]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/btrfs/inode.c
941f1b71cd2212b00d53109f83d73c1417e807fd
[mv-sheeva.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52
53 struct btrfs_iget_args {
54         u64 ino;
55         struct btrfs_root *root;
56 };
57
58 static struct inode_operations btrfs_dir_inode_operations;
59 static struct inode_operations btrfs_symlink_inode_operations;
60 static struct inode_operations btrfs_dir_ro_inode_operations;
61 static struct inode_operations btrfs_special_inode_operations;
62 static struct inode_operations btrfs_file_inode_operations;
63 static struct address_space_operations btrfs_aops;
64 static struct address_space_operations btrfs_symlink_aops;
65 static struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
76         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
77         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
78         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
79         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
80         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
81         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87                                    struct page *locked_page,
88                                    u64 start, u64 end, int *page_started,
89                                    unsigned long *nr_written, int unlock);
90
91 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
92 {
93         int err;
94
95         err = btrfs_init_acl(inode, dir);
96         if (!err)
97                 err = btrfs_xattr_security_init(inode, dir);
98         return err;
99 }
100
101 /*
102  * this does all the hard work for inserting an inline extent into
103  * the btree.  The caller should have done a btrfs_drop_extents so that
104  * no overlapping inline items exist in the btree
105  */
106 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
107                                 struct btrfs_root *root, struct inode *inode,
108                                 u64 start, size_t size, size_t compressed_size,
109                                 struct page **compressed_pages)
110 {
111         struct btrfs_key key;
112         struct btrfs_path *path;
113         struct extent_buffer *leaf;
114         struct page *page = NULL;
115         char *kaddr;
116         unsigned long ptr;
117         struct btrfs_file_extent_item *ei;
118         int err = 0;
119         int ret;
120         size_t cur_size = size;
121         size_t datasize;
122         unsigned long offset;
123         int use_compress = 0;
124
125         if (compressed_size && compressed_pages) {
126                 use_compress = 1;
127                 cur_size = compressed_size;
128         }
129
130         path = btrfs_alloc_path();
131         if (!path)
132                 return -ENOMEM;
133
134         path->leave_spinning = 1;
135         btrfs_set_trans_block_group(trans, inode);
136
137         key.objectid = inode->i_ino;
138         key.offset = start;
139         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
140         datasize = btrfs_file_extent_calc_inline_size(cur_size);
141
142         inode_add_bytes(inode, size);
143         ret = btrfs_insert_empty_item(trans, root, path, &key,
144                                       datasize);
145         BUG_ON(ret);
146         if (ret) {
147                 err = ret;
148                 goto fail;
149         }
150         leaf = path->nodes[0];
151         ei = btrfs_item_ptr(leaf, path->slots[0],
152                             struct btrfs_file_extent_item);
153         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155         btrfs_set_file_extent_encryption(leaf, ei, 0);
156         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158         ptr = btrfs_file_extent_inline_start(ei);
159
160         if (use_compress) {
161                 struct page *cpage;
162                 int i = 0;
163                 while (compressed_size > 0) {
164                         cpage = compressed_pages[i];
165                         cur_size = min_t(unsigned long, compressed_size,
166                                        PAGE_CACHE_SIZE);
167
168                         kaddr = kmap_atomic(cpage, KM_USER0);
169                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
170                         kunmap_atomic(kaddr, KM_USER0);
171
172                         i++;
173                         ptr += cur_size;
174                         compressed_size -= cur_size;
175                 }
176                 btrfs_set_file_extent_compression(leaf, ei,
177                                                   BTRFS_COMPRESS_ZLIB);
178         } else {
179                 page = find_get_page(inode->i_mapping,
180                                      start >> PAGE_CACHE_SHIFT);
181                 btrfs_set_file_extent_compression(leaf, ei, 0);
182                 kaddr = kmap_atomic(page, KM_USER0);
183                 offset = start & (PAGE_CACHE_SIZE - 1);
184                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185                 kunmap_atomic(kaddr, KM_USER0);
186                 page_cache_release(page);
187         }
188         btrfs_mark_buffer_dirty(leaf);
189         btrfs_free_path(path);
190
191         BTRFS_I(inode)->disk_i_size = inode->i_size;
192         btrfs_update_inode(trans, root, inode);
193         return 0;
194 fail:
195         btrfs_free_path(path);
196         return err;
197 }
198
199
200 /*
201  * conditionally insert an inline extent into the file.  This
202  * does the checks required to make sure the data is small enough
203  * to fit as an inline extent.
204  */
205 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
206                                  struct btrfs_root *root,
207                                  struct inode *inode, u64 start, u64 end,
208                                  size_t compressed_size,
209                                  struct page **compressed_pages)
210 {
211         u64 isize = i_size_read(inode);
212         u64 actual_end = min(end + 1, isize);
213         u64 inline_len = actual_end - start;
214         u64 aligned_end = (end + root->sectorsize - 1) &
215                         ~((u64)root->sectorsize - 1);
216         u64 hint_byte;
217         u64 data_len = inline_len;
218         int ret;
219
220         if (compressed_size)
221                 data_len = compressed_size;
222
223         if (start > 0 ||
224             actual_end >= PAGE_CACHE_SIZE ||
225             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226             (!compressed_size &&
227             (actual_end & (root->sectorsize - 1)) == 0) ||
228             end + 1 < isize ||
229             data_len > root->fs_info->max_inline) {
230                 return 1;
231         }
232
233         ret = btrfs_drop_extents(trans, root, inode, start,
234                                  aligned_end, aligned_end, start,
235                                  &hint_byte, 1);
236         BUG_ON(ret);
237
238         if (isize > actual_end)
239                 inline_len = min_t(u64, isize, actual_end);
240         ret = insert_inline_extent(trans, root, inode, start,
241                                    inline_len, compressed_size,
242                                    compressed_pages);
243         BUG_ON(ret);
244         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
245         return 0;
246 }
247
248 struct async_extent {
249         u64 start;
250         u64 ram_size;
251         u64 compressed_size;
252         struct page **pages;
253         unsigned long nr_pages;
254         struct list_head list;
255 };
256
257 struct async_cow {
258         struct inode *inode;
259         struct btrfs_root *root;
260         struct page *locked_page;
261         u64 start;
262         u64 end;
263         struct list_head extents;
264         struct btrfs_work work;
265 };
266
267 static noinline int add_async_extent(struct async_cow *cow,
268                                      u64 start, u64 ram_size,
269                                      u64 compressed_size,
270                                      struct page **pages,
271                                      unsigned long nr_pages)
272 {
273         struct async_extent *async_extent;
274
275         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276         async_extent->start = start;
277         async_extent->ram_size = ram_size;
278         async_extent->compressed_size = compressed_size;
279         async_extent->pages = pages;
280         async_extent->nr_pages = nr_pages;
281         list_add_tail(&async_extent->list, &cow->extents);
282         return 0;
283 }
284
285 /*
286  * we create compressed extents in two phases.  The first
287  * phase compresses a range of pages that have already been
288  * locked (both pages and state bits are locked).
289  *
290  * This is done inside an ordered work queue, and the compression
291  * is spread across many cpus.  The actual IO submission is step
292  * two, and the ordered work queue takes care of making sure that
293  * happens in the same order things were put onto the queue by
294  * writepages and friends.
295  *
296  * If this code finds it can't get good compression, it puts an
297  * entry onto the work queue to write the uncompressed bytes.  This
298  * makes sure that both compressed inodes and uncompressed inodes
299  * are written in the same order that pdflush sent them down.
300  */
301 static noinline int compress_file_range(struct inode *inode,
302                                         struct page *locked_page,
303                                         u64 start, u64 end,
304                                         struct async_cow *async_cow,
305                                         int *num_added)
306 {
307         struct btrfs_root *root = BTRFS_I(inode)->root;
308         struct btrfs_trans_handle *trans;
309         u64 num_bytes;
310         u64 orig_start;
311         u64 disk_num_bytes;
312         u64 blocksize = root->sectorsize;
313         u64 actual_end;
314         u64 isize = i_size_read(inode);
315         int ret = 0;
316         struct page **pages = NULL;
317         unsigned long nr_pages;
318         unsigned long nr_pages_ret = 0;
319         unsigned long total_compressed = 0;
320         unsigned long total_in = 0;
321         unsigned long max_compressed = 128 * 1024;
322         unsigned long max_uncompressed = 128 * 1024;
323         int i;
324         int will_compress;
325
326         orig_start = start;
327
328         actual_end = min_t(u64, isize, end + 1);
329 again:
330         will_compress = 0;
331         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
333
334         /*
335          * we don't want to send crud past the end of i_size through
336          * compression, that's just a waste of CPU time.  So, if the
337          * end of the file is before the start of our current
338          * requested range of bytes, we bail out to the uncompressed
339          * cleanup code that can deal with all of this.
340          *
341          * It isn't really the fastest way to fix things, but this is a
342          * very uncommon corner.
343          */
344         if (actual_end <= start)
345                 goto cleanup_and_bail_uncompressed;
346
347         total_compressed = actual_end - start;
348
349         /* we want to make sure that amount of ram required to uncompress
350          * an extent is reasonable, so we limit the total size in ram
351          * of a compressed extent to 128k.  This is a crucial number
352          * because it also controls how easily we can spread reads across
353          * cpus for decompression.
354          *
355          * We also want to make sure the amount of IO required to do
356          * a random read is reasonably small, so we limit the size of
357          * a compressed extent to 128k.
358          */
359         total_compressed = min(total_compressed, max_uncompressed);
360         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
361         num_bytes = max(blocksize,  num_bytes);
362         disk_num_bytes = num_bytes;
363         total_in = 0;
364         ret = 0;
365
366         /*
367          * we do compression for mount -o compress and when the
368          * inode has not been flagged as nocompress.  This flag can
369          * change at any time if we discover bad compression ratios.
370          */
371         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
372             btrfs_test_opt(root, COMPRESS)) {
373                 WARN_ON(pages);
374                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
375
376                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377                                                 total_compressed, pages,
378                                                 nr_pages, &nr_pages_ret,
379                                                 &total_in,
380                                                 &total_compressed,
381                                                 max_compressed);
382
383                 if (!ret) {
384                         unsigned long offset = total_compressed &
385                                 (PAGE_CACHE_SIZE - 1);
386                         struct page *page = pages[nr_pages_ret - 1];
387                         char *kaddr;
388
389                         /* zero the tail end of the last page, we might be
390                          * sending it down to disk
391                          */
392                         if (offset) {
393                                 kaddr = kmap_atomic(page, KM_USER0);
394                                 memset(kaddr + offset, 0,
395                                        PAGE_CACHE_SIZE - offset);
396                                 kunmap_atomic(kaddr, KM_USER0);
397                         }
398                         will_compress = 1;
399                 }
400         }
401         if (start == 0) {
402                 trans = btrfs_join_transaction(root, 1);
403                 BUG_ON(!trans);
404                 btrfs_set_trans_block_group(trans, inode);
405
406                 /* lets try to make an inline extent */
407                 if (ret || total_in < (actual_end - start)) {
408                         /* we didn't compress the entire range, try
409                          * to make an uncompressed inline extent.
410                          */
411                         ret = cow_file_range_inline(trans, root, inode,
412                                                     start, end, 0, NULL);
413                 } else {
414                         /* try making a compressed inline extent */
415                         ret = cow_file_range_inline(trans, root, inode,
416                                                     start, end,
417                                                     total_compressed, pages);
418                 }
419                 btrfs_end_transaction(trans, root);
420                 if (ret == 0) {
421                         /*
422                          * inline extent creation worked, we don't need
423                          * to create any more async work items.  Unlock
424                          * and free up our temp pages.
425                          */
426                         extent_clear_unlock_delalloc(inode,
427                                                      &BTRFS_I(inode)->io_tree,
428                                                      start, end, NULL, 1, 0,
429                                                      0, 1, 1, 1, 0);
430                         ret = 0;
431                         goto free_pages_out;
432                 }
433         }
434
435         if (will_compress) {
436                 /*
437                  * we aren't doing an inline extent round the compressed size
438                  * up to a block size boundary so the allocator does sane
439                  * things
440                  */
441                 total_compressed = (total_compressed + blocksize - 1) &
442                         ~(blocksize - 1);
443
444                 /*
445                  * one last check to make sure the compression is really a
446                  * win, compare the page count read with the blocks on disk
447                  */
448                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
449                         ~(PAGE_CACHE_SIZE - 1);
450                 if (total_compressed >= total_in) {
451                         will_compress = 0;
452                 } else {
453                         disk_num_bytes = total_compressed;
454                         num_bytes = total_in;
455                 }
456         }
457         if (!will_compress && pages) {
458                 /*
459                  * the compression code ran but failed to make things smaller,
460                  * free any pages it allocated and our page pointer array
461                  */
462                 for (i = 0; i < nr_pages_ret; i++) {
463                         WARN_ON(pages[i]->mapping);
464                         page_cache_release(pages[i]);
465                 }
466                 kfree(pages);
467                 pages = NULL;
468                 total_compressed = 0;
469                 nr_pages_ret = 0;
470
471                 /* flag the file so we don't compress in the future */
472                 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
473         }
474         if (will_compress) {
475                 *num_added += 1;
476
477                 /* the async work queues will take care of doing actual
478                  * allocation on disk for these compressed pages,
479                  * and will submit them to the elevator.
