]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/sfc/falcon.c
fe150842d82b30e28e3fcdbf87c727cdb86ab9b1
[mv-sheeva.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2009 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "mac.h"
23 #include "spi.h"
24 #include "nic.h"
25 #include "regs.h"
26 #include "io.h"
27 #include "phy.h"
28 #include "workarounds.h"
29
30 /* Hardware control for SFC4000 (aka Falcon). */
31
32 static const unsigned int
33 /* "Large" EEPROM device: Atmel AT25640 or similar
34  * 8 KB, 16-bit address, 32 B write block */
35 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
36                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
37                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
38 /* Default flash device: Atmel AT25F1024
39  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
40 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
41                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
42                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
43                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
44                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
45
46 /**************************************************************************
47  *
48  * I2C bus - this is a bit-bashing interface using GPIO pins
49  * Note that it uses the output enables to tristate the outputs
50  * SDA is the data pin and SCL is the clock
51  *
52  **************************************************************************
53  */
54 static void falcon_setsda(void *data, int state)
55 {
56         struct efx_nic *efx = (struct efx_nic *)data;
57         efx_oword_t reg;
58
59         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
60         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
61         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
62 }
63
64 static void falcon_setscl(void *data, int state)
65 {
66         struct efx_nic *efx = (struct efx_nic *)data;
67         efx_oword_t reg;
68
69         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
70         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
71         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
72 }
73
74 static int falcon_getsda(void *data)
75 {
76         struct efx_nic *efx = (struct efx_nic *)data;
77         efx_oword_t reg;
78
79         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
80         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
81 }
82
83 static int falcon_getscl(void *data)
84 {
85         struct efx_nic *efx = (struct efx_nic *)data;
86         efx_oword_t reg;
87
88         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
89         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
90 }
91
92 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
93         .setsda         = falcon_setsda,
94         .setscl         = falcon_setscl,
95         .getsda         = falcon_getsda,
96         .getscl         = falcon_getscl,
97         .udelay         = 5,
98         /* Wait up to 50 ms for slave to let us pull SCL high */
99         .timeout        = DIV_ROUND_UP(HZ, 20),
100 };
101
102 static void falcon_push_irq_moderation(struct efx_channel *channel)
103 {
104         efx_dword_t timer_cmd;
105         struct efx_nic *efx = channel->efx;
106
107         /* Set timer register */
108         if (channel->irq_moderation) {
109                 EFX_POPULATE_DWORD_2(timer_cmd,
110                                      FRF_AB_TC_TIMER_MODE,
111                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
112                                      FRF_AB_TC_TIMER_VAL,
113                                      channel->irq_moderation - 1);
114         } else {
115                 EFX_POPULATE_DWORD_2(timer_cmd,
116                                      FRF_AB_TC_TIMER_MODE,
117                                      FFE_BB_TIMER_MODE_DIS,
118                                      FRF_AB_TC_TIMER_VAL, 0);
119         }
120         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
121         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
122                                channel->channel);
123 }
124
125 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
126
127 static void falcon_prepare_flush(struct efx_nic *efx)
128 {
129         falcon_deconfigure_mac_wrapper(efx);
130
131         /* Wait for the tx and rx fifo's to get to the next packet boundary
132          * (~1ms without back-pressure), then to drain the remainder of the
133          * fifo's at data path speeds (negligible), with a healthy margin. */
134         msleep(10);
135 }
136
137 /* Acknowledge a legacy interrupt from Falcon
138  *
139  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
140  *
141  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
142  * BIU. Interrupt acknowledge is read sensitive so must write instead
143  * (then read to ensure the BIU collector is flushed)
144  *
145  * NB most hardware supports MSI interrupts
146  */
147 inline void falcon_irq_ack_a1(struct efx_nic *efx)
148 {
149         efx_dword_t reg;
150
151         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
152         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
153         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
154 }
155
156
157 irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
158 {
159         struct efx_nic *efx = dev_id;
160         efx_oword_t *int_ker = efx->irq_status.addr;
161         int syserr;
162         int queues;
163
164         /* Check to see if this is our interrupt.  If it isn't, we
165          * exit without having touched the hardware.
166          */
167         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
168                 netif_vdbg(efx, intr, efx->net_dev,
169                            "IRQ %d on CPU %d not for me\n", irq,
170                            raw_smp_processor_id());
171                 return IRQ_NONE;
172         }
173         efx->last_irq_cpu = raw_smp_processor_id();
174         netif_vdbg(efx, intr, efx->net_dev,
175                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
176                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
177
178         /* Determine interrupting queues, clear interrupt status
179          * register and acknowledge the device interrupt.
180          */
181         BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
182         queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
183
184         /* Check to see if we have a serious error condition */
185         if (queues & (1U << efx->fatal_irq_level)) {
186                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
187                 if (unlikely(syserr))
188                         return efx_nic_fatal_interrupt(efx);
189         }
190
191         EFX_ZERO_OWORD(*int_ker);
192         wmb(); /* Ensure the vector is cleared before interrupt ack */
193         falcon_irq_ack_a1(efx);
194
195         if (queues & 1)
196                 efx_schedule_channel(efx_get_channel(efx, 0));
197         if (queues & 2)
198                 efx_schedule_channel(efx_get_channel(efx, 1));
199         return IRQ_HANDLED;
200 }
201 /**************************************************************************
202  *
203  * EEPROM/flash
204  *
205  **************************************************************************
206  */
207
208 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
209
210 static int falcon_spi_poll(struct efx_nic *efx)
211 {
212         efx_oword_t reg;
213         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
214         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
215 }
216
217 /* Wait for SPI command completion */
218 static int falcon_spi_wait(struct efx_nic *efx)
219 {
220         /* Most commands will finish quickly, so we start polling at
221          * very short intervals.  Sometimes the command may have to
222          * wait for VPD or expansion ROM access outside of our
223          * control, so we allow up to 100 ms. */
224         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
225         int i;
226
227         for (i = 0; i < 10; i++) {
228                 if (!falcon_spi_poll(efx))
229                         return 0;
230                 udelay(10);
231         }
232
233         for (;;) {
234                 if (!falcon_spi_poll(efx))
235                         return 0;
236                 if (time_after_eq(jiffies, timeout)) {
237                         netif_err(efx, hw, efx->net_dev,
238                                   "timed out waiting for SPI\n");
239                         return -ETIMEDOUT;
240                 }
241                 schedule_timeout_uninterruptible(1);
