                 mtd->writesize = type->pagesize;
3041                 mtd->oobsize = mtd->writesize / 32;
3042                 busw = type->options & NAND_BUSWIDTH_16;
3043
3044                 /*
3045                  * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3046                  * some Spansion chips have erasesize that conflicts with size
3047                  * listed in nand_ids table
3048                  * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3049                  */
3050                 if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3051                                 id_data[5] == 0x00 && id_data[6] == 0x00 &&
3052                                 id_data[7] == 0x00 && mtd->writesize == 512) {
3053                         mtd->erasesize = 128 * 1024;
3054                         mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3055                 }
3056         }
3057         /* Get chip options, preserve non chip based options */
3058         chip->options &= ~NAND_CHIPOPTIONS_MSK;
3059         chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
3060
3061         /* Check if chip is a not a samsung device. Do not clear the
3062          * options for chips which are not having an extended id.
3063          */
3064         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3065                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3066 ident_done:
3067
3068         /*
3069          * Set chip as a default. Board drivers can override it, if necessary
3070          */
3071         chip->options |= NAND_NO_AUTOINCR;
3072
3073         /* Try to identify manufacturer */
3074         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3075                 if (nand_manuf_ids[maf_idx].id == *maf_id)
3076                         break;
3077         }
3078
3079         /*
3080          * Check, if buswidth is correct. Hardware drivers should set
3081          * chip correct !
3082          */
3083         if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3084                 printk(KERN_INFO "NAND device: Manufacturer ID:"
3085                        " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3086                        *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3087                 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
3088                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3089                        busw ? 16 : 8);
3090                 return ERR_PTR(-EINVAL);
3091         }
3092
3093         /* Calculate the address shift from the page size */
3094         chip->page_shift = ffs(mtd->writesize) - 1;
3095         /* Convert chipsize to number of pages per chip -1. */
3096         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3097
3098         chip->bbt_erase_shift = chip->phys_erase_shift =
3099                 ffs(mtd->erasesize) - 1;
3100         if (chip->chipsize & 0xffffffff)
3101                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3102         else {
3103                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3104                 chip->chip_shift += 32 - 1;
3105         }
3106
3107         /* Set the bad block position */
3108         if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
3109                 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3110         else
3111                 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3112
3113         /*
3114          * Bad block marker is stored in the last page of each block
3115          * on Samsung and Hynix MLC devices; stored in first two pages
3116          * of each block on Micron devices with 2KiB pages and on
3117          * SLC Samsung, Hynix, Toshiba and AMD/Spansion. All others scan
3118          * only the first page.
3119          */
3120         if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3121                         (*maf_id == NAND_MFR_SAMSUNG ||
3122                          *maf_id == NAND_MFR_HYNIX))
3123                 chip->options |= NAND_BBT_SCANLASTPAGE;
3124         else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3125                                 (*maf_id == NAND_MFR_SAMSUNG ||
3126                                  *maf_id == NAND_MFR_HYNIX ||
3127                                  *maf_id == NAND_MFR_TOSHIBA ||
3128                                  *maf_id == NAND_MFR_AMD)) ||
3129                         (mtd->writesize == 2048 &&
3130                          *maf_id == NAND_MFR_MICRON))
3131                 chip->options |= NAND_BBT_SCAN2NDPAGE;
3132
3133         /*
3134          * Numonyx/ST 2K pages, x8 bus use BOTH byte 1 and 6
3135          */
3136         if (!(busw & NAND_BUSWIDTH_16) &&
3137                         *maf_id == NAND_MFR_STMICRO &&
3138                         mtd->writesize == 2048) {
3139                 chip->options |= NAND_BBT_SCANBYTE1AND6;
3140                 chip->badblockpos = 0;
3141         }
3142
3143         /* Check for AND chips with 4 page planes */
3144         if (chip->options & NAND_4PAGE_ARRAY)
3145                 chip->erase_cmd = multi_erase_cmd;
3146         else
3147                 chip->erase_cmd = single_erase_cmd;
3148
3149         /* Do not replace user supplied command function ! */
3150         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3151                 chip->cmdfunc = nand_command_lp;
3152
3153         /* TODO onfi flash name */
3154         printk(KERN_INFO "NAND device: Manufacturer ID:"
3155                 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id,
3156                 nand_manuf_ids[maf_idx].name,
3157         chip->onfi_version ? type->name : chip->onfi_params.model);
3158
3159         return type;
3160 }
3161
3162 /**
3163  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3164  * @mtd:             MTD device structure
3165  * @maxchips:        Number of chips to scan for
3166  * @table:           Alternative NAND ID table
3167  *
3168  * This is the first phase of the normal nand_scan() function. It
3169  * reads the flash ID and sets up MTD fields accordingly.
