]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/btrfs/inode.c
Btrfs: delay clearing EXTENT_DELALLOC for compressed extents
[mv-sheeva.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52
53 struct btrfs_iget_args {
54         u64 ino;
55         struct btrfs_root *root;
56 };
57
58 static struct inode_operations btrfs_dir_inode_operations;
59 static struct inode_operations btrfs_symlink_inode_operations;
60 static struct inode_operations btrfs_dir_ro_inode_operations;
61 static struct inode_operations btrfs_special_inode_operations;
62 static struct inode_operations btrfs_file_inode_operations;
63 static struct address_space_operations btrfs_aops;
64 static struct address_space_operations btrfs_symlink_aops;
65 static struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
76         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
77         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
78         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
79         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
80         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
81         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87                                    struct page *locked_page,
88                                    u64 start, u64 end, int *page_started,
89                                    unsigned long *nr_written, int unlock);
90
91 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
92 {
93         int err;
94
95         err = btrfs_init_acl(inode, dir);
96         if (!err)
97                 err = btrfs_xattr_security_init(inode, dir);
98         return err;
99 }
100
101 /*
102  * this does all the hard work for inserting an inline extent into
103  * the btree.  The caller should have done a btrfs_drop_extents so that
104  * no overlapping inline items exist in the btree
105  */
106 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
107                                 struct btrfs_root *root, struct inode *inode,
108                                 u64 start, size_t size, size_t compressed_size,
109                                 struct page **compressed_pages)
110 {
111         struct btrfs_key key;
112         struct btrfs_path *path;
113         struct extent_buffer *leaf;
114         struct page *page = NULL;
115         char *kaddr;
116         unsigned long ptr;
117         struct btrfs_file_extent_item *ei;
118         int err = 0;
119         int ret;
120         size_t cur_size = size;
121         size_t datasize;
122         unsigned long offset;
123         int use_compress = 0;
124
125         if (compressed_size && compressed_pages) {
126                 use_compress = 1;
127                 cur_size = compressed_size;
128         }
129
130         path = btrfs_alloc_path();
131         if (!path)
132                 return -ENOMEM;
133
134         path->leave_spinning = 1;
135         btrfs_set_trans_block_group(trans, inode);
136
137         key.objectid = inode->i_ino;
138         key.offset = start;
139         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
140         datasize = btrfs_file_extent_calc_inline_size(cur_size);
141
142         inode_add_bytes(inode, size);
143         ret = btrfs_insert_empty_item(trans, root, path, &key,
144                                       datasize);
145         BUG_ON(ret);
146         if (ret) {
147                 err = ret;
148                 goto fail;
149         }
150         leaf = path->nodes[0];
151         ei = btrfs_item_ptr(leaf, path->slots[0],
152                             struct btrfs_file_extent_item);
153         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155         btrfs_set_file_extent_encryption(leaf, ei, 0);
156         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158         ptr = btrfs_file_extent_inline_start(ei);
159
160         if (use_compress) {
161                 struct page *cpage;
162                 int i = 0;
163                 while (compressed_size > 0) {
164                         cpage = compressed_pages[i];
165                         cur_size = min_t(unsigned long, compressed_size,
166                                        PAGE_CACHE_SIZE);
167
168                         kaddr = kmap_atomic(cpage, KM_USER0);
169                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
170                         kunmap_atomic(kaddr, KM_USER0);
171
172                         i++;
173                         ptr += cur_size;
174                         compressed_size -= cur_size;
175                 }
176                 btrfs_set_file_extent_compression(leaf, ei,
177                                                   BTRFS_COMPRESS_ZLIB);
178         } else {
179                 page = find_get_page(inode->i_mapping,
180                                      start >> PAGE_CACHE_SHIFT);
181                 btrfs_set_file_extent_compression(leaf, ei, 0);
182                 kaddr = kmap_atomic(page, KM_USER0);
183                 offset = start & (PAGE_CACHE_SIZE - 1);
184                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185                 kunmap_atomic(kaddr, KM_USER0);
186                 page_cache_release(page);
187         }
188         btrfs_mark_buffer_dirty(leaf);
189         btrfs_free_path(path);
190
191         BTRFS_I(inode)->disk_i_size = inode->i_size;
192         btrfs_update_inode(trans, root, inode);
193         return 0;
194 fail:
195         btrfs_free_path(path);
196         return err;
197 }
198
199
200 /*
201  * conditionally insert an inline extent into the file.  This
202  * does the checks required to make sure the data is small enough
203  * to fit as an inline extent.
204  */
205 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
206                                  struct btrfs_root *root,
207                                  struct inode *inode, u64 start, u64 end,
208                                  size_t compressed_size,
209                                  struct page **compressed_pages)
210 {
211         u64 isize = i_size_read(inode);
212         u64 actual_end = min(end + 1, isize);
213         u64 inline_len = actual_end - start;
214         u64 aligned_end = (end + root->sectorsize - 1) &
215                         ~((u64)root->sectorsize - 1);
216         u64 hint_byte;
217         u64 data_len = inline_len;
218         int ret;
219
220         if (compressed_size)
221                 data_len = compressed_size;
222
223         if (start > 0 ||
224             actual_end >= PAGE_CACHE_SIZE ||
225             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226             (!compressed_size &&
227             (actual_end & (root->sectorsize - 1)) == 0) ||
228             end + 1 < isize ||
229             data_len > root->fs_info->max_inline) {
230                 return 1;
231         }
232
233         ret = btrfs_drop_extents(trans, root, inode, start,
234                                  aligned_end, aligned_end, start,
235                                  &hint_byte, 1);
236         BUG_ON(ret);
237
238         if (isize > actual_end)
239                 inline_len = min_t(u64, isize, actual_end);
240         ret = insert_inline_extent(trans, root, inode, start,
241                                    inline_len, compressed_size,
242                                    compressed_pages);
243         BUG_ON(ret);
244         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
245         return 0;
246 }
247
248 struct async_extent {
249         u64 start;
250         u64 ram_size;
251         u64 compressed_size;
252         struct page **pages;
253         unsigned long nr_pages;
254         struct list_head list;
255 };
256
257 struct async_cow {
258         struct inode *inode;
259         struct btrfs_root *root;
260         struct page *locked_page;
261         u64 start;
262         u64 end;
263         struct list_head extents;
264         struct btrfs_work work;
265 };
266
267 static noinline int add_async_extent(struct async_cow *cow,
268                                      u64 start, u64 ram_size,
269                                      u64 compressed_size,
270                                      struct page **pages,
271                                      unsigned long nr_pages)
272 {
273         struct async_extent *async_extent;
274
275         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276         async_extent->start = start;
277         async_extent->ram_size = ram_size;
278         async_extent->compressed_size = compressed_size;
279         async_extent->pages = pages;
280         async_extent->nr_pages = nr_pages;
281         list_add_tail(&async_extent->list, &cow->extents);
282         return 0;
283 }
284
285 /*
286  * we create compressed extents in two phases.  The first
287  * phase compresses a range of pages that have already been
288  * locked (both pages and state bits are locked).
289  *
290  * This is done inside an ordered work queue, and the compression
291  * is spread across many cpus.  The actual IO submission is step
292  * two, and the ordered work queue takes care of making sure that
293  * happens in the same order things were put onto the queue by
294  * writepages and friends.
295  *
296  * If this code finds it can't get good compression, it puts an
297  * entry onto the work queue to write the uncompressed bytes.  This
298  * makes sure that both compressed inodes and uncompressed inodes
299  * are written in the same order that pdflush sent them down.
300  */
301 static noinline int compress_file_range(struct inode *inode,
302                                         struct page *locked_page,
303                                         u64 start, u64 end,
304                                         struct async_cow *async_cow,
305                                         int *num_added)
306 {
307         struct btrfs_root *root = BTRFS_I(inode)->root;
308         struct btrfs_trans_handle *trans;
309         u64 num_bytes;
310         u64 orig_start;
311         u64 disk_num_bytes;
312         u64 blocksize = root->sectorsize;
313         u64 actual_end;
314         u64 isize = i_size_read(inode);
315         int ret = 0;
316         struct page **pages = NULL;
317         unsigned long nr_pages;
318         unsigned long nr_pages_ret = 0;
319         unsigned long total_compressed = 0;
320         unsigned long total_in = 0;
321         unsigned long max_compressed = 128 * 1024;
322         unsigned long max_uncompressed = 128 * 1024;
323         int i;
324         int will_compress;
325
326         orig_start = start;
327
328         actual_end = min_t(u64, isize, end + 1);
329 again:
330         will_compress = 0;
331         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
333
334         /*
335          * we don't want to send crud past the end of i_size through
336          * compression, that's just a waste of CPU time.  So, if the
337          * end of the file is before the start of our current
338          * requested range of bytes, we bail out to the uncompressed
339          * cleanup code that can deal with all of this.
340          *
341          * It isn't really the fastest way to fix things, but this is a
342          * very uncommon corner.
343          */
344         if (actual_end <= start)
345                 goto cleanup_and_bail_uncompressed;
346
347         total_compressed = actual_end - start;
348
349         /* we want to make sure that amount of ram required to uncompress
350          * an extent is reasonable, so we limit the total size in ram
351          * of a compressed extent to 128k.  This is a crucial number
352          * because it also controls how easily we can spread reads across
353          * cpus for decompression.
354          *
355          * We also want to make sure the amount of IO required to do
356          * a random read is reasonably small, so we limit the size of
357          * a compressed extent to 128k.
358          */
359         total_compressed = min(total_compressed, max_uncompressed);
360         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
361         num_bytes = max(blocksize,  num_bytes);
362         disk_num_bytes = num_bytes;
363         total_in = 0;
364         ret = 0;
365
366         /*
367          * we do compression for mount -o compress and when the
368          * inode has not been flagged as nocompress.  This flag can
369          * change at any time if we discover bad compression ratios.
370          */
371         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
372             btrfs_test_opt(root, COMPRESS)) {
373                 WARN_ON(pages);
374                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
375
376                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377                                                 total_compressed, pages,
378                                                 nr_pages, &nr_pages_ret,
379                                                 &total_in,
380                                                 &total_compressed,
381                                                 max_compressed);
382
383                 if (!ret) {
384                         unsigned long offset = total_compressed &
385                                 (PAGE_CACHE_SIZE - 1);
386                         struct page *page = pages[nr_pages_ret - 1];
387                         char *kaddr;
388
389                         /* zero the tail end of the last page, we might be
390                          * sending it down to disk
391                          */
392                         if (offset) {
393                                 kaddr = kmap_atomic(page, KM_USER0);
394                                 memset(kaddr + offset, 0,
395                                        PAGE_CACHE_SIZE - offset);
396                                 kunmap_atomic(kaddr, KM_USER0);
397                         }
398                         will_compress = 1;
399                 }
400         }
401         if (start == 0) {
402                 trans = btrfs_join_transaction(root, 1);
403                 BUG_ON(!trans);
404                 btrfs_set_trans_block_group(trans, inode);
405
406                 /* lets try to make an inline extent */
407                 if (ret || total_in < (actual_end - start)) {
408                         /* we didn't compress the entire range, try
409                          * to make an uncompressed inline extent.
410                          */
411                         ret = cow_file_range_inline(trans, root, inode,
412                                                     start, end, 0, NULL);
413                 } else {
414                         /* try making a compressed inline extent */
415                         ret = cow_file_range_inline(trans, root, inode,
416                                                     start, end,
417                                                     total_compressed, pages);
418                 }
419                 btrfs_end_transaction(trans, root);
420                 if (ret == 0) {
421                         /*
422                          * inline extent creation worked, we don't need
423                          * to create any more async work items.  Unlock
424                          * and free up our temp pages.
425                          */
426                         extent_clear_unlock_delalloc(inode,
427                              &BTRFS_I(inode)->io_tree,
428                              start, end, NULL,
429                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
430                              EXTENT_CLEAR_DELALLOC |
431                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
432                         ret = 0;
433                         goto free_pages_out;
434                 }
435         }
436
437         if (will_compress) {
438                 /*
439                  * we aren't doing an inline extent round the compressed size
440                  * up to a block size boundary so the allocator does sane
441                  * things
442                  */
443                 total_compressed = (total_compressed + blocksize - 1) &
444                         ~(blocksize - 1);
445
446                 /*
447                  * one last check to make sure the compression is really a
448                  * win, compare the page count read with the blocks on disk
449                  */
450                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
451                         ~(PAGE_CACHE_SIZE - 1);
452                 if (total_compressed >= total_in) {
453                         will_compress = 0;
454                 } else {
455                         disk_num_bytes = total_compressed;
456                         num_bytes = total_in;
457                 }
458         }
459         if (!will_compress && pages) {
460                 /*
461                  * the compression code ran but failed to make things smaller,
462                  * free any pages it allocated and our page pointer array
463                  */
464                 for (i = 0; i < nr_pages_ret; i++) {
465                         WARN_ON(pages[i]->mapping);
466                         page_cache_release(pages[i]);
467                 }
468                 kfree(pages);
469                 pages = NULL;
470                 total_compressed = 0;
471                 nr_pages_ret = 0;
472
473                 /* flag the file so we don't compress in the future */
474                 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
475         }
476         if (will_compress) {
477                 *num_added += 1;
478
479                 /* the async work queues will take care of doing actual
480                  * allocation on disk for these compressed pages,
481                  * and will submit them to the elevator.
482                  */
483                 add_async_extent(async_cow, start, num_bytes,
484                                  total_compressed, pages, nr_pages_ret);
485
486                 if (start + num_bytes < end && start + num_bytes < actual_end) {
487                         start += num_bytes;
488                         pages = NULL;
489                         cond_resched();
490                         goto again;
491                 }
492         } else {
493 cleanup_and_bail_uncompressed:
494                 /*
495                  * No compression, but we still need to write the pages in
496                  * the file we've been given so far.  redirty the locked
497                  * page if it corresponds to our extent and set things up
498                  * for the async work queue to run cow_file_range to do
499                  * the normal delalloc dance
500                  */
501                 if (page_offset(locked_page) >= start &&
502                     page_offset(locked_page) <= end) {
503                         __set_page_dirty_nobuffers(locked_page);
504                         /* unlocked later on in the async handlers */
505                 }
506                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
507                 *num_added += 1;
508         }
509
510 out:
511         return 0;
512
513 free_pages_out:
514         for (i = 0; i < nr_pages_ret; i++) {
515                 WARN_ON(pages[i]->mapping);
516                 page_cache_release(pages[i]);
517         }
518         kfree(pages);
519
520         goto out;
521 }
522
523 /*
524  * phase two of compressed writeback.  This is the ordered portion
525  * of the code, which only gets called in the order the work was
526  * queued.  We walk all the async extents created by compress_file_range
527  * and send them down to the disk.
528  */
529 static noinline int submit_compressed_extents(struct inode *inode,
530                                               struct async_cow *async_cow)
531 {
532         struct async_extent *async_extent;
533         u64 alloc_hint = 0;
534         struct btrfs_trans_handle *trans;
535         struct btrfs_key ins;
536         struct extent_map *em;
537         struct btrfs_root *root = BTRFS_I(inode)->root;
538         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
539         struct extent_io_tree *io_tree;
540         int ret;
541
542         if (list_empty(&async_cow->extents))
543                 return 0;
544
545         trans = btrfs_join_transaction(root, 1);
546
547         while (!list_empty(&async_cow->extents)) {
548                 async_extent = list_entry(async_cow->extents.next,
549                                           struct async_extent, list);
550                 list_del(&async_extent->list);
551
552                 io_tree = &BTRFS_I(inode)->io_tree;
553
554                 /* did the compression code fall back to uncompressed IO? */
555                 if (!async_extent->pages) {
556                         int page_started = 0;
557                         unsigned long nr_written = 0;
558
559                         lock_extent(io_tree, async_extent->start,
560                                     async_extent->start +
561                                     async_extent->ram_size - 1, GFP_NOFS);
562
563                         /* allocate blocks */
564                         cow_file_range(inode, async_cow->locked_page,
565                                        async_extent->start,
566                                        async_extent->start +
567                                        async_extent->ram_size - 1,
568                                        &page_started, &nr_written, 0);
569
570                         /*
571                          * if page_started, cow_file_range inserted an
572                          * inline extent and took care of all the unlocking
573                          * and IO for us.  Otherwise, we need to submit
574                          * all those pages down to the drive.
575                          */
576                         if (!page_started)
577                                 extent_write_locked_range(io_tree,
578                                                   inode, async_extent->start,
579                                                   async_extent->start +
580                                                   async_extent->ram_size - 1,
581                                                   btrfs_get_extent,
582                                                   WB_SYNC_ALL);
583                         kfree(async_extent);
584                         cond_resched();
585                         continue;
586                 }
587
588                 lock_extent(io_tree, async_extent->start,
589                             async_extent->start + async_extent->ram_size - 1,
590                             GFP_NOFS);
591                 /*
592                  * here we're doing allocation and writeback of the
593                  * compressed pages
594                  */
595                 btrfs_drop_extent_cache(inode, async_extent->start,
596                                         async_extent->start +
597                                         async_extent->ram_size - 1, 0);
598
599                 ret = btrfs_reserve_extent(trans, root,
600                                            async_extent->compressed_size,
601                                            async_extent->compressed_size,
602                                            0, alloc_hint,
603                                            (u64)-1, &ins, 1);
604                 BUG_ON(ret);
605                 em = alloc_extent_map(GFP_NOFS);
606                 em->start = async_extent->start;
607                 em->len = async_extent->ram_size;
608                 em->orig_start = em->start;
609
610                 em->block_start = ins.objectid;
611                 em->block_len = ins.offset;
612                 em->bdev = root->fs_info->fs_devices->latest_bdev;
613                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
614                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
615
616                 while (1) {
617                         write_lock(&em_tree->lock);
618                         ret = add_extent_mapping(em_tree, em);
619                         write_unlock(&em_tree->lock);
620                         if (ret != -EEXIST) {
621                                 free_extent_map(em);
622                                 break;
623                         }
624                         btrfs_drop_extent_cache(inode, async_extent->start,
625                                                 async_extent->start +
626                                                 async_extent->ram_size - 1, 0);
627                 }
628
629                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
630                                                ins.objectid,
631                                                async_extent->ram_size,
632                                                ins.offset,
633                                                BTRFS_ORDERED_COMPRESSED);
634                 BUG_ON(ret);
635
636                 btrfs_end_transaction(trans, root);
637
638                 /*
639                  * clear dirty, set writeback and unlock the pages.
640                  */
641                 extent_clear_unlock_delalloc(inode,
642                                 &BTRFS_I(inode)->io_tree,
643                                 async_extent->start,
644                                 async_extent->start +
645                                 async_extent->ram_size - 1,
646                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
647                                 EXTENT_CLEAR_UNLOCK |
648                                 EXTENT_CLEAR_DELALLOC |
649                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
650
651                 ret = btrfs_submit_compressed_write(inode,
652                                     async_extent->start,
653                                     async_extent->ram_size,
654                                     ins.objectid,
655                                     ins.offset, async_extent->pages,
656                                     async_extent->nr_pages);
657
658                 BUG_ON(ret);
659                 trans = btrfs_join_transaction(root, 1);
660                 alloc_hint = ins.objectid + ins.offset;
661                 kfree(async_extent);
662                 cond_resched();
663         }
664
665         btrfs_end_transaction(trans, root);
666         return 0;
667 }
668
669 /*
670  * when extent_io.c finds a delayed allocation range in the file,
671  * the call backs end up in this code.  The basic idea is to
672  * allocate extents on disk for the range, and create ordered data structs
673  * in ram to track those extents.
674  *
675  * locked_page is the page that writepage had locked already.  We use
676  * it to make sure we don't do extra locks or unlocks.
677  *
678  * *page_started is set to one if we unlock locked_page and do everything
679  * required to start IO on it.  It may be clean and already done with
680  * IO when we return.