480                  */
481                 add_async_extent(async_cow, start, num_bytes,
482                                  total_compressed, pages, nr_pages_ret);
483
484                 if (start + num_bytes < end && start + num_bytes < actual_end) {
485                         start += num_bytes;
486                         pages = NULL;
487                         cond_resched();
488                         goto again;
489                 }
490         } else {
491 cleanup_and_bail_uncompressed:
492                 /*
493                  * No compression, but we still need to write the pages in
494                  * the file we've been given so far.  redirty the locked
495                  * page if it corresponds to our extent and set things up
496                  * for the async work queue to run cow_file_range to do
497                  * the normal delalloc dance
498                  */
499                 if (page_offset(locked_page) >= start &&
500                     page_offset(locked_page) <= end) {
501                         __set_page_dirty_nobuffers(locked_page);
502                         /* unlocked later on in the async handlers */
503                 }
504                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
505                 *num_added += 1;
506         }
507
508 out:
509         return 0;
510
511 free_pages_out:
512         for (i = 0; i < nr_pages_ret; i++) {
513                 WARN_ON(pages[i]->mapping);
514                 page_cache_release(pages[i]);
515         }
516         kfree(pages);
517
518         goto out;
519 }
520
521 /*
522  * phase two of compressed writeback.  This is the ordered portion
523  * of the code, which only gets called in the order the work was
524  * queued.  We walk all the async extents created by compress_file_range
525  * and send them down to the disk.
526  */
527 static noinline int submit_compressed_extents(struct inode *inode,
528                                               struct async_cow *async_cow)
529 {
530         struct async_extent *async_extent;
531         u64 alloc_hint = 0;
532         struct btrfs_trans_handle *trans;
533         struct btrfs_key ins;
534         struct extent_map *em;
535         struct btrfs_root *root = BTRFS_I(inode)->root;
536         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
537         struct extent_io_tree *io_tree;
538         int ret;
539
540         if (list_empty(&async_cow->extents))
541                 return 0;
542
543         trans = btrfs_join_transaction(root, 1);
544
545         while (!list_empty(&async_cow->extents)) {
546                 async_extent = list_entry(async_cow->extents.next,
547                                           struct async_extent, list);
548                 list_del(&async_extent->list);
549
550                 io_tree = &BTRFS_I(inode)->io_tree;
551
552                 /* did the compression code fall back to uncompressed IO? */
553                 if (!async_extent->pages) {
554                         int page_started = 0;
555                         unsigned long nr_written = 0;
556
557                         lock_extent(io_tree, async_extent->start,
558                                     async_extent->start +
559                                     async_extent->ram_size - 1, GFP_NOFS);
560
561                         /* allocate blocks */
562                         cow_file_range(inode, async_cow->locked_page,
563                                        async_extent->start,
564                                        async_extent->start +
565                                        async_extent->ram_size - 1,
566                                        &page_started, &nr_written, 0);
567
568                         /*
569                          * if page_started, cow_file_range inserted an
570                          * inline extent and took care of all the unlocking
571                          * and IO for us.  Otherwise, we need to submit
572                          * all those pages down to the drive.
573                          */
574                         if (!page_started)
575                                 extent_write_locked_range(io_tree,
576                                                   inode, async_extent->start,
577                                                   async_extent->start +
578                                                   async_extent->ram_size - 1,
579                                                   btrfs_get_extent,
580                                                   WB_SYNC_ALL);
581                         kfree(async_extent);
582                         cond_resched();
583                         continue;
584                 }
585
586                 lock_extent(io_tree, async_extent->start,
587                             async_extent->start + async_extent->ram_size - 1,
588                             GFP_NOFS);
589                 /*
590                  * here we're doing allocation and writeback of the
591                  * compressed pages
592                  */
593                 btrfs_drop_extent_cache(inode, async_extent->start,
594                                         async_extent->start +
595                                         async_extent->ram_size - 1, 0);
596
597                 ret = btrfs_reserve_extent(trans, root,
598                                            async_extent->compressed_size,
599                                            async_extent->compressed_size,
600                                            0, alloc_hint,
601                                            (u64)-1, &ins, 1);
602                 BUG_ON(ret);
603                 em = alloc_extent_map(GFP_NOFS);
604                 em->start = async_extent->start;
605                 em->len = async_extent->ram_size;
606                 em->orig_start = em->start;
607
608                 em->block_start = ins.objectid;
609                 em->block_len = ins.offset;
610                 em->bdev = root->fs_info->fs_devices->latest_bdev;
611                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
612                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
613
614                 while (1) {
615                         write_lock(&em_tree->lock);
616                         ret = add_extent_mapping(em_tree, em);
617                         write_unlock(&em_tree->lock);
618                         if (ret != -EEXIST) {
619                                 free_extent_map(em);
620                                 break;
621                         }
622                         btrfs_drop_extent_cache(inode, async_extent->start,
623                                                 async_extent->start +
624                                                 async_extent->ram_size - 1, 0);
625                 }
626
627                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
628                                                ins.objectid,
629                                                async_extent->ram_size,
630                                                ins.offset,
631                                                BTRFS_ORDERED_COMPRESSED);
632                 BUG_ON(ret);
633
634                 btrfs_end_transaction(trans, root);
635
636                 /*
637                  * clear dirty, set writeback and unlock the pages.
638                  */
639                 extent_clear_unlock_delalloc(inode,
640                                              &BTRFS_I(inode)->io_tree,
641                                              async_extent->start,
642                                              async_extent->start +
643                                              async_extent->ram_size - 1,
644                                              NULL, 1, 1, 0, 1, 1, 0, 0);
645
646                 ret = btrfs_submit_compressed_write(inode,
647                                     async_extent->start,
648                                     async_extent->ram_size,
649                                     ins.objectid,
650                                     ins.offset, async_extent->pages,
651                                     async_extent->nr_pages);
652
653                 BUG_ON(ret);
654                 trans = btrfs_join_transaction(root, 1);
655                 alloc_hint = ins.objectid + ins.offset;
656                 kfree(async_extent);
657                 cond_resched();
658         }
659
660         btrfs_end_transaction(trans, root);
661         return 0;
662 }
663
664 /*
665  * when extent_io.c finds a delayed allocation range in the file,
666  * the call backs end up in this code.  The basic idea is to
667  * allocate extents on disk for the range, and create ordered data structs
668  * in ram to track those extents.
669  *
670  * locked_page is the page that writepage had locked already.  We use
671  * it to make sure we don't do extra locks or unlocks.
672  *
673  * *page_started is set to one if we unlock locked_page and do everything
674  * required to start IO on it.  It may be clean and already done with
675  * IO when we return.
676  */
677 static noinline int cow_file_range(struct inode *inode,
678                                    struct page *locked_page,
679                                    u64 start, u64 end, int *page_started,
680                                    unsigned long *nr_written,
681                                    int unlock)
682 {
683         struct btrfs_root *root = BTRFS_I(inode)->root;
684         struct btrfs_trans_handle *trans;
685         u64 alloc_hint = 0;
686         u64 num_bytes;
687         unsigned long ram_size;
688         u64 disk_num_bytes;
689         u64 cur_alloc_size;
690         u64 blocksize = root->sectorsize;
691         u64 actual_end;
692         u64 isize = i_size_read(inode);
693         struct btrfs_key ins;
694         struct extent_map *em;
695         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
696         int ret = 0;
697
698         trans = btrfs_join_transaction(root, 1);
699         BUG_ON(!trans);
700         btrfs_set_trans_block_group(trans, inode);
701
702         actual_end = min_t(u64, isize, end + 1);
703
704         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
705         num_bytes = max(blocksize,  num_bytes);
706         disk_num_bytes = num_bytes;
707         ret = 0;
708
709         if (start == 0) {
710                 /* lets try to make an inline extent */
711                 ret = cow_file_range_inline(trans, root, inode,
712                                             start, end, 0, NULL);
713                 if (ret == 0) {
714                         extent_clear_unlock_delalloc(inode,
715                                                      &BTRFS_I(inode)->io_tree,
716                                                      start, end, NULL, 1, 1,
717                                                      1, 1, 1, 1, 0);
718                         *nr_written = *nr_written +
719                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
720                         *page_started = 1;
721                         ret = 0;
722                         goto out;
723                 }
724         }
725
726         BUG_ON(disk_num_bytes >
727                btrfs_super_total_bytes(&root->fs_info->super_copy));
728
729         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
730
731         while (disk_num_bytes > 0) {
732                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
733                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
734                                            root->sectorsize, 0, alloc_hint,
735                                            (u64)-1, &ins, 1);
736                 BUG_ON(ret);
737
738                 em = alloc_extent_map(GFP_NOFS);
739                 em->start = start;
740                 em->orig_start = em->start;
741
742                 ram_size = ins.offset;
743                 em->len = ins.offset;
744
745                 em->block_start = ins.objectid;
746                 em->block_len = ins.offset;
747                 em->bdev = root->fs_info->fs_devices->latest_bdev;
748                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
749
750                 while (1) {
751                         write_lock(&em_tree->lock);
752                         ret = add_extent_mapping(em_tree, em);
753                         write_unlock(&em_tree->lock);
754                         if (ret != -EEXIST) {
755                                 free_extent_map(em);
756                                 break;
757                         }
758                         btrfs_drop_extent_cache(inode, start,
759                                                 start + ram_size - 1, 0);
760                 }
761
762                 cur_alloc_size = ins.offset;
763                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
764                                                ram_size, cur_alloc_size, 0);
765                 BUG_ON(ret);
766
767                 if (root->root_key.objectid ==
768                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
769                         ret = btrfs_reloc_clone_csums(inode, start,
770                                                       cur_alloc_size);
771                         BUG_ON(ret);
772                 }
773
774                 if (disk_num_bytes < cur_alloc_size)
775                         break;
776
777                 /* we're not doing compressed IO, don't unlock the first
778                  * page (which the caller expects to stay locked), don't
779                  * clear any dirty bits and don't set any writeback bits
780                  *
781                  * Do set the Private2 bit so we know this page was properly
782                  * setup for writepage
783                  */
784                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
785                                              start, start + ram_size - 1,
786                                              locked_page, unlock, 1,
787                                              1, 0, 0, 0, 1);
788                 disk_num_bytes -= cur_alloc_size;
789                 num_bytes -= cur_alloc_size;
790                 alloc_hint = ins.objectid + ins.offset;
791                 start += cur_alloc_size;
792         }
793 out:
794         ret = 0;
795         btrfs_end_transaction(trans, root);
796
797         return ret;
798 }
799
800 /*
801  * work queue call back to started compression on a file and pages
802  */
803 static noinline void async_cow_start(struct btrfs_work *work)
804 {
805         struct async_cow *async_cow;
806         int num_added = 0;
807         async_cow = container_of(work, struct async_cow, work);
808
809         compress_file_range(async_cow->inode, async_cow->locked_page,
810                             async_cow->start, async_cow->end, async_cow,
811                             &num_added);
812         if (num_added == 0)
813                 async_cow->inode = NULL;
814 }
815
816 /*
817  * work queue call back to submit previously compressed pages
818  */
819 static noinline void async_cow_submit(struct btrfs_work *work)
820 {
821         struct async_cow *async_cow;
822         struct btrfs_root *root;
823         unsigned long nr_pages;
824
825         async_cow = container_of(work, struct async_cow, work);
826
827         root = async_cow->root;
828         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
829                 PAGE_CACHE_SHIFT;
830
831         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
832
833         if (atomic_read(&root->fs_info->async_delalloc_pages) <
834             5 * 1042 * 1024 &&
835             waitqueue_active(&root->fs_info->async_submit_wait))
836                 wake_up(&root->fs_info->async_submit_wait);
837
838         if (async_cow->inode)
839                 submit_compressed_extents(async_cow->inode, async_cow);
840 }
841
842 static noinline void async_cow_free(struct btrfs_work *work)
843 {
844         struct async_cow *async_cow;
845         async_cow = container_of(work, struct async_cow, work);
846         kfree(async_cow);
847 }
848
849 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
850                                 u64 start, u64 end, int *page_started,
851                                 unsigned long *nr_written)
852 {
853         struct async_cow *async_cow;
854         struct btrfs_root *root = BTRFS_I(inode)->root;
855         unsigned long nr_pages;
856         u64 cur_end;
857         int limit = 10 * 1024 * 1042;
858
859         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
860                          EXTENT_DELALLOC, 1, 0, NULL, GFP_NOFS);
861         while (start < end) {
862                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
863                 async_cow->inode = inode;
864                 async_cow->root = root;
865                 async_cow->locked_page = locked_page;
866                 async_cow->start = start;
867
868                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
869                         cur_end = end;
870                 else
871                         cur_end = min(end, start + 512 * 1024 - 1);
872
873                 async_cow->end = cur_end;
874                 INIT_LIST_HEAD(&async_cow->extents);
875
876                 async_cow->work.func = async_cow_start;
877                 async_cow->work.ordered_func = async_cow_submit;
878                 async_cow->work.ordered_free = async_cow_free;
879                 async_cow->work.flags = 0;
880
881                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
882                         PAGE_CACHE_SHIFT;
883                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
884
885                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
886                                    &async_cow->work);
887
888                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
889                         wait_event(root->fs_info->async_submit_wait,
890                            (atomic_read(&root->fs_info->async_delalloc_pages) <
891                             limit));
892                 }
893
894                 while (atomic_read(&root->fs_info->async_submit_draining) &&
895                       atomic_read(&root->fs_info->async_delalloc_pages)) {
896                         wait_event(root->fs_info->async_submit_wait,
897                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
898                            0));
899                 }
900
901                 *nr_written += nr_pages;
902                 start = cur_end + 1;
903         }
904         *page_started = 1;
905         return 0;
906 }
907
908 static noinline int csum_exist_in_range(struct btrfs_root *root,
909                                         u64 bytenr, u64 num_bytes)
910 {
911         int ret;
912         struct btrfs_ordered_sum *sums;
913         LIST_HEAD(list);
914
915         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
916                                        bytenr + num_bytes - 1, &list);
917         if (ret == 0 && list_empty(&list))
918                 return 0;
919
920         while (!list_empty(&list)) {
921                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
922                 list_del(&sums->list);
923                 kfree(sums);
924         }
925         return 1;
926 }
927
928 /*
929  * when nowcow writeback call back.  This checks for snapshots or COW copies
930  * of the extents that exist in the file, and COWs the file as required.