3170  *
3171  * The mtd->owner field must be set to the module of the caller.
3172  */
3173 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3174                     struct nand_flash_dev *table)
3175 {
3176         int i, busw, nand_maf_id, nand_dev_id;
3177         struct nand_chip *chip = mtd->priv;
3178         struct nand_flash_dev *type;
3179
3180         /* Get buswidth to select the correct functions */
3181         busw = chip->options & NAND_BUSWIDTH_16;
3182         /* Set the default functions */
3183         nand_set_defaults(chip, busw);
3184
3185         /* Read the flash type */
3186         type = nand_get_flash_type(mtd, chip, busw,
3187                                 &nand_maf_id, &nand_dev_id, table);
3188
3189         if (IS_ERR(type)) {
3190                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3191                         printk(KERN_WARNING "No NAND device found.\n");
3192                 chip->select_chip(mtd, -1);
3193                 return PTR_ERR(type);
3194         }
3195
3196         /* Check for a chip array */
3197         for (i = 1; i < maxchips; i++) {
3198                 chip->select_chip(mtd, i);
3199                 /* See comment in nand_get_flash_type for reset */
3200                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3201                 /* Send the command for reading device ID */
3202                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3203                 /* Read manufacturer and device IDs */
3204                 if (nand_maf_id != chip->read_byte(mtd) ||
3205                     nand_dev_id != chip->read_byte(mtd))
3206                         break;
3207         }
3208         if (i > 1)
3209                 printk(KERN_INFO "%d NAND chips detected\n", i);
3210
3211         /* Store the number of chips and calc total size for mtd */
3212         chip->numchips = i;
3213         mtd->size = i * chip->chipsize;
3214
3215         return 0;
3216 }
3217 EXPORT_SYMBOL(nand_scan_ident);
3218
3219
3220 /**
3221  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3222  * @mtd:            MTD device structure
3223  *
3224  * This is the second phase of the normal nand_scan() function. It
3225  * fills out all the uninitialized function pointers with the defaults
3226  * and scans for a bad block table if appropriate.
3227  */
3228 int nand_scan_tail(struct mtd_info *mtd)
3229 {
3230         int i;
3231         struct nand_chip *chip = mtd->priv;
3232
3233         if (!(chip->options & NAND_OWN_BUFFERS))
3234                 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3235         if (!chip->buffers)
3236                 return -ENOMEM;
3237
3238         /* Set the internal oob buffer location, just after the page data */
3239         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3240
3241         /*
3242          * If no default placement scheme is given, select an appropriate one
3243          */
3244         if (!chip->ecc.layout) {
3245                 switch (mtd->oobsize) {
3246                 case 8:
3247                         chip->ecc.layout = &nand_oob_8;
3248                         break;
3249                 case 16:
3250                         chip->ecc.layout = &nand_oob_16;
3251                         break;
3252                 case 64:
3253                         chip->ecc.layout = &nand_oob_64;
3254                         break;
3255                 case 128:
3256                         chip->ecc.layout = &nand_oob_128;
3257                         break;
3258                 default:
3259                         printk(KERN_WARNING "No oob scheme defined for "
3260                                "oobsize %d\n", mtd->oobsize);
3261                         BUG();
3262                 }
3263         }
3264
3265         if (!chip->write_page)
3266                 chip->write_page = nand_write_page;
3267
3268         /*
3269          * check ECC mode, default to software if 3byte/512byte hardware ECC is
3270          * selected and we have 256 byte pagesize fallback to software ECC
3271          */
3272
3273         switch (chip->ecc.mode) {
3274         case NAND_ECC_HW_OOB_FIRST:
3275                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3276                 if (!chip->ecc.calculate || !chip->ecc.correct ||
3277                      !chip->ecc.hwctl) {
3278                         printk(KERN_WARNING "No ECC functions supplied; "
3279                                "Hardware ECC not possible\n");
3280                         BUG();
3281                 }
3282                 if (!chip->ecc.read_page)
3283                         chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3284
3285         case NAND_ECC_HW:
3286                 /* Use standard hwecc read page function ? */
3287                 if (!chip->ecc.read_page)
3288                         chip->ecc.read_page = nand_read_page_hwecc;
3289                 if (!chip->ecc.write_page)
3290                         chip->ecc.write_page = nand_write_page_hwecc;