681  */
682 static noinline int cow_file_range(struct inode *inode,
683                                    struct page *locked_page,
684                                    u64 start, u64 end, int *page_started,
685                                    unsigned long *nr_written,
686                                    int unlock)
687 {
688         struct btrfs_root *root = BTRFS_I(inode)->root;
689         struct btrfs_trans_handle *trans;
690         u64 alloc_hint = 0;
691         u64 num_bytes;
692         unsigned long ram_size;
693         u64 disk_num_bytes;
694         u64 cur_alloc_size;
695         u64 blocksize = root->sectorsize;
696         u64 actual_end;
697         u64 isize = i_size_read(inode);
698         struct btrfs_key ins;
699         struct extent_map *em;
700         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
701         int ret = 0;
702
703         trans = btrfs_join_transaction(root, 1);
704         BUG_ON(!trans);
705         btrfs_set_trans_block_group(trans, inode);
706
707         actual_end = min_t(u64, isize, end + 1);
708
709         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
710         num_bytes = max(blocksize,  num_bytes);
711         disk_num_bytes = num_bytes;
712         ret = 0;
713
714         if (start == 0) {
715                 /* lets try to make an inline extent */
716                 ret = cow_file_range_inline(trans, root, inode,
717                                             start, end, 0, NULL);
718                 if (ret == 0) {
719                         extent_clear_unlock_delalloc(inode,
720                                      &BTRFS_I(inode)->io_tree,
721                                      start, end, NULL,
722                                      EXTENT_CLEAR_UNLOCK_PAGE |
723                                      EXTENT_CLEAR_UNLOCK |
724                                      EXTENT_CLEAR_DELALLOC |
725                                      EXTENT_CLEAR_DIRTY |
726                                      EXTENT_SET_WRITEBACK |
727                                      EXTENT_END_WRITEBACK);
728                         *nr_written = *nr_written +
729                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
730                         *page_started = 1;
731                         ret = 0;
732                         goto out;
733                 }
734         }
735
736         BUG_ON(disk_num_bytes >
737                btrfs_super_total_bytes(&root->fs_info->super_copy));
738
739
740         read_lock(&BTRFS_I(inode)->extent_tree.lock);
741         em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
742                                    start, num_bytes);
743         if (em) {
744                 alloc_hint = em->block_start;
745                 free_extent_map(em);
746         }
747         read_unlock(&BTRFS_I(inode)->extent_tree.lock);
748         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
749
750         while (disk_num_bytes > 0) {
751                 unsigned long op;
752
753                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
754                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
755                                            root->sectorsize, 0, alloc_hint,
756                                            (u64)-1, &ins, 1);
757                 BUG_ON(ret);
758
759                 em = alloc_extent_map(GFP_NOFS);
760                 em->start = start;
761                 em->orig_start = em->start;
762                 ram_size = ins.offset;
763                 em->len = ins.offset;
764
765                 em->block_start = ins.objectid;
766                 em->block_len = ins.offset;
767                 em->bdev = root->fs_info->fs_devices->latest_bdev;
768                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
769
770                 while (1) {
771                         write_lock(&em_tree->lock);
772                         ret = add_extent_mapping(em_tree, em);
773                         write_unlock(&em_tree->lock);
774                         if (ret != -EEXIST) {
775                                 free_extent_map(em);
776                                 break;
777                         }
778                         btrfs_drop_extent_cache(inode, start,
779                                                 start + ram_size - 1, 0);
780                 }
781
782                 cur_alloc_size = ins.offset;
783                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
784                                                ram_size, cur_alloc_size, 0);
785                 BUG_ON(ret);
786
787                 if (root->root_key.objectid ==
788                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
789                         ret = btrfs_reloc_clone_csums(inode, start,
790                                                       cur_alloc_size);
791                         BUG_ON(ret);
792                 }
793
794                 if (disk_num_bytes < cur_alloc_size)
795                         break;
796
797                 /* we're not doing compressed IO, don't unlock the first
798                  * page (which the caller expects to stay locked), don't
799                  * clear any dirty bits and don't set any writeback bits
800                  *
801                  * Do set the Private2 bit so we know this page was properly
802                  * setup for writepage
803                  */
804                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
805                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
806                         EXTENT_SET_PRIVATE2;
807
808                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
809                                              start, start + ram_size - 1,
810                                              locked_page, op);
811                 disk_num_bytes -= cur_alloc_size;
812                 num_bytes -= cur_alloc_size;
813                 alloc_hint = ins.objectid + ins.offset;
814                 start += cur_alloc_size;
815         }
816 out:
817         ret = 0;
818         btrfs_end_transaction(trans, root);
819
820         return ret;
821 }
822
823 /*
824  * work queue call back to started compression on a file and pages
825  */
826 static noinline void async_cow_start(struct btrfs_work *work)
827 {
828         struct async_cow *async_cow;
829         int num_added = 0;
830         async_cow = container_of(work, struct async_cow, work);
831
832         compress_file_range(async_cow->inode, async_cow->locked_page,
833                             async_cow->start, async_cow->end, async_cow,
834                             &num_added);
835         if (num_added == 0)
836                 async_cow->inode = NULL;
837 }
838
839 /*
840  * work queue call back to submit previously compressed pages
841  */
842 static noinline void async_cow_submit(struct btrfs_work *work)
843 {
844         struct async_cow *async_cow;
845         struct btrfs_root *root;
846         unsigned long nr_pages;
847
848         async_cow = container_of(work, struct async_cow, work);
849
850         root = async_cow->root;
851         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
852                 PAGE_CACHE_SHIFT;
853
854         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
855
856         if (atomic_read(&root->fs_info->async_delalloc_pages) <
857             5 * 1042 * 1024 &&
858             waitqueue_active(&root->fs_info->async_submit_wait))
859                 wake_up(&root->fs_info->async_submit_wait);
860
861         if (async_cow->inode)
862                 submit_compressed_extents(async_cow->inode, async_cow);
863 }
864
865 static noinline void async_cow_free(struct btrfs_work *work)
866 {
867         struct async_cow *async_cow;
868         async_cow = container_of(work, struct async_cow, work);
869         kfree(async_cow);
870 }
871
872 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
873                                 u64 start, u64 end, int *page_started,
874                                 unsigned long *nr_written)
875 {
876         struct async_cow *async_cow;
877         struct btrfs_root *root = BTRFS_I(inode)->root;
878         unsigned long nr_pages;
879         u64 cur_end;
880         int limit = 10 * 1024 * 1042;
881
882         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
883                          1, 0, NULL, GFP_NOFS);
884         while (start < end) {
885                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
886                 async_cow->inode = inode;
887                 async_cow->root = root;
888                 async_cow->locked_page = locked_page;
889                 async_cow->start = start;
890
891                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
892                         cur_end = end;
893                 else
894                         cur_end = min(end, start + 512 * 1024 - 1);
895
896                 async_cow->end = cur_end;
897                 INIT_LIST_HEAD(&async_cow->extents);
898
899                 async_cow->work.func = async_cow_start;
900                 async_cow->work.ordered_func = async_cow_submit;
901                 async_cow->work.ordered_free = async_cow_free;
902                 async_cow->work.flags = 0;
903
904                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
905                         PAGE_CACHE_SHIFT;
906                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
907
908                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
909                                    &async_cow->work);
910
911                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
912                         wait_event(root->fs_info->async_submit_wait,
913                            (atomic_read(&root->fs_info->async_delalloc_pages) <
914                             limit));
915                 }
916
917                 while (atomic_read(&root->fs_info->async_submit_draining) &&
918                       atomic_read(&root->fs_info->async_delalloc_pages)) {
919                         wait_event(root->fs_info->async_submit_wait,
920                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
921                            0));
922                 }
923
924                 *nr_written += nr_pages;
925                 start = cur_end + 1;
926         }
927         *page_started = 1;
928         return 0;
929 }
930
931 static noinline int csum_exist_in_range(struct btrfs_root *root,
932                                         u64 bytenr, u64 num_bytes)
933 {
934         int ret;
935         struct btrfs_ordered_sum *sums;
936         LIST_HEAD(list);
937
938         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
939                                        bytenr + num_bytes - 1, &list);
940         if (ret == 0 && list_empty(&list))
941                 return 0;
942
943         while (!list_empty(&list)) {
944                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
945                 list_del(&sums->list);
946                 kfree(sums);
947         }
948         return 1;
949 }
950
951 /*
952  * when nowcow writeback call back.  This checks for snapshots or COW copies
953  * of the extents that exist in the file, and COWs the file as required.
954  *
955  * If no cow copies or snapshots exist, we write directly to the existing
956  * blocks on disk
957  */
958 static noinline int run_delalloc_nocow(struct inode *inode,
959                                        struct page *locked_page,
960                               u64 start, u64 end, int *page_started, int force,
961                               unsigned long *nr_written)
962 {
963         struct btrfs_root *root = BTRFS_I(inode)->root;
964         struct btrfs_trans_handle *trans;
965         struct extent_buffer *leaf;
966         struct btrfs_path *path;
967         struct btrfs_file_extent_item *fi;
968         struct btrfs_key found_key;
969         u64 cow_start;
970         u64 cur_offset;
971         u64 extent_end;
972         u64 extent_offset;
973         u64 disk_bytenr;
974         u64 num_bytes;
975         int extent_type;
976         int ret;
977         int type;
978         int nocow;
979         int check_prev = 1;
980
981         path = btrfs_alloc_path();
982         BUG_ON(!path);
983         trans = btrfs_join_transaction(root, 1);
984         BUG_ON(!trans);
985
986         cow_start = (u64)-1;
987         cur_offset = start;
988         while (1) {
989                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
990                                                cur_offset, 0);
991                 BUG_ON(ret < 0);
992                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
993                         leaf = path->nodes[0];
994                         btrfs_item_key_to_cpu(leaf, &found_key,
995                                               path->slots[0] - 1);
996                         if (found_key.objectid == inode->i_ino &&
997                             found_key.type == BTRFS_EXTENT_DATA_KEY)
998                                 path->slots[0]--;
999                 }
1000                 check_prev = 0;
1001 next_slot:
1002                 leaf = path->nodes[0];
1003                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1004                         ret = btrfs_next_leaf(root, path);
1005                         if (ret < 0)
1006                                 BUG_ON(1);
1007                         if (ret > 0)
1008                                 break;
1009                         leaf = path->nodes[0];
1010                 }
1011
1012                 nocow = 0;
1013                 disk_bytenr = 0;
1014                 num_bytes = 0;
1015                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1016
1017                 if (found_key.objectid > inode->i_ino ||
1018                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1019                     found_key.offset > end)
1020                         break;
1021
1022                 if (found_key.offset > cur_offset) {
1023                         extent_end = found_key.offset;
1024                         goto out_check;
1025                 }
1026
1027                 fi = btrfs_item_ptr(leaf, path->slots[0],
1028                                     struct btrfs_file_extent_item);
1029                 extent_type = btrfs_file_extent_type(leaf, fi);
1030
1031                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1032                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1033                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1034                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1035                         extent_end = found_key.offset +
1036                                 btrfs_file_extent_num_bytes(leaf, fi);
1037                         if (extent_end <= start) {
1038                                 path->slots[0]++;
1039                                 goto next_slot;
1040                         }
1041                         if (disk_bytenr == 0)
1042                                 goto out_check;
1043                         if (btrfs_file_extent_compression(leaf, fi) ||
1044                             btrfs_file_extent_encryption(leaf, fi) ||
1045                             btrfs_file_extent_other_encoding(leaf, fi))
1046                                 goto out_check;
1047                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1048                                 goto out_check;
1049                         if (btrfs_extent_readonly(root, disk_bytenr))
1050                                 goto out_check;
1051                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1052                                                   found_key.offset -
1053                                                   extent_offset, disk_bytenr))
1054                                 goto out_check;
1055                         disk_bytenr += extent_offset;
1056                         disk_bytenr += cur_offset - found_key.offset;
1057                         num_bytes = min(end + 1, extent_end) - cur_offset;
1058                         /*
1059                          * force cow if csum exists in the range.
1060                          * this ensure that csum for a given extent are
1061                          * either valid or do not exist.
1062                          */
1063                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1064                                 goto out_check;
1065                         nocow = 1;
1066                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1067                         extent_end = found_key.offset +
1068                                 btrfs_file_extent_inline_len(leaf, fi);
1069                         extent_end = ALIGN(extent_end, root->sectorsize);
1070                 } else {
1071                         BUG_ON(1);
1072                 }
1073 out_check:
1074                 if (extent_end <= start) {
1075                         path->slots[0]++;
1076                         goto next_slot;
1077                 }
1078                 if (!nocow) {
1079                         if (cow_start == (u64)-1)
1080                                 cow_start = cur_offset;
1081                         cur_offset = extent_end;
1082                         if (cur_offset > end)
1083                                 break;
1084                         path->slots[0]++;
1085                         goto next_slot;
1086                 }
1087
1088                 btrfs_release_path(root, path);
1089                 if (cow_start != (u64)-1) {
1090                         ret = cow_file_range(inode, locked_page, cow_start,
1091                                         found_key.offset - 1, page_started,
1092                                         nr_written, 1);
1093                         BUG_ON(ret);
1094                         cow_start = (u64)-1;
1095                 }
1096
1097                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1098                         struct extent_map *em;
1099                         struct extent_map_tree *em_tree;
1100                         em_tree = &BTRFS_I(inode)->extent_tree;
1101                         em = alloc_extent_map(GFP_NOFS);
1102                         em->start = cur_offset;
1103                         em->orig_start = em->start;
1104                         em->len = num_bytes;
1105                         em->block_len = num_bytes;
1106                         em->block_start = disk_bytenr;
1107                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1108                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1109                         while (1) {
1110                                 write_lock(&em_tree->lock);
1111                                 ret = add_extent_mapping(em_tree, em);
1112                                 write_unlock(&em_tree->lock);
1113                                 if (ret != -EEXIST) {
1114                                         free_extent_map(em);
1115                                         break;
1116                                 }
1117                                 btrfs_drop_extent_cache(inode, em->start,
1118                                                 em->start + em->len - 1, 0);
1119                         }
1120                         type = BTRFS_ORDERED_PREALLOC;
1121                 } else {
1122                         type = BTRFS_ORDERED_NOCOW;
1123                 }
1124
1125                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1126                                                num_bytes, num_bytes, type);
1127                 BUG_ON(ret);
1128
1129                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1130                                 cur_offset, cur_offset + num_bytes - 1,
1131                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1132                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1133                                 EXTENT_SET_PRIVATE2);
1134                 cur_offset = extent_end;
1135                 if (cur_offset > end)
1136                         break;
1137         }
1138         btrfs_release_path(root, path);
1139
1140         if (cur_offset <= end && cow_start == (u64)-1)
1141                 cow_start = cur_offset;
1142         if (cow_start != (u64)-1) {
1143                 ret = cow_file_range(inode, locked_page, cow_start, end,
1144                                      page_started, nr_written, 1);
1145                 BUG_ON(ret);
1146         }
1147
1148         ret = btrfs_end_transaction(trans, root);
1149         BUG_ON(ret);
1150         btrfs_free_path(path);
1151         return 0;
1152 }
1153
1154 /*
1155  * extent_io.c call back to do delayed allocation processing
1156  */
1157 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1158                               u64 start, u64 end, int *page_started,
1159                               unsigned long *nr_written)
1160 {
1161         int ret;
1162         struct btrfs_root *root = BTRFS_I(inode)->root;
1163
1164         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1165                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1166                                          page_started, 1, nr_written);
1167         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1168                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1169                                          page_started, 0, nr_written);
1170         else if (!btrfs_test_opt(root, COMPRESS))
1171                 ret = cow_file_range(inode, locked_page, start, end,
1172                                       page_started, nr_written, 1);
1173         else
1174                 ret = cow_file_range_async(inode, locked_page, start, end,
1175                                            page_started, nr_written);
1176         return ret;
1177 }
1178
1179 static int btrfs_split_extent_hook(struct inode *inode,
1180                                     struct extent_state *orig, u64 split)
1181 {
1182         struct btrfs_root *root = BTRFS_I(inode)->root;
1183         u64 size;
1184
1185         if (!(orig->state & EXTENT_DELALLOC))
1186                 return 0;
1187
1188         size = orig->end - orig->start + 1;
1189         if (size > root->fs_info->max_extent) {
1190                 u64 num_extents;
1191                 u64 new_size;
1192
1193                 new_size = orig->end - split + 1;
1194                 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1195                                         root->fs_info->max_extent);
1196
1197                 /*
1198                  * if we break a large extent up then leave delalloc_extents be,
1199                  * since we've already accounted for the large extent.
1200                  */
1201                 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1202                               root->fs_info->max_extent) < num_extents)
1203                         return 0;
1204         }
1205
1206         BTRFS_I(inode)->delalloc_extents++;
1207
1208         return 0;
1209 }
1210
1211 /*
1212  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1213  * extents so we can keep track of new extents that are just merged onto old
1214  * extents, such as when we are doing sequential writes, so we can properly
1215  * account for the metadata space we'll need.
1216  */
1217 static int btrfs_merge_extent_hook(struct inode *inode,
1218                                    struct extent_state *new,
1219                                    struct extent_state *other)
1220 {
1221         struct btrfs_root *root = BTRFS_I(inode)->root;
1222         u64 new_size, old_size;
1223         u64 num_extents;
1224
1225         /* not delalloc, ignore it */
1226         if (!(other->state & EXTENT_DELALLOC))
1227                 return 0;
1228
1229         old_size = other->end - other->start + 1;
1230         if (new->start < other->start)
1231                 new_size = other->end - new->start + 1;
1232         else
1233                 new_size = new->end - other->start + 1;
1234
1235         /* we're not bigger than the max, unreserve the space and go */
1236         if (new_size <= root->fs_info->max_extent) {
1237                 BTRFS_I(inode)->delalloc_extents--;
1238                 return 0;
1239         }
1240
1241         /*
1242          * If we grew by another max_extent, just return, we want to keep that
1243          * reserved amount.
1244          */
1245         num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1246                                 root->fs_info->max_extent);
1247         if (div64_u64(new_size + root->fs_info->max_extent - 1,
1248                       root->fs_info->max_extent) > num_extents)
1249                 return 0;
1250
1251         BTRFS_I(inode)->delalloc_extents--;
1252
1253         return 0;
1254 }
1255
1256 /*
1257  * extent_io.c set_bit_hook, used to track delayed allocation
1258  * bytes in this file, and to maintain the list of inodes that
1259  * have pending delalloc work to be done.
1260  */
1261 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1262                        unsigned long old, unsigned long bits)
1263 {
1264
1265         /*
1266          * set_bit and clear bit hooks normally require _irqsave/restore
1267          * but in this case, we are only testeing for the DELALLOC
1268          * bit, which is only set or cleared with irqs on
1269          */
1270         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1271                 struct btrfs_root *root = BTRFS_I(inode)->root;
1272
1273                 BTRFS_I(inode)->delalloc_extents++;
1274                 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1275                 spin_lock(&root->fs_info->delalloc_lock);
1276                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1277                 root->fs_info->delalloc_bytes += end - start + 1;
1278                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1279                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1280                                       &root->fs_info->delalloc_inodes);
1281                 }
1282                 spin_unlock(&root->fs_info->delalloc_lock);
1283         }
1284         return 0;
1285 }
1286
1287 /*
1288  * extent_io.c clear_bit_hook, see set_bit_hook for why
1289  */
1290 static int btrfs_clear_bit_hook(struct inode *inode,
1291                                 struct extent_state *state, unsigned long bits)
1292 {
1293         /*
1294          * set_bit and clear bit hooks normally require _irqsave/restore
1295          * but in this case, we are only testeing for the DELALLOC
1296          * bit, which is only set or cleared with irqs on
1297          */
1298         if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1299                 struct btrfs_root *root = BTRFS_I(inode)->root;
1300
1301                 BTRFS_I(inode)->delalloc_extents--;
1302                 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1303
1304                 spin_lock(&root->fs_info->delalloc_lock);
1305                 if (state->end - state->start + 1 >
1306                     root->fs_info->delalloc_bytes) {
1307                         printk(KERN_INFO "btrfs warning: delalloc account "
1308                                "%llu %llu\n",
1309                                (unsigned long long)
1310                                state->end - state->start + 1,
1311                                (unsigned long long)
1312                                root->fs_info->delalloc_bytes);
1313                         btrfs_delalloc_free_space(root, inode, (u64)-1);
1314                         root->fs_info->delalloc_bytes = 0;
1315                         BTRFS_I(inode)->delalloc_bytes = 0;
1316                 } else {
1317                         btrfs_delalloc_free_space(root, inode,
1318                                                   state->end -
1319                                                   state->start + 1);
1320                         root->fs_info->delalloc_bytes -= state->end -
1321                                 state->start + 1;
1322                         BTRFS_I(inode)->delalloc_bytes -= state->end -
1323                                 state->start + 1;
1324                 }
1325                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1326                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1327                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1328                 }
1329                 spin_unlock(&root->fs_info->delalloc_lock);
1330         }
1331         return 0;
1332 }
1333
1334 /*
1335  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1336  * we don't create bios that span stripes or chunks
1337  */
1338 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1339                          size_t size, struct bio *bio,
1340                          unsigned long bio_flags)
1341 {
1342         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1343         struct btrfs_mapping_tree *map_tree;
1344         u64 logical = (u64)bio->bi_sector << 9;
1345         u64 length = 0;
1346         u64 map_length;
1347         int ret;
1348
1349         if (bio_flags & EXTENT_BIO_COMPRESSED)
1350                 return 0;
1351
1352         length = bio->bi_size;
1353         map_tree = &root->fs_info->mapping_tree;
1354         map_length = length;
1355         ret = btrfs_map_block(map_tree, READ, logical,
1356                               &map_length, NULL, 0);
1357
1358         if (map_length < length + size)
1359                 return 1;
1360         return 0;
1361 }
1362
1363 /*
1364  * in order to insert checksums into the metadata in large chunks,
1365  * we wait until bio submission time.   All the pages in the bio are
1366  * checksummed and sums are attached onto the ordered extent record.
1367  *
1368  * At IO completion time the cums attached on the ordered extent record
1369  * are inserted into the btree
1370  */
1371 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1372                                     struct bio *bio, int mirror_num,
1373                                     unsigned long bio_flags)
1374 {
1375         struct btrfs_root *root = BTRFS_I(inode)->root;
1376         int ret = 0;
1377
1378         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1379         BUG_ON(ret);
1380         return 0;
1381 }
1382
1383 /*
1384  * in order to insert checksums into the metadata in large chunks,
1385  * we wait until bio submission time.   All the pages in the bio are
1386  * checksummed and sums are attached onto the ordered extent record.
1387  *
1388  * At IO completion time the cums attached on the ordered extent record
1389  * are inserted into the btree
1390  */
1391 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1392                           int mirror_num, unsigned long bio_flags)
1393 {
1394         struct btrfs_root *root = BTRFS_I(inode)->root;
1395         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1396 }
1397
1398 /*
1399  * extent_io.c submission hook. This does the right thing for csum calculation
1400  * on write, or reading the csums from the tree before a read
1401  */
1402 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1403                           int mirror_num, unsigned long bio_flags)
1404 {
1405         struct btrfs_root *root = BTRFS_I(inode)->root;
1406         int ret = 0;
1407         int skip_sum;
1408
1409         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1410
1411         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1412         BUG_ON(ret);
1413
1414         if (!(rw & (1 << BIO_RW))) {
1415                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1416                         return btrfs_submit_compressed_read(inode, bio,
1417                                                     mirror_num, bio_flags);
1418                 } else if (!skip_sum)
1419                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1420                 goto mapit;
1421         } else if (!skip_sum) {
1422                 /* csum items have already been cloned */
1423                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1424                         goto mapit;
1425                 /* we're doing a write, do the async checksumming */
1426                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1427                                    inode, rw, bio, mirror_num,
1428                                    bio_flags, __btrfs_submit_bio_start,
1429                                    __btrfs_submit_bio_done);
1430         }
1431
1432 mapit:
1433         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1434 }
1435
1436 /*
1437  * given a list of ordered sums record them in the inode.  This happens
1438  * at IO completion time based on sums calculated at bio submission time.
1439  */
1440 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1441                              struct inode *inode, u64 file_offset,
1442                              struct list_head *list)
1443 {
1444         struct btrfs_ordered_sum *sum;
1445
1446         btrfs_set_trans_block_group(trans, inode);
1447
1448         list_for_each_entry(sum, list, list) {
1449                 btrfs_csum_file_blocks(trans,
1450                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1451         }
1452         return 0;
1453 }
1454
1455 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1456 {
1457         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1458                 WARN_ON(1);
1459         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1460                                    GFP_NOFS);
1461 }
1462
1463 /* see btrfs_writepage_start_hook for details on why this is required */
1464 struct btrfs_writepage_fixup {
1465         struct page *page;
1466         struct btrfs_work work;
1467 };
1468
1469 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1470 {
1471         struct btrfs_writepage_fixup *fixup;
1472         struct btrfs_ordered_extent *ordered;
1473         struct page *page;
1474         struct inode *inode;
1475         u64 page_start;
1476         u64 page_end;
1477
1478         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1479         page = fixup->page;
1480 again:
1481         lock_page(page);
1482         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1483                 ClearPageChecked(page);
1484                 goto out_page;
1485         }
1486
1487         inode = page->mapping->host;
1488         page_start = page_offset(page);
1489         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1490
1491         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1492
1493         /* already ordered? We're done */
1494         if (PagePrivate2(page))
1495                 goto out;
1496
1497         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1498         if (ordered) {
1499                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1500                               page_end, GFP_NOFS);
1501                 unlock_page(page);
1502                 btrfs_start_ordered_extent(inode, ordered, 1);
1503                 goto again;
1504         }
1505
1506         btrfs_set_extent_delalloc(inode, page_start, page_end);
1507         ClearPageChecked(page);
1508 out:
1509         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1510 out_page:
1511         unlock_page(page);
1512         page_cache_release(page);
1513 }
1514
1515 /*
1516  * There are a few paths in the higher layers of the kernel that directly
1517  * set the page dirty bit without asking the filesystem if it is a
1518  * good idea.  This causes problems because we want to make sure COW
1519  * properly happens and the data=ordered rules are followed.