931  *
932  * If no cow copies or snapshots exist, we write directly to the existing
933  * blocks on disk
934  */
935 static noinline int run_delalloc_nocow(struct inode *inode,
936                                        struct page *locked_page,
937                               u64 start, u64 end, int *page_started, int force,
938                               unsigned long *nr_written)
939 {
940         struct btrfs_root *root = BTRFS_I(inode)->root;
941         struct btrfs_trans_handle *trans;
942         struct extent_buffer *leaf;
943         struct btrfs_path *path;
944         struct btrfs_file_extent_item *fi;
945         struct btrfs_key found_key;
946         u64 cow_start;
947         u64 cur_offset;
948         u64 extent_end;
949         u64 extent_offset;
950         u64 disk_bytenr;
951         u64 num_bytes;
952         int extent_type;
953         int ret;
954         int type;
955         int nocow;
956         int check_prev = 1;
957
958         path = btrfs_alloc_path();
959         BUG_ON(!path);
960         trans = btrfs_join_transaction(root, 1);
961         BUG_ON(!trans);
962
963         cow_start = (u64)-1;
964         cur_offset = start;
965         while (1) {
966                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
967                                                cur_offset, 0);
968                 BUG_ON(ret < 0);
969                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
970                         leaf = path->nodes[0];
971                         btrfs_item_key_to_cpu(leaf, &found_key,
972                                               path->slots[0] - 1);
973                         if (found_key.objectid == inode->i_ino &&
974                             found_key.type == BTRFS_EXTENT_DATA_KEY)
975                                 path->slots[0]--;
976                 }
977                 check_prev = 0;
978 next_slot:
979                 leaf = path->nodes[0];
980                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
981                         ret = btrfs_next_leaf(root, path);
982                         if (ret < 0)
983                                 BUG_ON(1);
984                         if (ret > 0)
985                                 break;
986                         leaf = path->nodes[0];
987                 }
988
989                 nocow = 0;
990                 disk_bytenr = 0;
991                 num_bytes = 0;
992                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
993
994                 if (found_key.objectid > inode->i_ino ||
995                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
996                     found_key.offset > end)
997                         break;
998
999                 if (found_key.offset > cur_offset) {
1000                         extent_end = found_key.offset;
1001                         goto out_check;
1002                 }
1003
1004                 fi = btrfs_item_ptr(leaf, path->slots[0],
1005                                     struct btrfs_file_extent_item);
1006                 extent_type = btrfs_file_extent_type(leaf, fi);
1007
1008                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1009                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1010                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1011                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1012                         extent_end = found_key.offset +
1013                                 btrfs_file_extent_num_bytes(leaf, fi);
1014                         if (extent_end <= start) {
1015                                 path->slots[0]++;
1016                                 goto next_slot;
1017                         }
1018                         if (disk_bytenr == 0)
1019                                 goto out_check;
1020                         if (btrfs_file_extent_compression(leaf, fi) ||
1021                             btrfs_file_extent_encryption(leaf, fi) ||
1022                             btrfs_file_extent_other_encoding(leaf, fi))
1023                                 goto out_check;
1024                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1025                                 goto out_check;
1026                         if (btrfs_extent_readonly(root, disk_bytenr))
1027                                 goto out_check;
1028                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1029                                                   found_key.offset -
1030                                                   extent_offset, disk_bytenr))
1031                                 goto out_check;
1032                         disk_bytenr += extent_offset;
1033                         disk_bytenr += cur_offset - found_key.offset;
1034                         num_bytes = min(end + 1, extent_end) - cur_offset;
1035                         /*
1036                          * force cow if csum exists in the range.
1037                          * this ensure that csum for a given extent are
1038                          * either valid or do not exist.
1039                          */
1040                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1041                                 goto out_check;
1042                         nocow = 1;
1043                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1044                         extent_end = found_key.offset +
1045                                 btrfs_file_extent_inline_len(leaf, fi);
1046                         extent_end = ALIGN(extent_end, root->sectorsize);
1047                 } else {
1048                         BUG_ON(1);
1049                 }
1050 out_check:
1051                 if (extent_end <= start) {
1052                         path->slots[0]++;
1053                         goto next_slot;
1054                 }
1055                 if (!nocow) {
1056                         if (cow_start == (u64)-1)
1057                                 cow_start = cur_offset;
1058                         cur_offset = extent_end;
1059                         if (cur_offset > end)
1060                                 break;
1061                         path->slots[0]++;
1062                         goto next_slot;
1063                 }
1064
1065                 btrfs_release_path(root, path);
1066                 if (cow_start != (u64)-1) {
1067                         ret = cow_file_range(inode, locked_page, cow_start,
1068                                         found_key.offset - 1, page_started,
1069                                         nr_written, 1);
1070                         BUG_ON(ret);
1071                         cow_start = (u64)-1;
1072                 }
1073
1074                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1075                         struct extent_map *em;
1076                         struct extent_map_tree *em_tree;
1077                         em_tree = &BTRFS_I(inode)->extent_tree;
1078                         em = alloc_extent_map(GFP_NOFS);
1079                         em->start = cur_offset;
1080                         em->orig_start = em->start;
1081                         em->len = num_bytes;
1082                         em->block_len = num_bytes;
1083                         em->block_start = disk_bytenr;
1084                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1085                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1086                         while (1) {
1087                                 write_lock(&em_tree->lock);
1088                                 ret = add_extent_mapping(em_tree, em);
1089                                 write_unlock(&em_tree->lock);
1090                                 if (ret != -EEXIST) {
1091                                         free_extent_map(em);
1092                                         break;
1093                                 }
1094                                 btrfs_drop_extent_cache(inode, em->start,
1095                                                 em->start + em->len - 1, 0);
1096                         }
1097                         type = BTRFS_ORDERED_PREALLOC;
1098                 } else {
1099                         type = BTRFS_ORDERED_NOCOW;
1100                 }
1101
1102                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1103                                                num_bytes, num_bytes, type);
1104                 BUG_ON(ret);
1105
1106                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1107                                         cur_offset, cur_offset + num_bytes - 1,
1108                                         locked_page, 1, 1, 1, 0, 0, 0, 1);
1109                 cur_offset = extent_end;
1110                 if (cur_offset > end)
1111                         break;
1112         }
1113         btrfs_release_path(root, path);
1114
1115         if (cur_offset <= end && cow_start == (u64)-1)
1116                 cow_start = cur_offset;
1117         if (cow_start != (u64)-1) {
1118                 ret = cow_file_range(inode, locked_page, cow_start, end,
1119                                      page_started, nr_written, 1);
1120                 BUG_ON(ret);
1121         }
1122
1123         ret = btrfs_end_transaction(trans, root);
1124         BUG_ON(ret);
1125         btrfs_free_path(path);
1126         return 0;
1127 }
1128
1129 /*
1130  * extent_io.c call back to do delayed allocation processing
1131  */
1132 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1133                               u64 start, u64 end, int *page_started,
1134                               unsigned long *nr_written)
1135 {
1136         int ret;
1137         struct btrfs_root *root = BTRFS_I(inode)->root;
1138
1139         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1140                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1141                                          page_started, 1, nr_written);
1142         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1143                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1144                                          page_started, 0, nr_written);
1145         else if (!btrfs_test_opt(root, COMPRESS))
1146                 ret = cow_file_range(inode, locked_page, start, end,
1147                                       page_started, nr_written, 1);
1148         else
1149                 ret = cow_file_range_async(inode, locked_page, start, end,
1150                                            page_started, nr_written);
1151         return ret;
1152 }
1153
1154 /*
1155  * extent_io.c set_bit_hook, used to track delayed allocation
1156  * bytes in this file, and to maintain the list of inodes that
1157  * have pending delalloc work to be done.
1158  */
1159 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1160                        unsigned long old, unsigned long bits)
1161 {
1162         /*
1163          * set_bit and clear bit hooks normally require _irqsave/restore
1164          * but in this case, we are only testeing for the DELALLOC
1165          * bit, which is only set or cleared with irqs on
1166          */
1167         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1168                 struct btrfs_root *root = BTRFS_I(inode)->root;
1169                 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1170                 spin_lock(&root->fs_info->delalloc_lock);
1171                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1172                 root->fs_info->delalloc_bytes += end - start + 1;
1173                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1174                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1175                                       &root->fs_info->delalloc_inodes);
1176                 }
1177                 spin_unlock(&root->fs_info->delalloc_lock);
1178         }
1179         return 0;
1180 }
1181
1182 /*
1183  * extent_io.c clear_bit_hook, see set_bit_hook for why
1184  */
1185 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1186                          unsigned long old, unsigned long bits)
1187 {
1188         /*
1189          * set_bit and clear bit hooks normally require _irqsave/restore
1190          * but in this case, we are only testeing for the DELALLOC
1191          * bit, which is only set or cleared with irqs on
1192          */
1193         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1194                 struct btrfs_root *root = BTRFS_I(inode)->root;
1195
1196                 spin_lock(&root->fs_info->delalloc_lock);
1197                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1198                         printk(KERN_INFO "btrfs warning: delalloc account "
1199                                "%llu %llu\n",
1200                                (unsigned long long)end - start + 1,
1201                                (unsigned long long)
1202                                root->fs_info->delalloc_bytes);
1203                         btrfs_delalloc_free_space(root, inode, (u64)-1);
1204                         root->fs_info->delalloc_bytes = 0;
1205                         BTRFS_I(inode)->delalloc_bytes = 0;
1206                 } else {
1207                         btrfs_delalloc_free_space(root, inode,
1208                                                   end - start + 1);
1209                         root->fs_info->delalloc_bytes -= end - start + 1;
1210                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1211                 }
1212                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1213                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1214                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1215                 }
1216                 spin_unlock(&root->fs_info->delalloc_lock);
1217         }
1218         return 0;
1219 }
1220
1221 /*
1222  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1223  * we don't create bios that span stripes or chunks
1224  */
1225 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1226                          size_t size, struct bio *bio,
1227                          unsigned long bio_flags)
1228 {
1229         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1230         struct btrfs_mapping_tree *map_tree;
1231         u64 logical = (u64)bio->bi_sector << 9;
1232         u64 length = 0;
1233         u64 map_length;
1234         int ret;
1235
1236         if (bio_flags & EXTENT_BIO_COMPRESSED)
1237                 return 0;
1238
1239         length = bio->bi_size;
1240         map_tree = &root->fs_info->mapping_tree;
1241         map_length = length;
1242         ret = btrfs_map_block(map_tree, READ, logical,
1243                               &map_length, NULL, 0);
1244
1245         if (map_length < length + size)
1246                 return 1;
1247         return 0;
1248 }
1249
1250 /*
1251  * in order to insert checksums into the metadata in large chunks,
1252  * we wait until bio submission time.   All the pages in the bio are
1253  * checksummed and sums are attached onto the ordered extent record.
1254  *
1255  * At IO completion time the cums attached on the ordered extent record
1256  * are inserted into the btree
1257  */
1258 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1259                                     struct bio *bio, int mirror_num,
1260                                     unsigned long bio_flags)
1261 {
1262         struct btrfs_root *root = BTRFS_I(inode)->root;
1263         int ret = 0;
1264
1265         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1266         BUG_ON(ret);
1267         return 0;
1268 }
1269
1270 /*
1271  * in order to insert checksums into the metadata in large chunks,
1272  * we wait until bio submission time.   All the pages in the bio are
1273  * checksummed and sums are attached onto the ordered extent record.
1274  *
1275  * At IO completion time the cums attached on the ordered extent record
1276  * are inserted into the btree
1277  */
1278 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1279                           int mirror_num, unsigned long bio_flags)
1280 {
1281         struct btrfs_root *root = BTRFS_I(inode)->root;
1282         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1283 }
1284
1285 /*
1286  * extent_io.c submission hook. This does the right thing for csum calculation
1287  * on write, or reading the csums from the tree before a read
1288  */
1289 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1290                           int mirror_num, unsigned long bio_flags)
1291 {
1292         struct btrfs_root *root = BTRFS_I(inode)->root;
1293         int ret = 0;
1294         int skip_sum;
1295
1296         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1297
1298         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1299         BUG_ON(ret);
1300
1301         if (!(rw & (1 << BIO_RW))) {
1302                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1303                         return btrfs_submit_compressed_read(inode, bio,
1304                                                     mirror_num, bio_flags);
1305                 } else if (!skip_sum)
1306                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1307                 goto mapit;
1308         } else if (!skip_sum) {
1309                 /* csum items have already been cloned */
1310                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1311                         goto mapit;
1312                 /* we're doing a write, do the async checksumming */
1313                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1314                                    inode, rw, bio, mirror_num,
1315                                    bio_flags, __btrfs_submit_bio_start,
1316                                    __btrfs_submit_bio_done);
1317         }
1318
1319 mapit:
1320         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1321 }
1322
1323 /*
1324  * given a list of ordered sums record them in the inode.  This happens
1325  * at IO completion time based on sums calculated at bio submission time.
1326  */
1327 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1328                              struct inode *inode, u64 file_offset,
1329                              struct list_head *list)
1330 {
1331         struct btrfs_ordered_sum *sum;
1332
1333         btrfs_set_trans_block_group(trans, inode);
1334
1335         list_for_each_entry(sum, list, list) {
1336                 btrfs_csum_file_blocks(trans,
1337                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1338         }
1339         return 0;
1340 }
1341
1342 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1343 {
1344         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1345                 WARN_ON(1);
1346         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1347                                    GFP_NOFS);
1348 }
1349
1350 /* see btrfs_writepage_start_hook for details on why this is required */
1351 struct btrfs_writepage_fixup {
1352         struct page *page;
1353         struct btrfs_work work;
1354 };
1355
1356 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1357 {
1358         struct btrfs_writepage_fixup *fixup;
1359         struct btrfs_ordered_extent *ordered;
1360         struct page *page;
1361         struct inode *inode;
1362         u64 page_start;
1363         u64 page_end;
1364
1365         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1366         page = fixup->page;
1367 again:
1368         lock_page(page);
1369         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1370                 ClearPageChecked(page);
1371                 goto out_page;
1372         }
1373
1374         inode = page->mapping->host;
1375         page_start = page_offset(page);
1376         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1377
1378         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1379
1380         /* already ordered? We're done */
1381         if (PagePrivate2(page))
1382                 goto out;
1383
1384         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1385         if (ordered) {
1386                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1387                               page_end, GFP_NOFS);
1388                 unlock_page(page);
1389                 btrfs_start_ordered_extent(inode, ordered, 1);
1390                 goto again;
1391         }
1392
1393         btrfs_set_extent_delalloc(inode, page_start, page_end);
1394         ClearPageChecked(page);
1395 out:
1396         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1397 out_page:
1398         unlock_page(page);
1399         page_cache_release(page);
1400 }
1401
1402 /*
1403  * There are a few paths in the higher layers of the kernel that directly
1404  * set the page dirty bit without asking the filesystem if it is a
1405  * good idea.  This causes problems because we want to make sure COW
1406  * properly happens and the data=ordered rules are followed.