3291                 if (!chip->ecc.read_page_raw)
3292                         chip->ecc.read_page_raw = nand_read_page_raw;
3293                 if (!chip->ecc.write_page_raw)
3294                         chip->ecc.write_page_raw = nand_write_page_raw;
3295                 if (!chip->ecc.read_oob)
3296                         chip->ecc.read_oob = nand_read_oob_std;
3297                 if (!chip->ecc.write_oob)
3298                         chip->ecc.write_oob = nand_write_oob_std;
3299
3300         case NAND_ECC_HW_SYNDROME:
3301                 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3302                      !chip->ecc.hwctl) &&
3303                     (!chip->ecc.read_page ||
3304                      chip->ecc.read_page == nand_read_page_hwecc ||
3305                      !chip->ecc.write_page ||
3306                      chip->ecc.write_page == nand_write_page_hwecc)) {
3307                         printk(KERN_WARNING "No ECC functions supplied; "
3308                                "Hardware ECC not possible\n");
3309                         BUG();
3310                 }
3311                 /* Use standard syndrome read/write page function ? */
3312                 if (!chip->ecc.read_page)
3313                         chip->ecc.read_page = nand_read_page_syndrome;
3314                 if (!chip->ecc.write_page)
3315                         chip->ecc.write_page = nand_write_page_syndrome;
3316                 if (!chip->ecc.read_page_raw)
3317                         chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3318                 if (!chip->ecc.write_page_raw)
3319                         chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3320                 if (!chip->ecc.read_oob)
3321                         chip->ecc.read_oob = nand_read_oob_syndrome;
3322                 if (!chip->ecc.write_oob)
3323                         chip->ecc.write_oob = nand_write_oob_syndrome;
3324
3325                 if (mtd->writesize >= chip->ecc.size)
3326                         break;
3327                 printk(KERN_WARNING "%d byte HW ECC not possible on "
3328                        "%d byte page size, fallback to SW ECC\n",
3329                        chip->ecc.size, mtd->writesize);
3330                 chip->ecc.mode = NAND_ECC_SOFT;
3331
3332         case NAND_ECC_SOFT:
3333                 chip->ecc.calculate = nand_calculate_ecc;
3334                 chip->ecc.correct = nand_correct_data;
3335                 chip->ecc.read_page = nand_read_page_swecc;
3336                 chip->ecc.read_subpage = nand_read_subpage;
3337                 chip->ecc.write_page = nand_write_page_swecc;
3338                 chip->ecc.read_page_raw = nand_read_page_raw;
3339                 chip->ecc.write_page_raw = nand_write_page_raw;
3340                 chip->ecc.read_oob = nand_read_oob_std;
3341                 chip->ecc.write_oob = nand_write_oob_std;
3342                 if (!chip->ecc.size)
3343                         chip->ecc.size = 256;
3344                 chip->ecc.bytes = 3;
3345                 break;
3346
3347         case NAND_ECC_NONE:
3348                 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
3349                        "This is not recommended !!\n");
3350                 chip->ecc.read_page = nand_read_page_raw;
3351                 chip->ecc.write_page = nand_write_page_raw;
3352                 chip->ecc.read_oob = nand_read_oob_std;
3353                 chip->ecc.read_page_raw = nand_read_page_raw;
3354                 chip->ecc.write_page_raw = nand_write_page_raw;
3355                 chip->ecc.write_oob = nand_write_oob_std;
3356                 chip->ecc.size = mtd->writesize;
3357                 chip->ecc.bytes = 0;
3358                 break;
3359
3360         default:
3361                 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
3362                        chip->ecc.mode);
3363                 BUG();
3364         }
3365
3366         /*
3367          * The number of bytes available for a client to place data into
3368          * the out of band area
3369          */
3370         chip->ecc.layout->oobavail = 0;
3371         for (i = 0; chip->ecc.layout->oobfree[i].length
3372                         && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3373                 chip->ecc.layout->oobavail +=
3374                         chip->ecc.layout->oobfree[i].length;
3375         mtd->oobavail = chip->ecc.layout->oobavail;
3376
3377         /*
3378          * Set the number of read / write steps for one page depending on ECC
3379          * mode
3380          */
3381         chip->ecc.steps = mtd->writesize / chip->ecc.size;
3382         if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3383                 printk(KERN_WARNING "Invalid ecc parameters\n");
3384                 BUG();
3385         }
3386         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3387
3388         /*
3389          * Allow subpage writes up to ecc.steps. Not possible for MLC
3390          * FLASH.