242         }
243 }
244
245 int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
246                    unsigned int command, int address,
247                    const void *in, void *out, size_t len)
248 {
249         bool addressed = (address >= 0);
250         bool reading = (out != NULL);
251         efx_oword_t reg;
252         int rc;
253
254         /* Input validation */
255         if (len > FALCON_SPI_MAX_LEN)
256                 return -EINVAL;
257         BUG_ON(!mutex_is_locked(&efx->spi_lock));
258
259         /* Check that previous command is not still running */
260         rc = falcon_spi_poll(efx);
261         if (rc)
262                 return rc;
263
264         /* Program address register, if we have an address */
265         if (addressed) {
266                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
267                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
268         }
269
270         /* Program data register, if we have data */
271         if (in != NULL) {
272                 memcpy(&reg, in, len);
273                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
274         }
275
276         /* Issue read/write command */
277         EFX_POPULATE_OWORD_7(reg,
278                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
279                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
280                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
281                              FRF_AB_EE_SPI_HCMD_READ, reading,
282                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
283                              FRF_AB_EE_SPI_HCMD_ADBCNT,
284                              (addressed ? spi->addr_len : 0),
285                              FRF_AB_EE_SPI_HCMD_ENC, command);
286         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
287
288         /* Wait for read/write to complete */
289         rc = falcon_spi_wait(efx);
290         if (rc)
291                 return rc;
292
293         /* Read data */
294         if (out != NULL) {
295                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
296                 memcpy(out, &reg, len);
297         }
298
299         return 0;
300 }
301
302 static size_t
303 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
304 {
305         return min(FALCON_SPI_MAX_LEN,
306                    (spi->block_size - (start & (spi->block_size - 1))));
307 }
308
309 static inline u8
310 efx_spi_munge_command(const struct efx_spi_device *spi,
311                       const u8 command, const unsigned int address)
312 {
313         return command | (((address >> 8) & spi->munge_address) << 3);
314 }
315
316 /* Wait up to 10 ms for buffered write completion */
317 int
318 falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
319 {
320         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
321         u8 status;
322         int rc;
323
324         for (;;) {
325                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
326                                     &status, sizeof(status));
327                 if (rc)
328                         return rc;
329                 if (!(status & SPI_STATUS_NRDY))
330                         return 0;
331                 if (time_after_eq(jiffies, timeout)) {
332                         netif_err(efx, hw, efx->net_dev,
333                                   "SPI write timeout on device %d"
334                                   " last status=0x%02x\n",
335                                   spi->device_id, status);
336                         return -ETIMEDOUT;
337                 }
338                 schedule_timeout_uninterruptible(1);
339         }
340 }
341
342 int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
343                     loff_t start, size_t len, size_t *retlen, u8 *buffer)
344 {
345         size_t block_len, pos = 0;
346         unsigned int command;
347         int rc = 0;
348
349         while (pos < len) {
350                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
351
352                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
353                 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
354                                     buffer + pos, block_len);
355                 if (rc)
356                         break;
357                 pos += block_len;
358
359                 /* Avoid locking up the system */
360                 cond_resched();
361                 if (signal_pending(current)) {
362                         rc = -EINTR;
363                         break;
364                 }
365         }
366
367         if (retlen)
368                 *retlen = pos;
369         return rc;
370 }
371
372 int
373 falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
374                  loff_t start, size_t len, size_t *retlen, const u8 *buffer)
375 {
376         u8 verify_buffer[FALCON_SPI_MAX_LEN];
377         size_t block_len, pos = 0;
378         unsigned int command;
379         int rc = 0;
380
381         while (pos < len) {
382                 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
383                 if (rc)
384                         break;
385
386                 block_len = min(len - pos,
387                                 falcon_spi_write_limit(spi, start + pos));
388                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
389                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
390                                     buffer + pos, NULL, block_len);
391                 if (rc)
392                         break;
393
394                 rc = falcon_spi_wait_write(efx, spi);
395                 if (rc)
396                         break;
397
398                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
399                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
400                                     NULL, verify_buffer, block_len);
401                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
402                         rc = -EIO;
403                         break;
404                 }
405
406                 pos += block_len;
407
408                 /* Avoid locking up the system */
409                 cond_resched();
410                 if (signal_pending(current)) {
411                         rc = -EINTR;
412                         break;
413                 }
414         }
415
416         if (retlen)
417                 *retlen = pos;
418         return rc;
419 }
420
421 /**************************************************************************
422  *
423  * MAC wrapper
424  *
425  **************************************************************************
426  */
427
428 static void falcon_push_multicast_hash(struct efx_nic *efx)
429 {
430         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
431
432         WARN_ON(!mutex_is_locked(&efx->mac_lock));
433
434         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
435         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
436 }
437
438 static void falcon_reset_macs(struct efx_nic *efx)
439 {
440         struct falcon_nic_data *nic_data = efx->nic_data;
441         efx_oword_t reg, mac_ctrl;
442         int count;
443
444         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
445                 /* It's not safe to use GLB_CTL_REG to reset the
446                  * macs, so instead use the internal MAC resets
447                  */
448                 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
449                 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
450
451                 for (count = 0; count < 10000; count++) {
452                         efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
453                         if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
454                             0)
455                                 return;
456                         udelay(10);
457                 }
458
459                 netif_err(efx, hw, efx->net_dev,
460                           "timed out waiting for XMAC core reset\n");
461         }
462
463         /* Mac stats will fail whist the TX fifo is draining */
464         WARN_ON(nic_data->stats_disable_count == 0);
465
466         efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
467         EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
468         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
469
470         efx_reado(efx, &reg, FR_AB_GLB_CTL);
471         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
472         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
473         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