1407  *
1408  * In our case any range that doesn't have the ORDERED bit set
1409  * hasn't been properly setup for IO.  We kick off an async process
1410  * to fix it up.  The async helper will wait for ordered extents, set
1411  * the delalloc bit and make it safe to write the page.
1412  */
1413 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1414 {
1415         struct inode *inode = page->mapping->host;
1416         struct btrfs_writepage_fixup *fixup;
1417         struct btrfs_root *root = BTRFS_I(inode)->root;
1418
1419         /* this page is properly in the ordered list */
1420         if (TestClearPagePrivate2(page))
1421                 return 0;
1422
1423         if (PageChecked(page))
1424                 return -EAGAIN;
1425
1426         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1427         if (!fixup)
1428                 return -EAGAIN;
1429
1430         SetPageChecked(page);
1431         page_cache_get(page);
1432         fixup->work.func = btrfs_writepage_fixup_worker;
1433         fixup->page = page;
1434         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1435         return -EAGAIN;
1436 }
1437
1438 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1439                                        struct inode *inode, u64 file_pos,
1440                                        u64 disk_bytenr, u64 disk_num_bytes,
1441                                        u64 num_bytes, u64 ram_bytes,
1442                                        u64 locked_end,
1443                                        u8 compression, u8 encryption,
1444                                        u16 other_encoding, int extent_type)
1445 {
1446         struct btrfs_root *root = BTRFS_I(inode)->root;
1447         struct btrfs_file_extent_item *fi;
1448         struct btrfs_path *path;
1449         struct extent_buffer *leaf;
1450         struct btrfs_key ins;
1451         u64 hint;
1452         int ret;
1453
1454         path = btrfs_alloc_path();
1455         BUG_ON(!path);
1456
1457         path->leave_spinning = 1;
1458
1459         /*
1460          * we may be replacing one extent in the tree with another.
1461          * The new extent is pinned in the extent map, and we don't want
1462          * to drop it from the cache until it is completely in the btree.
1463          *
1464          * So, tell btrfs_drop_extents to leave this extent in the cache.
1465          * the caller is expected to unpin it and allow it to be merged
1466          * with the others.
1467          */
1468         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1469                                  file_pos + num_bytes, locked_end,
1470                                  file_pos, &hint, 0);
1471         BUG_ON(ret);
1472
1473         ins.objectid = inode->i_ino;
1474         ins.offset = file_pos;
1475         ins.type = BTRFS_EXTENT_DATA_KEY;
1476         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1477         BUG_ON(ret);
1478         leaf = path->nodes[0];
1479         fi = btrfs_item_ptr(leaf, path->slots[0],
1480                             struct btrfs_file_extent_item);
1481         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1482         btrfs_set_file_extent_type(leaf, fi, extent_type);
1483         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1484         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1485         btrfs_set_file_extent_offset(leaf, fi, 0);
1486         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1487         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1488         btrfs_set_file_extent_compression(leaf, fi, compression);
1489         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1490         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1491
1492         btrfs_unlock_up_safe(path, 1);
1493         btrfs_set_lock_blocking(leaf);
1494
1495         btrfs_mark_buffer_dirty(leaf);
1496
1497         inode_add_bytes(inode, num_bytes);
1498
1499         ins.objectid = disk_bytenr;
1500         ins.offset = disk_num_bytes;
1501         ins.type = BTRFS_EXTENT_ITEM_KEY;
1502         ret = btrfs_alloc_reserved_file_extent(trans, root,
1503                                         root->root_key.objectid,
1504                                         inode->i_ino, file_pos, &ins);
1505         BUG_ON(ret);
1506         btrfs_free_path(path);
1507
1508         return 0;
1509 }
1510
1511 /*
1512  * helper function for btrfs_finish_ordered_io, this
1513  * just reads in some of the csum leaves to prime them into ram
1514  * before we start the transaction.  It limits the amount of btree
1515  * reads required while inside the transaction.
1516  */
1517 static noinline void reada_csum(struct btrfs_root *root,
1518                                 struct btrfs_path *path,
1519                                 struct btrfs_ordered_extent *ordered_extent)
1520 {
1521         struct btrfs_ordered_sum *sum;
1522         u64 bytenr;
1523
1524         sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1525                          list);
1526         bytenr = sum->sums[0].bytenr;
1527
1528         /*
1529          * we don't care about the results, the point of this search is
1530          * just to get the btree leaves into ram
1531          */
1532         btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1533 }
1534
1535 /* as ordered data IO finishes, this gets called so we can finish
1536  * an ordered extent if the range of bytes in the file it covers are
1537  * fully written.
1538  */
1539 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1540 {
1541         struct btrfs_root *root = BTRFS_I(inode)->root;
1542         struct btrfs_trans_handle *trans;
1543         struct btrfs_ordered_extent *ordered_extent = NULL;
1544         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1545         struct btrfs_path *path;
1546         int compressed = 0;
1547         int ret;
1548
1549         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1550         if (!ret)
1551                 return 0;
1552
1553         /*
1554          * before we join the transaction, try to do some of our IO.
1555          * This will limit the amount of IO that we have to do with
1556          * the transaction running.  We're unlikely to need to do any
1557          * IO if the file extents are new, the disk_i_size checks
1558          * covers the most common case.
1559          */
1560         if (start < BTRFS_I(inode)->disk_i_size) {
1561                 path = btrfs_alloc_path();
1562                 if (path) {
1563                         ret = btrfs_lookup_file_extent(NULL, root, path,
1564                                                        inode->i_ino,
1565                                                        start, 0);
1566                         ordered_extent = btrfs_lookup_ordered_extent(inode,
1567                                                                      start);
1568                         if (!list_empty(&ordered_extent->list)) {
1569                                 btrfs_release_path(root, path);
1570                                 reada_csum(root, path, ordered_extent);
1571                         }
1572                         btrfs_free_path(path);
1573                 }
1574         }
1575
1576         trans = btrfs_join_transaction(root, 1);
1577
1578         if (!ordered_extent)
1579                 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1580         BUG_ON(!ordered_extent);
1581         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1582                 goto nocow;
1583
1584         lock_extent(io_tree, ordered_extent->file_offset,
1585                     ordered_extent->file_offset + ordered_extent->len - 1,
1586                     GFP_NOFS);
1587
1588         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1589                 compressed = 1;
1590         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1591                 BUG_ON(compressed);
1592                 ret = btrfs_mark_extent_written(trans, root, inode,
1593                                                 ordered_extent->file_offset,
1594                                                 ordered_extent->file_offset +
1595                                                 ordered_extent->len);
1596                 BUG_ON(ret);
1597         } else {
1598                 ret = insert_reserved_file_extent(trans, inode,
1599                                                 ordered_extent->file_offset,
1600                                                 ordered_extent->start,
1601                                                 ordered_extent->disk_len,
1602                                                 ordered_extent->len,
1603                                                 ordered_extent->len,
1604                                                 ordered_extent->file_offset +
1605                                                 ordered_extent->len,
1606                                                 compressed, 0, 0,
1607                                                 BTRFS_FILE_EXTENT_REG);
1608                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1609                                    ordered_extent->file_offset,
1610                                    ordered_extent->len);
1611                 BUG_ON(ret);
1612         }
1613         unlock_extent(io_tree, ordered_extent->file_offset,
1614                     ordered_extent->file_offset + ordered_extent->len - 1,
1615                     GFP_NOFS);
1616 nocow:
1617         add_pending_csums(trans, inode, ordered_extent->file_offset,
1618                           &ordered_extent->list);
1619
1620         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1621         btrfs_ordered_update_i_size(inode, ordered_extent);
1622         btrfs_update_inode(trans, root, inode);
1623         btrfs_remove_ordered_extent(inode, ordered_extent);
1624         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1625
1626         /* once for us */
1627         btrfs_put_ordered_extent(ordered_extent);
1628         /* once for the tree */
1629         btrfs_put_ordered_extent(ordered_extent);
1630
1631         btrfs_end_transaction(trans, root);
1632         return 0;
1633 }
1634
1635 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1636                                 struct extent_state *state, int uptodate)
1637 {
1638         ClearPagePrivate2(page);
1639         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1640 }
1641
1642 /*
1643  * When IO fails, either with EIO or csum verification fails, we
1644  * try other mirrors that might have a good copy of the data.  This
1645  * io_failure_record is used to record state as we go through all the
1646  * mirrors.  If another mirror has good data, the page is set up to date
1647  * and things continue.  If a good mirror can't be found, the original
1648  * bio end_io callback is called to indicate things have failed.
1649  */
1650 struct io_failure_record {
1651         struct page *page;
1652         u64 start;
1653         u64 len;
1654         u64 logical;
1655         unsigned long bio_flags;
1656         int last_mirror;
1657 };
1658
1659 static int btrfs_io_failed_hook(struct bio *failed_bio,
1660                          struct page *page, u64 start, u64 end,
1661                          struct extent_state *state)
1662 {
1663         struct io_failure_record *failrec = NULL;
1664         u64 private;
1665         struct extent_map *em;
1666         struct inode *inode = page->mapping->host;
1667         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1668         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1669         struct bio *bio;
1670         int num_copies;
1671         int ret;
1672         int rw;
1673         u64 logical;
1674
1675         ret = get_state_private(failure_tree, start, &private);
1676         if (ret) {
1677                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1678                 if (!failrec)
1679                         return -ENOMEM;
1680                 failrec->start = start;
1681                 failrec->len = end - start + 1;
1682                 failrec->last_mirror = 0;
1683                 failrec->bio_flags = 0;
1684
1685                 read_lock(&em_tree->lock);
1686                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1687                 if (em->start > start || em->start + em->len < start) {
1688                         free_extent_map(em);
1689                         em = NULL;
1690                 }
1691                 read_unlock(&em_tree->lock);
1692
1693                 if (!em || IS_ERR(em)) {
1694                         kfree(failrec);
1695                         return -EIO;
1696                 }
1697                 logical = start - em->start;
1698                 logical = em->block_start + logical;
1699                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1700                         logical = em->block_start;
1701                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1702                 }
1703                 failrec->logical = logical;
1704                 free_extent_map(em);
1705                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1706                                 EXTENT_DIRTY, GFP_NOFS);
1707                 set_state_private(failure_tree, start,
1708                                  (u64)(unsigned long)failrec);
1709         } else {
1710                 failrec = (struct io_failure_record *)(unsigned long)private;
1711         }
1712         num_copies = btrfs_num_copies(
1713                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1714                               failrec->logical, failrec->len);
1715         failrec->last_mirror++;
1716         if (!state) {
1717                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1718                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1719                                                     failrec->start,
1720                                                     EXTENT_LOCKED);
1721                 if (state && state->start != failrec->start)
1722                         state = NULL;
1723                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1724         }
1725         if (!state || failrec->last_mirror > num_copies) {
1726                 set_state_private(failure_tree, failrec->start, 0);
1727                 clear_extent_bits(failure_tree, failrec->start,
1728                                   failrec->start + failrec->len - 1,
1729                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1730                 kfree(failrec);
1731                 return -EIO;
1732         }
1733         bio = bio_alloc(GFP_NOFS, 1);
1734         bio->bi_private = state;
1735         bio->bi_end_io = failed_bio->bi_end_io;
1736         bio->bi_sector = failrec->logical >> 9;
1737         bio->bi_bdev = failed_bio->bi_bdev;
1738         bio->bi_size = 0;
1739
1740         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1741         if (failed_bio->bi_rw & (1 << BIO_RW))
1742                 rw = WRITE;
1743         else
1744                 rw = READ;
1745
1746         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1747                                                       failrec->last_mirror,
1748                                                       failrec->bio_flags);
1749         return 0;
1750 }
1751
1752 /*
1753  * each time an IO finishes, we do a fast check in the IO failure tree
1754  * to see if we need to process or clean up an io_failure_record
1755  */
1756 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1757 {
1758         u64 private;
1759         u64 private_failure;
1760         struct io_failure_record *failure;
1761         int ret;
1762
1763         private = 0;
1764         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1765                              (u64)-1, 1, EXTENT_DIRTY)) {
1766                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1767                                         start, &private_failure);
1768                 if (ret == 0) {
1769                         failure = (struct io_failure_record *)(unsigned long)
1770                                    private_failure;
1771                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1772                                           failure->start, 0);
1773                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1774                                           failure->start,
1775                                           failure->start + failure->len - 1,
1776                                           EXTENT_DIRTY | EXTENT_LOCKED,
1777                                           GFP_NOFS);
1778                         kfree(failure);
1779                 }
1780         }
1781         return 0;
1782 }
1783
1784 /*
1785  * when reads are done, we need to check csums to verify the data is correct
1786  * if there's a match, we allow the bio to finish.  If not, we go through
1787  * the io_failure_record routines to find good copies
1788  */
1789 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1790                                struct extent_state *state)
1791 {
1792         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1793         struct inode *inode = page->mapping->host;
1794         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1795         char *kaddr;
1796         u64 private = ~(u32)0;
1797         int ret;
1798         struct btrfs_root *root = BTRFS_I(inode)->root;
1799         u32 csum = ~(u32)0;
1800
1801         if (PageChecked(page)) {
1802                 ClearPageChecked(page);
1803                 goto good;
1804         }
1805
1806         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1807                 return 0;
1808
1809         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1810             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1811                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1812                                   GFP_NOFS);
1813                 return 0;
1814         }
1815
1816         if (state && state->start == start) {
1817                 private = state->private;
1818                 ret = 0;
1819         } else {
1820                 ret = get_state_private(io_tree, start, &private);
1821         }
1822         kaddr = kmap_atomic(page, KM_USER0);
1823         if (ret)
1824                 goto zeroit;
1825
1826         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1827         btrfs_csum_final(csum, (char *)&csum);
1828         if (csum != private)
1829                 goto zeroit;
1830
1831         kunmap_atomic(kaddr, KM_USER0);
1832 good:
1833         /* if the io failure tree for this inode is non-empty,
1834          * check to see if we've recovered from a failed IO
1835          */
1836         btrfs_clean_io_failures(inode, start);
1837         return 0;
1838
1839 zeroit:
1840         if (printk_ratelimit()) {
1841                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1842                        "private %llu\n", page->mapping->host->i_ino,
1843                        (unsigned long long)start, csum,
1844                        (unsigned long long)private);
1845         }
1846         memset(kaddr + offset, 1, end - start + 1);
1847         flush_dcache_page(page);
1848         kunmap_atomic(kaddr, KM_USER0);
1849         if (private == 0)
1850                 return 0;
1851         return -EIO;
1852 }
1853
1854 /*
1855  * This creates an orphan entry for the given inode in case something goes
1856  * wrong in the middle of an unlink/truncate.