1520  *
1521  * In our case any range that doesn't have the ORDERED bit set
1522  * hasn't been properly setup for IO.  We kick off an async process
1523  * to fix it up.  The async helper will wait for ordered extents, set
1524  * the delalloc bit and make it safe to write the page.
1525  */
1526 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1527 {
1528         struct inode *inode = page->mapping->host;
1529         struct btrfs_writepage_fixup *fixup;
1530         struct btrfs_root *root = BTRFS_I(inode)->root;
1531
1532         /* this page is properly in the ordered list */
1533         if (TestClearPagePrivate2(page))
1534                 return 0;
1535
1536         if (PageChecked(page))
1537                 return -EAGAIN;
1538
1539         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1540         if (!fixup)
1541                 return -EAGAIN;
1542
1543         SetPageChecked(page);
1544         page_cache_get(page);
1545         fixup->work.func = btrfs_writepage_fixup_worker;
1546         fixup->page = page;
1547         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1548         return -EAGAIN;
1549 }
1550
1551 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1552                                        struct inode *inode, u64 file_pos,
1553                                        u64 disk_bytenr, u64 disk_num_bytes,
1554                                        u64 num_bytes, u64 ram_bytes,
1555                                        u64 locked_end,
1556                                        u8 compression, u8 encryption,
1557                                        u16 other_encoding, int extent_type)
1558 {
1559         struct btrfs_root *root = BTRFS_I(inode)->root;
1560         struct btrfs_file_extent_item *fi;
1561         struct btrfs_path *path;
1562         struct extent_buffer *leaf;
1563         struct btrfs_key ins;
1564         u64 hint;
1565         int ret;
1566
1567         path = btrfs_alloc_path();
1568         BUG_ON(!path);
1569
1570         path->leave_spinning = 1;
1571
1572         /*
1573          * we may be replacing one extent in the tree with another.
1574          * The new extent is pinned in the extent map, and we don't want
1575          * to drop it from the cache until it is completely in the btree.
1576          *
1577          * So, tell btrfs_drop_extents to leave this extent in the cache.
1578          * the caller is expected to unpin it and allow it to be merged
1579          * with the others.
1580          */
1581         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1582                                  file_pos + num_bytes, locked_end,
1583                                  file_pos, &hint, 0);
1584         BUG_ON(ret);
1585
1586         ins.objectid = inode->i_ino;
1587         ins.offset = file_pos;
1588         ins.type = BTRFS_EXTENT_DATA_KEY;
1589         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1590         BUG_ON(ret);
1591         leaf = path->nodes[0];
1592         fi = btrfs_item_ptr(leaf, path->slots[0],
1593                             struct btrfs_file_extent_item);
1594         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1595         btrfs_set_file_extent_type(leaf, fi, extent_type);
1596         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1597         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1598         btrfs_set_file_extent_offset(leaf, fi, 0);
1599         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1600         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1601         btrfs_set_file_extent_compression(leaf, fi, compression);
1602         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1603         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1604
1605         btrfs_unlock_up_safe(path, 1);
1606         btrfs_set_lock_blocking(leaf);
1607
1608         btrfs_mark_buffer_dirty(leaf);
1609
1610         inode_add_bytes(inode, num_bytes);
1611
1612         ins.objectid = disk_bytenr;
1613         ins.offset = disk_num_bytes;
1614         ins.type = BTRFS_EXTENT_ITEM_KEY;
1615         ret = btrfs_alloc_reserved_file_extent(trans, root,
1616                                         root->root_key.objectid,
1617                                         inode->i_ino, file_pos, &ins);
1618         BUG_ON(ret);
1619         btrfs_free_path(path);
1620
1621         return 0;
1622 }
1623
1624 /*
1625  * helper function for btrfs_finish_ordered_io, this
1626  * just reads in some of the csum leaves to prime them into ram
1627  * before we start the transaction.  It limits the amount of btree
1628  * reads required while inside the transaction.
1629  */
1630 static noinline void reada_csum(struct btrfs_root *root,
1631                                 struct btrfs_path *path,
1632                                 struct btrfs_ordered_extent *ordered_extent)
1633 {
1634         struct btrfs_ordered_sum *sum;
1635         u64 bytenr;
1636
1637         sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1638                          list);
1639         bytenr = sum->sums[0].bytenr;
1640
1641         /*
1642          * we don't care about the results, the point of this search is
1643          * just to get the btree leaves into ram
1644          */
1645         btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1646 }
1647
1648 /* as ordered data IO finishes, this gets called so we can finish
1649  * an ordered extent if the range of bytes in the file it covers are
1650  * fully written.
1651  */
1652 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1653 {
1654         struct btrfs_root *root = BTRFS_I(inode)->root;
1655         struct btrfs_trans_handle *trans;
1656         struct btrfs_ordered_extent *ordered_extent = NULL;
1657         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1658         struct btrfs_path *path;
1659         int compressed = 0;
1660         int ret;
1661
1662         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1663         if (!ret)
1664                 return 0;
1665
1666         /*
1667          * before we join the transaction, try to do some of our IO.
1668          * This will limit the amount of IO that we have to do with
1669          * the transaction running.  We're unlikely to need to do any
1670          * IO if the file extents are new, the disk_i_size checks
1671          * covers the most common case.
1672          */
1673         if (start < BTRFS_I(inode)->disk_i_size) {
1674                 path = btrfs_alloc_path();
1675                 if (path) {
1676                         ret = btrfs_lookup_file_extent(NULL, root, path,
1677                                                        inode->i_ino,
1678                                                        start, 0);
1679                         ordered_extent = btrfs_lookup_ordered_extent(inode,
1680                                                                      start);
1681                         if (!list_empty(&ordered_extent->list)) {
1682                                 btrfs_release_path(root, path);
1683                                 reada_csum(root, path, ordered_extent);
1684                         }
1685                         btrfs_free_path(path);
1686                 }
1687         }
1688
1689         trans = btrfs_join_transaction(root, 1);
1690
1691         if (!ordered_extent)
1692                 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1693         BUG_ON(!ordered_extent);
1694         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1695                 goto nocow;
1696
1697         lock_extent(io_tree, ordered_extent->file_offset,
1698                     ordered_extent->file_offset + ordered_extent->len - 1,
1699                     GFP_NOFS);
1700
1701         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1702                 compressed = 1;
1703         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1704                 BUG_ON(compressed);
1705                 ret = btrfs_mark_extent_written(trans, root, inode,
1706                                                 ordered_extent->file_offset,
1707                                                 ordered_extent->file_offset +
1708                                                 ordered_extent->len);
1709                 BUG_ON(ret);
1710         } else {
1711                 ret = insert_reserved_file_extent(trans, inode,
1712                                                 ordered_extent->file_offset,
1713                                                 ordered_extent->start,
1714                                                 ordered_extent->disk_len,
1715                                                 ordered_extent->len,
1716                                                 ordered_extent->len,
1717                                                 ordered_extent->file_offset +
1718                                                 ordered_extent->len,
1719                                                 compressed, 0, 0,
1720                                                 BTRFS_FILE_EXTENT_REG);
1721                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1722                                    ordered_extent->file_offset,
1723                                    ordered_extent->len);
1724                 BUG_ON(ret);
1725         }
1726         unlock_extent(io_tree, ordered_extent->file_offset,
1727                     ordered_extent->file_offset + ordered_extent->len - 1,
1728                     GFP_NOFS);
1729 nocow:
1730         add_pending_csums(trans, inode, ordered_extent->file_offset,
1731                           &ordered_extent->list);
1732
1733         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1734         btrfs_ordered_update_i_size(inode, ordered_extent);
1735         btrfs_update_inode(trans, root, inode);
1736         btrfs_remove_ordered_extent(inode, ordered_extent);
1737         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1738
1739         /* once for us */
1740         btrfs_put_ordered_extent(ordered_extent);
1741         /* once for the tree */
1742         btrfs_put_ordered_extent(ordered_extent);
1743
1744         btrfs_end_transaction(trans, root);
1745         return 0;
1746 }
1747
1748 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1749                                 struct extent_state *state, int uptodate)
1750 {
1751         ClearPagePrivate2(page);
1752         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1753 }
1754
1755 /*
1756  * When IO fails, either with EIO or csum verification fails, we
1757  * try other mirrors that might have a good copy of the data.  This
1758  * io_failure_record is used to record state as we go through all the
1759  * mirrors.  If another mirror has good data, the page is set up to date
1760  * and things continue.  If a good mirror can't be found, the original
1761  * bio end_io callback is called to indicate things have failed.
1762  */
1763 struct io_failure_record {
1764         struct page *page;
1765         u64 start;
1766         u64 len;
1767         u64 logical;
1768         unsigned long bio_flags;
1769         int last_mirror;
1770 };
1771
1772 static int btrfs_io_failed_hook(struct bio *failed_bio,
1773                          struct page *page, u64 start, u64 end,
1774                          struct extent_state *state)
1775 {
1776         struct io_failure_record *failrec = NULL;
1777         u64 private;
1778         struct extent_map *em;
1779         struct inode *inode = page->mapping->host;
1780         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1781         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1782         struct bio *bio;
1783         int num_copies;
1784         int ret;
1785         int rw;
1786         u64 logical;
1787
1788         ret = get_state_private(failure_tree, start, &private);
1789         if (ret) {
1790                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1791                 if (!failrec)
1792                         return -ENOMEM;
1793                 failrec->start = start;
1794                 failrec->len = end - start + 1;
1795                 failrec->last_mirror = 0;
1796                 failrec->bio_flags = 0;
1797
1798                 read_lock(&em_tree->lock);
1799                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1800                 if (em->start > start || em->start + em->len < start) {
1801                         free_extent_map(em);
1802                         em = NULL;
1803                 }
1804                 read_unlock(&em_tree->lock);
1805
1806                 if (!em || IS_ERR(em)) {
1807                         kfree(failrec);
1808                         return -EIO;
1809                 }
1810                 logical = start - em->start;
1811                 logical = em->block_start + logical;
1812                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1813                         logical = em->block_start;
1814                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1815                 }
1816                 failrec->logical = logical;
1817                 free_extent_map(em);
1818                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1819                                 EXTENT_DIRTY, GFP_NOFS);
1820                 set_state_private(failure_tree, start,
1821                                  (u64)(unsigned long)failrec);
1822         } else {
1823                 failrec = (struct io_failure_record *)(unsigned long)private;
1824         }
1825         num_copies = btrfs_num_copies(
1826                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1827                               failrec->logical, failrec->len);
1828         failrec->last_mirror++;
1829         if (!state) {
1830                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1831                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1832                                                     failrec->start,
1833                                                     EXTENT_LOCKED);
1834                 if (state && state->start != failrec->start)
1835                         state = NULL;
1836                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1837         }
1838         if (!state || failrec->last_mirror > num_copies) {
1839                 set_state_private(failure_tree, failrec->start, 0);
1840                 clear_extent_bits(failure_tree, failrec->start,
1841                                   failrec->start + failrec->len - 1,
1842                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1843                 kfree(failrec);
1844                 return -EIO;
1845         }
1846         bio = bio_alloc(GFP_NOFS, 1);
1847         bio->bi_private = state;
1848         bio->bi_end_io = failed_bio->bi_end_io;
1849         bio->bi_sector = failrec->logical >> 9;
1850         bio->bi_bdev = failed_bio->bi_bdev;
1851         bio->bi_size = 0;
1852
1853         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1854         if (failed_bio->bi_rw & (1 << BIO_RW))
1855                 rw = WRITE;
1856         else
1857                 rw = READ;
1858
1859         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1860                                                       failrec->last_mirror,
1861                                                       failrec->bio_flags);
1862         return 0;
1863 }
1864
1865 /*
1866  * each time an IO finishes, we do a fast check in the IO failure tree
1867  * to see if we need to process or clean up an io_failure_record
1868  */
1869 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1870 {
1871         u64 private;
1872         u64 private_failure;
1873         struct io_failure_record *failure;
1874         int ret;
1875
1876         private = 0;
1877         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1878                              (u64)-1, 1, EXTENT_DIRTY)) {
1879                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1880                                         start, &private_failure);
1881                 if (ret == 0) {
1882                         failure = (struct io_failure_record *)(unsigned long)
1883                                    private_failure;
1884                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1885                                           failure->start, 0);
1886                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1887                                           failure->start,
1888                                           failure->start + failure->len - 1,
1889                                           EXTENT_DIRTY | EXTENT_LOCKED,
1890                                           GFP_NOFS);
1891                         kfree(failure);
1892                 }
1893         }
1894         return 0;
1895 }
1896
1897 /*
1898  * when reads are done, we need to check csums to verify the data is correct
1899  * if there's a match, we allow the bio to finish.  If not, we go through
1900  * the io_failure_record routines to find good copies
1901  */
1902 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1903                                struct extent_state *state)
1904 {
1905         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1906         struct inode *inode = page->mapping->host;
1907         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1908         char *kaddr;
1909         u64 private = ~(u32)0;
1910         int ret;
1911         struct btrfs_root *root = BTRFS_I(inode)->root;
1912         u32 csum = ~(u32)0;
1913
1914         if (PageChecked(page)) {
1915                 ClearPageChecked(page);
1916                 goto good;
1917         }
1918
1919         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1920                 return 0;
1921
1922         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1923             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1924                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1925                                   GFP_NOFS);
1926                 return 0;
1927         }
1928
1929         if (state && state->start == start) {
1930                 private = state->private;
1931                 ret = 0;
1932         } else {
1933                 ret = get_state_private(io_tree, start, &private);
1934         }
1935         kaddr = kmap_atomic(page, KM_USER0);
1936         if (ret)
1937                 goto zeroit;
1938
1939         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1940         btrfs_csum_final(csum, (char *)&csum);
1941         if (csum != private)
1942                 goto zeroit;
1943
1944         kunmap_atomic(kaddr, KM_USER0);
1945 good:
1946         /* if the io failure tree for this inode is non-empty,
1947          * check to see if we've recovered from a failed IO
1948          */
1949         btrfs_clean_io_failures(inode, start);
1950         return 0;
1951
1952 zeroit:
1953         if (printk_ratelimit()) {
1954                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1955                        "private %llu\n", page->mapping->host->i_ino,
1956                        (unsigned long long)start, csum,
1957                        (unsigned long long)private);
1958         }
1959         memset(kaddr + offset, 1, end - start + 1);
1960         flush_dcache_page(page);
1961         kunmap_atomic(kaddr, KM_USER0);
1962         if (private == 0)
1963                 return 0;
1964         return -EIO;
1965 }
1966
1967 /*
1968  * This creates an orphan entry for the given inode in case something goes
1969  * wrong in the middle of an unlink/truncate.
1970  */
1971 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1972 {
1973         struct btrfs_root *root = BTRFS_I(inode)->root;
1974         int ret = 0;
1975
1976         spin_lock(&root->list_lock);
1977
1978         /* already on the orphan list, we're good */
1979         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1980                 spin_unlock(&root->list_lock);
1981                 return 0;
1982         }
1983
1984         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1985
1986         spin_unlock(&root->list_lock);
1987
1988         /*
1989          * insert an orphan item to track this unlinked/truncated file
1990          */
1991         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1992
1993         return ret;
1994 }
1995
1996 /*
1997  * We have done the truncate/delete so we can go ahead and remove the orphan
1998  * item for this particular inode.
1999  */
2000 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2001 {
2002         struct btrfs_root *root = BTRFS_I(inode)->root;
2003         int ret = 0;
2004
2005         spin_lock(&root->list_lock);
2006
2007         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2008                 spin_unlock(&root->list_lock);
2009                 return 0;
2010         }
2011
2012         list_del_init(&BTRFS_I(inode)->i_orphan);
2013         if (!trans) {
2014                 spin_unlock(&root->list_lock);
2015                 return 0;
2016         }
2017
2018         spin_unlock(&root->list_lock);
2019
2020         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2021
2022         return ret;
2023 }
2024
2025 /*
2026  * this cleans up any orphans that may be left on the list from the last use
2027  * of this root.
2028  */
2029 void btrfs_orphan_cleanup(struct btrfs_root *root)
2030 {
2031         struct btrfs_path *path;
2032         struct extent_buffer *leaf;
2033         struct btrfs_item *item;
2034         struct btrfs_key key, found_key;
2035         struct btrfs_trans_handle *trans;
2036         struct inode *inode;
2037         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2038
2039         path = btrfs_alloc_path();
2040         if (!path)
2041                 return;
2042         path->reada = -1;
2043
2044         key.objectid = BTRFS_ORPHAN_OBJECTID;
2045         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2046         key.offset = (u64)-1;
2047
2048
2049         while (1) {
2050                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2051                 if (ret < 0) {
2052                         printk(KERN_ERR "Error searching slot for orphan: %d"
2053                                "\n", ret);
2054                         break;
2055                 }
2056
2057                 /*
2058                  * if ret == 0 means we found what we were searching for, which
2059                  * is weird, but possible, so only screw with path if we didnt
2060                  * find the key and see if we have stuff that matches
2061                  */
2062                 if (ret > 0) {
2063                         if (path->slots[0] == 0)
2064                                 break;
2065                         path->slots[0]--;
2066                 }
2067
2068                 /* pull out the item */
2069                 leaf = path->nodes[0];
2070                 item = btrfs_item_nr(leaf, path->slots[0]);
2071                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2072
2073                 /* make sure the item matches what we want */
2074                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2075                         break;
2076                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2077                         break;
2078
2079                 /* release the path since we're done with it */
2080                 btrfs_release_path(root, path);
2081
2082                 /*
2083                  * this is where we are basically btrfs_lookup, without the
2084                  * crossing root thing.  we store the inode number in the
2085                  * offset of the orphan item.
2086                  */
2087                 found_key.objectid = found_key.offset;
2088                 found_key.type = BTRFS_INODE_ITEM_KEY;
2089                 found_key.offset = 0;
2090                 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2091                 if (IS_ERR(inode))
2092                         break;
2093
2094                 /*
2095                  * add this inode to the orphan list so btrfs_orphan_del does
2096                  * the proper thing when we hit it
2097                  */
2098                 spin_lock(&root->list_lock);
2099                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2100                 spin_unlock(&root->list_lock);
2101
2102                 /*
2103                  * if this is a bad inode, means we actually succeeded in
2104                  * removing the inode, but not the orphan record, which means
2105                  * we need to manually delete the orphan since iput will just
2106                  * do a destroy_inode
2107                  */
2108                 if (is_bad_inode(inode)) {
2109                         trans = btrfs_start_transaction(root, 1);
2110                         btrfs_orphan_del(trans, inode);
2111                         btrfs_end_transaction(trans, root);
2112                         iput(inode);
2113                         continue;
2114                 }
2115
2116                 /* if we have links, this was a truncate, lets do that */
2117                 if (inode->i_nlink) {
2118                         nr_truncate++;
2119                         btrfs_truncate(inode);
2120                 } else {
2121                         nr_unlink++;
2122                 }
2123
2124                 /* this will do delete_inode and everything for us */
2125                 iput(inode);
2126         }
2127
2128         if (nr_unlink)
2129                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2130         if (nr_truncate)
2131                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2132
2133         btrfs_free_path(path);
2134 }
2135
2136 /*
2137  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2138  * don't find any xattrs, we know there can't be any acls.
2139  *
2140  * slot is the slot the inode is in, objectid is the objectid of the inode
2141  */
2142 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2143                                           int slot, u64 objectid)
2144 {
2145         u32 nritems = btrfs_header_nritems(leaf);
2146         struct btrfs_key found_key;
2147         int scanned = 0;
2148
2149         slot++;
2150         while (slot < nritems) {
2151                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2152
2153                 /* we found a different objectid, there must not be acls */
2154                 if (found_key.objectid != objectid)
2155                         return 0;
2156
2157                 /* we found an xattr, assume we've got an acl */
2158                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2159                         return 1;
2160
2161                 /*
2162                  * we found a key greater than an xattr key, there can't
2163                  * be any acls later on
2164                  */
2165                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2166                         return 0;
2167
2168                 slot++;
2169                 scanned++;
2170
2171                 /*
2172                  * it goes inode, inode backrefs, xattrs, extents,
2173                  * so if there are a ton of hard links to an inode there can
2174                  * be a lot of backrefs.  Don't waste time searching too hard,
2175                  * this is just an optimization
2176                  */
2177                 if (scanned >= 8)
2178                         break;
2179         }
2180         /* we hit the end of the leaf before we found an xattr or
2181          * something larger than an xattr.  We have to assume the inode
2182          * has acls
2183          */
2184         return 1;
2185 }
2186
2187 /*
2188  * read an inode from the btree into the in-memory inode
2189  */
2190 static void btrfs_read_locked_inode(struct inode *inode)
2191 {
2192         struct btrfs_path *path;
2193         struct extent_buffer *leaf;
2194         struct btrfs_inode_item *inode_item;
2195         struct btrfs_timespec *tspec;
2196         struct btrfs_root *root = BTRFS_I(inode)->root;
2197         struct btrfs_key location;
2198         int maybe_acls;
2199         u64 alloc_group_block;
2200         u32 rdev;
2201         int ret;
2202
2203         path = btrfs_alloc_path();
2204         BUG_ON(!path);
2205         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2206
2207         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2208         if (ret)
2209                 goto make_bad;
2210
2211         leaf = path->nodes[0];
2212         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2213                                     struct btrfs_inode_item);
2214
2215         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2216         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2217         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2218         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2219         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2220
2221         tspec = btrfs_inode_atime(inode_item);
2222         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2223         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2224
2225         tspec = btrfs_inode_mtime(inode_item);
2226         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2227         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2228
2229         tspec = btrfs_inode_ctime(inode_item);
2230         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2231         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2232
2233         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2234         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2235         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2236         inode->i_generation = BTRFS_I(inode)->generation;
2237         inode->i_rdev = 0;
2238         rdev = btrfs_inode_rdev(leaf, inode_item);
2239
2240         BTRFS_I(inode)->index_cnt = (u64)-1;
2241         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2242
2243         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2244
2245         /*
2246          * try to precache a NULL acl entry for files that don't have
2247          * any xattrs or acls
2248          */
2249         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2250         if (!maybe_acls)
2251                 cache_no_acl(inode);
2252
2253         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2254                                                 alloc_group_block, 0);
2255         btrfs_free_path(path);
2256         inode_item = NULL;
2257
2258         switch (inode->i_mode & S_IFMT) {
2259         case S_IFREG:
2260                 inode->i_mapping->a_ops = &btrfs_aops;
2261                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2262                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2263                 inode->i_fop = &btrfs_file_operations;
2264                 inode->i_op = &btrfs_file_inode_operations;
2265                 break;
2266         case S_IFDIR:
2267                 inode->i_fop = &btrfs_dir_file_operations;
2268                 if (root == root->fs_info->tree_root)
2269                         inode->i_op = &btrfs_dir_ro_inode_operations;
2270                 else
2271                         inode->i_op = &btrfs_dir_inode_operations;
2272                 break;
2273         case S_IFLNK:
2274                 inode->i_op = &btrfs_symlink_inode_operations;
2275                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2276                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2277                 break;
2278         default:
2279                 inode->i_op = &btrfs_special_inode_operations;
2280                 init_special_inode(inode, inode->i_mode, rdev);
2281                 break;
2282         }
2283
2284         btrfs_update_iflags(inode);
2285         return;
2286
2287 make_bad:
2288         btrfs_free_path(path);
2289         make_bad_inode(inode);
2290 }
2291
2292 /*
2293  * given a leaf and an inode, copy the inode fields into the leaf
2294  */
2295 static void fill_inode_item(struct btrfs_trans_handle *trans,
2296                             struct extent_buffer *leaf,
2297                             struct btrfs_inode_item *item,
2298                             struct inode *inode)
2299 {
2300         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2301         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2302         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2303         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2304         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2305
2306         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2307                                inode->i_atime.tv_sec);
2308         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2309                                 inode->i_atime.tv_nsec);
2310
2311         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2312                                inode->i_mtime.tv_sec);
2313         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2314                                 inode->i_mtime.tv_nsec);
2315
2316         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2317                                inode->i_ctime.tv_sec);
2318         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2319                                 inode->i_ctime.tv_nsec);
2320
2321         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2322         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2323         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2324         btrfs_set_inode_transid(leaf, item, trans->transid);
2325         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2326         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2327         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2328 }
2329
2330 /*
2331  * copy everything in the in-memory inode into the btree.