474         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
475
476         count = 0;
477         while (1) {
478                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
479                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
480                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
481                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
482                         netif_dbg(efx, hw, efx->net_dev,
483                                   "Completed MAC reset after %d loops\n",
484                                   count);
485                         break;
486                 }
487                 if (count > 20) {
488                         netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
489                         break;
490                 }
491                 count++;
492                 udelay(10);
493         }
494
495         /* Ensure the correct MAC is selected before statistics
496          * are re-enabled by the caller */
497         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
498
499         falcon_setup_xaui(efx);
500 }
501
502 void falcon_drain_tx_fifo(struct efx_nic *efx)
503 {
504         efx_oword_t reg;
505
506         if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
507             (efx->loopback_mode != LOOPBACK_NONE))
508                 return;
509
510         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
511         /* There is no point in draining more than once */
512         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
513                 return;
514
515         falcon_reset_macs(efx);
516 }
517
518 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
519 {
520         efx_oword_t reg;
521
522         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
523                 return;
524
525         /* Isolate the MAC -> RX */
526         efx_reado(efx, &reg, FR_AZ_RX_CFG);
527         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
528         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
529
530         /* Isolate TX -> MAC */
531         falcon_drain_tx_fifo(efx);
532 }
533
534 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
535 {
536         struct efx_link_state *link_state = &efx->link_state;
537         efx_oword_t reg;
538         int link_speed, isolate;
539
540         isolate = (efx->reset_pending != RESET_TYPE_NONE);
541
542         switch (link_state->speed) {
543         case 10000: link_speed = 3; break;
544         case 1000:  link_speed = 2; break;
545         case 100:   link_speed = 1; break;
546         default:    link_speed = 0; break;
547         }
548         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
549          * as advertised.  Disable to ensure packets are not
550          * indefinitely held and TX queue can be flushed at any point
551          * while the link is down. */
552         EFX_POPULATE_OWORD_5(reg,
553                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
554                              FRF_AB_MAC_BCAD_ACPT, 1,
555                              FRF_AB_MAC_UC_PROM, efx->promiscuous,
556                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
557                              FRF_AB_MAC_SPEED, link_speed);
558         /* On B0, MAC backpressure can be disabled and packets get
559          * discarded. */
560         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
561                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
562                                     !link_state->up || isolate);
563         }
564
565         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
566
567         /* Restore the multicast hash registers. */
568         falcon_push_multicast_hash(efx);
569
570         efx_reado(efx, &reg, FR_AZ_RX_CFG);
571         /* Enable XOFF signal from RX FIFO (we enabled it during NIC
572          * initialisation but it may read back as 0) */
573         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
574         /* Unisolate the MAC -> RX */
575         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
576                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
577         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
578 }
579
580 static void falcon_stats_request(struct efx_nic *efx)
581 {
582         struct falcon_nic_data *nic_data = efx->nic_data;
583         efx_oword_t reg;
584
585         WARN_ON(nic_data->stats_pending);
586         WARN_ON(nic_data->stats_disable_count);
587
588         if (nic_data->stats_dma_done == NULL)
589                 return; /* no mac selected */
590
591         *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
592         nic_data->stats_pending = true;
593         wmb(); /* ensure done flag is clear */
594
595         /* Initiate DMA transfer of stats */
596         EFX_POPULATE_OWORD_2(reg,
597                              FRF_AB_MAC_STAT_DMA_CMD, 1,
598                              FRF_AB_MAC_STAT_DMA_ADR,
599                              efx->stats_buffer.dma_addr);
600         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
601
602         mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
603 }
604
605 static void falcon_stats_complete(struct efx_nic *efx)
606 {
607         struct falcon_nic_data *nic_data = efx->nic_data;
608
609         if (!nic_data->stats_pending)
610                 return;
611
612         nic_data->stats_pending = 0;
613         if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
614                 rmb(); /* read the done flag before the stats */
615                 efx->mac_op->update_stats(efx);
616         } else {
617                 netif_err(efx, hw, efx->net_dev,
618                           "timed out waiting for statistics\n");
619         }
620 }
621
622 static void falcon_stats_timer_func(unsigned long context)
623 {
624         struct efx_nic *efx = (struct efx_nic *)context;
625         struct falcon_nic_data *nic_data = efx->nic_data;
626
627         spin_lock(&efx->stats_lock);
628
629         falcon_stats_complete(efx);
630         if (nic_data->stats_disable_count == 0)
631                 falcon_stats_request(efx);
632
633         spin_unlock(&efx->stats_lock);
634 }
635
636 static bool falcon_loopback_link_poll(struct efx_nic *efx)
637 {
638         struct efx_link_state old_state = efx->link_state;
639
640         WARN_ON(!mutex_is_locked(&efx->mac_lock));
641         WARN_ON(!LOOPBACK_INTERNAL(efx));
642
643         efx->link_state.fd = true;
644         efx->link_state.fc = efx->wanted_fc;
645         efx->link_state.up = true;
646         efx->link_state.speed = 10000;
647
648         return !efx_link_state_equal(&efx->link_state, &old_state);
649 }
650
651 static int falcon_reconfigure_port(struct efx_nic *efx)
652 {
653         int rc;
654
655         WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
656
657         /* Poll the PHY link state *before* reconfiguring it. This means we
658          * will pick up the correct speed (in loopback) to select the correct
659          * MAC.
660          */
661         if (LOOPBACK_INTERNAL(efx))
662                 falcon_loopback_link_poll(efx);
663         else
664                 efx->phy_op->poll(efx);
665
666         falcon_stop_nic_stats(efx);
667         falcon_deconfigure_mac_wrapper(efx);
668
669         falcon_reset_macs(efx);
670
671         efx->phy_op->reconfigure(efx);
672         rc = efx->mac_op->reconfigure(efx);
673         BUG_ON(rc);
674
675         falcon_start_nic_stats(efx);
676
677         /* Synchronise efx->link_state with the kernel */
678         efx_link_status_changed(efx);
679
680         return 0;
681 }
682
683 /**************************************************************************
684  *
685  * PHY access via GMII
686  *
687  **************************************************************************
688  */
689
690 /* Wait for GMII access to complete */
691 static int falcon_gmii_wait(struct efx_nic *efx)
692 {
693         efx_oword_t md_stat;
694         int count;
695
696         /* wait upto 50ms - taken max from datasheet */
697         for (count = 0; count < 5000; count++) {
698                 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
699                 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
700                         if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
701                             EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
702                                 netif_err(efx, hw, efx->net_dev,
703                                           "error from GMII access "
704                                           EFX_OWORD_FMT"\n",
705                                           EFX_OWORD_VAL(md_stat));