1857  */
1858 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1859 {
1860         struct btrfs_root *root = BTRFS_I(inode)->root;
1861         int ret = 0;
1862
1863         spin_lock(&root->list_lock);
1864
1865         /* already on the orphan list, we're good */
1866         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1867                 spin_unlock(&root->list_lock);
1868                 return 0;
1869         }
1870
1871         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1872
1873         spin_unlock(&root->list_lock);
1874
1875         /*
1876          * insert an orphan item to track this unlinked/truncated file
1877          */
1878         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1879
1880         return ret;
1881 }
1882
1883 /*
1884  * We have done the truncate/delete so we can go ahead and remove the orphan
1885  * item for this particular inode.
1886  */
1887 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1888 {
1889         struct btrfs_root *root = BTRFS_I(inode)->root;
1890         int ret = 0;
1891
1892         spin_lock(&root->list_lock);
1893
1894         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1895                 spin_unlock(&root->list_lock);
1896                 return 0;
1897         }
1898
1899         list_del_init(&BTRFS_I(inode)->i_orphan);
1900         if (!trans) {
1901                 spin_unlock(&root->list_lock);
1902                 return 0;
1903         }
1904
1905         spin_unlock(&root->list_lock);
1906
1907         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1908
1909         return ret;
1910 }
1911
1912 /*
1913  * this cleans up any orphans that may be left on the list from the last use
1914  * of this root.
1915  */
1916 void btrfs_orphan_cleanup(struct btrfs_root *root)
1917 {
1918         struct btrfs_path *path;
1919         struct extent_buffer *leaf;
1920         struct btrfs_item *item;
1921         struct btrfs_key key, found_key;
1922         struct btrfs_trans_handle *trans;
1923         struct inode *inode;
1924         int ret = 0, nr_unlink = 0, nr_truncate = 0;
1925
1926         path = btrfs_alloc_path();
1927         if (!path)
1928                 return;
1929         path->reada = -1;
1930
1931         key.objectid = BTRFS_ORPHAN_OBJECTID;
1932         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1933         key.offset = (u64)-1;
1934
1935
1936         while (1) {
1937                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1938                 if (ret < 0) {
1939                         printk(KERN_ERR "Error searching slot for orphan: %d"
1940                                "\n", ret);
1941                         break;
1942                 }
1943
1944                 /*
1945                  * if ret == 0 means we found what we were searching for, which
1946                  * is weird, but possible, so only screw with path if we didnt
1947                  * find the key and see if we have stuff that matches
1948                  */
1949                 if (ret > 0) {
1950                         if (path->slots[0] == 0)
1951                                 break;
1952                         path->slots[0]--;
1953                 }
1954
1955                 /* pull out the item */
1956                 leaf = path->nodes[0];
1957                 item = btrfs_item_nr(leaf, path->slots[0]);
1958                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1959
1960                 /* make sure the item matches what we want */
1961                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1962                         break;
1963                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1964                         break;
1965
1966                 /* release the path since we're done with it */
1967                 btrfs_release_path(root, path);
1968
1969                 /*
1970                  * this is where we are basically btrfs_lookup, without the
1971                  * crossing root thing.  we store the inode number in the
1972                  * offset of the orphan item.
1973                  */
1974                 found_key.objectid = found_key.offset;
1975                 found_key.type = BTRFS_INODE_ITEM_KEY;
1976                 found_key.offset = 0;
1977                 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
1978                 if (IS_ERR(inode))
1979                         break;
1980
1981                 /*
1982                  * add this inode to the orphan list so btrfs_orphan_del does
1983                  * the proper thing when we hit it
1984                  */
1985                 spin_lock(&root->list_lock);
1986                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1987                 spin_unlock(&root->list_lock);
1988
1989                 /*
1990                  * if this is a bad inode, means we actually succeeded in
1991                  * removing the inode, but not the orphan record, which means
1992                  * we need to manually delete the orphan since iput will just
1993                  * do a destroy_inode
1994                  */
1995                 if (is_bad_inode(inode)) {
1996                         trans = btrfs_start_transaction(root, 1);
1997                         btrfs_orphan_del(trans, inode);
1998                         btrfs_end_transaction(trans, root);
1999                         iput(inode);
2000                         continue;
2001                 }
2002
2003                 /* if we have links, this was a truncate, lets do that */
2004                 if (inode->i_nlink) {
2005                         nr_truncate++;
2006                         btrfs_truncate(inode);
2007                 } else {
2008                         nr_unlink++;
2009                 }
2010
2011                 /* this will do delete_inode and everything for us */
2012                 iput(inode);
2013         }
2014
2015         if (nr_unlink)
2016                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2017         if (nr_truncate)
2018                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2019
2020         btrfs_free_path(path);
2021 }
2022
2023 /*
2024  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2025  * don't find any xattrs, we know there can't be any acls.
2026  *
2027  * slot is the slot the inode is in, objectid is the objectid of the inode
2028  */
2029 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2030                                           int slot, u64 objectid)
2031 {
2032         u32 nritems = btrfs_header_nritems(leaf);
2033         struct btrfs_key found_key;
2034         int scanned = 0;
2035
2036         slot++;
2037         while (slot < nritems) {
2038                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2039
2040                 /* we found a different objectid, there must not be acls */
2041                 if (found_key.objectid != objectid)
2042                         return 0;
2043
2044                 /* we found an xattr, assume we've got an acl */
2045                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2046                         return 1;
2047
2048                 /*
2049                  * we found a key greater than an xattr key, there can't
2050                  * be any acls later on
2051                  */
2052                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2053                         return 0;
2054
2055                 slot++;
2056                 scanned++;
2057
2058                 /*
2059                  * it goes inode, inode backrefs, xattrs, extents,
2060                  * so if there are a ton of hard links to an inode there can
2061                  * be a lot of backrefs.  Don't waste time searching too hard,
2062                  * this is just an optimization
2063                  */
2064                 if (scanned >= 8)
2065                         break;
2066         }
2067         /* we hit the end of the leaf before we found an xattr or
2068          * something larger than an xattr.  We have to assume the inode
2069          * has acls
2070          */
2071         return 1;
2072 }
2073
2074 /*
2075  * read an inode from the btree into the in-memory inode
2076  */
2077 static void btrfs_read_locked_inode(struct inode *inode)
2078 {
2079         struct btrfs_path *path;
2080         struct extent_buffer *leaf;
2081         struct btrfs_inode_item *inode_item;
2082         struct btrfs_timespec *tspec;
2083         struct btrfs_root *root = BTRFS_I(inode)->root;
2084         struct btrfs_key location;
2085         int maybe_acls;
2086         u64 alloc_group_block;
2087         u32 rdev;
2088         int ret;
2089
2090         path = btrfs_alloc_path();
2091         BUG_ON(!path);
2092         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2093
2094         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2095         if (ret)
2096                 goto make_bad;
2097
2098         leaf = path->nodes[0];
2099         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2100                                     struct btrfs_inode_item);
2101
2102         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2103         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2104         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2105         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2106         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2107
2108         tspec = btrfs_inode_atime(inode_item);
2109         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2110         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2111
2112         tspec = btrfs_inode_mtime(inode_item);
2113         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2114         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2115
2116         tspec = btrfs_inode_ctime(inode_item);
2117         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2118         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2119
2120         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2121         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2122         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2123         inode->i_generation = BTRFS_I(inode)->generation;
2124         inode->i_rdev = 0;
2125         rdev = btrfs_inode_rdev(leaf, inode_item);
2126
2127         BTRFS_I(inode)->index_cnt = (u64)-1;
2128         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2129
2130         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2131
2132         /*
2133          * try to precache a NULL acl entry for files that don't have
2134          * any xattrs or acls
2135          */
2136         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2137         if (!maybe_acls)
2138                 cache_no_acl(inode);
2139
2140         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2141                                                 alloc_group_block, 0);
2142         btrfs_free_path(path);
2143         inode_item = NULL;
2144
2145         switch (inode->i_mode & S_IFMT) {
2146         case S_IFREG:
2147                 inode->i_mapping->a_ops = &btrfs_aops;
2148                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2149                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2150                 inode->i_fop = &btrfs_file_operations;
2151                 inode->i_op = &btrfs_file_inode_operations;
2152                 break;
2153         case S_IFDIR:
2154                 inode->i_fop = &btrfs_dir_file_operations;
2155                 if (root == root->fs_info->tree_root)
2156                         inode->i_op = &btrfs_dir_ro_inode_operations;
2157                 else
2158                         inode->i_op = &btrfs_dir_inode_operations;
2159                 break;
2160         case S_IFLNK:
2161                 inode->i_op = &btrfs_symlink_inode_operations;
2162                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2163                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2164                 break;
2165         default:
2166                 inode->i_op = &btrfs_special_inode_operations;
2167                 init_special_inode(inode, inode->i_mode, rdev);
2168                 break;
2169         }
2170
2171         btrfs_update_iflags(inode);
2172         return;
2173
2174 make_bad:
2175         btrfs_free_path(path);
2176         make_bad_inode(inode);
2177 }
2178
2179 /*
2180  * given a leaf and an inode, copy the inode fields into the leaf
2181  */
2182 static void fill_inode_item(struct btrfs_trans_handle *trans,
2183                             struct extent_buffer *leaf,
2184                             struct btrfs_inode_item *item,
2185                             struct inode *inode)
2186 {
2187         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2188         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2189         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2190         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2191         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2192
2193         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2194                                inode->i_atime.tv_sec);
2195         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2196                                 inode->i_atime.tv_nsec);
2197
2198         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2199                                inode->i_mtime.tv_sec);
2200         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2201                                 inode->i_mtime.tv_nsec);
2202
2203         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2204                                inode->i_ctime.tv_sec);
2205         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2206                                 inode->i_ctime.tv_nsec);
2207
2208         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2209         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2210         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2211         btrfs_set_inode_transid(leaf, item, trans->transid);
2212         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2213         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2214         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2215 }
2216
2217 /*
2218  * copy everything in the in-memory inode into the btree.