2332  */
2333 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2334                                 struct btrfs_root *root, struct inode *inode)
2335 {
2336         struct btrfs_inode_item *inode_item;
2337         struct btrfs_path *path;
2338         struct extent_buffer *leaf;
2339         int ret;
2340
2341         path = btrfs_alloc_path();
2342         BUG_ON(!path);
2343         path->leave_spinning = 1;
2344         ret = btrfs_lookup_inode(trans, root, path,
2345                                  &BTRFS_I(inode)->location, 1);
2346         if (ret) {
2347                 if (ret > 0)
2348                         ret = -ENOENT;
2349                 goto failed;
2350         }
2351
2352         btrfs_unlock_up_safe(path, 1);
2353         leaf = path->nodes[0];
2354         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2355                                   struct btrfs_inode_item);
2356
2357         fill_inode_item(trans, leaf, inode_item, inode);
2358         btrfs_mark_buffer_dirty(leaf);
2359         btrfs_set_inode_last_trans(trans, inode);
2360         ret = 0;
2361 failed:
2362         btrfs_free_path(path);
2363         return ret;
2364 }
2365
2366
2367 /*
2368  * unlink helper that gets used here in inode.c and in the tree logging
2369  * recovery code.  It remove a link in a directory with a given name, and
2370  * also drops the back refs in the inode to the directory
2371  */
2372 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2373                        struct btrfs_root *root,
2374                        struct inode *dir, struct inode *inode,
2375                        const char *name, int name_len)
2376 {
2377         struct btrfs_path *path;
2378         int ret = 0;
2379         struct extent_buffer *leaf;
2380         struct btrfs_dir_item *di;
2381         struct btrfs_key key;
2382         u64 index;
2383
2384         path = btrfs_alloc_path();
2385         if (!path) {
2386                 ret = -ENOMEM;
2387                 goto err;
2388         }
2389
2390         path->leave_spinning = 1;
2391         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2392                                     name, name_len, -1);
2393         if (IS_ERR(di)) {
2394                 ret = PTR_ERR(di);
2395                 goto err;
2396         }
2397         if (!di) {
2398                 ret = -ENOENT;
2399                 goto err;
2400         }
2401         leaf = path->nodes[0];
2402         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2403         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2404         if (ret)
2405                 goto err;
2406         btrfs_release_path(root, path);
2407
2408         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2409                                   inode->i_ino,
2410                                   dir->i_ino, &index);
2411         if (ret) {
2412                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2413                        "inode %lu parent %lu\n", name_len, name,
2414                        inode->i_ino, dir->i_ino);
2415                 goto err;
2416         }
2417
2418         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2419                                          index, name, name_len, -1);
2420         if (IS_ERR(di)) {
2421                 ret = PTR_ERR(di);
2422                 goto err;
2423         }
2424         if (!di) {
2425                 ret = -ENOENT;
2426                 goto err;
2427         }
2428         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2429         btrfs_release_path(root, path);
2430
2431         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2432                                          inode, dir->i_ino);
2433         BUG_ON(ret != 0 && ret != -ENOENT);
2434
2435         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2436                                            dir, index);
2437         BUG_ON(ret);
2438 err:
2439         btrfs_free_path(path);
2440         if (ret)
2441                 goto out;
2442
2443         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2444         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2445         btrfs_update_inode(trans, root, dir);
2446         btrfs_drop_nlink(inode);
2447         ret = btrfs_update_inode(trans, root, inode);
2448 out:
2449         return ret;
2450 }
2451
2452 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2453 {
2454         struct btrfs_root *root;
2455         struct btrfs_trans_handle *trans;
2456         struct inode *inode = dentry->d_inode;
2457         int ret;
2458         unsigned long nr = 0;
2459
2460         root = BTRFS_I(dir)->root;
2461
2462         trans = btrfs_start_transaction(root, 1);
2463
2464         btrfs_set_trans_block_group(trans, dir);
2465
2466         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2467
2468         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2469                                  dentry->d_name.name, dentry->d_name.len);
2470
2471         if (inode->i_nlink == 0)
2472                 ret = btrfs_orphan_add(trans, inode);
2473
2474         nr = trans->blocks_used;
2475
2476         btrfs_end_transaction_throttle(trans, root);
2477         btrfs_btree_balance_dirty(root, nr);
2478         return ret;
2479 }
2480
2481 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2482                         struct btrfs_root *root,
2483                         struct inode *dir, u64 objectid,
2484                         const char *name, int name_len)
2485 {
2486         struct btrfs_path *path;
2487         struct extent_buffer *leaf;
2488         struct btrfs_dir_item *di;
2489         struct btrfs_key key;
2490         u64 index;
2491         int ret;
2492
2493         path = btrfs_alloc_path();
2494         if (!path)
2495                 return -ENOMEM;
2496
2497         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2498                                    name, name_len, -1);
2499         BUG_ON(!di || IS_ERR(di));
2500
2501         leaf = path->nodes[0];
2502         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2503         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2504         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2505         BUG_ON(ret);
2506         btrfs_release_path(root, path);
2507
2508         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2509                                  objectid, root->root_key.objectid,
2510                                  dir->i_ino, &index, name, name_len);
2511         if (ret < 0) {
2512                 BUG_ON(ret != -ENOENT);
2513                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2514                                                  name, name_len);
2515                 BUG_ON(!di || IS_ERR(di));
2516
2517                 leaf = path->nodes[0];
2518                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2519                 btrfs_release_path(root, path);
2520                 index = key.offset;
2521         }
2522
2523         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2524                                          index, name, name_len, -1);
2525         BUG_ON(!di || IS_ERR(di));
2526
2527         leaf = path->nodes[0];
2528         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2529         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2530         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2531         BUG_ON(ret);
2532         btrfs_release_path(root, path);
2533
2534         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2535         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2536         ret = btrfs_update_inode(trans, root, dir);
2537         BUG_ON(ret);
2538         dir->i_sb->s_dirt = 1;
2539
2540         btrfs_free_path(path);
2541         return 0;
2542 }
2543
2544 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2545 {
2546         struct inode *inode = dentry->d_inode;
2547         int err = 0;
2548         int ret;
2549         struct btrfs_root *root = BTRFS_I(dir)->root;
2550         struct btrfs_trans_handle *trans;
2551         unsigned long nr = 0;
2552
2553         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2554             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2555                 return -ENOTEMPTY;
2556
2557         trans = btrfs_start_transaction(root, 1);
2558         btrfs_set_trans_block_group(trans, dir);
2559
2560         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2561                 err = btrfs_unlink_subvol(trans, root, dir,
2562                                           BTRFS_I(inode)->location.objectid,
2563                                           dentry->d_name.name,
2564                                           dentry->d_name.len);
2565                 goto out;
2566         }
2567
2568         err = btrfs_orphan_add(trans, inode);
2569         if (err)
2570                 goto out;
2571
2572         /* now the directory is empty */
2573         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2574                                  dentry->d_name.name, dentry->d_name.len);
2575         if (!err)
2576                 btrfs_i_size_write(inode, 0);
2577 out:
2578         nr = trans->blocks_used;
2579         ret = btrfs_end_transaction_throttle(trans, root);
2580         btrfs_btree_balance_dirty(root, nr);
2581
2582         if (ret && !err)
2583                 err = ret;
2584         return err;
2585 }
2586
2587 #if 0
2588 /*
2589  * when truncating bytes in a file, it is possible to avoid reading
2590  * the leaves that contain only checksum items.  This can be the
2591  * majority of the IO required to delete a large file, but it must
2592  * be done carefully.
2593  *
2594  * The keys in the level just above the leaves are checked to make sure
2595  * the lowest key in a given leaf is a csum key, and starts at an offset
2596  * after the new  size.
2597  *
2598  * Then the key for the next leaf is checked to make sure it also has
2599  * a checksum item for the same file.  If it does, we know our target leaf
2600  * contains only checksum items, and it can be safely freed without reading
2601  * it.
2602  *
2603  * This is just an optimization targeted at large files.  It may do
2604  * nothing.  It will return 0 unless things went badly.
2605  */
2606 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2607                                      struct btrfs_root *root,
2608                                      struct btrfs_path *path,
2609                                      struct inode *inode, u64 new_size)
2610 {
2611         struct btrfs_key key;
2612         int ret;
2613         int nritems;
2614         struct btrfs_key found_key;
2615         struct btrfs_key other_key;
2616         struct btrfs_leaf_ref *ref;
2617         u64 leaf_gen;
2618         u64 leaf_start;
2619
2620         path->lowest_level = 1;
2621         key.objectid = inode->i_ino;
2622         key.type = BTRFS_CSUM_ITEM_KEY;
2623         key.offset = new_size;
2624 again:
2625         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2626         if (ret < 0)
2627                 goto out;
2628
2629         if (path->nodes[1] == NULL) {
2630                 ret = 0;
2631                 goto out;
2632         }
2633         ret = 0;
2634         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2635         nritems = btrfs_header_nritems(path->nodes[1]);
2636
2637         if (!nritems)
2638                 goto out;
2639
2640         if (path->slots[1] >= nritems)
2641                 goto next_node;
2642
2643         /* did we find a key greater than anything we want to delete? */
2644         if (found_key.objectid > inode->i_ino ||
2645            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2646                 goto out;
2647
2648         /* we check the next key in the node to make sure the leave contains
2649          * only checksum items.  This comparison doesn't work if our
2650          * leaf is the last one in the node
2651          */
2652         if (path->slots[1] + 1 >= nritems) {
2653 next_node:
2654                 /* search forward from the last key in the node, this
2655                  * will bring us into the next node in the tree
2656                  */
2657                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2658
2659                 /* unlikely, but we inc below, so check to be safe */
2660                 if (found_key.offset == (u64)-1)
2661                         goto out;
2662
2663                 /* search_forward needs a path with locks held, do the
2664                  * search again for the original key.  It is possible
2665                  * this will race with a balance and return a path that
2666                  * we could modify, but this drop is just an optimization
2667                  * and is allowed to miss some leaves.
2668                  */
2669                 btrfs_release_path(root, path);
2670                 found_key.offset++;
2671
2672                 /* setup a max key for search_forward */
2673                 other_key.offset = (u64)-1;
2674                 other_key.type = key.type;
2675                 other_key.objectid = key.objectid;
2676
2677                 path->keep_locks = 1;
2678                 ret = btrfs_search_forward(root, &found_key, &other_key,
2679                                            path, 0, 0);
2680                 path->keep_locks = 0;
2681                 if (ret || found_key.objectid != key.objectid ||
2682                     found_key.type != key.type) {
2683                         ret = 0;
2684                         goto out;
2685                 }
2686
2687                 key.offset = found_key.offset;
2688                 btrfs_release_path(root, path);
2689                 cond_resched();
2690                 goto again;
2691         }
2692
2693         /* we know there's one more slot after us in the tree,
2694          * read that key so we can verify it is also a checksum item
2695          */
2696         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2697
2698         if (found_key.objectid < inode->i_ino)
2699                 goto next_key;
2700
2701         if (found_key.type != key.type || found_key.offset < new_size)
2702                 goto next_key;
2703
2704         /*
2705          * if the key for the next leaf isn't a csum key from this objectid,
2706          * we can't be sure there aren't good items inside this leaf.
2707          * Bail out
2708          */
2709         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2710                 goto out;
2711
2712         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2713         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2714         /*
2715          * it is safe to delete this leaf, it contains only
2716          * csum items from this inode at an offset >= new_size
2717          */
2718         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2719         BUG_ON(ret);
2720
2721         if (root->ref_cows && leaf_gen < trans->transid) {
2722                 ref = btrfs_alloc_leaf_ref(root, 0);
2723                 if (ref) {
2724                         ref->root_gen = root->root_key.offset;
2725                         ref->bytenr = leaf_start;
2726                         ref->owner = 0;
2727                         ref->generation = leaf_gen;
2728                         ref->nritems = 0;
2729
2730                         btrfs_sort_leaf_ref(ref);
2731
2732                         ret = btrfs_add_leaf_ref(root, ref, 0);
2733                         WARN_ON(ret);
2734                         btrfs_free_leaf_ref(root, ref);
2735                 } else {
2736                         WARN_ON(1);
2737                 }
2738         }
2739 next_key:
2740         btrfs_release_path(root, path);
2741
2742         if (other_key.objectid == inode->i_ino &&
2743             other_key.type == key.type && other_key.offset > key.offset) {
2744                 key.offset = other_key.offset;
2745                 cond_resched();
2746                 goto again;
2747         }
2748         ret = 0;
2749 out:
2750         /* fixup any changes we've made to the path */
2751         path->lowest_level = 0;
2752         path->keep_locks = 0;
2753         btrfs_release_path(root, path);
2754         return ret;
2755 }
2756
2757 #endif
2758
2759 /*
2760  * this can truncate away extent items, csum items and directory items.
2761  * It starts at a high offset and removes keys until it can't find
2762  * any higher than new_size
2763  *
2764  * csum items that cross the new i_size are truncated to the new size
2765  * as well.
2766  *
2767  * min_type is the minimum key type to truncate down to.  If set to 0, this
2768  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2769  */
2770 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2771                                         struct btrfs_root *root,
2772                                         struct inode *inode,
2773                                         u64 new_size, u32 min_type)
2774 {
2775         int ret;
2776         struct btrfs_path *path;
2777         struct btrfs_key key;
2778         struct btrfs_key found_key;
2779         u32 found_type = (u8)-1;
2780         struct extent_buffer *leaf;
2781         struct btrfs_file_extent_item *fi;
2782         u64 extent_start = 0;
2783         u64 extent_num_bytes = 0;
2784         u64 extent_offset = 0;
2785         u64 item_end = 0;
2786         int found_extent;
2787         int del_item;
2788         int pending_del_nr = 0;
2789         int pending_del_slot = 0;
2790         int extent_type = -1;
2791         int encoding;
2792         u64 mask = root->sectorsize - 1;
2793
2794         if (root->ref_cows)
2795                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2796         path = btrfs_alloc_path();
2797         BUG_ON(!path);
2798         path->reada = -1;
2799
2800         /* FIXME, add redo link to tree so we don't leak on crash */
2801         key.objectid = inode->i_ino;
2802         key.offset = (u64)-1;
2803         key.type = (u8)-1;
2804
2805 search_again:
2806         path->leave_spinning = 1;
2807         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2808         if (ret < 0)
2809                 goto error;
2810
2811         if (ret > 0) {
2812                 /* there are no items in the tree for us to truncate, we're
2813                  * done
2814                  */
2815                 if (path->slots[0] == 0) {
2816                         ret = 0;
2817                         goto error;
2818                 }
2819                 path->slots[0]--;
2820         }
2821
2822         while (1) {
2823                 fi = NULL;
2824                 leaf = path->nodes[0];
2825                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2826                 found_type = btrfs_key_type(&found_key);
2827                 encoding = 0;
2828
2829                 if (found_key.objectid != inode->i_ino)
2830                         break;
2831
2832                 if (found_type < min_type)
2833                         break;
2834
2835                 item_end = found_key.offset;
2836                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2837                         fi = btrfs_item_ptr(leaf, path->slots[0],
2838                                             struct btrfs_file_extent_item);
2839                         extent_type = btrfs_file_extent_type(leaf, fi);
2840                         encoding = btrfs_file_extent_compression(leaf, fi);
2841                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2842                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2843
2844                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2845                                 item_end +=
2846                                     btrfs_file_extent_num_bytes(leaf, fi);
2847                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2848                                 item_end += btrfs_file_extent_inline_len(leaf,
2849                                                                          fi);
2850                         }
2851                         item_end--;
2852                 }
2853                 if (item_end < new_size) {
2854                         if (found_type == BTRFS_DIR_ITEM_KEY)
2855                                 found_type = BTRFS_INODE_ITEM_KEY;
2856                         else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2857                                 found_type = BTRFS_EXTENT_DATA_KEY;
2858                         else if (found_type == BTRFS_EXTENT_DATA_KEY)
2859                                 found_type = BTRFS_XATTR_ITEM_KEY;
2860                         else if (found_type == BTRFS_XATTR_ITEM_KEY)
2861                                 found_type = BTRFS_INODE_REF_KEY;
2862                         else if (found_type)
2863                                 found_type--;
2864                         else
2865                                 break;
2866                         btrfs_set_key_type(&key, found_type);
2867                         goto next;
2868                 }
2869                 if (found_key.offset >= new_size)
2870                         del_item = 1;
2871                 else
2872                         del_item = 0;
2873                 found_extent = 0;
2874
2875                 /* FIXME, shrink the extent if the ref count is only 1 */
2876                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2877                         goto delete;
2878
2879                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2880                         u64 num_dec;
2881                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2882                         if (!del_item && !encoding) {
2883                                 u64 orig_num_bytes =
2884                                         btrfs_file_extent_num_bytes(leaf, fi);
2885                                 extent_num_bytes = new_size -
2886                                         found_key.offset + root->sectorsize - 1;
2887                                 extent_num_bytes = extent_num_bytes &
2888                                         ~((u64)root->sectorsize - 1);
2889                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2890                                                          extent_num_bytes);
2891                                 num_dec = (orig_num_bytes -
2892                                            extent_num_bytes);
2893                                 if (root->ref_cows && extent_start != 0)
2894                                         inode_sub_bytes(inode, num_dec);
2895                                 btrfs_mark_buffer_dirty(leaf);
2896                         } else {
2897                                 extent_num_bytes =
2898                                         btrfs_file_extent_disk_num_bytes(leaf,
2899                                                                          fi);
2900                                 extent_offset = found_key.offset -
2901                                         btrfs_file_extent_offset(leaf, fi);
2902
2903                                 /* FIXME blocksize != 4096 */
2904                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2905                                 if (extent_start != 0) {
2906                                         found_extent = 1;
2907                                         if (root->ref_cows)
2908                                                 inode_sub_bytes(inode, num_dec);
2909                                 }
2910                         }
2911                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2912                         /*
2913                          * we can't truncate inline items that have had
2914                          * special encodings
2915                          */
2916                         if (!del_item &&
2917                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2918                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2919                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2920                                 u32 size = new_size - found_key.offset;
2921
2922                                 if (root->ref_cows) {
2923                                         inode_sub_bytes(inode, item_end + 1 -
2924                                                         new_size);
2925                                 }
2926                                 size =
2927                                     btrfs_file_extent_calc_inline_size(size);
2928                                 ret = btrfs_truncate_item(trans, root, path,
2929                                                           size, 1);
2930                                 BUG_ON(ret);
2931                         } else if (root->ref_cows) {
2932                                 inode_sub_bytes(inode, item_end + 1 -
2933                                                 found_key.offset);
2934                         }
2935                 }
2936 delete:
2937                 if (del_item) {
2938                         if (!pending_del_nr) {
2939                                 /* no pending yet, add ourselves */
2940                                 pending_del_slot = path->slots[0];
2941                                 pending_del_nr = 1;
2942                         } else if (pending_del_nr &&
2943                                    path->slots[0] + 1 == pending_del_slot) {
2944                                 /* hop on the pending chunk */
2945                                 pending_del_nr++;
2946                                 pending_del_slot = path->slots[0];
2947                         } else {
2948                                 BUG();
2949                         }
2950                 } else {
2951                         break;
2952                 }
2953                 if (found_extent && root->ref_cows) {
2954                         btrfs_set_path_blocking(path);
2955                         ret = btrfs_free_extent(trans, root, extent_start,
2956                                                 extent_num_bytes, 0,
2957                                                 btrfs_header_owner(leaf),
2958                                                 inode->i_ino, extent_offset);
2959                         BUG_ON(ret);
2960                 }
2961 next:
2962                 if (path->slots[0] == 0) {
2963                         if (pending_del_nr)
2964                                 goto del_pending;
2965                         btrfs_release_path(root, path);
2966                         if (found_type == BTRFS_INODE_ITEM_KEY)
2967                                 break;
2968                         goto search_again;
2969                 }
2970
2971                 path->slots[0]--;
2972                 if (pending_del_nr &&
2973                     path->slots[0] + 1 != pending_del_slot) {
2974                         struct btrfs_key debug;
2975 del_pending:
2976                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2977                                               pending_del_slot);
2978                         ret = btrfs_del_items(trans, root, path,
2979                                               pending_del_slot,
2980                                               pending_del_nr);
2981                         BUG_ON(ret);
2982                         pending_del_nr = 0;
2983                         btrfs_release_path(root, path);
2984                         if (found_type == BTRFS_INODE_ITEM_KEY)
2985                                 break;
2986                         goto search_again;
2987                 }
2988         }
2989         ret = 0;
2990 error:
2991         if (pending_del_nr) {
2992                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2993                                       pending_del_nr);
2994         }
2995         btrfs_free_path(path);
2996         return ret;
2997 }
2998
2999 /*
3000  * taken from block_truncate_page, but does cow as it zeros out
3001  * any bytes left in the last page in the file.