706                                 return -EIO;
707                         }
708                         return 0;
709                 }
710                 udelay(10);
711         }
712         netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
713         return -ETIMEDOUT;
714 }
715
716 /* Write an MDIO register of a PHY connected to Falcon. */
717 static int falcon_mdio_write(struct net_device *net_dev,
718                              int prtad, int devad, u16 addr, u16 value)
719 {
720         struct efx_nic *efx = netdev_priv(net_dev);
721         efx_oword_t reg;
722         int rc;
723
724         netif_vdbg(efx, hw, efx->net_dev,
725                    "writing MDIO %d register %d.%d with 0x%04x\n",
726                     prtad, devad, addr, value);
727
728         mutex_lock(&efx->mdio_lock);
729
730         /* Check MDIO not currently being accessed */
731         rc = falcon_gmii_wait(efx);
732         if (rc)
733                 goto out;
734
735         /* Write the address/ID register */
736         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
737         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
738
739         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
740                              FRF_AB_MD_DEV_ADR, devad);
741         efx_writeo(efx, &reg, FR_AB_MD_ID);
742
743         /* Write data */
744         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
745         efx_writeo(efx, &reg, FR_AB_MD_TXD);
746
747         EFX_POPULATE_OWORD_2(reg,
748                              FRF_AB_MD_WRC, 1,
749                              FRF_AB_MD_GC, 0);
750         efx_writeo(efx, &reg, FR_AB_MD_CS);
751
752         /* Wait for data to be written */
753         rc = falcon_gmii_wait(efx);
754         if (rc) {
755                 /* Abort the write operation */
756                 EFX_POPULATE_OWORD_2(reg,
757                                      FRF_AB_MD_WRC, 0,
758                                      FRF_AB_MD_GC, 1);
759                 efx_writeo(efx, &reg, FR_AB_MD_CS);
760                 udelay(10);
761         }
762
763 out:
764         mutex_unlock(&efx->mdio_lock);
765         return rc;
766 }
767
768 /* Read an MDIO register of a PHY connected to Falcon. */
769 static int falcon_mdio_read(struct net_device *net_dev,
770                             int prtad, int devad, u16 addr)
771 {
772         struct efx_nic *efx = netdev_priv(net_dev);
773         efx_oword_t reg;
774         int rc;
775
776         mutex_lock(&efx->mdio_lock);
777
778         /* Check MDIO not currently being accessed */
779         rc = falcon_gmii_wait(efx);
780         if (rc)
781                 goto out;
782
783         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
784         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
785
786         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
787                              FRF_AB_MD_DEV_ADR, devad);
788         efx_writeo(efx, &reg, FR_AB_MD_ID);
789
790         /* Request data to be read */
791         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
792         efx_writeo(efx, &reg, FR_AB_MD_CS);
793
794         /* Wait for data to become available */
795         rc = falcon_gmii_wait(efx);
796         if (rc == 0) {
797                 efx_reado(efx, &reg, FR_AB_MD_RXD);
798                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
799                 netif_vdbg(efx, hw, efx->net_dev,
800                            "read from MDIO %d register %d.%d, got %04x\n",
801                            prtad, devad, addr, rc);
802         } else {
803                 /* Abort the read operation */
804                 EFX_POPULATE_OWORD_2(reg,
805                                      FRF_AB_MD_RIC, 0,
806                                      FRF_AB_MD_GC, 1);
807                 efx_writeo(efx, &reg, FR_AB_MD_CS);
808
809                 netif_dbg(efx, hw, efx->net_dev,
810                           "read from MDIO %d register %d.%d, got error %d\n",
811                           prtad, devad, addr, rc);
812         }
813
814 out:
815         mutex_unlock(&efx->mdio_lock);
816         return rc;
817 }
818
819 /* This call is responsible for hooking in the MAC and PHY operations */
820 static int falcon_probe_port(struct efx_nic *efx)
821 {
822         struct falcon_nic_data *nic_data = efx->nic_data;
823         int rc;
824
825         switch (efx->phy_type) {
826         case PHY_TYPE_SFX7101:
827                 efx->phy_op = &falcon_sfx7101_phy_ops;
828                 break;
829         case PHY_TYPE_QT2022C2:
830         case PHY_TYPE_QT2025C:
831                 efx->phy_op = &falcon_qt202x_phy_ops;
832                 break;
833         case PHY_TYPE_TXC43128:
834                 efx->phy_op = &falcon_txc_phy_ops;
835                 break;
836         default:
837                 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
838                           efx->phy_type);
839                 return -ENODEV;
840         }
841
842         /* Fill out MDIO structure and loopback modes */
843         efx->mdio.mdio_read = falcon_mdio_read;
844         efx->mdio.mdio_write = falcon_mdio_write;
845         rc = efx->phy_op->probe(efx);
846         if (rc != 0)
847                 return rc;
848
849         /* Initial assumption */
850         efx->link_state.speed = 10000;
851         efx->link_state.fd = true;
852
853         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
854         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
855                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
856         else
857                 efx->wanted_fc = EFX_FC_RX;
858         if (efx->mdio.mmds & MDIO_DEVS_AN)
859                 efx->wanted_fc |= EFX_FC_AUTO;
860
861         /* Allocate buffer for stats */
862         rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
863                                   FALCON_MAC_STATS_SIZE);
864         if (rc)
865                 return rc;
866         netif_dbg(efx, probe, efx->net_dev,
867                   "stats buffer at %llx (virt %p phys %llx)\n",
868                   (u64)efx->stats_buffer.dma_addr,
869                   efx->stats_buffer.addr,
870                   (u64)virt_to_phys(efx->stats_buffer.addr));
871         nic_data->stats_dma_done = efx->stats_buffer.addr + XgDmaDone_offset;
872
873         return 0;
874 }
875
876 static void falcon_remove_port(struct efx_nic *efx)
877 {
878         efx->phy_op->remove(efx);
879         efx_nic_free_buffer(efx, &efx->stats_buffer);
880 }
881
882 /**************************************************************************
883  *
884  * Falcon test code
885  *
886  **************************************************************************/
887
888 static int
889 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
890 {
891         struct falcon_nvconfig *nvconfig;
892         struct efx_spi_device *spi;
893         void *region;
894         int rc, magic_num, struct_ver;
895         __le16 *word, *limit;
896         u32 csum;
897
898         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
899         if (!spi)
900                 return -EINVAL;
901
902         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
903         if (!region)
904                 return -ENOMEM;
905         nvconfig = region + FALCON_NVCONFIG_OFFSET;
906
907         mutex_lock(&efx->spi_lock);
908         rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
909         mutex_unlock(&efx->spi_lock);
910         if (rc) {
911                 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
912                           efx->spi_flash ? "flash" : "EEPROM");
913                 rc = -EIO;
914                 goto out;
915         }
916
917         magic_num = le16_to_cpu(nvconfig->board_magic_num);
918         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
919
920         rc = -EINVAL;
921         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
922                 netif_err(efx, hw, efx->net_dev,
923                           "NVRAM bad magic 0x%x\n", magic_num);
924                 goto out;
925         }
926         if (struct_ver < 2) {
927                 netif_err(efx, hw, efx->net_dev,
928                           "NVRAM has ancient version 0x%x\n", struct_ver);
929                 goto out;
930         } else if (struct_ver < 4) {
931                 word = &nvconfig->board_magic_num;
932                 limit = (__le16 *) (nvconfig + 1);
933         } else {
934                 word = region;
935                 limit = region + FALCON_NVCONFIG_END;
936         }
937         for (csum = 0; word < limit; ++word)
938                 csum += le16_to_cpu(*word);
939
940         if (~csum & 0xffff) {