3391          */
3392         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3393             !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3394                 switch (chip->ecc.steps) {
3395                 case 2:
3396                         mtd->subpage_sft = 1;
3397                         break;
3398                 case 4:
3399                 case 8:
3400                 case 16:
3401                         mtd->subpage_sft = 2;
3402                         break;
3403                 }
3404         }
3405         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3406
3407         /* Initialize state */
3408         chip->state = FL_READY;
3409
3410         /* De-select the device */
3411         chip->select_chip(mtd, -1);
3412
3413         /* Invalidate the pagebuffer reference */
3414         chip->pagebuf = -1;
3415
3416         /* Fill in remaining MTD driver data */
3417         mtd->type = MTD_NANDFLASH;
3418         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3419                                                 MTD_CAP_NANDFLASH;
3420         mtd->erase = nand_erase;
3421         mtd->point = NULL;
3422         mtd->unpoint = NULL;
3423         mtd->read = nand_read;
3424         mtd->write = nand_write;
3425         mtd->panic_write = panic_nand_write;
3426         mtd->read_oob = nand_read_oob;
3427         mtd->write_oob = nand_write_oob;
3428         mtd->sync = nand_sync;
3429         mtd->lock = NULL;
3430         mtd->unlock = NULL;
3431         mtd->suspend = nand_suspend;
3432         mtd->resume = nand_resume;
3433         mtd->block_isbad = nand_block_isbad;
3434         mtd->block_markbad = nand_block_markbad;
3435
3436         /* propagate ecc.layout to mtd_info */
3437         mtd->ecclayout = chip->ecc.layout;
3438
3439         /* Check, if we should skip the bad block table scan */
3440         if (chip->options & NAND_SKIP_BBTSCAN)
3441                 return 0;
3442
3443         /* Build bad block table */
3444         return chip->scan_bbt(mtd);
3445 }
3446 EXPORT_SYMBOL(nand_scan_tail);
3447
3448 /* is_module_text_address() isn't exported, and it's mostly a pointless
3449  * test if this is a module _anyway_ -- they'd have to try _really_ hard
3450  * to call us from in-kernel code if the core NAND support is modular. */
3451 #ifdef MODULE
3452 #define caller_is_module() (1)
3453 #else
3454 #define caller_is_module() \
3455         is_module_text_address((unsigned long)__builtin_return_address(0))
3456 #endif
3457
3458 /**
3459  * nand_scan - [NAND Interface] Scan for the NAND device
3460  * @mtd:        MTD device structure
3461  * @maxchips:   Number of chips to scan for
3462  *
3463  * This fills out all the uninitialized function pointers
3464  * with the defaults.
3465  * The flash ID is read and the mtd/chip structures are
3466  * filled with the appropriate values.
3467  * The mtd->owner field must be set to the module of the caller
3468  *
3469  */
3470 int nand_scan(struct mtd_info *mtd, int maxchips)
3471 {
3472         int ret;
3473
3474         /* Many callers got this wrong, so check for it for a while... */
3475         if (!mtd->owner && caller_is_module()) {
3476                 printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3477                                 __func__);
3478                 BUG();
3479         }
3480
3481         ret = nand_scan_ident(mtd, maxchips, NULL);
3482         if (!ret)
3483                 ret = nand_scan_tail(mtd);
3484         return ret;
3485 }
3486 EXPORT_SYMBOL(nand_scan);
3487
3488 /**
3489  * nand_release - [NAND Interface] Free resources held by the NAND device
3490  * @mtd:        MTD device structure
3491 */
3492 void nand_release(struct mtd_info *mtd)
3493 {
3494         struct nand_chip *chip = mtd->priv;
3495
3496 #ifdef CONFIG_MTD_PARTITIONS
3497         /* Deregister partitions */
3498         del_mtd_partitions(mtd);
3499 #endif
3500         /* Deregister the device */
3501         del_mtd_device(mtd);
3502
3503         /* Free bad block table memory */
3504         kfree(chip->bbt);
3505         if (!(chip->options & NAND_OWN_BUFFERS))
3506                 kfree(chip->buffers);
3507
3508         /* Free bad block descriptor memory */
3509         if (chip->badblock_pattern && chip->badblock_pattern->options
3510                         & NAND_BBT_DYNAMICSTRUCT)
3511                 kfree(chip->badblock_pattern);
3512 }
3513 EXPORT_SYMBOL_GPL(nand_release);
3514
3515 static int __init nand_base_init(void)
3516 {
3517         led_trigger_register_simple("nand-disk", &nand_led_trigger);
3518         return 0;
3519 }
3520
3521 static void __exit nand_base_exit(void)
3522 {
3523         led_trigger_unregister_simple(nand_led_trigger);
3524 }
3525
3526 module_init(nand_base_init);
3527 module_exit(nand_base_exit);
3528
3529 MODULE_LICENSE("GPL");
3530 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3531 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3532 MODULE_DESCRIPTION("Generic NAND flash driver code");