2219  */
2220 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2221                                 struct btrfs_root *root, struct inode *inode)
2222 {
2223         struct btrfs_inode_item *inode_item;
2224         struct btrfs_path *path;
2225         struct extent_buffer *leaf;
2226         int ret;
2227
2228         path = btrfs_alloc_path();
2229         BUG_ON(!path);
2230         path->leave_spinning = 1;
2231         ret = btrfs_lookup_inode(trans, root, path,
2232                                  &BTRFS_I(inode)->location, 1);
2233         if (ret) {
2234                 if (ret > 0)
2235                         ret = -ENOENT;
2236                 goto failed;
2237         }
2238
2239         btrfs_unlock_up_safe(path, 1);
2240         leaf = path->nodes[0];
2241         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2242                                   struct btrfs_inode_item);
2243
2244         fill_inode_item(trans, leaf, inode_item, inode);
2245         btrfs_mark_buffer_dirty(leaf);
2246         btrfs_set_inode_last_trans(trans, inode);
2247         ret = 0;
2248 failed:
2249         btrfs_free_path(path);
2250         return ret;
2251 }
2252
2253
2254 /*
2255  * unlink helper that gets used here in inode.c and in the tree logging
2256  * recovery code.  It remove a link in a directory with a given name, and
2257  * also drops the back refs in the inode to the directory
2258  */
2259 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2260                        struct btrfs_root *root,
2261                        struct inode *dir, struct inode *inode,
2262                        const char *name, int name_len)
2263 {
2264         struct btrfs_path *path;
2265         int ret = 0;
2266         struct extent_buffer *leaf;
2267         struct btrfs_dir_item *di;
2268         struct btrfs_key key;
2269         u64 index;
2270
2271         path = btrfs_alloc_path();
2272         if (!path) {
2273                 ret = -ENOMEM;
2274                 goto err;
2275         }
2276
2277         path->leave_spinning = 1;
2278         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2279                                     name, name_len, -1);
2280         if (IS_ERR(di)) {
2281                 ret = PTR_ERR(di);
2282                 goto err;
2283         }
2284         if (!di) {
2285                 ret = -ENOENT;
2286                 goto err;
2287         }
2288         leaf = path->nodes[0];
2289         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2290         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2291         if (ret)
2292                 goto err;
2293         btrfs_release_path(root, path);
2294
2295         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2296                                   inode->i_ino,
2297                                   dir->i_ino, &index);
2298         if (ret) {
2299                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2300                        "inode %lu parent %lu\n", name_len, name,
2301                        inode->i_ino, dir->i_ino);
2302                 goto err;
2303         }
2304
2305         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2306                                          index, name, name_len, -1);
2307         if (IS_ERR(di)) {
2308                 ret = PTR_ERR(di);
2309                 goto err;
2310         }
2311         if (!di) {
2312                 ret = -ENOENT;
2313                 goto err;
2314         }
2315         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2316         btrfs_release_path(root, path);
2317
2318         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2319                                          inode, dir->i_ino);
2320         BUG_ON(ret != 0 && ret != -ENOENT);
2321
2322         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2323                                            dir, index);
2324         BUG_ON(ret);
2325 err:
2326         btrfs_free_path(path);
2327         if (ret)
2328                 goto out;
2329
2330         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2331         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2332         btrfs_update_inode(trans, root, dir);
2333         btrfs_drop_nlink(inode);
2334         ret = btrfs_update_inode(trans, root, inode);
2335 out:
2336         return ret;
2337 }
2338
2339 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2340 {
2341         struct btrfs_root *root;
2342         struct btrfs_trans_handle *trans;
2343         struct inode *inode = dentry->d_inode;
2344         int ret;
2345         unsigned long nr = 0;
2346
2347         root = BTRFS_I(dir)->root;
2348
2349         trans = btrfs_start_transaction(root, 1);
2350
2351         btrfs_set_trans_block_group(trans, dir);
2352
2353         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2354
2355         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2356                                  dentry->d_name.name, dentry->d_name.len);
2357
2358         if (inode->i_nlink == 0)
2359                 ret = btrfs_orphan_add(trans, inode);
2360
2361         nr = trans->blocks_used;
2362
2363         btrfs_end_transaction_throttle(trans, root);
2364         btrfs_btree_balance_dirty(root, nr);
2365         return ret;
2366 }
2367
2368 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2369 {
2370         struct inode *inode = dentry->d_inode;
2371         int err = 0;
2372         int ret;
2373         struct btrfs_root *root = BTRFS_I(dir)->root;
2374         struct btrfs_trans_handle *trans;
2375         unsigned long nr = 0;
2376
2377         /*
2378          * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2379          * the root of a subvolume or snapshot
2380          */
2381         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2382             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2383                 return -ENOTEMPTY;
2384         }
2385
2386         trans = btrfs_start_transaction(root, 1);
2387         btrfs_set_trans_block_group(trans, dir);
2388
2389         err = btrfs_orphan_add(trans, inode);
2390         if (err)
2391                 goto fail_trans;
2392
2393         /* now the directory is empty */
2394         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2395                                  dentry->d_name.name, dentry->d_name.len);
2396         if (!err)
2397                 btrfs_i_size_write(inode, 0);
2398
2399 fail_trans:
2400         nr = trans->blocks_used;
2401         ret = btrfs_end_transaction_throttle(trans, root);
2402         btrfs_btree_balance_dirty(root, nr);
2403
2404         if (ret && !err)
2405                 err = ret;
2406         return err;
2407 }
2408
2409 #if 0
2410 /*
2411  * when truncating bytes in a file, it is possible to avoid reading
2412  * the leaves that contain only checksum items.  This can be the
2413  * majority of the IO required to delete a large file, but it must
2414  * be done carefully.
2415  *
2416  * The keys in the level just above the leaves are checked to make sure
2417  * the lowest key in a given leaf is a csum key, and starts at an offset
2418  * after the new  size.
2419  *
2420  * Then the key for the next leaf is checked to make sure it also has
2421  * a checksum item for the same file.  If it does, we know our target leaf
2422  * contains only checksum items, and it can be safely freed without reading
2423  * it.
2424  *
2425  * This is just an optimization targeted at large files.  It may do
2426  * nothing.  It will return 0 unless things went badly.
2427  */
2428 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2429                                      struct btrfs_root *root,
2430                                      struct btrfs_path *path,
2431                                      struct inode *inode, u64 new_size)
2432 {
2433         struct btrfs_key key;
2434         int ret;
2435         int nritems;
2436         struct btrfs_key found_key;
2437         struct btrfs_key other_key;
2438         struct btrfs_leaf_ref *ref;
2439         u64 leaf_gen;
2440         u64 leaf_start;
2441
2442         path->lowest_level = 1;
2443         key.objectid = inode->i_ino;
2444         key.type = BTRFS_CSUM_ITEM_KEY;
2445         key.offset = new_size;
2446 again:
2447         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2448         if (ret < 0)
2449                 goto out;
2450
2451         if (path->nodes[1] == NULL) {
2452                 ret = 0;
2453                 goto out;
2454         }
2455         ret = 0;
2456         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2457         nritems = btrfs_header_nritems(path->nodes[1]);
2458
2459         if (!nritems)
2460                 goto out;
2461
2462         if (path->slots[1] >= nritems)
2463                 goto next_node;
2464
2465         /* did we find a key greater than anything we want to delete? */
2466         if (found_key.objectid > inode->i_ino ||
2467            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2468                 goto out;
2469
2470         /* we check the next key in the node to make sure the leave contains
2471          * only checksum items.  This comparison doesn't work if our
2472          * leaf is the last one in the node
2473          */
2474         if (path->slots[1] + 1 >= nritems) {
2475 next_node:
2476                 /* search forward from the last key in the node, this
2477                  * will bring us into the next node in the tree
2478                  */
2479                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2480
2481                 /* unlikely, but we inc below, so check to be safe */
2482                 if (found_key.offset == (u64)-1)
2483                         goto out;
2484
2485                 /* search_forward needs a path with locks held, do the
2486                  * search again for the original key.  It is possible
2487                  * this will race with a balance and return a path that
2488                  * we could modify, but this drop is just an optimization
2489                  * and is allowed to miss some leaves.
2490                  */
2491                 btrfs_release_path(root, path);
2492                 found_key.offset++;
2493
2494                 /* setup a max key for search_forward */
2495                 other_key.offset = (u64)-1;
2496                 other_key.type = key.type;
2497                 other_key.objectid = key.objectid;
2498
2499                 path->keep_locks = 1;
2500                 ret = btrfs_search_forward(root, &found_key, &other_key,
2501                                            path, 0, 0);
2502                 path->keep_locks = 0;
2503                 if (ret || found_key.objectid != key.objectid ||
2504                     found_key.type != key.type) {
2505                         ret = 0;
2506                         goto out;
2507                 }
2508
2509                 key.offset = found_key.offset;
2510                 btrfs_release_path(root, path);
2511                 cond_resched();
2512                 goto again;
2513         }
2514
2515         /* we know there's one more slot after us in the tree,
2516          * read that key so we can verify it is also a checksum item
2517          */
2518         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2519
2520         if (found_key.objectid < inode->i_ino)
2521                 goto next_key;
2522
2523         if (found_key.type != key.type || found_key.offset < new_size)
2524                 goto next_key;
2525
2526         /*
2527          * if the key for the next leaf isn't a csum key from this objectid,
2528          * we can't be sure there aren't good items inside this leaf.
2529          * Bail out
2530          */
2531         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2532                 goto out;
2533
2534         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2535         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2536         /*
2537          * it is safe to delete this leaf, it contains only
2538          * csum items from this inode at an offset >= new_size
2539          */
2540         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2541         BUG_ON(ret);
2542
2543         if (root->ref_cows && leaf_gen < trans->transid) {
2544                 ref = btrfs_alloc_leaf_ref(root, 0);
2545                 if (ref) {
2546                         ref->root_gen = root->root_key.offset;
2547                         ref->bytenr = leaf_start;
2548                         ref->owner = 0;
2549                         ref->generation = leaf_gen;
2550                         ref->nritems = 0;
2551
2552                         btrfs_sort_leaf_ref(ref);
2553
2554                         ret = btrfs_add_leaf_ref(root, ref, 0);
2555                         WARN_ON(ret);
2556                         btrfs_free_leaf_ref(root, ref);
2557                 } else {
2558                         WARN_ON(1);
2559                 }
2560         }
2561 next_key:
2562         btrfs_release_path(root, path);
2563
2564         if (other_key.objectid == inode->i_ino &&
2565             other_key.type == key.type && other_key.offset > key.offset) {
2566                 key.offset = other_key.offset;
2567                 cond_resched();
2568                 goto again;
2569         }
2570         ret = 0;
2571 out:
2572         /* fixup any changes we've made to the path */
2573         path->lowest_level = 0;
2574         path->keep_locks = 0;
2575         btrfs_release_path(root, path);
2576         return ret;
2577 }
2578
2579 #endif
2580
2581 /*
2582  * this can truncate away extent items, csum items and directory items.
2583  * It starts at a high offset and removes keys until it can't find
2584  * any higher than new_size
2585  *
2586  * csum items that cross the new i_size are truncated to the new size
2587  * as well.
2588  *
2589  * min_type is the minimum key type to truncate down to.  If set to 0, this
2590  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2591  */
2592 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2593                                         struct btrfs_root *root,
2594                                         struct inode *inode,
2595                                         u64 new_size, u32 min_type)
2596 {
2597         int ret;
2598         struct btrfs_path *path;
2599         struct btrfs_key key;
2600         struct btrfs_key found_key;
2601         u32 found_type = (u8)-1;
2602         struct extent_buffer *leaf;
2603         struct btrfs_file_extent_item *fi;
2604         u64 extent_start = 0;
2605         u64 extent_num_bytes = 0;
2606         u64 extent_offset = 0;
2607         u64 item_end = 0;
2608         int found_extent;
2609         int del_item;
2610         int pending_del_nr = 0;
2611         int pending_del_slot = 0;
2612         int extent_type = -1;
2613         int encoding;
2614         u64 mask = root->sectorsize - 1;
2615
2616         if (root->ref_cows)
2617                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2618         path = btrfs_alloc_path();
2619         BUG_ON(!path);
2620         path->reada = -1;
2621
2622         /* FIXME, add redo link to tree so we don't leak on crash */
2623         key.objectid = inode->i_ino;
2624         key.offset = (u64)-1;
2625         key.type = (u8)-1;
2626
2627 search_again:
2628         path->leave_spinning = 1;
2629         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2630         if (ret < 0)
2631                 goto error;
2632
2633         if (ret > 0) {
2634                 /* there are no items in the tree for us to truncate, we're
2635                  * done
2636                  */
2637                 if (path->slots[0] == 0) {
2638                         ret = 0;
2639                         goto error;
2640                 }
2641                 path->slots[0]--;
2642         }
2643
2644         while (1) {
2645                 fi = NULL;
2646                 leaf = path->nodes[0];
2647                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2648                 found_type = btrfs_key_type(&found_key);
2649                 encoding = 0;
2650
2651                 if (found_key.objectid != inode->i_ino)
2652                         break;
2653
2654                 if (found_type < min_type)
2655                         break;
2656
2657                 item_end = found_key.offset;
2658                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2659                         fi = btrfs_item_ptr(leaf, path->slots[0],
2660                                             struct btrfs_file_extent_item);
2661                         extent_type = btrfs_file_extent_type(leaf, fi);
2662                         encoding = btrfs_file_extent_compression(leaf, fi);
2663                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2664                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2665
2666                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2667                                 item_end +=
2668                                     btrfs_file_extent_num_bytes(leaf, fi);
2669                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2670                                 item_end += btrfs_file_extent_inline_len(leaf,
2671                                                                          fi);
2672                         }
2673                         item_end--;
2674                 }
2675                 if (item_end < new_size) {
2676                         if (found_type == BTRFS_DIR_ITEM_KEY)
2677                                 found_type = BTRFS_INODE_ITEM_KEY;
2678                         else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2679                                 found_type = BTRFS_EXTENT_DATA_KEY;
2680                         else if (found_type == BTRFS_EXTENT_DATA_KEY)
2681                                 found_type = BTRFS_XATTR_ITEM_KEY;
2682                         else if (found_type == BTRFS_XATTR_ITEM_KEY)
2683                                 found_type = BTRFS_INODE_REF_KEY;
2684                         else if (found_type)
2685                                 found_type--;
2686                         else
2687                                 break;
2688                         btrfs_set_key_type(&key, found_type);
2689                         goto next;
2690                 }
2691                 if (found_key.offset >= new_size)
2692                         del_item = 1;
2693                 else
2694                         del_item = 0;
2695                 found_extent = 0;
2696
2697                 /* FIXME, shrink the extent if the ref count is only 1 */
2698                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2699                         goto delete;
2700
2701                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2702                         u64 num_dec;
2703                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2704                         if (!del_item && !encoding) {
2705                                 u64 orig_num_bytes =
2706                                         btrfs_file_extent_num_bytes(leaf, fi);
2707                                 extent_num_bytes = new_size -
2708                                         found_key.offset + root->sectorsize - 1;
2709                                 extent_num_bytes = extent_num_bytes &
2710                                         ~((u64)root->sectorsize - 1);
2711                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2712                                                          extent_num_bytes);
2713                                 num_dec = (orig_num_bytes -
2714                                            extent_num_bytes);
2715                                 if (root->ref_cows && extent_start != 0)
2716                                         inode_sub_bytes(inode, num_dec);
2717                                 btrfs_mark_buffer_dirty(leaf);
2718                         } else {
2719                                 extent_num_bytes =
2720                                         btrfs_file_extent_disk_num_bytes(leaf,
2721                                                                          fi);
2722                                 extent_offset = found_key.offset -
2723                                         btrfs_file_extent_offset(leaf, fi);
2724
2725                                 /* FIXME blocksize != 4096 */
2726                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2727                                 if (extent_start != 0) {
2728                                         found_extent = 1;
2729                                         if (root->ref_cows)
2730                                                 inode_sub_bytes(inode, num_dec);
2731                                 }
2732                         }
2733                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2734                         /*
2735                          * we can't truncate inline items that have had
2736                          * special encodings
2737                          */
2738                         if (!del_item &&
2739                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2740                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2741                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2742                                 u32 size = new_size - found_key.offset;
2743
2744                                 if (root->ref_cows) {
2745                                         inode_sub_bytes(inode, item_end + 1 -
2746                                                         new_size);
2747                                 }
2748                                 size =
2749                                     btrfs_file_extent_calc_inline_size(size);
2750                                 ret = btrfs_truncate_item(trans, root, path,
2751                                                           size, 1);
2752                                 BUG_ON(ret);
2753                         } else if (root->ref_cows) {
2754                                 inode_sub_bytes(inode, item_end + 1 -
2755                                                 found_key.offset);
2756                         }
2757                 }
2758 delete:
2759                 if (del_item) {
2760                         if (!pending_del_nr) {
2761                                 /* no pending yet, add ourselves */
2762                                 pending_del_slot = path->slots[0];
2763                                 pending_del_nr = 1;
2764                         } else if (pending_del_nr &&
2765                                    path->slots[0] + 1 == pending_del_slot) {
2766                                 /* hop on the pending chunk */
2767                                 pending_del_nr++;
2768                                 pending_del_slot = path->slots[0];
2769                         } else {
2770                                 BUG();
2771                         }
2772                 } else {
2773                         break;
2774                 }
2775                 if (found_extent && root->ref_cows) {
2776                         btrfs_set_path_blocking(path);
2777                         ret = btrfs_free_extent(trans, root, extent_start,
2778                                                 extent_num_bytes, 0,
2779                                                 btrfs_header_owner(leaf),
2780                                                 inode->i_ino, extent_offset);
2781                         BUG_ON(ret);
2782                 }
2783 next:
2784                 if (path->slots[0] == 0) {
2785                         if (pending_del_nr)
2786                                 goto del_pending;
2787                         btrfs_release_path(root, path);
2788                         if (found_type == BTRFS_INODE_ITEM_KEY)
2789                                 break;
2790                         goto search_again;
2791                 }
2792
2793                 path->slots[0]--;
2794                 if (pending_del_nr &&
2795                     path->slots[0] + 1 != pending_del_slot) {
2796                         struct btrfs_key debug;
2797 del_pending:
2798                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2799                                               pending_del_slot);
2800                         ret = btrfs_del_items(trans, root, path,
2801                                               pending_del_slot,
2802                                               pending_del_nr);
2803                         BUG_ON(ret);
2804                         pending_del_nr = 0;
2805                         btrfs_release_path(root, path);
2806                         if (found_type == BTRFS_INODE_ITEM_KEY)
2807                                 break;
2808                         goto search_again;
2809                 }
2810         }
2811         ret = 0;
2812 error:
2813         if (pending_del_nr) {
2814                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2815                                       pending_del_nr);
2816         }
2817         btrfs_free_path(path);
2818         return ret;
2819 }
2820
2821 /*
2822  * taken from block_truncate_page, but does cow as it zeros out
2823  * any bytes left in the last page in the file.