941                 netif_err(efx, hw, efx->net_dev,
942                           "NVRAM has incorrect checksum\n");
943                 goto out;
944         }
945
946         rc = 0;
947         if (nvconfig_out)
948                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
949
950  out:
951         kfree(region);
952         return rc;
953 }
954
955 static int falcon_test_nvram(struct efx_nic *efx)
956 {
957         return falcon_read_nvram(efx, NULL);
958 }
959
960 static const struct efx_nic_register_test falcon_b0_register_tests[] = {
961         { FR_AZ_ADR_REGION,
962           EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
963         { FR_AZ_RX_CFG,
964           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
965         { FR_AZ_TX_CFG,
966           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
967         { FR_AZ_TX_RESERVED,
968           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
969         { FR_AB_MAC_CTRL,
970           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
971         { FR_AZ_SRM_TX_DC_CFG,
972           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
973         { FR_AZ_RX_DC_CFG,
974           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
975         { FR_AZ_RX_DC_PF_WM,
976           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
977         { FR_BZ_DP_CTRL,
978           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
979         { FR_AB_GM_CFG2,
980           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
981         { FR_AB_GMF_CFG0,
982           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
983         { FR_AB_XM_GLB_CFG,
984           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
985         { FR_AB_XM_TX_CFG,
986           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
987         { FR_AB_XM_RX_CFG,
988           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
989         { FR_AB_XM_RX_PARAM,
990           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
991         { FR_AB_XM_FC,
992           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
993         { FR_AB_XM_ADR_LO,
994           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
995         { FR_AB_XX_SD_CTL,
996           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
997 };
998
999 static int falcon_b0_test_registers(struct efx_nic *efx)
1000 {
1001         return efx_nic_test_registers(efx, falcon_b0_register_tests,
1002                                       ARRAY_SIZE(falcon_b0_register_tests));
1003 }
1004
1005 /**************************************************************************
1006  *
1007  * Device reset
1008  *
1009  **************************************************************************
1010  */
1011
1012 /* Resets NIC to known state.  This routine must be called in process
1013  * context and is allowed to sleep. */
1014 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1015 {
1016         struct falcon_nic_data *nic_data = efx->nic_data;
1017         efx_oword_t glb_ctl_reg_ker;
1018         int rc;
1019
1020         netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1021                   RESET_TYPE(method));
1022
1023         /* Initiate device reset */
1024         if (method == RESET_TYPE_WORLD) {
1025                 rc = pci_save_state(efx->pci_dev);
1026                 if (rc) {
1027                         netif_err(efx, drv, efx->net_dev,
1028                                   "failed to backup PCI state of primary "
1029                                   "function prior to hardware reset\n");
1030                         goto fail1;
1031                 }
1032                 if (efx_nic_is_dual_func(efx)) {
1033                         rc = pci_save_state(nic_data->pci_dev2);
1034                         if (rc) {
1035                                 netif_err(efx, drv, efx->net_dev,
1036                                           "failed to backup PCI state of "
1037                                           "secondary function prior to "
1038                                           "hardware reset\n");
1039                                 goto fail2;
1040                         }
1041                 }
1042
1043                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1044                                      FRF_AB_EXT_PHY_RST_DUR,
1045                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1046                                      FRF_AB_SWRST, 1);
1047         } else {
1048                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1049                                      /* exclude PHY from "invisible" reset */
1050                                      FRF_AB_EXT_PHY_RST_CTL,
1051                                      method == RESET_TYPE_INVISIBLE,
1052                                      /* exclude EEPROM/flash and PCIe */
1053                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
1054                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1055                                      FRF_AB_PCIE_SD_RST_CTL, 1,
1056                                      FRF_AB_EE_RST_CTL, 1,
1057                                      FRF_AB_EXT_PHY_RST_DUR,
1058                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1059                                      FRF_AB_SWRST, 1);
1060         }
1061         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1062
1063         netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
1064         schedule_timeout_uninterruptible(HZ / 20);
1065
1066         /* Restore PCI configuration if needed */
1067         if (method == RESET_TYPE_WORLD) {
1068                 if (efx_nic_is_dual_func(efx)) {
1069                         rc = pci_restore_state(nic_data->pci_dev2);
1070                         if (rc) {
1071                                 netif_err(efx, drv, efx->net_dev,
1072                                           "failed to restore PCI config for "
1073                                           "the secondary function\n");
1074                                 goto fail3;
1075                         }
1076                 }
1077                 rc = pci_restore_state(efx->pci_dev);
1078                 if (rc) {
1079                         netif_err(efx, drv, efx->net_dev,
1080                                   "failed to restore PCI config for the "
1081                                   "primary function\n");
1082                         goto fail4;
1083                 }
1084                 netif_dbg(efx, drv, efx->net_dev,
1085                           "successfully restored PCI config\n");
1086         }
1087
1088         /* Assert that reset complete */
1089         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1090         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1091                 rc = -ETIMEDOUT;
1092                 netif_err(efx, hw, efx->net_dev,
1093                           "timed out waiting for hardware reset\n");
1094                 goto fail5;
1095         }
1096         netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
1097
1098         return 0;
1099
1100         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1101 fail2:
1102 fail3:
1103         pci_restore_state(efx->pci_dev);
1104 fail1:
1105 fail4:
1106 fail5:
1107         return rc;
1108 }
1109
1110 static void falcon_monitor(struct efx_nic *efx)
1111 {
1112         bool link_changed;
1113         int rc;
1114
1115         BUG_ON(!mutex_is_locked(&efx->mac_lock));
1116
1117         rc = falcon_board(efx)->type->monitor(efx);
1118         if (rc) {
1119                 netif_err(efx, hw, efx->net_dev,
1120                           "Board sensor %s; shutting down PHY\n",
1121                           (rc == -ERANGE) ? "reported fault" : "failed");
1122                 efx->phy_mode |= PHY_MODE_LOW_POWER;
1123                 rc = __efx_reconfigure_port(efx);
1124                 WARN_ON(rc);
1125         }
1126
1127         if (LOOPBACK_INTERNAL(efx))
1128                 link_changed = falcon_loopback_link_poll(efx);
1129         else
1130                 link_changed = efx->phy_op->poll(efx);
1131
1132         if (link_changed) {
1133                 falcon_stop_nic_stats(efx);
1134                 falcon_deconfigure_mac_wrapper(efx);
1135
1136                 falcon_reset_macs(efx);
1137                 rc = efx->mac_op->reconfigure(efx);
1138                 BUG_ON(rc);
1139
1140                 falcon_start_nic_stats(efx);
1141
1142                 efx_link_status_changed(efx);
1143         }
1144
1145         falcon_poll_xmac(efx);
1146 }
1147
1148 /* Zeroes out the SRAM contents.  This routine must be called in
1149  * process context and is allowed to sleep.