3002  */
3003 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3004 {
3005         struct inode *inode = mapping->host;
3006         struct btrfs_root *root = BTRFS_I(inode)->root;
3007         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3008         struct btrfs_ordered_extent *ordered;
3009         char *kaddr;
3010         u32 blocksize = root->sectorsize;
3011         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3012         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3013         struct page *page;
3014         int ret = 0;
3015         u64 page_start;
3016         u64 page_end;
3017
3018         if ((offset & (blocksize - 1)) == 0)
3019                 goto out;
3020
3021         ret = -ENOMEM;
3022 again:
3023         page = grab_cache_page(mapping, index);
3024         if (!page)
3025                 goto out;
3026
3027         page_start = page_offset(page);
3028         page_end = page_start + PAGE_CACHE_SIZE - 1;
3029
3030         if (!PageUptodate(page)) {
3031                 ret = btrfs_readpage(NULL, page);
3032                 lock_page(page);
3033                 if (page->mapping != mapping) {
3034                         unlock_page(page);
3035                         page_cache_release(page);
3036                         goto again;
3037                 }
3038                 if (!PageUptodate(page)) {
3039                         ret = -EIO;
3040                         goto out_unlock;
3041                 }
3042         }
3043         wait_on_page_writeback(page);
3044
3045         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3046         set_page_extent_mapped(page);
3047
3048         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3049         if (ordered) {
3050                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3051                 unlock_page(page);
3052                 page_cache_release(page);
3053                 btrfs_start_ordered_extent(inode, ordered, 1);
3054                 btrfs_put_ordered_extent(ordered);
3055                 goto again;
3056         }
3057
3058         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3059         if (ret) {
3060                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3061                 goto out_unlock;
3062         }
3063
3064         ret = 0;
3065         if (offset != PAGE_CACHE_SIZE) {
3066                 kaddr = kmap(page);
3067                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3068                 flush_dcache_page(page);
3069                 kunmap(page);
3070         }
3071         ClearPageChecked(page);
3072         set_page_dirty(page);
3073         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3074
3075 out_unlock:
3076         unlock_page(page);
3077         page_cache_release(page);
3078 out:
3079         return ret;
3080 }
3081
3082 int btrfs_cont_expand(struct inode *inode, loff_t size)
3083 {
3084         struct btrfs_trans_handle *trans;
3085         struct btrfs_root *root = BTRFS_I(inode)->root;
3086         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3087         struct extent_map *em;
3088         u64 mask = root->sectorsize - 1;
3089         u64 hole_start = (inode->i_size + mask) & ~mask;
3090         u64 block_end = (size + mask) & ~mask;
3091         u64 last_byte;
3092         u64 cur_offset;
3093         u64 hole_size;
3094         int err = 0;
3095
3096         if (size <= hole_start)
3097                 return 0;
3098
3099         btrfs_truncate_page(inode->i_mapping, inode->i_size);
3100
3101         while (1) {
3102                 struct btrfs_ordered_extent *ordered;
3103                 btrfs_wait_ordered_range(inode, hole_start,
3104                                          block_end - hole_start);
3105                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3106                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3107                 if (!ordered)
3108                         break;
3109                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3110                 btrfs_put_ordered_extent(ordered);
3111         }
3112
3113         trans = btrfs_start_transaction(root, 1);
3114         btrfs_set_trans_block_group(trans, inode);
3115
3116         cur_offset = hole_start;
3117         while (1) {
3118                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3119                                 block_end - cur_offset, 0);
3120                 BUG_ON(IS_ERR(em) || !em);
3121                 last_byte = min(extent_map_end(em), block_end);
3122                 last_byte = (last_byte + mask) & ~mask;
3123                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
3124                         u64 hint_byte = 0;
3125                         hole_size = last_byte - cur_offset;
3126                         err = btrfs_drop_extents(trans, root, inode,
3127                                                  cur_offset,
3128                                                  cur_offset + hole_size,
3129                                                  block_end,
3130                                                  cur_offset, &hint_byte, 1);
3131                         if (err)
3132                                 break;
3133
3134                         err = btrfs_reserve_metadata_space(root, 1);
3135                         if (err)
3136                                 break;
3137
3138                         err = btrfs_insert_file_extent(trans, root,
3139                                         inode->i_ino, cur_offset, 0,
3140                                         0, hole_size, 0, hole_size,
3141                                         0, 0, 0);
3142                         btrfs_drop_extent_cache(inode, hole_start,
3143                                         last_byte - 1, 0);
3144                         btrfs_unreserve_metadata_space(root, 1);
3145                 }
3146                 free_extent_map(em);
3147                 cur_offset = last_byte;
3148                 if (err || cur_offset >= block_end)
3149                         break;
3150         }
3151
3152         btrfs_end_transaction(trans, root);
3153         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3154         return err;
3155 }
3156
3157 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3158 {
3159         struct inode *inode = dentry->d_inode;
3160         int err;
3161
3162         err = inode_change_ok(inode, attr);
3163         if (err)
3164                 return err;
3165
3166         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3167                 if (attr->ia_size > inode->i_size) {
3168                         err = btrfs_cont_expand(inode, attr->ia_size);
3169                         if (err)
3170                                 return err;
3171                 } else if (inode->i_size > 0 &&
3172                            attr->ia_size == 0) {
3173
3174                         /* we're truncating a file that used to have good
3175                          * data down to zero.  Make sure it gets into
3176                          * the ordered flush list so that any new writes
3177                          * get down to disk quickly.
3178                          */
3179                         BTRFS_I(inode)->ordered_data_close = 1;
3180                 }
3181         }
3182
3183         err = inode_setattr(inode, attr);
3184
3185         if (!err && ((attr->ia_valid & ATTR_MODE)))
3186                 err = btrfs_acl_chmod(inode);
3187         return err;
3188 }
3189
3190 void btrfs_delete_inode(struct inode *inode)
3191 {
3192         struct btrfs_trans_handle *trans;
3193         struct btrfs_root *root = BTRFS_I(inode)->root;
3194         unsigned long nr;
3195         int ret;
3196
3197         truncate_inode_pages(&inode->i_data, 0);
3198         if (is_bad_inode(inode)) {
3199                 btrfs_orphan_del(NULL, inode);
3200                 goto no_delete;
3201         }
3202         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3203
3204         if (inode->i_nlink > 0) {
3205                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3206                 goto no_delete;
3207         }
3208
3209         btrfs_i_size_write(inode, 0);
3210         trans = btrfs_join_transaction(root, 1);
3211
3212         btrfs_set_trans_block_group(trans, inode);
3213         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3214         if (ret) {
3215                 btrfs_orphan_del(NULL, inode);
3216                 goto no_delete_lock;
3217         }
3218
3219         btrfs_orphan_del(trans, inode);
3220
3221         nr = trans->blocks_used;
3222         clear_inode(inode);
3223
3224         btrfs_end_transaction(trans, root);
3225         btrfs_btree_balance_dirty(root, nr);
3226         return;
3227
3228 no_delete_lock:
3229         nr = trans->blocks_used;
3230         btrfs_end_transaction(trans, root);
3231         btrfs_btree_balance_dirty(root, nr);
3232 no_delete:
3233         clear_inode(inode);
3234 }
3235
3236 /*
3237  * this returns the key found in the dir entry in the location pointer.
3238  * If no dir entries were found, location->objectid is 0.
3239  */
3240 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3241                                struct btrfs_key *location)
3242 {
3243         const char *name = dentry->d_name.name;
3244         int namelen = dentry->d_name.len;
3245         struct btrfs_dir_item *di;
3246         struct btrfs_path *path;
3247         struct btrfs_root *root = BTRFS_I(dir)->root;
3248         int ret = 0;
3249
3250         path = btrfs_alloc_path();
3251         BUG_ON(!path);
3252
3253         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3254                                     namelen, 0);
3255         if (IS_ERR(di))
3256                 ret = PTR_ERR(di);
3257
3258         if (!di || IS_ERR(di))
3259                 goto out_err;
3260
3261         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3262 out:
3263         btrfs_free_path(path);
3264         return ret;
3265 out_err:
3266         location->objectid = 0;
3267         goto out;
3268 }
3269
3270 /*
3271  * when we hit a tree root in a directory, the btrfs part of the inode
3272  * needs to be changed to reflect the root directory of the tree root.  This
3273  * is kind of like crossing a mount point.
3274  */
3275 static int fixup_tree_root_location(struct btrfs_root *root,
3276                                     struct inode *dir,
3277                                     struct dentry *dentry,
3278                                     struct btrfs_key *location,
3279                                     struct btrfs_root **sub_root)
3280 {
3281         struct btrfs_path *path;
3282         struct btrfs_root *new_root;
3283         struct btrfs_root_ref *ref;
3284         struct extent_buffer *leaf;
3285         int ret;
3286         int err = 0;
3287
3288         path = btrfs_alloc_path();
3289         if (!path) {
3290                 err = -ENOMEM;
3291                 goto out;
3292         }
3293
3294         err = -ENOENT;
3295         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3296                                   BTRFS_I(dir)->root->root_key.objectid,
3297                                   location->objectid);
3298         if (ret) {
3299                 if (ret < 0)
3300                         err = ret;
3301                 goto out;
3302         }
3303
3304         leaf = path->nodes[0];
3305         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3306         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3307             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3308                 goto out;
3309
3310         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3311                                    (unsigned long)(ref + 1),
3312                                    dentry->d_name.len);
3313         if (ret)
3314                 goto out;
3315
3316         btrfs_release_path(root->fs_info->tree_root, path);
3317
3318         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3319         if (IS_ERR(new_root)) {
3320                 err = PTR_ERR(new_root);
3321                 goto out;
3322         }
3323
3324         if (btrfs_root_refs(&new_root->root_item) == 0) {
3325                 err = -ENOENT;
3326                 goto out;
3327         }
3328
3329         *sub_root = new_root;
3330         location->objectid = btrfs_root_dirid(&new_root->root_item);
3331         location->type = BTRFS_INODE_ITEM_KEY;
3332         location->offset = 0;
3333         err = 0;
3334 out:
3335         btrfs_free_path(path);
3336         return err;
3337 }
3338
3339 static void inode_tree_add(struct inode *inode)
3340 {
3341         struct btrfs_root *root = BTRFS_I(inode)->root;
3342         struct btrfs_inode *entry;
3343         struct rb_node **p;
3344         struct rb_node *parent;
3345 again:
3346         p = &root->inode_tree.rb_node;
3347         parent = NULL;
3348
3349         if (hlist_unhashed(&inode->i_hash))
3350                 return;
3351
3352         spin_lock(&root->inode_lock);
3353         while (*p) {
3354                 parent = *p;
3355                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3356
3357                 if (inode->i_ino < entry->vfs_inode.i_ino)
3358                         p = &parent->rb_left;
3359                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3360                         p = &parent->rb_right;
3361                 else {
3362                         WARN_ON(!(entry->vfs_inode.i_state &
3363                                   (I_WILL_FREE | I_FREEING | I_CLEAR)));
3364                         rb_erase(parent, &root->inode_tree);
3365                         RB_CLEAR_NODE(parent);
3366                         spin_unlock(&root->inode_lock);
3367                         goto again;
3368                 }
3369         }
3370         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3371         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3372         spin_unlock(&root->inode_lock);
3373 }
3374
3375 static void inode_tree_del(struct inode *inode)
3376 {
3377         struct btrfs_root *root = BTRFS_I(inode)->root;
3378         int empty = 0;
3379
3380         spin_lock(&root->inode_lock);
3381         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3382                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3383                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3384                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3385         }
3386         spin_unlock(&root->inode_lock);
3387
3388         if (empty && btrfs_root_refs(&root->root_item) == 0) {
3389                 synchronize_srcu(&root->fs_info->subvol_srcu);
3390                 spin_lock(&root->inode_lock);
3391                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3392                 spin_unlock(&root->inode_lock);
3393                 if (empty)
3394                         btrfs_add_dead_root(root);
3395         }
3396 }
3397
3398 int btrfs_invalidate_inodes(struct btrfs_root *root)
3399 {
3400         struct rb_node *node;
3401         struct rb_node *prev;
3402         struct btrfs_inode *entry;
3403         struct inode *inode;
3404         u64 objectid = 0;
3405
3406         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3407
3408         spin_lock(&root->inode_lock);
3409 again:
3410         node = root->inode_tree.rb_node;
3411         prev = NULL;
3412         while (node) {
3413                 prev = node;
3414                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3415
3416                 if (objectid < entry->vfs_inode.i_ino)
3417                         node = node->rb_left;
3418                 else if (objectid > entry->vfs_inode.i_ino)
3419                         node = node->rb_right;
3420                 else
3421                         break;
3422         }
3423         if (!node) {
3424                 while (prev) {
3425                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3426                         if (objectid <= entry->vfs_inode.i_ino) {
3427                                 node = prev;
3428                                 break;
3429                         }
3430                         prev = rb_next(prev);
3431                 }
3432         }
3433         while (node) {
3434                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3435                 objectid = entry->vfs_inode.i_ino + 1;
3436                 inode = igrab(&entry->vfs_inode);
3437                 if (inode) {
3438                         spin_unlock(&root->inode_lock);
3439                         if (atomic_read(&inode->i_count) > 1)
3440                                 d_prune_aliases(inode);
3441                         /*
3442                          * btrfs_drop_inode will remove it from
3443                          * the inode cache when its usage count
3444                          * hits zero.
3445                          */
3446                         iput(inode);
3447                         cond_resched();
3448                         spin_lock(&root->inode_lock);
3449                         goto again;
3450                 }
3451
3452                 if (cond_resched_lock(&root->inode_lock))
3453                         goto again;
3454
3455                 node = rb_next(node);
3456         }
3457         spin_unlock(&root->inode_lock);
3458         return 0;
3459 }
3460
3461 static noinline void init_btrfs_i(struct inode *inode)
3462 {
3463         struct btrfs_inode *bi = BTRFS_I(inode);
3464
3465         bi->generation = 0;
3466         bi->sequence = 0;
3467         bi->last_trans = 0;
3468         bi->logged_trans = 0;
3469         bi->delalloc_bytes = 0;
3470         bi->reserved_bytes = 0;
3471         bi->disk_i_size = 0;
3472         bi->flags = 0;
3473         bi->index_cnt = (u64)-1;
3474         bi->last_unlink_trans = 0;
3475         bi->ordered_data_close = 0;
3476         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3477         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3478                              inode->i_mapping, GFP_NOFS);
3479         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3480                              inode->i_mapping, GFP_NOFS);
3481         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3482         INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3483         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3484         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3485         mutex_init(&BTRFS_I(inode)->extent_mutex);
3486         mutex_init(&BTRFS_I(inode)->log_mutex);
3487 }
3488
3489 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3490 {
3491         struct btrfs_iget_args *args = p;
3492         inode->i_ino = args->ino;
3493         init_btrfs_i(inode);
3494         BTRFS_I(inode)->root = args->root;
3495         btrfs_set_inode_space_info(args->root, inode);
3496         return 0;
3497 }
3498
3499 static int btrfs_find_actor(struct inode *inode, void *opaque)
3500 {
3501         struct btrfs_iget_args *args = opaque;
3502         return args->ino == inode->i_ino &&
3503                 args->root == BTRFS_I(inode)->root;
3504 }
3505
3506 static struct inode *btrfs_iget_locked(struct super_block *s,
3507                                        u64 objectid,
3508                                        struct btrfs_root *root)
3509 {
3510         struct inode *inode;
3511         struct btrfs_iget_args args;
3512         args.ino = objectid;
3513         args.root = root;
3514
3515         inode = iget5_locked(s, objectid, btrfs_find_actor,
3516                              btrfs_init_locked_inode,
3517                              (void *)&args);
3518         return inode;
3519 }
3520
3521 /* Get an inode object given its location and corresponding root.
3522  * Returns in *is_new if the inode was read from disk
3523  */
3524 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3525                          struct btrfs_root *root)
3526 {
3527         struct inode *inode;
3528
3529         inode = btrfs_iget_locked(s, location->objectid, root);
3530         if (!inode)
3531                 return ERR_PTR(-ENOMEM);
3532
3533         if (inode->i_state & I_NEW) {
3534                 BTRFS_I(inode)->root = root;
3535                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3536                 btrfs_read_locked_inode(inode);
3537
3538                 inode_tree_add(inode);
3539                 unlock_new_inode(inode);
3540         }
3541
3542         return inode;
3543 }
3544
3545 static struct inode *new_simple_dir(struct super_block *s,
3546                                     struct btrfs_key *key,
3547                                     struct btrfs_root *root)
3548 {
3549         struct inode *inode = new_inode(s);
3550
3551         if (!inode)
3552                 return ERR_PTR(-ENOMEM);
3553
3554         init_btrfs_i(inode);
3555
3556         BTRFS_I(inode)->root = root;
3557         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3558         BTRFS_I(inode)->dummy_inode = 1;
3559
3560         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3561         inode->i_op = &simple_dir_inode_operations;
3562         inode->i_fop = &simple_dir_operations;
3563         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3564         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3565
3566         return inode;
3567 }
3568
3569 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3570 {
3571         struct inode *inode;
3572         struct btrfs_root *root = BTRFS_I(dir)->root;
3573         struct btrfs_root *sub_root = root;
3574         struct btrfs_key location;
3575         int index;
3576         int ret;
3577
3578         dentry->d_op = &btrfs_dentry_operations;
3579
3580         if (dentry->d_name.len > BTRFS_NAME_LEN)
3581                 return ERR_PTR(-ENAMETOOLONG);
3582
3583         ret = btrfs_inode_by_name(dir, dentry, &location);
3584
3585         if (ret < 0)
3586                 return ERR_PTR(ret);
3587
3588         if (location.objectid == 0)
3589                 return NULL;
3590
3591         if (location.type == BTRFS_INODE_ITEM_KEY) {
3592                 inode = btrfs_iget(dir->i_sb, &location, root);
3593                 return inode;
3594         }
3595
3596         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3597
3598         index = srcu_read_lock(&root->fs_info->subvol_srcu);
3599         ret = fixup_tree_root_location(root, dir, dentry,
3600                                        &location, &sub_root);
3601         if (ret < 0) {
3602                 if (ret != -ENOENT)
3603                         inode = ERR_PTR(ret);
3604                 else
3605                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
3606         } else {
3607                 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3608         }
3609         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3610
3611         return inode;
3612 }
3613
3614 static int btrfs_dentry_delete(struct dentry *dentry)
3615 {
3616         struct btrfs_root *root;
3617
3618         if (!dentry->d_inode)
3619                 return 0;
3620
3621         root = BTRFS_I(dentry->d_inode)->root;
3622         if (btrfs_root_refs(&root->root_item) == 0)
3623                 return 1;
3624         return 0;
3625 }
3626
3627 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3628                                    struct nameidata *nd)
3629 {
3630         struct inode *inode;
3631
3632         inode = btrfs_lookup_dentry(dir, dentry);
3633         if (IS_ERR(inode))
3634                 return ERR_CAST(inode);
3635
3636         return d_splice_alias(inode, dentry);
3637 }
3638
3639 static unsigned char btrfs_filetype_table[] = {
3640         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3641 };
3642
3643 static int btrfs_real_readdir(struct file *filp, void *dirent,
3644                               filldir_t filldir)
3645 {
3646         struct inode *inode = filp->f_dentry->d_inode;
3647         struct btrfs_root *root = BTRFS_I(inode)->root;
3648         struct btrfs_item *item;
3649         struct btrfs_dir_item *di;
3650         struct btrfs_key key;
3651         struct btrfs_key found_key;
3652         struct btrfs_path *path;
3653         int ret;
3654         u32 nritems;
3655         struct extent_buffer *leaf;
3656         int slot;
3657         int advance;
3658         unsigned char d_type;
3659         int over = 0;
3660         u32 di_cur;
3661         u32 di_total;
3662         u32 di_len;
3663         int key_type = BTRFS_DIR_INDEX_KEY;
3664         char tmp_name[32];
3665         char *name_ptr;
3666         int name_len;
3667
3668         /* FIXME, use a real flag for deciding about the key type */
3669         if (root->fs_info->tree_root == root)
3670                 key_type = BTRFS_DIR_ITEM_KEY;
3671
3672         /* special case for "." */
3673         if (filp->f_pos == 0) {
3674                 over = filldir(dirent, ".", 1,
3675                                1, inode->i_ino,
3676                                DT_DIR);
3677                 if (over)
3678                         return 0;
3679                 filp->f_pos = 1;
3680         }
3681         /* special case for .., just use the back ref */
3682         if (filp->f_pos == 1) {
3683                 u64 pino = parent_ino(filp->f_path.dentry);
3684                 over = filldir(dirent, "..", 2,
3685                                2, pino, DT_DIR);
3686                 if (over)
3687                         return 0;
3688                 filp->f_pos = 2;
3689         }
3690         path = btrfs_alloc_path();
3691         path->reada = 2;
3692
3693         btrfs_set_key_type(&key, key_type);
3694         key.offset = filp->f_pos;
3695         key.objectid = inode->i_ino;
3696
3697         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3698         if (ret < 0)
3699                 goto err;
3700         advance = 0;
3701
3702         while (1) {
3703                 leaf = path->nodes[0];
3704                 nritems = btrfs_header_nritems(leaf);
3705                 slot = path->slots[0];
3706                 if (advance || slot >= nritems) {
3707                         if (slot >= nritems - 1) {
3708                                 ret = btrfs_next_leaf(root, path);
3709                                 if (ret)
3710                                         break;
3711                                 leaf = path->nodes[0];
3712                                 nritems = btrfs_header_nritems(leaf);
3713                                 slot = path->slots[0];
3714                         } else {
3715                                 slot++;
3716                                 path->slots[0]++;
3717                         }
3718                 }
3719
3720                 advance = 1;
3721                 item = btrfs_item_nr(leaf, slot);
3722                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3723
3724                 if (found_key.objectid != key.objectid)
3725                         break;
3726                 if (btrfs_key_type(&found_key) != key_type)
3727                         break;
3728                 if (found_key.offset < filp->f_pos)
3729                         continue;
3730
3731                 filp->f_pos = found_key.offset;
3732
3733                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3734                 di_cur = 0;
3735                 di_total = btrfs_item_size(leaf, item);
3736
3737                 while (di_cur < di_total) {
3738                         struct btrfs_key location;
3739
3740                         name_len = btrfs_dir_name_len(leaf, di);
3741                         if (name_len <= sizeof(tmp_name)) {
3742                                 name_ptr = tmp_name;
3743                         } else {
3744                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3745                                 if (!name_ptr) {
3746                                         ret = -ENOMEM;
3747                                         goto err;
3748                                 }
3749                         }
3750                         read_extent_buffer(leaf, name_ptr,
3751                                            (unsigned long)(di + 1), name_len);
3752
3753                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3754                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3755
3756                         /* is this a reference to our own snapshot? If so
3757                          * skip it
3758                          */
3759                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3760                             location.objectid == root->root_key.objectid) {
3761                                 over = 0;
3762                                 goto skip;
3763                         }
3764                         over = filldir(dirent, name_ptr, name_len,
3765                                        found_key.offset, location.objectid,
3766                                        d_type);
3767
3768 skip:
3769                         if (name_ptr != tmp_name)
3770                                 kfree(name_ptr);
3771
3772                         if (over)
3773                                 goto nopos;
3774                         di_len = btrfs_dir_name_len(leaf, di) +
3775                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3776                         di_cur += di_len;
3777                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3778                 }
3779         }
3780
3781         /* Reached end of directory/root. Bump pos past the last item. */
3782         if (key_type == BTRFS_DIR_INDEX_KEY)
3783                 filp->f_pos = INT_LIMIT(off_t);
3784         else
3785                 filp->f_pos++;
3786 nopos:
3787         ret = 0;
3788 err:
3789         btrfs_free_path(path);
3790         return ret;
3791 }
3792
3793 int btrfs_write_inode(struct inode *inode, int wait)
3794 {
3795         struct btrfs_root *root = BTRFS_I(inode)->root;
3796         struct btrfs_trans_handle *trans;
3797         int ret = 0;
3798
3799         if (root->fs_info->btree_inode == inode)
3800                 return 0;
3801
3802         if (wait) {
3803                 trans = btrfs_join_transaction(root, 1);
3804                 btrfs_set_trans_block_group(trans, inode);
3805                 ret = btrfs_commit_transaction(trans, root);
3806         }
3807         return ret;
3808 }
3809
3810 /*
3811  * This is somewhat expensive, updating the tree every time the
3812  * inode changes.  But, it is most likely to find the inode in cache.