2824  */
2825 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2826 {
2827         struct inode *inode = mapping->host;
2828         struct btrfs_root *root = BTRFS_I(inode)->root;
2829         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2830         struct btrfs_ordered_extent *ordered;
2831         char *kaddr;
2832         u32 blocksize = root->sectorsize;
2833         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2834         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2835         struct page *page;
2836         int ret = 0;
2837         u64 page_start;
2838         u64 page_end;
2839
2840         if ((offset & (blocksize - 1)) == 0)
2841                 goto out;
2842
2843         ret = -ENOMEM;
2844 again:
2845         page = grab_cache_page(mapping, index);
2846         if (!page)
2847                 goto out;
2848
2849         page_start = page_offset(page);
2850         page_end = page_start + PAGE_CACHE_SIZE - 1;
2851
2852         if (!PageUptodate(page)) {
2853                 ret = btrfs_readpage(NULL, page);
2854                 lock_page(page);
2855                 if (page->mapping != mapping) {
2856                         unlock_page(page);
2857                         page_cache_release(page);
2858                         goto again;
2859                 }
2860                 if (!PageUptodate(page)) {
2861                         ret = -EIO;
2862                         goto out_unlock;
2863                 }
2864         }
2865         wait_on_page_writeback(page);
2866
2867         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2868         set_page_extent_mapped(page);
2869
2870         ordered = btrfs_lookup_ordered_extent(inode, page_start);
2871         if (ordered) {
2872                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2873                 unlock_page(page);
2874                 page_cache_release(page);
2875                 btrfs_start_ordered_extent(inode, ordered, 1);
2876                 btrfs_put_ordered_extent(ordered);
2877                 goto again;
2878         }
2879
2880         btrfs_set_extent_delalloc(inode, page_start, page_end);
2881         ret = 0;
2882         if (offset != PAGE_CACHE_SIZE) {
2883                 kaddr = kmap(page);
2884                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2885                 flush_dcache_page(page);
2886                 kunmap(page);
2887         }
2888         ClearPageChecked(page);
2889         set_page_dirty(page);
2890         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2891
2892 out_unlock:
2893         unlock_page(page);
2894         page_cache_release(page);
2895 out:
2896         return ret;
2897 }
2898
2899 int btrfs_cont_expand(struct inode *inode, loff_t size)
2900 {
2901         struct btrfs_trans_handle *trans;
2902         struct btrfs_root *root = BTRFS_I(inode)->root;
2903         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2904         struct extent_map *em;
2905         u64 mask = root->sectorsize - 1;
2906         u64 hole_start = (inode->i_size + mask) & ~mask;
2907         u64 block_end = (size + mask) & ~mask;
2908         u64 last_byte;
2909         u64 cur_offset;
2910         u64 hole_size;
2911         int err;
2912
2913         if (size <= hole_start)
2914                 return 0;
2915
2916         err = btrfs_check_metadata_free_space(root);
2917         if (err)
2918                 return err;
2919
2920         btrfs_truncate_page(inode->i_mapping, inode->i_size);
2921
2922         while (1) {
2923                 struct btrfs_ordered_extent *ordered;
2924                 btrfs_wait_ordered_range(inode, hole_start,
2925                                          block_end - hole_start);
2926                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2927                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2928                 if (!ordered)
2929                         break;
2930                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2931                 btrfs_put_ordered_extent(ordered);
2932         }
2933
2934         trans = btrfs_start_transaction(root, 1);
2935         btrfs_set_trans_block_group(trans, inode);
2936
2937         cur_offset = hole_start;
2938         while (1) {
2939                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2940                                 block_end - cur_offset, 0);
2941                 BUG_ON(IS_ERR(em) || !em);
2942                 last_byte = min(extent_map_end(em), block_end);
2943                 last_byte = (last_byte + mask) & ~mask;
2944                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2945                         u64 hint_byte = 0;
2946                         hole_size = last_byte - cur_offset;
2947                         err = btrfs_drop_extents(trans, root, inode,
2948                                                  cur_offset,
2949                                                  cur_offset + hole_size,
2950                                                  block_end,
2951                                                  cur_offset, &hint_byte, 1);
2952                         if (err)
2953                                 break;
2954                         err = btrfs_insert_file_extent(trans, root,
2955                                         inode->i_ino, cur_offset, 0,
2956                                         0, hole_size, 0, hole_size,
2957                                         0, 0, 0);
2958                         btrfs_drop_extent_cache(inode, hole_start,
2959                                         last_byte - 1, 0);
2960                 }
2961                 free_extent_map(em);
2962                 cur_offset = last_byte;
2963                 if (err || cur_offset >= block_end)
2964                         break;
2965         }
2966
2967         btrfs_end_transaction(trans, root);
2968         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2969         return err;
2970 }
2971
2972 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2973 {
2974         struct inode *inode = dentry->d_inode;
2975         int err;
2976
2977         err = inode_change_ok(inode, attr);
2978         if (err)
2979                 return err;
2980
2981         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2982                 if (attr->ia_size > inode->i_size) {
2983                         err = btrfs_cont_expand(inode, attr->ia_size);
2984                         if (err)
2985                                 return err;
2986                 } else if (inode->i_size > 0 &&
2987                            attr->ia_size == 0) {
2988
2989                         /* we're truncating a file that used to have good
2990                          * data down to zero.  Make sure it gets into
2991                          * the ordered flush list so that any new writes
2992                          * get down to disk quickly.
2993                          */
2994                         BTRFS_I(inode)->ordered_data_close = 1;
2995                 }
2996         }
2997
2998         err = inode_setattr(inode, attr);
2999
3000         if (!err && ((attr->ia_valid & ATTR_MODE)))
3001                 err = btrfs_acl_chmod(inode);
3002         return err;
3003 }
3004
3005 void btrfs_delete_inode(struct inode *inode)
3006 {
3007         struct btrfs_trans_handle *trans;
3008         struct btrfs_root *root = BTRFS_I(inode)->root;
3009         unsigned long nr;
3010         int ret;
3011
3012         truncate_inode_pages(&inode->i_data, 0);
3013         if (is_bad_inode(inode)) {
3014                 btrfs_orphan_del(NULL, inode);
3015                 goto no_delete;
3016         }
3017         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3018
3019         btrfs_i_size_write(inode, 0);
3020         trans = btrfs_join_transaction(root, 1);
3021
3022         btrfs_set_trans_block_group(trans, inode);
3023         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3024         if (ret) {
3025                 btrfs_orphan_del(NULL, inode);
3026                 goto no_delete_lock;
3027         }
3028
3029         btrfs_orphan_del(trans, inode);
3030
3031         nr = trans->blocks_used;
3032         clear_inode(inode);
3033
3034         btrfs_end_transaction(trans, root);
3035         btrfs_btree_balance_dirty(root, nr);
3036         return;
3037
3038 no_delete_lock:
3039         nr = trans->blocks_used;
3040         btrfs_end_transaction(trans, root);
3041         btrfs_btree_balance_dirty(root, nr);
3042 no_delete:
3043         clear_inode(inode);
3044 }
3045
3046 /*
3047  * this returns the key found in the dir entry in the location pointer.
3048  * If no dir entries were found, location->objectid is 0.
3049  */
3050 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3051                                struct btrfs_key *location)
3052 {
3053         const char *name = dentry->d_name.name;
3054         int namelen = dentry->d_name.len;
3055         struct btrfs_dir_item *di;
3056         struct btrfs_path *path;
3057         struct btrfs_root *root = BTRFS_I(dir)->root;
3058         int ret = 0;
3059
3060         path = btrfs_alloc_path();
3061         BUG_ON(!path);
3062
3063         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3064                                     namelen, 0);
3065         if (IS_ERR(di))
3066                 ret = PTR_ERR(di);
3067
3068         if (!di || IS_ERR(di))
3069                 goto out_err;
3070
3071         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3072 out:
3073         btrfs_free_path(path);
3074         return ret;
3075 out_err:
3076         location->objectid = 0;
3077         goto out;
3078 }
3079
3080 /*
3081  * when we hit a tree root in a directory, the btrfs part of the inode
3082  * needs to be changed to reflect the root directory of the tree root.  This
3083  * is kind of like crossing a mount point.
3084  */
3085 static int fixup_tree_root_location(struct btrfs_root *root,
3086                              struct btrfs_key *location,
3087                              struct btrfs_root **sub_root,
3088                              struct dentry *dentry)
3089 {
3090         struct btrfs_root_item *ri;
3091
3092         if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
3093                 return 0;
3094         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
3095                 return 0;
3096
3097         *sub_root = btrfs_read_fs_root(root->fs_info, location,
3098                                         dentry->d_name.name,
3099                                         dentry->d_name.len);
3100         if (IS_ERR(*sub_root))
3101                 return PTR_ERR(*sub_root);
3102
3103         ri = &(*sub_root)->root_item;
3104         location->objectid = btrfs_root_dirid(ri);
3105         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3106         location->offset = 0;
3107
3108         return 0;
3109 }
3110
3111 static void inode_tree_add(struct inode *inode)
3112 {
3113         struct btrfs_root *root = BTRFS_I(inode)->root;
3114         struct btrfs_inode *entry;
3115         struct rb_node **p;
3116         struct rb_node *parent;
3117
3118 again:
3119         p = &root->inode_tree.rb_node;
3120         parent = NULL;
3121
3122         spin_lock(&root->inode_lock);
3123         while (*p) {
3124                 parent = *p;
3125                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3126
3127                 if (inode->i_ino < entry->vfs_inode.i_ino)
3128                         p = &parent->rb_left;
3129                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3130                         p = &parent->rb_right;
3131                 else {
3132                         WARN_ON(!(entry->vfs_inode.i_state &
3133                                   (I_WILL_FREE | I_FREEING | I_CLEAR)));
3134                         rb_erase(parent, &root->inode_tree);
3135                         RB_CLEAR_NODE(parent);
3136                         spin_unlock(&root->inode_lock);
3137                         goto again;
3138                 }
3139         }
3140         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3141         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3142         spin_unlock(&root->inode_lock);
3143 }
3144
3145 static void inode_tree_del(struct inode *inode)
3146 {
3147         struct btrfs_root *root = BTRFS_I(inode)->root;
3148
3149         spin_lock(&root->inode_lock);
3150         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3151                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3152                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3153         }
3154         spin_unlock(&root->inode_lock);
3155 }
3156
3157 static noinline void init_btrfs_i(struct inode *inode)
3158 {
3159         struct btrfs_inode *bi = BTRFS_I(inode);
3160
3161         bi->generation = 0;
3162         bi->sequence = 0;
3163         bi->last_trans = 0;
3164         bi->logged_trans = 0;
3165         bi->delalloc_bytes = 0;
3166         bi->reserved_bytes = 0;
3167         bi->disk_i_size = 0;
3168         bi->flags = 0;
3169         bi->index_cnt = (u64)-1;
3170         bi->last_unlink_trans = 0;
3171         bi->ordered_data_close = 0;
3172         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3173         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3174                              inode->i_mapping, GFP_NOFS);
3175         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3176                              inode->i_mapping, GFP_NOFS);
3177         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3178         INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3179         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3180         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3181         mutex_init(&BTRFS_I(inode)->extent_mutex);
3182         mutex_init(&BTRFS_I(inode)->log_mutex);
3183 }
3184
3185 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3186 {
3187         struct btrfs_iget_args *args = p;
3188         inode->i_ino = args->ino;
3189         init_btrfs_i(inode);
3190         BTRFS_I(inode)->root = args->root;
3191         btrfs_set_inode_space_info(args->root, inode);
3192         return 0;
3193 }
3194
3195 static int btrfs_find_actor(struct inode *inode, void *opaque)
3196 {
3197         struct btrfs_iget_args *args = opaque;
3198         return args->ino == inode->i_ino &&
3199                 args->root == BTRFS_I(inode)->root;
3200 }
3201
3202 static struct inode *btrfs_iget_locked(struct super_block *s,
3203                                        u64 objectid,
3204                                        struct btrfs_root *root)
3205 {
3206         struct inode *inode;
3207         struct btrfs_iget_args args;
3208         args.ino = objectid;
3209         args.root = root;
3210
3211         inode = iget5_locked(s, objectid, btrfs_find_actor,
3212                              btrfs_init_locked_inode,
3213                              (void *)&args);
3214         return inode;
3215 }
3216
3217 /* Get an inode object given its location and corresponding root.