1150  */
1151 static int falcon_reset_sram(struct efx_nic *efx)
1152 {
1153         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1154         int count;
1155
1156         /* Set the SRAM wake/sleep GPIO appropriately. */
1157         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1158         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1159         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1160         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1161
1162         /* Initiate SRAM reset */
1163         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1164                              FRF_AZ_SRM_INIT_EN, 1,
1165                              FRF_AZ_SRM_NB_SZ, 0);
1166         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1167
1168         /* Wait for SRAM reset to complete */
1169         count = 0;
1170         do {
1171                 netif_dbg(efx, hw, efx->net_dev,
1172                           "waiting for SRAM reset (attempt %d)...\n", count);
1173
1174                 /* SRAM reset is slow; expect around 16ms */
1175                 schedule_timeout_uninterruptible(HZ / 50);
1176
1177                 /* Check for reset complete */
1178                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1179                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1180                         netif_dbg(efx, hw, efx->net_dev,
1181                                   "SRAM reset complete\n");
1182
1183                         return 0;
1184                 }
1185         } while (++count < 20); /* wait upto 0.4 sec */
1186
1187         netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
1188         return -ETIMEDOUT;
1189 }
1190
1191 static int falcon_spi_device_init(struct efx_nic *efx,
1192                                   struct efx_spi_device **spi_device_ret,
1193                                   unsigned int device_id, u32 device_type)
1194 {
1195         struct efx_spi_device *spi_device;
1196
1197         if (device_type != 0) {
1198                 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
1199                 if (!spi_device)
1200                         return -ENOMEM;
1201                 spi_device->device_id = device_id;
1202                 spi_device->size =
1203                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1204                 spi_device->addr_len =
1205                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1206                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
1207                                              spi_device->addr_len == 1);
1208                 spi_device->erase_command =
1209                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1210                 spi_device->erase_size =
1211                         1 << SPI_DEV_TYPE_FIELD(device_type,
1212                                                 SPI_DEV_TYPE_ERASE_SIZE);
1213                 spi_device->block_size =
1214                         1 << SPI_DEV_TYPE_FIELD(device_type,
1215                                                 SPI_DEV_TYPE_BLOCK_SIZE);
1216         } else {
1217                 spi_device = NULL;
1218         }
1219
1220         kfree(*spi_device_ret);
1221         *spi_device_ret = spi_device;
1222         return 0;
1223 }
1224
1225 static void falcon_remove_spi_devices(struct efx_nic *efx)
1226 {
1227         kfree(efx->spi_eeprom);
1228         efx->spi_eeprom = NULL;
1229         kfree(efx->spi_flash);
1230         efx->spi_flash = NULL;
1231 }
1232
1233 /* Extract non-volatile configuration */
1234 static int falcon_probe_nvconfig(struct efx_nic *efx)
1235 {
1236         struct falcon_nvconfig *nvconfig;
1237         int rc;
1238
1239         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1240         if (!nvconfig)
1241                 return -ENOMEM;
1242
1243         rc = falcon_read_nvram(efx, nvconfig);
1244         if (rc)
1245                 goto fail1;
1246
1247         efx->phy_type = nvconfig->board_v2.port0_phy_type;
1248         efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
1249
1250         if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1251                 rc = falcon_spi_device_init(
1252                         efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1253                         le32_to_cpu(nvconfig->board_v3
1254                                     .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
1255                 if (rc)
1256                         goto fail2;
1257                 rc = falcon_spi_device_init(
1258                         efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1259                         le32_to_cpu(nvconfig->board_v3
1260                                     .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
1261                 if (rc)
1262                         goto fail2;
1263         }
1264
1265         /* Read the MAC addresses */
1266         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
1267
1268         netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
1269                   efx->phy_type, efx->mdio.prtad);
1270
1271         rc = falcon_probe_board(efx,
1272                                 le16_to_cpu(nvconfig->board_v2.board_revision));
1273         if (rc)
1274                 goto fail2;
1275
1276         kfree(nvconfig);
1277         return 0;
1278
1279  fail2:
1280         falcon_remove_spi_devices(efx);
1281  fail1:
1282         kfree(nvconfig);
1283         return rc;
1284 }
1285
1286 /* Probe all SPI devices on the NIC */
1287 static void falcon_probe_spi_devices(struct efx_nic *efx)
1288 {
1289         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1290         int boot_dev;
1291
1292         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1293         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1294         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1295
1296         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1297                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1298                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
1299                 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
1300                           boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
1301                           "flash" : "EEPROM");
1302         } else {
1303                 /* Disable VPD and set clock dividers to safe
1304                  * values for initial programming. */
1305                 boot_dev = -1;
1306                 netif_dbg(efx, probe, efx->net_dev,
1307                           "Booted from internal ASIC settings;"
1308                           " setting SPI config\n");
1309                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1310                                      /* 125 MHz / 7 ~= 20 MHz */
1311                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
1312                                      /* 125 MHz / 63 ~= 2 MHz */
1313                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
1314                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1315         }
1316
1317         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1318                 falcon_spi_device_init(efx, &efx->spi_flash,
1319                                        FFE_AB_SPI_DEVICE_FLASH,
1320                                        default_flash_type);
1321         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1322                 falcon_spi_device_init(efx, &efx->spi_eeprom,
1323                                        FFE_AB_SPI_DEVICE_EEPROM,
1324                                        large_eeprom_type);
1325 }
1326
1327 static int falcon_probe_nic(struct efx_nic *efx)
1328 {
1329         struct falcon_nic_data *nic_data;
1330         struct falcon_board *board;
1331         int rc;
1332
1333         /* Allocate storage for hardware specific data */
1334         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1335         if (!nic_data)
1336                 return -ENOMEM;
1337         efx->nic_data = nic_data;
1338
1339         rc = -ENODEV;
1340
1341         if (efx_nic_fpga_ver(efx) != 0) {
1342                 netif_err(efx, probe, efx->net_dev,
1343                           "Falcon FPGA not supported\n");
1344                 goto fail1;
1345         }
1346
1347         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1348                 efx_oword_t nic_stat;
1349                 struct pci_dev *dev;
1350                 u8 pci_rev = efx->pci_dev->revision;
1351
1352                 if ((pci_rev == 0xff) || (pci_rev == 0)) {
1353                         netif_err(efx, probe, efx->net_dev,
1354                                   "Falcon rev A0 not supported\n");
1355                         goto fail1;
1356                 }
1357                 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1358                 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1359                         netif_err(efx, probe, efx->net_dev,
1360                                   "Falcon rev A1 1G not supported\n");
1361                         goto fail1;
1362                 }