3813  * FIXME, needs more benchmarking...there are no reasons other than performance
3814  * to keep or drop this code.
3815  */
3816 void btrfs_dirty_inode(struct inode *inode)
3817 {
3818         struct btrfs_root *root = BTRFS_I(inode)->root;
3819         struct btrfs_trans_handle *trans;
3820
3821         trans = btrfs_join_transaction(root, 1);
3822         btrfs_set_trans_block_group(trans, inode);
3823         btrfs_update_inode(trans, root, inode);
3824         btrfs_end_transaction(trans, root);
3825 }
3826
3827 /*
3828  * find the highest existing sequence number in a directory
3829  * and then set the in-memory index_cnt variable to reflect
3830  * free sequence numbers
3831  */
3832 static int btrfs_set_inode_index_count(struct inode *inode)
3833 {
3834         struct btrfs_root *root = BTRFS_I(inode)->root;
3835         struct btrfs_key key, found_key;
3836         struct btrfs_path *path;
3837         struct extent_buffer *leaf;
3838         int ret;
3839
3840         key.objectid = inode->i_ino;
3841         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3842         key.offset = (u64)-1;
3843
3844         path = btrfs_alloc_path();
3845         if (!path)
3846                 return -ENOMEM;
3847
3848         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3849         if (ret < 0)
3850                 goto out;
3851         /* FIXME: we should be able to handle this */
3852         if (ret == 0)
3853                 goto out;
3854         ret = 0;
3855
3856         /*
3857          * MAGIC NUMBER EXPLANATION:
3858          * since we search a directory based on f_pos we have to start at 2
3859          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3860          * else has to start at 2
3861          */
3862         if (path->slots[0] == 0) {
3863                 BTRFS_I(inode)->index_cnt = 2;
3864                 goto out;
3865         }
3866
3867         path->slots[0]--;
3868
3869         leaf = path->nodes[0];
3870         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3871
3872         if (found_key.objectid != inode->i_ino ||
3873             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3874                 BTRFS_I(inode)->index_cnt = 2;
3875                 goto out;
3876         }
3877
3878         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3879 out:
3880         btrfs_free_path(path);
3881         return ret;
3882 }
3883
3884 /*
3885  * helper to find a free sequence number in a given directory.  This current
3886  * code is very simple, later versions will do smarter things in the btree
3887  */
3888 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3889 {
3890         int ret = 0;
3891
3892         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3893                 ret = btrfs_set_inode_index_count(dir);
3894                 if (ret)
3895                         return ret;
3896         }
3897
3898         *index = BTRFS_I(dir)->index_cnt;
3899         BTRFS_I(dir)->index_cnt++;
3900
3901         return ret;
3902 }
3903
3904 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3905                                      struct btrfs_root *root,
3906                                      struct inode *dir,
3907                                      const char *name, int name_len,
3908                                      u64 ref_objectid, u64 objectid,
3909                                      u64 alloc_hint, int mode, u64 *index)
3910 {
3911         struct inode *inode;
3912         struct btrfs_inode_item *inode_item;
3913         struct btrfs_key *location;
3914         struct btrfs_path *path;
3915         struct btrfs_inode_ref *ref;
3916         struct btrfs_key key[2];
3917         u32 sizes[2];
3918         unsigned long ptr;
3919         int ret;
3920         int owner;
3921
3922         path = btrfs_alloc_path();
3923         BUG_ON(!path);
3924
3925         inode = new_inode(root->fs_info->sb);
3926         if (!inode)
3927                 return ERR_PTR(-ENOMEM);
3928
3929         if (dir) {
3930                 ret = btrfs_set_inode_index(dir, index);
3931                 if (ret) {
3932                         iput(inode);
3933                         return ERR_PTR(ret);
3934                 }
3935         }
3936         /*
3937          * index_cnt is ignored for everything but a dir,
3938          * btrfs_get_inode_index_count has an explanation for the magic
3939          * number
3940          */
3941         init_btrfs_i(inode);
3942         BTRFS_I(inode)->index_cnt = 2;
3943         BTRFS_I(inode)->root = root;
3944         BTRFS_I(inode)->generation = trans->transid;
3945         btrfs_set_inode_space_info(root, inode);
3946
3947         if (mode & S_IFDIR)
3948                 owner = 0;
3949         else
3950                 owner = 1;
3951         BTRFS_I(inode)->block_group =
3952                         btrfs_find_block_group(root, 0, alloc_hint, owner);
3953
3954         key[0].objectid = objectid;
3955         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3956         key[0].offset = 0;
3957
3958         key[1].objectid = objectid;
3959         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3960         key[1].offset = ref_objectid;
3961
3962         sizes[0] = sizeof(struct btrfs_inode_item);
3963         sizes[1] = name_len + sizeof(*ref);
3964
3965         path->leave_spinning = 1;
3966         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3967         if (ret != 0)
3968                 goto fail;
3969
3970         inode->i_uid = current_fsuid();
3971
3972         if (dir && (dir->i_mode & S_ISGID)) {
3973                 inode->i_gid = dir->i_gid;
3974                 if (S_ISDIR(mode))
3975                         mode |= S_ISGID;
3976         } else
3977                 inode->i_gid = current_fsgid();
3978
3979         inode->i_mode = mode;
3980         inode->i_ino = objectid;
3981         inode_set_bytes(inode, 0);
3982         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3983         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3984                                   struct btrfs_inode_item);
3985         fill_inode_item(trans, path->nodes[0], inode_item, inode);
3986
3987         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3988                              struct btrfs_inode_ref);
3989         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3990         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3991         ptr = (unsigned long)(ref + 1);
3992         write_extent_buffer(path->nodes[0], name, ptr, name_len);
3993
3994         btrfs_mark_buffer_dirty(path->nodes[0]);
3995         btrfs_free_path(path);
3996
3997         location = &BTRFS_I(inode)->location;
3998         location->objectid = objectid;
3999         location->offset = 0;
4000         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4001
4002         btrfs_inherit_iflags(inode, dir);
4003
4004         if ((mode & S_IFREG)) {
4005                 if (btrfs_test_opt(root, NODATASUM))
4006                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4007                 if (btrfs_test_opt(root, NODATACOW))
4008                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4009         }
4010
4011         insert_inode_hash(inode);
4012         inode_tree_add(inode);
4013         return inode;
4014 fail:
4015         if (dir)
4016                 BTRFS_I(dir)->index_cnt--;
4017         btrfs_free_path(path);
4018         iput(inode);
4019         return ERR_PTR(ret);
4020 }
4021
4022 static inline u8 btrfs_inode_type(struct inode *inode)
4023 {
4024         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4025 }
4026
4027 /*
4028  * utility function to add 'inode' into 'parent_inode' with
4029  * a give name and a given sequence number.
4030  * if 'add_backref' is true, also insert a backref from the
4031  * inode to the parent directory.
4032  */
4033 int btrfs_add_link(struct btrfs_trans_handle *trans,
4034                    struct inode *parent_inode, struct inode *inode,
4035                    const char *name, int name_len, int add_backref, u64 index)
4036 {
4037         int ret = 0;
4038         struct btrfs_key key;
4039         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4040
4041         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4042                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4043         } else {
4044                 key.objectid = inode->i_ino;
4045                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4046                 key.offset = 0;
4047         }
4048
4049         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4050                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4051                                          key.objectid, root->root_key.objectid,
4052                                          parent_inode->i_ino,
4053                                          index, name, name_len);
4054         } else if (add_backref) {
4055                 ret = btrfs_insert_inode_ref(trans, root,
4056                                              name, name_len, inode->i_ino,
4057                                              parent_inode->i_ino, index);
4058         }
4059
4060         if (ret == 0) {
4061                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4062                                             parent_inode->i_ino, &key,
4063                                             btrfs_inode_type(inode), index);
4064                 BUG_ON(ret);
4065
4066                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4067                                    name_len * 2);
4068                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4069                 ret = btrfs_update_inode(trans, root, parent_inode);
4070         }
4071         return ret;
4072 }
4073
4074 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4075                             struct dentry *dentry, struct inode *inode,
4076                             int backref, u64 index)
4077 {
4078         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4079                                  inode, dentry->d_name.name,
4080                                  dentry->d_name.len, backref, index);
4081         if (!err) {
4082                 d_instantiate(dentry, inode);
4083                 return 0;
4084         }
4085         if (err > 0)
4086                 err = -EEXIST;
4087         return err;
4088 }
4089
4090 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4091                         int mode, dev_t rdev)
4092 {
4093         struct btrfs_trans_handle *trans;
4094         struct btrfs_root *root = BTRFS_I(dir)->root;
4095         struct inode *inode = NULL;
4096         int err;
4097         int drop_inode = 0;
4098         u64 objectid;
4099         unsigned long nr = 0;
4100         u64 index = 0;
4101
4102         if (!new_valid_dev(rdev))
4103                 return -EINVAL;
4104
4105         /*
4106          * 2 for inode item and ref
4107          * 2 for dir items
4108          * 1 for xattr if selinux is on
4109          */
4110         err = btrfs_reserve_metadata_space(root, 5);
4111         if (err)
4112                 return err;
4113
4114         trans = btrfs_start_transaction(root, 1);
4115         if (!trans)
4116                 goto fail;
4117         btrfs_set_trans_block_group(trans, dir);
4118
4119         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4120         if (err) {
4121                 err = -ENOSPC;
4122                 goto out_unlock;
4123         }
4124
4125         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4126                                 dentry->d_name.len,
4127                                 dentry->d_parent->d_inode->i_ino, objectid,
4128                                 BTRFS_I(dir)->block_group, mode, &index);
4129         err = PTR_ERR(inode);
4130         if (IS_ERR(inode))
4131                 goto out_unlock;
4132
4133         err = btrfs_init_inode_security(inode, dir);
4134         if (err) {
4135                 drop_inode = 1;
4136                 goto out_unlock;
4137         }
4138
4139         btrfs_set_trans_block_group(trans, inode);
4140         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4141         if (err)
4142                 drop_inode = 1;
4143         else {
4144                 inode->i_op = &btrfs_special_inode_operations;
4145                 init_special_inode(inode, inode->i_mode, rdev);
4146                 btrfs_update_inode(trans, root, inode);
4147         }
4148         btrfs_update_inode_block_group(trans, inode);
4149         btrfs_update_inode_block_group(trans, dir);
4150 out_unlock:
4151         nr = trans->blocks_used;
4152         btrfs_end_transaction_throttle(trans, root);
4153 fail:
4154         btrfs_unreserve_metadata_space(root, 5);
4155         if (drop_inode) {
4156                 inode_dec_link_count(inode);
4157                 iput(inode);
4158         }
4159         btrfs_btree_balance_dirty(root, nr);
4160         return err;
4161 }
4162
4163 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4164                         int mode, struct nameidata *nd)
4165 {
4166         struct btrfs_trans_handle *trans;
4167         struct btrfs_root *root = BTRFS_I(dir)->root;
4168         struct inode *inode = NULL;
4169         int err;
4170         int drop_inode = 0;
4171         unsigned long nr = 0;
4172         u64 objectid;
4173         u64 index = 0;
4174
4175         /*
4176          * 2 for inode item and ref
4177          * 2 for dir items
4178          * 1 for xattr if selinux is on
4179          */
4180         err = btrfs_reserve_metadata_space(root, 5);
4181         if (err)
4182                 return err;
4183
4184         trans = btrfs_start_transaction(root, 1);
4185         if (!trans)
4186                 goto fail;
4187         btrfs_set_trans_block_group(trans, dir);
4188
4189         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4190         if (err) {
4191                 err = -ENOSPC;
4192                 goto out_unlock;
4193         }
4194
4195         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4196                                 dentry->d_name.len,
4197                                 dentry->d_parent->d_inode->i_ino,
4198                                 objectid, BTRFS_I(dir)->block_group, mode,
4199                                 &index);
4200         err = PTR_ERR(inode);
4201         if (IS_ERR(inode))
4202                 goto out_unlock;
4203
4204         err = btrfs_init_inode_security(inode, dir);
4205         if (err) {
4206                 drop_inode = 1;
4207                 goto out_unlock;
4208         }
4209
4210         btrfs_set_trans_block_group(trans, inode);
4211         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4212         if (err)
4213                 drop_inode = 1;
4214         else {
4215                 inode->i_mapping->a_ops = &btrfs_aops;
4216                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4217                 inode->i_fop = &btrfs_file_operations;
4218                 inode->i_op = &btrfs_file_inode_operations;
4219                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4220         }
4221         btrfs_update_inode_block_group(trans, inode);
4222         btrfs_update_inode_block_group(trans, dir);
4223 out_unlock:
4224         nr = trans->blocks_used;
4225         btrfs_end_transaction_throttle(trans, root);
4226 fail:
4227         btrfs_unreserve_metadata_space(root, 5);
4228         if (drop_inode) {
4229                 inode_dec_link_count(inode);
4230                 iput(inode);
4231         }
4232         btrfs_btree_balance_dirty(root, nr);
4233         return err;
4234 }
4235
4236 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4237                       struct dentry *dentry)
4238 {
4239         struct btrfs_trans_handle *trans;
4240         struct btrfs_root *root = BTRFS_I(dir)->root;
4241         struct inode *inode = old_dentry->d_inode;
4242         u64 index;
4243         unsigned long nr = 0;
4244         int err;
4245         int drop_inode = 0;
4246
4247         if (inode->i_nlink == 0)
4248                 return -ENOENT;
4249
4250         /*
4251          * 1 item for inode ref
4252          * 2 items for dir items
4253          */
4254         err = btrfs_reserve_metadata_space(root, 3);
4255         if (err)
4256                 return err;
4257
4258         btrfs_inc_nlink(inode);
4259
4260         err = btrfs_set_inode_index(dir, &index);
4261         if (err)
4262                 goto fail;
4263
4264         trans = btrfs_start_transaction(root, 1);
4265
4266         btrfs_set_trans_block_group(trans, dir);
4267         atomic_inc(&inode->i_count);
4268
4269         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4270
4271         if (err) {
4272                 drop_inode = 1;
4273         } else {
4274                 btrfs_update_inode_block_group(trans, dir);
4275                 err = btrfs_update_inode(trans, root, inode);
4276                 BUG_ON(err);
4277                 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4278         }
4279
4280         nr = trans->blocks_used;
4281         btrfs_end_transaction_throttle(trans, root);
4282 fail:
4283         btrfs_unreserve_metadata_space(root, 3);
4284         if (drop_inode) {
4285                 inode_dec_link_count(inode);
4286                 iput(inode);
4287         }
4288         btrfs_btree_balance_dirty(root, nr);
4289         return err;
4290 }
4291
4292 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4293 {
4294         struct inode *inode = NULL;
4295         struct btrfs_trans_handle *trans;
4296         struct btrfs_root *root = BTRFS_I(dir)->root;
4297         int err = 0;
4298         int drop_on_err = 0;
4299         u64 objectid = 0;
4300         u64 index = 0;
4301         unsigned long nr = 1;
4302
4303         /*
4304          * 2 items for inode and ref
4305          * 2 items for dir items
4306          * 1 for xattr if selinux is on
4307          */
4308         err = btrfs_reserve_metadata_space(root, 5);
4309         if (err)
4310                 return err;
4311
4312         trans = btrfs_start_transaction(root, 1);
4313         if (!trans) {
4314                 err = -ENOMEM;
4315                 goto out_unlock;
4316         }
4317         btrfs_set_trans_block_group(trans, dir);
4318
4319         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4320         if (err) {
4321                 err = -ENOSPC;
4322                 goto out_unlock;
4323         }
4324
4325         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4326                                 dentry->d_name.len,
4327                                 dentry->d_parent->d_inode->i_ino, objectid,
4328                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4329                                 &index);
4330         if (IS_ERR(inode)) {
4331                 err = PTR_ERR(inode);
4332                 goto out_fail;
4333         }
4334
4335         drop_on_err = 1;
4336
4337         err = btrfs_init_inode_security(inode, dir);
4338         if (err)
4339                 goto out_fail;
4340
4341         inode->i_op = &btrfs_dir_inode_operations;
4342         inode->i_fop = &btrfs_dir_file_operations;
4343         btrfs_set_trans_block_group(trans, inode);
4344
4345         btrfs_i_size_write(inode, 0);
4346         err = btrfs_update_inode(trans, root, inode);
4347         if (err)
4348                 goto out_fail;
4349
4350         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4351                                  inode, dentry->d_name.name,
4352                                  dentry->d_name.len, 0, index);
4353         if (err)
4354                 goto out_fail;
4355
4356         d_instantiate(dentry, inode);
4357         drop_on_err = 0;
4358         btrfs_update_inode_block_group(trans, inode);
4359         btrfs_update_inode_block_group(trans, dir);
4360
4361 out_fail:
4362         nr = trans->blocks_used;
4363         btrfs_end_transaction_throttle(trans, root);
4364
4365 out_unlock:
4366         btrfs_unreserve_metadata_space(root, 5);
4367         if (drop_on_err)
4368                 iput(inode);
4369         btrfs_btree_balance_dirty(root, nr);
4370         return err;
4371 }
4372
4373 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4374  * and an extent that you want to insert, deal with overlap and insert
4375  * the new extent into the tree.
4376  */
4377 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4378                                 struct extent_map *existing,
4379                                 struct extent_map *em,
4380                                 u64 map_start, u64 map_len)
4381 {
4382         u64 start_diff;
4383
4384         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4385         start_diff = map_start - em->start;
4386         em->start = map_start;
4387         em->len = map_len;
4388         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4389             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4390                 em->block_start += start_diff;
4391                 em->block_len -= start_diff;
4392         }
4393         return add_extent_mapping(em_tree, em);
4394 }
4395
4396 static noinline int uncompress_inline(struct btrfs_path *path,
4397                                       struct inode *inode, struct page *page,
4398                                       size_t pg_offset, u64 extent_offset,
4399                                       struct btrfs_file_extent_item *item)
4400 {
4401         int ret;
4402         struct extent_buffer *leaf = path->nodes[0];
4403         char *tmp;
4404         size_t max_size;
4405         unsigned long inline_size;
4406         unsigned long ptr;
4407
4408         WARN_ON(pg_offset != 0);
4409         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4410         inline_size = btrfs_file_extent_inline_item_len(leaf,
4411                                         btrfs_item_nr(leaf, path->slots[0]));
4412         tmp = kmalloc(inline_size, GFP_NOFS);
4413         ptr = btrfs_file_extent_inline_start(item);
4414
4415         read_extent_buffer(leaf, tmp, ptr, inline_size);
4416
4417         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4418         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4419                                     inline_size, max_size);
4420         if (ret) {
4421                 char *kaddr = kmap_atomic(page, KM_USER0);
4422                 unsigned long copy_size = min_t(u64,
4423                                   PAGE_CACHE_SIZE - pg_offset,
4424                                   max_size - extent_offset);
4425                 memset(kaddr + pg_offset, 0, copy_size);
4426                 kunmap_atomic(kaddr, KM_USER0);
4427         }
4428         kfree(tmp);
4429         return 0;
4430 }
4431
4432 /*
4433  * a bit scary, this does extent mapping from logical file offset to the disk.
4434  * the ugly parts come from merging extents from the disk with the in-ram
4435  * representation.  This gets more complex because of the data=ordered code,
4436  * where the in-ram extents might be locked pending data=ordered completion.
4437  *
4438  * This also copies inline extents directly into the page.