1363                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1364                         netif_err(efx, probe, efx->net_dev,
1365                                   "Falcon rev A1 PCI-X not supported\n");
1366                         goto fail1;
1367                 }
1368
1369                 dev = pci_dev_get(efx->pci_dev);
1370                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
1371                                              dev))) {
1372                         if (dev->bus == efx->pci_dev->bus &&
1373                             dev->devfn == efx->pci_dev->devfn + 1) {
1374                                 nic_data->pci_dev2 = dev;
1375                                 break;
1376                         }
1377                 }
1378                 if (!nic_data->pci_dev2) {
1379                         netif_err(efx, probe, efx->net_dev,
1380                                   "failed to find secondary function\n");
1381                         rc = -ENODEV;
1382                         goto fail2;
1383                 }
1384         }
1385
1386         /* Now we can reset the NIC */
1387         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
1388         if (rc) {
1389                 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
1390                 goto fail3;
1391         }
1392
1393         /* Allocate memory for INT_KER */
1394         rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1395         if (rc)
1396                 goto fail4;
1397         BUG_ON(efx->irq_status.dma_addr & 0x0f);
1398
1399         netif_dbg(efx, probe, efx->net_dev,
1400                   "INT_KER at %llx (virt %p phys %llx)\n",
1401                   (u64)efx->irq_status.dma_addr,
1402                   efx->irq_status.addr,
1403                   (u64)virt_to_phys(efx->irq_status.addr));
1404
1405         falcon_probe_spi_devices(efx);
1406
1407         /* Read in the non-volatile configuration */
1408         rc = falcon_probe_nvconfig(efx);
1409         if (rc) {
1410                 if (rc == -EINVAL)
1411                         netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
1412                 goto fail5;
1413         }
1414
1415         /* Initialise I2C adapter */
1416         board = falcon_board(efx);
1417         board->i2c_adap.owner = THIS_MODULE;
1418         board->i2c_data = falcon_i2c_bit_operations;
1419         board->i2c_data.data = efx;
1420         board->i2c_adap.algo_data = &board->i2c_data;
1421         board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1422         strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1423                 sizeof(board->i2c_adap.name));
1424         rc = i2c_bit_add_bus(&board->i2c_adap);
1425         if (rc)
1426                 goto fail5;
1427
1428         rc = falcon_board(efx)->type->init(efx);
1429         if (rc) {
1430                 netif_err(efx, probe, efx->net_dev,
1431                           "failed to initialise board\n");
1432                 goto fail6;
1433         }
1434
1435         nic_data->stats_disable_count = 1;
1436         setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1437                     (unsigned long)efx);
1438
1439         return 0;
1440
1441  fail6:
1442         BUG_ON(i2c_del_adapter(&board->i2c_adap));
1443         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1444  fail5:
1445         falcon_remove_spi_devices(efx);
1446         efx_nic_free_buffer(efx, &efx->irq_status);
1447  fail4:
1448  fail3:
1449         if (nic_data->pci_dev2) {
1450                 pci_dev_put(nic_data->pci_dev2);
1451                 nic_data->pci_dev2 = NULL;
1452         }
1453  fail2:
1454  fail1:
1455         kfree(efx->nic_data);
1456         return rc;
1457 }
1458
1459 static void falcon_init_rx_cfg(struct efx_nic *efx)
1460 {
1461         /* Prior to Siena the RX DMA engine will split each frame at
1462          * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1463          * be so large that that never happens. */
1464         const unsigned huge_buf_size = (3 * 4096) >> 5;
1465         /* RX control FIFO thresholds (32 entries) */
1466         const unsigned ctrl_xon_thr = 20;
1467         const unsigned ctrl_xoff_thr = 25;
1468         /* RX data FIFO thresholds (256-byte units; size varies) */
1469         int data_xon_thr = efx_nic_rx_xon_thresh >> 8;
1470         int data_xoff_thr = efx_nic_rx_xoff_thresh >> 8;
1471         efx_oword_t reg;
1472
1473         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1474         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1475                 /* Data FIFO size is 5.5K */
1476                 if (data_xon_thr < 0)
1477                         data_xon_thr = 512 >> 8;
1478                 if (data_xoff_thr < 0)
1479                         data_xoff_thr = 2048 >> 8;
1480                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1481                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1482                                     huge_buf_size);
1483                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
1484                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
1485                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1486                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1487         } else {
1488                 /* Data FIFO size is 80K; register fields moved */
1489                 if (data_xon_thr < 0)
1490                         data_xon_thr = 27648 >> 8; /* ~3*max MTU */
1491                 if (data_xoff_thr < 0)
1492                         data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
1493                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1494                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1495                                     huge_buf_size);
1496                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
1497                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
1498                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1499                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1500                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1501
1502                 /* Enable hash insertion. This is broken for the
1503                  * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
1504                  * IPv4 hashes. */
1505                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
1506                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
1507                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
1508         }
1509         /* Always enable XOFF signal from RX FIFO.  We enable
1510          * or disable transmission of pause frames at the MAC. */
1511         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1512         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1513 }
1514
1515 /* This call performs hardware-specific global initialisation, such as
1516  * defining the descriptor cache sizes and number of RSS channels.
1517  * It does not set up any buffers, descriptor rings or event queues.
1518  */
1519 static int falcon_init_nic(struct efx_nic *efx)
1520 {
1521         efx_oword_t temp;
1522         int rc;
1523
1524         /* Use on-chip SRAM */
1525         efx_reado(efx, &temp, FR_AB_NIC_STAT);
1526         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1527         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1528
1529         rc = falcon_reset_sram(efx);
1530         if (rc)
1531                 return rc;
1532
1533         /* Clear the parity enables on the TX data fifos as
1534          * they produce false parity errors because of timing issues
1535          */
1536         if (EFX_WORKAROUND_5129(efx)) {
1537                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1538                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1539                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1540         }
1541
1542         if (EFX_WORKAROUND_7244(efx)) {
1543                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1544                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1545                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1546                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1547                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1548                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1549         }
1550
1551         /* XXX This is documented only for Falcon A0/A1 */
1552         /* Setup RX.  Wait for descriptor is broken and must
1553          * be disabled.  RXDP recovery shouldn't be needed, but is.
1554          */
1555         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1556         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1557         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1558         if (EFX_WORKAROUND_5583(efx))
1559                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1560         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1561
1562         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1563          * descriptors (which is bad).
1564          */
1565         efx_reado(efx, &temp, FR_AZ_TX_CFG);
1566         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1567         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1568
1569         falcon_init_rx_cfg(efx);
1570
1571         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1572                 /* Set hash key for IPv4 */
1573                 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
1574                 efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
1575
1576                 /* Set destination of both TX and RX Flush events */
1577                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1578                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1579         }
1580
1581         efx_nic_init_common(efx);
1582
1583         return 0;
1584 }
1585
1586 static void falcon_remove_nic(struct efx_nic *efx)
1587 {
1588         struct falcon_nic_data *nic_data = efx->nic_data;
1589         struct falcon_board *board = falcon_board(efx);
1590         int rc;
1591
1592         board->type->fini(efx);
1593
1594         /* Remove I2C adapter and clear it in preparation for a retry */
1595         rc = i2c_del_adapter(&board->i2c_adap);
1596         BUG_ON(rc);
1597         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1598
1599         falcon_remove_spi_devices(efx);
1600         efx_nic_free_buffer(efx, &efx->irq_status);
1601
1602         falcon_reset_hw(efx, RESET_TYPE_ALL);
1603
1604         /* Release the second function after the reset */
1605         if (nic_data->pci_dev2) {
1606                 pci_dev_put(nic_data->pci_dev2);
1607                 nic_data->pci_dev2 = NULL;
1608         }
1609
1610         /* Tear down the private nic state */
1611         kfree(efx->nic_data);
1612         efx->nic_data = NULL;
1613 }
1614
1615 static void falcon_update_nic_stats(struct efx_nic *efx)
1616 {
1617         struct falcon_nic_data *nic_data = efx->nic_data;
1618         efx_oword_t cnt;
1619
1620         if (nic_data->stats_disable_count)
1621                 return;
1622
1623         efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1624         efx->n_rx_nodesc_drop_cnt +=
1625                 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1626
1627         if (nic_data->stats_pending &&
1628             *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1629                 nic_data->stats_pending = false;
1630                 rmb(); /* read the done flag before the stats */
1631                 efx->mac_op->update_stats(efx);
1632         }
1633 }
1634
1635 void falcon_start_nic_stats(struct efx_nic *efx)
1636 {
1637         struct falcon_nic_data *nic_data = efx->nic_data;
1638
1639         spin_lock_bh(&efx->stats_lock);
1640         if (--nic_data->stats_disable_count == 0)
1641                 falcon_stats_request(efx);
1642         spin_unlock_bh(&efx->stats_lock);
1643 }
1644
1645 void falcon_stop_nic_stats(struct efx_nic *efx)
1646 {
1647         struct falcon_nic_data *nic_data = efx->nic_data;
1648         int i;
1649
1650         might_sleep();
1651
1652         spin_lock_bh(&efx->stats_lock);
1653         ++nic_data->stats_disable_count;
1654         spin_unlock_bh(&efx->stats_lock);
1655
1656         del_timer_sync(&nic_data->stats_timer);
1657
1658         /* Wait enough time for the most recent transfer to
1659          * complete. */
1660         for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1661                 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1662                         break;
1663                 msleep(1);
1664         }
1665
1666         spin_lock_bh(&efx->stats_lock);
1667         falcon_stats_complete(efx);
1668         spin_unlock_bh(&efx->stats_lock);
1669 }
1670
1671 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1672 {
1673         falcon_board(efx)->type->set_id_led(efx, mode);
1674 }
1675
1676 /**************************************************************************
1677  *
1678  * Wake on LAN
1679  *
1680  **************************************************************************
1681  */
1682
1683 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1684 {
1685         wol->supported = 0;
1686         wol->wolopts = 0;
1687         memset(&wol->sopass, 0, sizeof(wol->sopass));
1688 }
1689
1690 static int falcon_set_wol(struct efx_nic *efx, u32 type)
1691 {
1692         if (type != 0)
1693                 return -EINVAL;
1694         return 0;
1695 }
1696
1697 /**************************************************************************
1698  *
1699  * Revision-dependent attributes used by efx.c and nic.c
1700  *
1701  **************************************************************************
1702  */
1703
1704 struct efx_nic_type falcon_a1_nic_type = {
1705         .probe = falcon_probe_nic,
1706         .remove = falcon_remove_nic,
1707         .init = falcon_init_nic,
1708         .fini = efx_port_dummy_op_void,
1709         .monitor = falcon_monitor,
1710         .reset = falcon_reset_hw,
1711         .probe_port = falcon_probe_port,
1712         .remove_port = falcon_remove_port,
1713         .prepare_flush = falcon_prepare_flush,
1714         .update_stats = falcon_update_nic_stats,
1715         .start_stats = falcon_start_nic_stats,
1716         .stop_stats = falcon_stop_nic_stats,
1717         .set_id_led = falcon_set_id_led,
1718         .push_irq_moderation = falcon_push_irq_moderation,
1719         .push_multicast_hash = falcon_push_multicast_hash,
1720         .reconfigure_port = falcon_reconfigure_port,
1721         .get_wol = falcon_get_wol,
1722         .set_wol = falcon_set_wol,
1723         .resume_wol = efx_port_dummy_op_void,
1724         .test_nvram = falcon_test_nvram,
1725         .default_mac_ops = &falcon_xmac_operations,
1726
1727         .revision = EFX_REV_FALCON_A1,
1728         .mem_map_size = 0x20000,
1729         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1730         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1731         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1732         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1733         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1734         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1735         .rx_buffer_padding = 0x24,
1736         .max_interrupt_mode = EFX_INT_MODE_MSI,
1737         .phys_addr_channels = 4,
1738         .tx_dc_base = 0x130000,
1739         .rx_dc_base = 0x100000,
1740         .offload_features = NETIF_F_IP_CSUM,
1741         .reset_world_flags = ETH_RESET_IRQ,
1742 };
1743
1744 struct efx_nic_type falcon_b0_nic_type = {
1745         .probe = falcon_probe_nic,
1746         .remove = falcon_remove_nic,
1747         .init = falcon_init_nic,
1748         .fini = efx_port_dummy_op_void,
1749         .monitor = falcon_monitor,
1750         .reset = falcon_reset_hw,
1751         .probe_port = falcon_probe_port,
1752         .remove_port = falcon_remove_port,
1753         .prepare_flush = falcon_prepare_flush,
1754         .update_stats = falcon_update_nic_stats,
1755         .start_stats = falcon_start_nic_stats,
1756         .stop_stats = falcon_stop_nic_stats,
1757         .set_id_led = falcon_set_id_led,
1758         .push_irq_moderation = falcon_push_irq_moderation,
1759         .push_multicast_hash = falcon_push_multicast_hash,
1760         .reconfigure_port = falcon_reconfigure_port,
1761         .get_wol = falcon_get_wol,
1762         .set_wol = falcon_set_wol,
1763         .resume_wol = efx_port_dummy_op_void,
1764         .test_registers = falcon_b0_test_registers,
1765         .test_nvram = falcon_test_nvram,
1766         .default_mac_ops = &falcon_xmac_operations,
1767
1768         .revision = EFX_REV_FALCON_B0,
1769         /* Map everything up to and including the RSS indirection
1770          * table.  Don't map MSI-X table, MSI-X PBA since Linux
1771          * requires that they not be mapped.  */
1772         .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1773                          FR_BZ_RX_INDIRECTION_TBL_STEP *
1774                          FR_BZ_RX_INDIRECTION_TBL_ROWS),
1775         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
1776         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
1777         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
1778         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
1779         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
1780         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1781         .rx_buffer_hash_size = 0x10,
1782         .rx_buffer_padding = 0,
1783         .max_interrupt_mode = EFX_INT_MODE_MSIX,
1784         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1785                                    * interrupt handler only supports 32
1786                                    * channels */
1787         .tx_dc_base = 0x130000,
1788         .rx_dc_base = 0x100000,
1789         .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
1790         .reset_world_flags = ETH_RESET_IRQ,
1791 };
1792