4439  */
4440
4441 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4442                                     size_t pg_offset, u64 start, u64 len,
4443                                     int create)
4444 {
4445         int ret;
4446         int err = 0;
4447         u64 bytenr;
4448         u64 extent_start = 0;
4449         u64 extent_end = 0;
4450         u64 objectid = inode->i_ino;
4451         u32 found_type;
4452         struct btrfs_path *path = NULL;
4453         struct btrfs_root *root = BTRFS_I(inode)->root;
4454         struct btrfs_file_extent_item *item;
4455         struct extent_buffer *leaf;
4456         struct btrfs_key found_key;
4457         struct extent_map *em = NULL;
4458         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4459         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4460         struct btrfs_trans_handle *trans = NULL;
4461         int compressed;
4462
4463 again:
4464         read_lock(&em_tree->lock);
4465         em = lookup_extent_mapping(em_tree, start, len);
4466         if (em)
4467                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4468         read_unlock(&em_tree->lock);
4469
4470         if (em) {
4471                 if (em->start > start || em->start + em->len <= start)
4472                         free_extent_map(em);
4473                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4474                         free_extent_map(em);
4475                 else
4476                         goto out;
4477         }
4478         em = alloc_extent_map(GFP_NOFS);
4479         if (!em) {
4480                 err = -ENOMEM;
4481                 goto out;
4482         }
4483         em->bdev = root->fs_info->fs_devices->latest_bdev;
4484         em->start = EXTENT_MAP_HOLE;
4485         em->orig_start = EXTENT_MAP_HOLE;
4486         em->len = (u64)-1;
4487         em->block_len = (u64)-1;
4488
4489         if (!path) {
4490                 path = btrfs_alloc_path();
4491                 BUG_ON(!path);
4492         }
4493
4494         ret = btrfs_lookup_file_extent(trans, root, path,
4495                                        objectid, start, trans != NULL);
4496         if (ret < 0) {
4497                 err = ret;
4498                 goto out;
4499         }
4500
4501         if (ret != 0) {
4502                 if (path->slots[0] == 0)
4503                         goto not_found;
4504                 path->slots[0]--;
4505         }
4506
4507         leaf = path->nodes[0];
4508         item = btrfs_item_ptr(leaf, path->slots[0],
4509                               struct btrfs_file_extent_item);
4510         /* are we inside the extent that was found? */
4511         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4512         found_type = btrfs_key_type(&found_key);
4513         if (found_key.objectid != objectid ||
4514             found_type != BTRFS_EXTENT_DATA_KEY) {
4515                 goto not_found;
4516         }
4517
4518         found_type = btrfs_file_extent_type(leaf, item);
4519         extent_start = found_key.offset;
4520         compressed = btrfs_file_extent_compression(leaf, item);
4521         if (found_type == BTRFS_FILE_EXTENT_REG ||
4522             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4523                 extent_end = extent_start +
4524                        btrfs_file_extent_num_bytes(leaf, item);
4525         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4526                 size_t size;
4527                 size = btrfs_file_extent_inline_len(leaf, item);
4528                 extent_end = (extent_start + size + root->sectorsize - 1) &
4529                         ~((u64)root->sectorsize - 1);
4530         }
4531
4532         if (start >= extent_end) {
4533                 path->slots[0]++;
4534                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4535                         ret = btrfs_next_leaf(root, path);
4536                         if (ret < 0) {
4537                                 err = ret;
4538                                 goto out;
4539                         }
4540                         if (ret > 0)
4541                                 goto not_found;
4542                         leaf = path->nodes[0];
4543                 }
4544                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4545                 if (found_key.objectid != objectid ||
4546                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4547                         goto not_found;
4548                 if (start + len <= found_key.offset)
4549                         goto not_found;
4550                 em->start = start;
4551                 em->len = found_key.offset - start;
4552                 goto not_found_em;
4553         }
4554
4555         if (found_type == BTRFS_FILE_EXTENT_REG ||
4556             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4557                 em->start = extent_start;
4558                 em->len = extent_end - extent_start;
4559                 em->orig_start = extent_start -
4560                                  btrfs_file_extent_offset(leaf, item);
4561                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4562                 if (bytenr == 0) {
4563                         em->block_start = EXTENT_MAP_HOLE;
4564                         goto insert;
4565                 }
4566                 if (compressed) {
4567                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4568                         em->block_start = bytenr;
4569                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4570                                                                          item);
4571                 } else {
4572                         bytenr += btrfs_file_extent_offset(leaf, item);
4573                         em->block_start = bytenr;
4574                         em->block_len = em->len;
4575                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4576                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4577                 }
4578                 goto insert;
4579         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4580                 unsigned long ptr;
4581                 char *map;
4582                 size_t size;
4583                 size_t extent_offset;
4584                 size_t copy_size;
4585
4586                 em->block_start = EXTENT_MAP_INLINE;
4587                 if (!page || create) {
4588                         em->start = extent_start;
4589                         em->len = extent_end - extent_start;
4590                         goto out;
4591                 }
4592
4593                 size = btrfs_file_extent_inline_len(leaf, item);
4594                 extent_offset = page_offset(page) + pg_offset - extent_start;
4595                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4596                                 size - extent_offset);
4597                 em->start = extent_start + extent_offset;
4598                 em->len = (copy_size + root->sectorsize - 1) &
4599                         ~((u64)root->sectorsize - 1);
4600                 em->orig_start = EXTENT_MAP_INLINE;
4601                 if (compressed)
4602                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4603                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4604                 if (create == 0 && !PageUptodate(page)) {
4605                         if (btrfs_file_extent_compression(leaf, item) ==
4606                             BTRFS_COMPRESS_ZLIB) {
4607                                 ret = uncompress_inline(path, inode, page,
4608                                                         pg_offset,
4609                                                         extent_offset, item);
4610                                 BUG_ON(ret);
4611                         } else {
4612                                 map = kmap(page);
4613                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4614                                                    copy_size);
4615                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4616                                         memset(map + pg_offset + copy_size, 0,
4617                                                PAGE_CACHE_SIZE - pg_offset -
4618                                                copy_size);
4619                                 }
4620                                 kunmap(page);
4621                         }
4622                         flush_dcache_page(page);
4623                 } else if (create && PageUptodate(page)) {
4624                         if (!trans) {
4625                                 kunmap(page);
4626                                 free_extent_map(em);
4627                                 em = NULL;
4628                                 btrfs_release_path(root, path);
4629                                 trans = btrfs_join_transaction(root, 1);
4630                                 goto again;
4631                         }
4632                         map = kmap(page);
4633                         write_extent_buffer(leaf, map + pg_offset, ptr,
4634                                             copy_size);
4635                         kunmap(page);
4636                         btrfs_mark_buffer_dirty(leaf);
4637                 }
4638                 set_extent_uptodate(io_tree, em->start,
4639                                     extent_map_end(em) - 1, GFP_NOFS);
4640                 goto insert;
4641         } else {
4642                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4643                 WARN_ON(1);
4644         }
4645 not_found:
4646         em->start = start;
4647         em->len = len;
4648 not_found_em:
4649         em->block_start = EXTENT_MAP_HOLE;
4650         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4651 insert:
4652         btrfs_release_path(root, path);
4653         if (em->start > start || extent_map_end(em) <= start) {
4654                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4655                        "[%llu %llu]\n", (unsigned long long)em->start,
4656                        (unsigned long long)em->len,
4657                        (unsigned long long)start,
4658                        (unsigned long long)len);
4659                 err = -EIO;
4660                 goto out;
4661         }
4662
4663         err = 0;
4664         write_lock(&em_tree->lock);
4665         ret = add_extent_mapping(em_tree, em);
4666         /* it is possible that someone inserted the extent into the tree
4667          * while we had the lock dropped.  It is also possible that
4668          * an overlapping map exists in the tree
4669          */
4670         if (ret == -EEXIST) {
4671                 struct extent_map *existing;
4672
4673                 ret = 0;
4674
4675                 existing = lookup_extent_mapping(em_tree, start, len);
4676                 if (existing && (existing->start > start ||
4677                     existing->start + existing->len <= start)) {
4678                         free_extent_map(existing);
4679                         existing = NULL;
4680                 }
4681                 if (!existing) {
4682                         existing = lookup_extent_mapping(em_tree, em->start,
4683                                                          em->len);
4684                         if (existing) {
4685                                 err = merge_extent_mapping(em_tree, existing,
4686                                                            em, start,
4687                                                            root->sectorsize);
4688                                 free_extent_map(existing);
4689                                 if (err) {
4690                                         free_extent_map(em);
4691                                         em = NULL;
4692                                 }
4693                         } else {
4694                                 err = -EIO;
4695                                 free_extent_map(em);
4696                                 em = NULL;
4697                         }
4698                 } else {
4699                         free_extent_map(em);
4700                         em = existing;
4701                         err = 0;
4702                 }
4703         }
4704         write_unlock(&em_tree->lock);
4705 out:
4706         if (path)
4707                 btrfs_free_path(path);
4708         if (trans) {
4709                 ret = btrfs_end_transaction(trans, root);
4710                 if (!err)
4711                         err = ret;
4712         }
4713         if (err) {
4714                 free_extent_map(em);
4715                 return ERR_PTR(err);
4716         }
4717         return em;
4718 }
4719
4720 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4721                         const struct iovec *iov, loff_t offset,
4722                         unsigned long nr_segs)
4723 {
4724         return -EINVAL;
4725 }
4726
4727 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4728                 __u64 start, __u64 len)
4729 {
4730         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4731 }
4732
4733 int btrfs_readpage(struct file *file, struct page *page)
4734 {
4735         struct extent_io_tree *tree;
4736         tree = &BTRFS_I(page->mapping->host)->io_tree;
4737         return extent_read_full_page(tree, page, btrfs_get_extent);
4738 }
4739
4740 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4741 {
4742         struct extent_io_tree *tree;
4743
4744
4745         if (current->flags & PF_MEMALLOC) {
4746                 redirty_page_for_writepage(wbc, page);
4747                 unlock_page(page);
4748                 return 0;
4749         }
4750         tree = &BTRFS_I(page->mapping->host)->io_tree;
4751         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4752 }
4753
4754 int btrfs_writepages(struct address_space *mapping,
4755                      struct writeback_control *wbc)
4756 {
4757         struct extent_io_tree *tree;
4758
4759         tree = &BTRFS_I(mapping->host)->io_tree;
4760         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4761 }
4762
4763 static int
4764 btrfs_readpages(struct file *file, struct address_space *mapping,
4765                 struct list_head *pages, unsigned nr_pages)
4766 {
4767         struct extent_io_tree *tree;
4768         tree = &BTRFS_I(mapping->host)->io_tree;
4769         return extent_readpages(tree, mapping, pages, nr_pages,
4770                                 btrfs_get_extent);
4771 }
4772 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4773 {
4774         struct extent_io_tree *tree;
4775         struct extent_map_tree *map;
4776         int ret;
4777
4778         tree = &BTRFS_I(page->mapping->host)->io_tree;
4779         map = &BTRFS_I(page->mapping->host)->extent_tree;
4780         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4781         if (ret == 1) {
4782                 ClearPagePrivate(page);
4783                 set_page_private(page, 0);
4784                 page_cache_release(page);
4785         }
4786         return ret;
4787 }
4788
4789 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4790 {
4791         if (PageWriteback(page) || PageDirty(page))
4792                 return 0;
4793         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4794 }
4795
4796 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4797 {
4798         struct extent_io_tree *tree;
4799         struct btrfs_ordered_extent *ordered;
4800         u64 page_start = page_offset(page);
4801         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4802
4803
4804         /*
4805          * we have the page locked, so new writeback can't start,
4806          * and the dirty bit won't be cleared while we are here.
4807          *
4808          * Wait for IO on this page so that we can safely clear
4809          * the PagePrivate2 bit and do ordered accounting
4810          */
4811         wait_on_page_writeback(page);
4812
4813         tree = &BTRFS_I(page->mapping->host)->io_tree;
4814         if (offset) {
4815                 btrfs_releasepage(page, GFP_NOFS);
4816                 return;
4817         }
4818         lock_extent(tree, page_start, page_end, GFP_NOFS);
4819         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4820                                            page_offset(page));
4821         if (ordered) {
4822                 /*
4823                  * IO on this page will never be started, so we need
4824                  * to account for any ordered extents now
4825                  */
4826                 clear_extent_bit(tree, page_start, page_end,
4827                                  EXTENT_DIRTY | EXTENT_DELALLOC |
4828                                  EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
4829                 /*
4830                  * whoever cleared the private bit is responsible
4831                  * for the finish_ordered_io
4832                  */
4833                 if (TestClearPagePrivate2(page)) {
4834                         btrfs_finish_ordered_io(page->mapping->host,
4835                                                 page_start, page_end);
4836                 }
4837                 btrfs_put_ordered_extent(ordered);
4838                 lock_extent(tree, page_start, page_end, GFP_NOFS);
4839         }
4840         clear_extent_bit(tree, page_start, page_end,
4841                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
4842                  1, 1, NULL, GFP_NOFS);
4843         __btrfs_releasepage(page, GFP_NOFS);
4844
4845         ClearPageChecked(page);
4846         if (PagePrivate(page)) {
4847                 ClearPagePrivate(page);
4848                 set_page_private(page, 0);
4849                 page_cache_release(page);
4850         }
4851 }
4852
4853 /*
4854  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4855  * called from a page fault handler when a page is first dirtied. Hence we must
4856  * be careful to check for EOF conditions here. We set the page up correctly
4857  * for a written page which means we get ENOSPC checking when writing into
4858  * holes and correct delalloc and unwritten extent mapping on filesystems that
4859  * support these features.
4860  *
4861  * We are not allowed to take the i_mutex here so we have to play games to
4862  * protect against truncate races as the page could now be beyond EOF.  Because
4863  * vmtruncate() writes the inode size before removing pages, once we have the
4864  * page lock we can determine safely if the page is beyond EOF. If it is not
4865  * beyond EOF, then the page is guaranteed safe against truncation until we
4866  * unlock the page.
4867  */
4868 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4869 {
4870         struct page *page = vmf->page;
4871         struct inode *inode = fdentry(vma->vm_file)->d_inode;
4872         struct btrfs_root *root = BTRFS_I(inode)->root;
4873         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4874         struct btrfs_ordered_extent *ordered;
4875         char *kaddr;
4876         unsigned long zero_start;
4877         loff_t size;
4878         int ret;
4879         u64 page_start;
4880         u64 page_end;
4881
4882         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4883         if (ret) {
4884                 if (ret == -ENOMEM)
4885                         ret = VM_FAULT_OOM;
4886                 else /* -ENOSPC, -EIO, etc */
4887                         ret = VM_FAULT_SIGBUS;
4888                 goto out;
4889         }
4890
4891         ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
4892         if (ret) {
4893                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4894                 ret = VM_FAULT_SIGBUS;
4895                 goto out;
4896         }
4897
4898         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4899 again:
4900         lock_page(page);
4901         size = i_size_read(inode);
4902         page_start = page_offset(page);
4903         page_end = page_start + PAGE_CACHE_SIZE - 1;
4904
4905         if ((page->mapping != inode->i_mapping) ||
4906             (page_start >= size)) {
4907                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4908                 /* page got truncated out from underneath us */
4909                 goto out_unlock;
4910         }
4911         wait_on_page_writeback(page);
4912
4913         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4914         set_page_extent_mapped(page);
4915
4916         /*
4917          * we can't set the delalloc bits if there are pending ordered
4918          * extents.  Drop our locks and wait for them to finish
4919          */
4920         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4921         if (ordered) {
4922                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4923                 unlock_page(page);
4924                 btrfs_start_ordered_extent(inode, ordered, 1);
4925                 btrfs_put_ordered_extent(ordered);
4926                 goto again;
4927         }
4928
4929         /*
4930          * XXX - page_mkwrite gets called every time the page is dirtied, even
4931          * if it was already dirty, so for space accounting reasons we need to
4932          * clear any delalloc bits for the range we are fixing to save.  There
4933          * is probably a better way to do this, but for now keep consistent with
4934          * prepare_pages in the normal write path.
4935          */
4936         clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
4937                           EXTENT_DIRTY | EXTENT_DELALLOC, GFP_NOFS);
4938
4939         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
4940         if (ret) {
4941                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4942                 ret = VM_FAULT_SIGBUS;
4943                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4944                 goto out_unlock;
4945         }
4946         ret = 0;
4947
4948         /* page is wholly or partially inside EOF */
4949         if (page_start + PAGE_CACHE_SIZE > size)
4950                 zero_start = size & ~PAGE_CACHE_MASK;
4951         else
4952                 zero_start = PAGE_CACHE_SIZE;
4953
4954         if (zero_start != PAGE_CACHE_SIZE) {
4955                 kaddr = kmap(page);
4956                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4957                 flush_dcache_page(page);
4958                 kunmap(page);
4959         }
4960         ClearPageChecked(page);
4961         set_page_dirty(page);
4962         SetPageUptodate(page);
4963
4964         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4965         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4966
4967 out_unlock:
4968         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
4969         if (!ret)
4970                 return VM_FAULT_LOCKED;
4971         unlock_page(page);
4972 out:
4973         return ret;
4974 }
4975
4976 static void btrfs_truncate(struct inode *inode)
4977 {
4978         struct btrfs_root *root = BTRFS_I(inode)->root;
4979         int ret;
4980         struct btrfs_trans_handle *trans;
4981         unsigned long nr;
4982         u64 mask = root->sectorsize - 1;
4983
4984         if (!S_ISREG(inode->i_mode))
4985                 return;
4986         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4987                 return;
4988
4989         btrfs_truncate_page(inode->i_mapping, inode->i_size);
4990         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4991
4992         trans = btrfs_start_transaction(root, 1);
4993
4994         /*
4995          * setattr is responsible for setting the ordered_data_close flag,
4996          * but that is only tested during the last file release.  That
4997          * could happen well after the next commit, leaving a great big
4998          * window where new writes may get lost if someone chooses to write
4999          * to this file after truncating to zero
5000          *
5001          * The inode doesn't have any dirty data here, and so if we commit
5002          * this is a noop.  If someone immediately starts writing to the inode
5003          * it is very likely we'll catch some of their writes in this
5004          * transaction, and the commit will find this file on the ordered
5005          * data list with good things to send down.
5006          *
5007          * This is a best effort solution, there is still a window where
5008          * using truncate to replace the contents of the file will
5009          * end up with a zero length file after a crash.
5010          */
5011         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5012                 btrfs_add_ordered_operation(trans, root, inode);
5013
5014         btrfs_set_trans_block_group(trans, inode);
5015         btrfs_i_size_write(inode, inode->i_size);
5016
5017         ret = btrfs_orphan_add(trans, inode);
5018         if (ret)
5019                 goto out;
5020         /* FIXME, add redo link to tree so we don't leak on crash */
5021         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
5022                                       BTRFS_EXTENT_DATA_KEY);
5023         btrfs_update_inode(trans, root, inode);
5024
5025         ret = btrfs_orphan_del(trans, inode);
5026         BUG_ON(ret);
5027
5028 out:
5029         nr = trans->blocks_used;
5030         ret = btrfs_end_transaction_throttle(trans, root);
5031         BUG_ON(ret);
5032         btrfs_btree_balance_dirty(root, nr);
5033 }
5034
5035 /*
5036  * create a new subvolume directory/inode (helper for the ioctl).
5037  */
5038 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5039                              struct btrfs_root *new_root,
5040                              u64 new_dirid, u64 alloc_hint)
5041 {
5042         struct inode *inode;
5043         int err;
5044         u64 index = 0;
5045
5046         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5047                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5048         if (IS_ERR(inode))
5049                 return PTR_ERR(inode);
5050         inode->i_op = &btrfs_dir_inode_operations;
5051         inode->i_fop = &btrfs_dir_file_operations;
5052
5053         inode->i_nlink = 1;
5054         btrfs_i_size_write(inode, 0);
5055
5056         err = btrfs_update_inode(trans, new_root, inode);
5057         BUG_ON(err);
5058
5059         iput(inode);
5060         return 0;
5061 }
5062
5063 /* helper function for file defrag and space balancing.  This
5064  * forces readahead on a given range of bytes in an inode
5065  */
5066 unsigned long btrfs_force_ra(struct address_space *mapping,
5067                               struct file_ra_state *ra, struct file *file,
5068                               pgoff_t offset, pgoff_t last_index)
5069 {
5070         pgoff_t req_size = last_index - offset + 1;
5071
5072         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5073         return offset + req_size;
5074 }
5075
5076 struct inode *btrfs_alloc_inode(struct super_block *sb)
5077 {
5078         struct btrfs_inode *ei;
5079
5080         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5081         if (!ei)
5082                 return NULL;
5083         ei->last_trans = 0;
5084         ei->logged_trans = 0;
5085         ei->delalloc_extents = 0;
5086         ei->delalloc_reserved_extents = 0;
5087         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5088         INIT_LIST_HEAD(&ei->i_orphan);
5089         INIT_LIST_HEAD(&ei->ordered_operations);
5090         return &ei->vfs_inode;
5091 }
5092
5093 void btrfs_destroy_inode(struct inode *inode)
5094 {
5095         struct btrfs_ordered_extent *ordered;
5096         struct btrfs_root *root = BTRFS_I(inode)->root;
5097
5098         WARN_ON(!list_empty(&inode->i_dentry));
5099         WARN_ON(inode->i_data.nrpages);
5100
5101         /*
5102          * Make sure we're properly removed from the ordered operation
5103          * lists.
5104          */
5105         smp_mb();
5106         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5107                 spin_lock(&root->fs_info->ordered_extent_lock);
5108                 list_del_init(&BTRFS_I(inode)->ordered_operations);
5109                 spin_unlock(&root->fs_info->ordered_extent_lock);
5110         }
5111
5112         spin_lock(&root->list_lock);
5113         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5114                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
5115                        " list\n", inode->i_ino);
5116                 dump_stack();
5117         }
5118         spin_unlock(&root->list_lock);
5119
5120         while (1) {
5121                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5122                 if (!ordered)
5123                         break;
5124                 else {
5125                         printk(KERN_ERR "btrfs found ordered "
5126                                "extent %llu %llu on inode cleanup\n",
5127                                (unsigned long long)ordered->file_offset,
5128                                (unsigned long long)ordered->len);
5129                         btrfs_remove_ordered_extent(inode, ordered);
5130                         btrfs_put_ordered_extent(ordered);
5131                         btrfs_put_ordered_extent(ordered);
5132                 }
5133         }
5134         inode_tree_del(inode);
5135         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5136         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5137 }
5138
5139 void btrfs_drop_inode(struct inode *inode)
5140 {
5141         struct btrfs_root *root = BTRFS_I(inode)->root;
5142
5143         if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5144                 generic_delete_inode(inode);
5145         else
5146                 generic_drop_inode(inode);
5147 }
5148
5149 static void init_once(void *foo)
5150 {
5151         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5152
5153         inode_init_once(&ei->vfs_inode);
5154 }
5155
5156 void btrfs_destroy_cachep(void)
5157 {
5158         if (btrfs_inode_cachep)
5159                 kmem_cache_destroy(btrfs_inode_cachep);
5160         if (btrfs_trans_handle_cachep)
5161                 kmem_cache_destroy(btrfs_trans_handle_cachep);
5162         if (btrfs_transaction_cachep)
5163                 kmem_cache_destroy(btrfs_transaction_cachep);
5164         if (btrfs_path_cachep)
5165                 kmem_cache_destroy(btrfs_path_cachep);
5166 }
5167
5168 int btrfs_init_cachep(void)
5169 {
5170         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5171                         sizeof(struct btrfs_inode), 0,
5172                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5173         if (!btrfs_inode_cachep)
5174                 goto fail;
5175
5176         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5177                         sizeof(struct btrfs_trans_handle), 0,
5178                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5179         if (!btrfs_trans_handle_cachep)
5180                 goto fail;
5181
5182         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5183                         sizeof(struct btrfs_transaction), 0,
5184                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5185         if (!btrfs_transaction_cachep)
5186                 goto fail;
5187
5188         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5189                         sizeof(struct btrfs_path), 0,
5190                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5191         if (!btrfs_path_cachep)
5192                 goto fail;
5193
5194         return 0;
5195 fail:
5196         btrfs_destroy_cachep();
5197         return -ENOMEM;
5198 }
5199
5200 static int btrfs_getattr(struct vfsmount *mnt,
5201                          struct dentry *dentry, struct kstat *stat)
5202 {
5203         struct inode *inode = dentry->d_inode;
5204         generic_fillattr(inode, stat);
5205         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5206         stat->blksize = PAGE_CACHE_SIZE;
5207         stat->blocks = (inode_get_bytes(inode) +
5208                         BTRFS_I(inode)->delalloc_bytes) >> 9;
5209         return 0;
5210 }
5211
5212 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5213                            struct inode *new_dir, struct dentry *new_dentry)
5214 {
5215         struct btrfs_trans_handle *trans;
5216         struct btrfs_root *root = BTRFS_I(old_dir)->root;
5217         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5218         struct inode *new_inode = new_dentry->d_inode;
5219         struct inode *old_inode = old_dentry->d_inode;
5220         struct timespec ctime = CURRENT_TIME;
5221         u64 index = 0;
5222         u64 root_objectid;
5223         int ret;
5224
5225         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5226                 return -EPERM;
5227
5228         /* we only allow rename subvolume link between subvolumes */
5229         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5230                 return -EXDEV;
5231
5232         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5233             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5234                 return -ENOTEMPTY;
5235
5236         if (S_ISDIR(old_inode->i_mode) && new_inode &&
5237             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5238                 return -ENOTEMPTY;
5239
5240         /*
5241          * 2 items for dir items
5242          * 1 item for orphan entry
5243          * 1 item for ref
5244          */
5245         ret = btrfs_reserve_metadata_space(root, 4);
5246         if (ret)
5247                 return ret;
5248
5249         /*
5250          * we're using rename to replace one file with another.
5251          * and the replacement file is large.  Start IO on it now so
5252          * we don't add too much work to the end of the transaction
5253          */
5254         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5255             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5256                 filemap_flush(old_inode->i_mapping);
5257
5258         /* close the racy window with snapshot create/destroy ioctl */
5259         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5260                 down_read(&root->fs_info->subvol_sem);
5261
5262         trans = btrfs_start_transaction(root, 1);
5263         btrfs_set_trans_block_group(trans, new_dir);
5264
5265         if (dest != root)
5266                 btrfs_record_root_in_trans(trans, dest);
5267
5268         ret = btrfs_set_inode_index(new_dir, &index);
5269         if (ret)
5270                 goto out_fail;
5271
5272         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5273                 /* force full log commit if subvolume involved. */
5274                 root->fs_info->last_trans_log_full_commit = trans->transid;
5275         } else {
5276                 ret = btrfs_insert_inode_ref(trans, dest,
5277                                              new_dentry->d_name.name,
5278                                              new_dentry->d_name.len,
5279                                              old_inode->i_ino,
5280                                              new_dir->i_ino, index);
5281                 if (ret)
5282                         goto out_fail;
5283                 /*
5284                  * this is an ugly little race, but the rename is required
5285                  * to make sure that if we crash, the inode is either at the
5286                  * old name or the new one.  pinning the log transaction lets
5287                  * us make sure we don't allow a log commit to come in after
5288                  * we unlink the name but before we add the new name back in.
5289                  */
5290                 btrfs_pin_log_trans(root);
5291         }
5292         /*
5293          * make sure the inode gets flushed if it is replacing
5294          * something.
5295          */
5296         if (new_inode && new_inode->i_size &&
5297             old_inode && S_ISREG(old_inode->i_mode)) {
5298                 btrfs_add_ordered_operation(trans, root, old_inode);
5299         }
5300
5301         old_dir->i_ctime = old_dir->i_mtime = ctime;
5302         new_dir->i_ctime = new_dir->i_mtime = ctime;
5303         old_inode->i_ctime = ctime;
5304
5305         if (old_dentry->d_parent != new_dentry->d_parent)
5306                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5307
5308         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5309                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5310                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5311                                         old_dentry->d_name.name,
5312                                         old_dentry->d_name.len);
5313         } else {
5314                 btrfs_inc_nlink(old_dentry->d_inode);
5315                 ret = btrfs_unlink_inode(trans, root, old_dir,
5316                                          old_dentry->d_inode,
5317                                          old_dentry->d_name.name,
5318                                          old_dentry->d_name.len);
5319         }
5320         BUG_ON(ret);
5321
5322         if (new_inode) {
5323                 new_inode->i_ctime = CURRENT_TIME;
5324                 if (unlikely(new_inode->i_ino ==
5325                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5326                         root_objectid = BTRFS_I(new_inode)->location.objectid;
5327                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
5328                                                 root_objectid,
5329                                                 new_dentry->d_name.name,
5330                                                 new_dentry->d_name.len);
5331                         BUG_ON(new_inode->i_nlink == 0);
5332                 } else {
5333                         ret = btrfs_unlink_inode(trans, dest, new_dir,
5334                                                  new_dentry->d_inode,
5335                                                  new_dentry->d_name.name,
5336                                                  new_dentry->d_name.len);
5337                 }
5338                 BUG_ON(ret);
5339                 if (new_inode->i_nlink == 0) {
5340                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5341                         BUG_ON(ret);
5342                 }
5343         }
5344
5345         ret = btrfs_add_link(trans, new_dir, old_inode,
5346                              new_dentry->d_name.name,
5347                              new_dentry->d_name.len, 0, index);
5348         BUG_ON(ret);
5349
5350         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5351                 btrfs_log_new_name(trans, old_inode, old_dir,
5352                                    new_dentry->d_parent);
5353                 btrfs_end_log_trans(root);
5354         }
5355 out_fail:
5356         btrfs_end_transaction_throttle(trans, root);
5357
5358         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5359                 up_read(&root->fs_info->subvol_sem);
5360
5361         btrfs_unreserve_metadata_space(root, 4);
5362         return ret;
5363 }
5364
5365 /*
5366  * some fairly slow code that needs optimization. This walks the list
5367  * of all the inodes with pending delalloc and forces them to disk.
5368  */
5369 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
5370 {
5371         struct list_head *head = &root->fs_info->delalloc_inodes;
5372         struct btrfs_inode *binode;
5373         struct inode *inode;
5374
5375         if (root->fs_info->sb->s_flags & MS_RDONLY)
5376                 return -EROFS;
5377
5378         spin_lock(&root->fs_info->delalloc_lock);
5379         while (!list_empty(head)) {
5380                 binode = list_entry(head->next, struct btrfs_inode,
5381                                     delalloc_inodes);
5382                 inode = igrab(&binode->vfs_inode);
5383                 if (!inode)
5384                         list_del_init(&binode->delalloc_inodes);
5385                 spin_unlock(&root->fs_info->delalloc_lock);
5386                 if (inode) {
5387                         filemap_flush(inode->i_mapping);
5388                         iput(inode);
5389                 }
5390                 cond_resched();
5391                 spin_lock(&root->fs_info->delalloc_lock);
5392         }
5393         spin_unlock(&root->fs_info->delalloc_lock);
5394
5395         /* the filemap_flush will queue IO into the worker threads, but
5396          * we have to make sure the IO is actually started and that
5397          * ordered extents get created before we return
5398          */
5399         atomic_inc(&root->fs_info->async_submit_draining);
5400         while (atomic_read(&root->fs_info->nr_async_submits) ||
5401               atomic_read(&root->fs_info->async_delalloc_pages)) {
5402                 wait_event(root->fs_info->async_submit_wait,
5403                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5404                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5405         }
5406         atomic_dec(&root->fs_info->async_submit_draining);
5407         return 0;
5408 }
5409
5410 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5411                          const char *symname)
5412 {
5413         struct btrfs_trans_handle *trans;
5414         struct btrfs_root *root = BTRFS_I(dir)->root;
5415         struct btrfs_path *path;
5416         struct btrfs_key key;
5417         struct inode *inode = NULL;
5418         int err;
5419         int drop_inode = 0;
5420         u64 objectid;
5421         u64 index = 0 ;
5422         int name_len;
5423         int datasize;
5424         unsigned long ptr;
5425         struct btrfs_file_extent_item *ei;
5426         struct extent_buffer *leaf;
5427         unsigned long nr = 0;
5428
5429         name_len = strlen(symname) + 1;
5430         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5431                 return -ENAMETOOLONG;
5432
5433         /*
5434          * 2 items for inode item and ref
5435          * 2 items for dir items
5436          * 1 item for xattr if selinux is on
5437          */
5438         err = btrfs_reserve_metadata_space(root, 5);
5439         if (err)
5440                 return err;
5441
5442         trans = btrfs_start_transaction(root, 1);
5443         if (!trans)
5444                 goto out_fail;
5445         btrfs_set_trans_block_group(trans, dir);
5446
5447         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5448         if (err) {
5449                 err = -ENOSPC;
5450                 goto out_unlock;
5451         }
5452
5453         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5454                                 dentry->d_name.len,
5455                                 dentry->d_parent->d_inode->i_ino, objectid,
5456                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5457                                 &index);
5458         err = PTR_ERR(inode);
5459         if (IS_ERR(inode))
5460                 goto out_unlock;
5461
5462         err = btrfs_init_inode_security(inode, dir);
5463         if (err) {
5464                 drop_inode = 1;
5465                 goto out_unlock;
5466         }
5467
5468         btrfs_set_trans_block_group(trans, inode);
5469         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5470         if (err)
5471                 drop_inode = 1;
5472         else {
5473                 inode->i_mapping->a_ops = &btrfs_aops;
5474                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5475                 inode->i_fop = &btrfs_file_operations;
5476                 inode->i_op = &btrfs_file_inode_operations;
5477                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5478         }
5479         btrfs_update_inode_block_group(trans, inode);
5480         btrfs_update_inode_block_group(trans, dir);
5481         if (drop_inode)
5482                 goto out_unlock;
5483
5484         path = btrfs_alloc_path();
5485         BUG_ON(!path);
5486         key.objectid = inode->i_ino;
5487         key.offset = 0;
5488         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5489         datasize = btrfs_file_extent_calc_inline_size(name_len);
5490         err = btrfs_insert_empty_item(trans, root, path, &key,
5491                                       datasize);
5492         if (err) {
5493                 drop_inode = 1;
5494                 goto out_unlock;
5495         }
5496         leaf = path->nodes[0];
5497         ei = btrfs_item_ptr(leaf, path->slots[0],
5498                             struct btrfs_file_extent_item);
5499         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5500         btrfs_set_file_extent_type(leaf, ei,
5501                                    BTRFS_FILE_EXTENT_INLINE);
5502         btrfs_set_file_extent_encryption(leaf, ei, 0);
5503         btrfs_set_file_extent_compression(leaf, ei, 0);
5504         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5505         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5506
5507         ptr = btrfs_file_extent_inline_start(ei);
5508         write_extent_buffer(leaf, symname, ptr, name_len);
5509         btrfs_mark_buffer_dirty(leaf);
5510         btrfs_free_path(path);
5511
5512         inode->i_op = &btrfs_symlink_inode_operations;
5513         inode->i_mapping->a_ops = &btrfs_symlink_aops;
5514         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5515         inode_set_bytes(inode, name_len);
5516         btrfs_i_size_write(inode, name_len - 1);
5517         err = btrfs_update_inode(trans, root, inode);
5518         if (err)
5519                 drop_inode = 1;
5520
5521 out_unlock:
5522         nr = trans->blocks_used;
5523         btrfs_end_transaction_throttle(trans, root);
5524 out_fail:
5525         btrfs_unreserve_metadata_space(root, 5);
5526         if (drop_inode) {
5527                 inode_dec_link_count(inode);
5528                 iput(inode);
5529         }
5530         btrfs_btree_balance_dirty(root, nr);
5531         return err;
5532 }
5533
5534 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5535                                struct inode *inode, u64 start, u64 end,
5536                                u64 locked_end, u64 alloc_hint, int mode)
5537 {
5538         struct btrfs_root *root = BTRFS_I(inode)->root;
5539         struct btrfs_key ins;
5540         u64 alloc_size;
5541         u64 cur_offset = start;
5542         u64 num_bytes = end - start;
5543         int ret = 0;
5544
5545         while (num_bytes > 0) {
5546                 alloc_size = min(num_bytes, root->fs_info->max_extent);
5547
5548                 ret = btrfs_reserve_metadata_space(root, 1);
5549                 if (ret)
5550                         goto out;
5551
5552                 ret = btrfs_reserve_extent(trans, root, alloc_size,
5553                                            root->sectorsize, 0, alloc_hint,
5554                                            (u64)-1, &ins, 1);
5555                 if (ret) {
5556                         WARN_ON(1);
5557                         goto out;
5558                 }
5559                 ret = insert_reserved_file_extent(trans, inode,
5560                                                   cur_offset, ins.objectid,
5561                                                   ins.offset, ins.offset,
5562                                                   ins.offset, locked_end,
5563                                                   0, 0, 0,
5564                                                   BTRFS_FILE_EXTENT_PREALLOC);
5565                 BUG_ON(ret);
5566                 btrfs_drop_extent_cache(inode, cur_offset,
5567                                         cur_offset + ins.offset -1, 0);
5568                 num_bytes -= ins.offset;
5569                 cur_offset += ins.offset;
5570                 alloc_hint = ins.objectid + ins.offset;
5571                 btrfs_unreserve_metadata_space(root, 1);
5572         }
5573 out:
5574         if (cur_offset > start) {
5575                 inode->i_ctime = CURRENT_TIME;
5576                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5577                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5578                     cur_offset > i_size_read(inode))
5579                         btrfs_i_size_write(inode, cur_offset);
5580                 ret = btrfs_update_inode(trans, root, inode);
5581                 BUG_ON(ret);
5582         }
5583
5584         return ret;
5585 }
5586
5587 static long btrfs_fallocate(struct inode *inode, int mode,
5588                             loff_t offset, loff_t len)
5589 {
5590         u64 cur_offset;
5591         u64 last_byte;
5592         u64 alloc_start;
5593         u64 alloc_end;
5594         u64 alloc_hint = 0;
5595         u64 locked_end;
5596         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5597         struct extent_map *em;
5598         struct btrfs_trans_handle *trans;
5599         struct btrfs_root *root;
5600         int ret;
5601
5602         alloc_start = offset & ~mask;
5603         alloc_end =  (offset + len + mask) & ~mask;
5604
5605         /*
5606          * wait for ordered IO before we have any locks.  We'll loop again
5607          * below with the locks held.
5608          */
5609         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5610
5611         mutex_lock(&inode->i_mutex);
5612         if (alloc_start > inode->i_size) {
5613                 ret = btrfs_cont_expand(inode, alloc_start);
5614                 if (ret)
5615                         goto out;
5616         }
5617
5618         root = BTRFS_I(inode)->root;
5619
5620         ret = btrfs_check_data_free_space(root, inode,
5621                                           alloc_end - alloc_start);
5622         if (ret)
5623                 goto out;
5624
5625         locked_end = alloc_end - 1;
5626         while (1) {
5627                 struct btrfs_ordered_extent *ordered;
5628
5629                 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5630                 if (!trans) {
5631                         ret = -EIO;
5632                         goto out_free;
5633                 }
5634
5635                 /* the extent lock is ordered inside the running
5636                  * transaction
5637                  */
5638                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5639                             GFP_NOFS);
5640                 ordered = btrfs_lookup_first_ordered_extent(inode,
5641                                                             alloc_end - 1);
5642                 if (ordered &&
5643                     ordered->file_offset + ordered->len > alloc_start &&
5644                     ordered->file_offset < alloc_end) {
5645                         btrfs_put_ordered_extent(ordered);
5646                         unlock_extent(&BTRFS_I(inode)->io_tree,
5647                                       alloc_start, locked_end, GFP_NOFS);
5648                         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5649
5650                         /*
5651                          * we can't wait on the range with the transaction
5652                          * running or with the extent lock held
5653                          */
5654                         btrfs_wait_ordered_range(inode, alloc_start,
5655                                                  alloc_end - alloc_start);
5656                 } else {
5657                         if (ordered)
5658                                 btrfs_put_ordered_extent(ordered);
5659                         break;
5660                 }
5661         }
5662
5663         cur_offset = alloc_start;
5664         while (1) {
5665                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5666                                       alloc_end - cur_offset, 0);
5667                 BUG_ON(IS_ERR(em) || !em);
5668                 last_byte = min(extent_map_end(em), alloc_end);
5669                 last_byte = (last_byte + mask) & ~mask;
5670                 if (em->block_start == EXTENT_MAP_HOLE) {
5671                         ret = prealloc_file_range(trans, inode, cur_offset,
5672                                         last_byte, locked_end + 1,
5673                                         alloc_hint, mode);
5674                         if (ret < 0) {
5675                                 free_extent_map(em);
5676                                 break;
5677                         }
5678                 }
5679                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5680                         alloc_hint = em->block_start;
5681                 free_extent_map(em);
5682
5683                 cur_offset = last_byte;
5684                 if (cur_offset >= alloc_end) {
5685                         ret = 0;
5686                         break;
5687                 }
5688         }
5689         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5690                       GFP_NOFS);
5691
5692         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5693 out_free:
5694         btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
5695 out:
5696         mutex_unlock(&inode->i_mutex);
5697         return ret;
5698 }
5699
5700 static int btrfs_set_page_dirty(struct page *page)
5701 {
5702         return __set_page_dirty_nobuffers(page);
5703 }
5704
5705 static int btrfs_permission(struct inode *inode, int mask)
5706 {
5707         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5708                 return -EACCES;
5709         return generic_permission(inode, mask, btrfs_check_acl);
5710 }
5711
5712 static struct inode_operations btrfs_dir_inode_operations = {
5713         .getattr        = btrfs_getattr,
5714         .lookup         = btrfs_lookup,
5715         .create         = btrfs_create,
5716         .unlink         = btrfs_unlink,
5717         .link           = btrfs_link,
5718         .mkdir          = btrfs_mkdir,
5719         .rmdir          = btrfs_rmdir,
5720         .rename         = btrfs_rename,
5721         .symlink        = btrfs_symlink,
5722         .setattr        = btrfs_setattr,
5723         .mknod          = btrfs_mknod,
5724         .setxattr       = btrfs_setxattr,
5725         .getxattr       = btrfs_getxattr,
5726         .listxattr      = btrfs_listxattr,
5727         .removexattr    = btrfs_removexattr,
5728         .permission     = btrfs_permission,
5729 };
5730 static struct inode_operations btrfs_dir_ro_inode_operations = {
5731         .lookup         = btrfs_lookup,
5732         .permission     = btrfs_permission,
5733 };
5734
5735 static struct file_operations btrfs_dir_file_operations = {
5736         .llseek         = generic_file_llseek,
5737         .read           = generic_read_dir,
5738         .readdir        = btrfs_real_readdir,
5739         .unlocked_ioctl = btrfs_ioctl,
5740 #ifdef CONFIG_COMPAT
5741         .compat_ioctl   = btrfs_ioctl,
5742 #endif
5743         .release        = btrfs_release_file,
5744         .fsync          = btrfs_sync_file,
5745 };
5746
5747 static struct extent_io_ops btrfs_extent_io_ops = {
5748         .fill_delalloc = run_delalloc_range,
5749         .submit_bio_hook = btrfs_submit_bio_hook,
5750         .merge_bio_hook = btrfs_merge_bio_hook,
5751         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5752         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5753         .writepage_start_hook = btrfs_writepage_start_hook,
5754         .readpage_io_failed_hook = btrfs_io_failed_hook,
5755         .set_bit_hook = btrfs_set_bit_hook,
5756         .clear_bit_hook = btrfs_clear_bit_hook,
5757         .merge_extent_hook = btrfs_merge_extent_hook,
5758         .split_extent_hook = btrfs_split_extent_hook,
5759 };
5760
5761 /*
5762  * btrfs doesn't support the bmap operation because swapfiles
5763  * use bmap to make a mapping of extents in the file.  They assume
5764  * these extents won't change over the life of the file and they
5765  * use the bmap result to do IO directly to the drive.
5766  *
5767  * the btrfs bmap call would return logical addresses that aren't
5768  * suitable for IO and they also will change frequently as COW
5769  * operations happen.  So, swapfile + btrfs == corruption.
5770  *
5771  * For now we're avoiding this by dropping bmap.
5772  */
5773 static struct address_space_operations btrfs_aops = {
5774         .readpage       = btrfs_readpage,
5775         .writepage      = btrfs_writepage,
5776         .writepages     = btrfs_writepages,
5777         .readpages      = btrfs_readpages,
5778         .sync_page      = block_sync_page,
5779         .direct_IO      = btrfs_direct_IO,
5780         .invalidatepage = btrfs_invalidatepage,
5781         .releasepage    = btrfs_releasepage,
5782         .set_page_dirty = btrfs_set_page_dirty,
5783 };
5784
5785 static struct address_space_operations btrfs_symlink_aops = {
5786         .readpage       = btrfs_readpage,
5787         .writepage      = btrfs_writepage,
5788         .invalidatepage = btrfs_invalidatepage,
5789         .releasepage    = btrfs_releasepage,
5790 };
5791
5792 static struct inode_operations btrfs_file_inode_operations = {
5793         .truncate       = btrfs_truncate,
5794         .getattr        = btrfs_getattr,
5795         .setattr        = btrfs_setattr,
5796         .setxattr       = btrfs_setxattr,
5797         .getxattr       = btrfs_getxattr,
5798         .listxattr      = btrfs_listxattr,
5799         .removexattr    = btrfs_removexattr,
5800         .permission     = btrfs_permission,
5801         .fallocate      = btrfs_fallocate,
5802         .fiemap         = btrfs_fiemap,
5803 };
5804 static struct inode_operations btrfs_special_inode_operations = {
5805         .getattr        = btrfs_getattr,
5806         .setattr        = btrfs_setattr,
5807         .permission     = btrfs_permission,
5808         .setxattr       = btrfs_setxattr,
5809         .getxattr       = btrfs_getxattr,
5810         .listxattr      = btrfs_listxattr,
5811         .removexattr    = btrfs_removexattr,
5812 };
5813 static struct inode_operations btrfs_symlink_inode_operations = {
5814         .readlink       = generic_readlink,
5815         .follow_link    = page_follow_link_light,
5816         .put_link       = page_put_link,
5817         .permission     = btrfs_permission,
5818         .setxattr       = btrfs_setxattr,
5819         .getxattr       = btrfs_getxattr,
5820         .listxattr      = btrfs_listxattr,
5821         .removexattr    = btrfs_removexattr,
5822 };
5823
5824 struct dentry_operations btrfs_dentry_operations = {
5825         .d_delete       = btrfs_dentry_delete,
5826 };