3218  * Returns in *is_new if the inode was read from disk
3219  */
3220 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3221                          struct btrfs_root *root)
3222 {
3223         struct inode *inode;
3224
3225         inode = btrfs_iget_locked(s, location->objectid, root);
3226         if (!inode)
3227                 return ERR_PTR(-ENOMEM);
3228
3229         if (inode->i_state & I_NEW) {
3230                 BTRFS_I(inode)->root = root;
3231                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3232                 btrfs_read_locked_inode(inode);
3233
3234                 inode_tree_add(inode);
3235                 unlock_new_inode(inode);
3236         }
3237
3238         return inode;
3239 }
3240
3241 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3242 {
3243         struct inode *inode;
3244         struct btrfs_inode *bi = BTRFS_I(dir);
3245         struct btrfs_root *root = bi->root;
3246         struct btrfs_root *sub_root = root;
3247         struct btrfs_key location;
3248         int ret;
3249
3250         if (dentry->d_name.len > BTRFS_NAME_LEN)
3251                 return ERR_PTR(-ENAMETOOLONG);
3252
3253         ret = btrfs_inode_by_name(dir, dentry, &location);
3254
3255         if (ret < 0)
3256                 return ERR_PTR(ret);
3257
3258         inode = NULL;
3259         if (location.objectid) {
3260                 ret = fixup_tree_root_location(root, &location, &sub_root,
3261                                                 dentry);
3262                 if (ret < 0)
3263                         return ERR_PTR(ret);
3264                 if (ret > 0)
3265                         return ERR_PTR(-ENOENT);
3266                 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3267                 if (IS_ERR(inode))
3268                         return ERR_CAST(inode);
3269         }
3270         return inode;
3271 }
3272
3273 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3274                                    struct nameidata *nd)
3275 {
3276         struct inode *inode;
3277
3278         if (dentry->d_name.len > BTRFS_NAME_LEN)
3279                 return ERR_PTR(-ENAMETOOLONG);
3280
3281         inode = btrfs_lookup_dentry(dir, dentry);
3282         if (IS_ERR(inode))
3283                 return ERR_CAST(inode);
3284
3285         return d_splice_alias(inode, dentry);
3286 }
3287
3288 static unsigned char btrfs_filetype_table[] = {
3289         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3290 };
3291
3292 static int btrfs_real_readdir(struct file *filp, void *dirent,
3293                               filldir_t filldir)
3294 {
3295         struct inode *inode = filp->f_dentry->d_inode;
3296         struct btrfs_root *root = BTRFS_I(inode)->root;
3297         struct btrfs_item *item;
3298         struct btrfs_dir_item *di;
3299         struct btrfs_key key;
3300         struct btrfs_key found_key;
3301         struct btrfs_path *path;
3302         int ret;
3303         u32 nritems;
3304         struct extent_buffer *leaf;
3305         int slot;
3306         int advance;
3307         unsigned char d_type;
3308         int over = 0;
3309         u32 di_cur;
3310         u32 di_total;
3311         u32 di_len;
3312         int key_type = BTRFS_DIR_INDEX_KEY;
3313         char tmp_name[32];
3314         char *name_ptr;
3315         int name_len;
3316
3317         /* FIXME, use a real flag for deciding about the key type */
3318         if (root->fs_info->tree_root == root)
3319                 key_type = BTRFS_DIR_ITEM_KEY;
3320
3321         /* special case for "." */
3322         if (filp->f_pos == 0) {
3323                 over = filldir(dirent, ".", 1,
3324                                1, inode->i_ino,
3325                                DT_DIR);
3326                 if (over)
3327                         return 0;
3328                 filp->f_pos = 1;
3329         }
3330         /* special case for .., just use the back ref */
3331         if (filp->f_pos == 1) {
3332                 u64 pino = parent_ino(filp->f_path.dentry);
3333                 over = filldir(dirent, "..", 2,
3334                                2, pino, DT_DIR);
3335                 if (over)
3336                         return 0;
3337                 filp->f_pos = 2;
3338         }
3339         path = btrfs_alloc_path();
3340         path->reada = 2;
3341
3342         btrfs_set_key_type(&key, key_type);
3343         key.offset = filp->f_pos;
3344         key.objectid = inode->i_ino;
3345
3346         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3347         if (ret < 0)
3348                 goto err;
3349         advance = 0;
3350
3351         while (1) {
3352                 leaf = path->nodes[0];
3353                 nritems = btrfs_header_nritems(leaf);
3354                 slot = path->slots[0];
3355                 if (advance || slot >= nritems) {
3356                         if (slot >= nritems - 1) {
3357                                 ret = btrfs_next_leaf(root, path);
3358                                 if (ret)
3359                                         break;
3360                                 leaf = path->nodes[0];
3361                                 nritems = btrfs_header_nritems(leaf);
3362                                 slot = path->slots[0];
3363                         } else {
3364                                 slot++;
3365                                 path->slots[0]++;
3366                         }
3367                 }
3368
3369                 advance = 1;
3370                 item = btrfs_item_nr(leaf, slot);
3371                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3372
3373                 if (found_key.objectid != key.objectid)
3374                         break;
3375                 if (btrfs_key_type(&found_key) != key_type)
3376                         break;
3377                 if (found_key.offset < filp->f_pos)
3378                         continue;
3379
3380                 filp->f_pos = found_key.offset;
3381
3382                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3383                 di_cur = 0;
3384                 di_total = btrfs_item_size(leaf, item);
3385
3386                 while (di_cur < di_total) {
3387                         struct btrfs_key location;
3388
3389                         name_len = btrfs_dir_name_len(leaf, di);
3390                         if (name_len <= sizeof(tmp_name)) {
3391                                 name_ptr = tmp_name;
3392                         } else {
3393                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3394                                 if (!name_ptr) {
3395                                         ret = -ENOMEM;
3396                                         goto err;
3397                                 }
3398                         }
3399                         read_extent_buffer(leaf, name_ptr,
3400                                            (unsigned long)(di + 1), name_len);
3401
3402                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3403                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3404
3405                         /* is this a reference to our own snapshot? If so
3406                          * skip it
3407                          */
3408                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3409                             location.objectid == root->root_key.objectid) {
3410                                 over = 0;
3411                                 goto skip;
3412                         }
3413                         over = filldir(dirent, name_ptr, name_len,
3414                                        found_key.offset, location.objectid,
3415                                        d_type);
3416
3417 skip:
3418                         if (name_ptr != tmp_name)
3419                                 kfree(name_ptr);
3420
3421                         if (over)
3422                                 goto nopos;
3423                         di_len = btrfs_dir_name_len(leaf, di) +
3424                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3425                         di_cur += di_len;
3426                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3427                 }
3428         }
3429
3430         /* Reached end of directory/root. Bump pos past the last item. */
3431         if (key_type == BTRFS_DIR_INDEX_KEY)
3432                 filp->f_pos = INT_LIMIT(off_t);
3433         else
3434                 filp->f_pos++;
3435 nopos:
3436         ret = 0;
3437 err:
3438         btrfs_free_path(path);
3439         return ret;
3440 }
3441
3442 int btrfs_write_inode(struct inode *inode, int wait)
3443 {
3444         struct btrfs_root *root = BTRFS_I(inode)->root;
3445         struct btrfs_trans_handle *trans;
3446         int ret = 0;
3447
3448         if (root->fs_info->btree_inode == inode)
3449                 return 0;
3450
3451         if (wait) {
3452                 trans = btrfs_join_transaction(root, 1);
3453                 btrfs_set_trans_block_group(trans, inode);
3454                 ret = btrfs_commit_transaction(trans, root);
3455         }
3456         return ret;
3457 }
3458
3459 /*
3460  * This is somewhat expensive, updating the tree every time the
3461  * inode changes.  But, it is most likely to find the inode in cache.
3462  * FIXME, needs more benchmarking...there are no reasons other than performance
3463  * to keep or drop this code.
3464  */
3465 void btrfs_dirty_inode(struct inode *inode)
3466 {
3467         struct btrfs_root *root = BTRFS_I(inode)->root;
3468         struct btrfs_trans_handle *trans;
3469
3470         trans = btrfs_join_transaction(root, 1);
3471         btrfs_set_trans_block_group(trans, inode);
3472         btrfs_update_inode(trans, root, inode);
3473         btrfs_end_transaction(trans, root);
3474 }
3475
3476 /*
3477  * find the highest existing sequence number in a directory
3478  * and then set the in-memory index_cnt variable to reflect
3479  * free sequence numbers
3480  */
3481 static int btrfs_set_inode_index_count(struct inode *inode)
3482 {
3483         struct btrfs_root *root = BTRFS_I(inode)->root;
3484         struct btrfs_key key, found_key;
3485         struct btrfs_path *path;
3486         struct extent_buffer *leaf;
3487         int ret;
3488
3489         key.objectid = inode->i_ino;
3490         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3491         key.offset = (u64)-1;
3492
3493         path = btrfs_alloc_path();
3494         if (!path)
3495                 return -ENOMEM;
3496
3497         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3498         if (ret < 0)
3499                 goto out;
3500         /* FIXME: we should be able to handle this */
3501         if (ret == 0)
3502                 goto out;
3503         ret = 0;
3504
3505         /*
3506          * MAGIC NUMBER EXPLANATION:
3507          * since we search a directory based on f_pos we have to start at 2
3508          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3509          * else has to start at 2
3510          */
3511         if (path->slots[0] == 0) {
3512                 BTRFS_I(inode)->index_cnt = 2;
3513                 goto out;
3514         }
3515
3516         path->slots[0]--;
3517
3518         leaf = path->nodes[0];
3519         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3520
3521         if (found_key.objectid != inode->i_ino ||
3522             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3523                 BTRFS_I(inode)->index_cnt = 2;
3524                 goto out;
3525         }
3526
3527         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3528 out:
3529         btrfs_free_path(path);
3530         return ret;
3531 }
3532
3533 /*
3534  * helper to find a free sequence number in a given directory.  This current
3535  * code is very simple, later versions will do smarter things in the btree
3536  */
3537 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3538 {
3539         int ret = 0;
3540
3541         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3542                 ret = btrfs_set_inode_index_count(dir);
3543                 if (ret)
3544                         return ret;
3545         }
3546
3547         *index = BTRFS_I(dir)->index_cnt;
3548         BTRFS_I(dir)->index_cnt++;
3549
3550         return ret;
3551 }
3552
3553 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3554                                      struct btrfs_root *root,
3555                                      struct inode *dir,
3556                                      const char *name, int name_len,
3557                                      u64 ref_objectid, u64 objectid,
3558                                      u64 alloc_hint, int mode, u64 *index)
3559 {
3560         struct inode *inode;
3561         struct btrfs_inode_item *inode_item;
3562         struct btrfs_key *location;
3563         struct btrfs_path *path;
3564         struct btrfs_inode_ref *ref;
3565         struct btrfs_key key[2];
3566         u32 sizes[2];
3567         unsigned long ptr;
3568         int ret;
3569         int owner;
3570
3571         path = btrfs_alloc_path();
3572         BUG_ON(!path);
3573
3574         inode = new_inode(root->fs_info->sb);
3575         if (!inode)
3576                 return ERR_PTR(-ENOMEM);
3577
3578         if (dir) {
3579                 ret = btrfs_set_inode_index(dir, index);
3580                 if (ret) {
3581                         iput(inode);
3582                         return ERR_PTR(ret);
3583                 }
3584         }
3585         /*
3586          * index_cnt is ignored for everything but a dir,
3587          * btrfs_get_inode_index_count has an explanation for the magic
3588          * number
3589          */
3590         init_btrfs_i(inode);
3591         BTRFS_I(inode)->index_cnt = 2;
3592         BTRFS_I(inode)->root = root;
3593         BTRFS_I(inode)->generation = trans->transid;
3594         btrfs_set_inode_space_info(root, inode);
3595
3596         if (mode & S_IFDIR)
3597                 owner = 0;
3598         else
3599                 owner = 1;
3600         BTRFS_I(inode)->block_group =
3601                         btrfs_find_block_group(root, 0, alloc_hint, owner);
3602
3603         key[0].objectid = objectid;
3604         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3605         key[0].offset = 0;
3606
3607         key[1].objectid = objectid;
3608         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3609         key[1].offset = ref_objectid;
3610
3611         sizes[0] = sizeof(struct btrfs_inode_item);
3612         sizes[1] = name_len + sizeof(*ref);
3613
3614         path->leave_spinning = 1;
3615         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3616         if (ret != 0)
3617                 goto fail;
3618
3619         if (objectid > root->highest_inode)
3620                 root->highest_inode = objectid;
3621
3622         inode->i_uid = current_fsuid();
3623
3624         if (dir && (dir->i_mode & S_ISGID)) {
3625                 inode->i_gid = dir->i_gid;
3626                 if (S_ISDIR(mode))
3627                         mode |= S_ISGID;
3628         } else
3629                 inode->i_gid = current_fsgid();
3630
3631         inode->i_mode = mode;
3632         inode->i_ino = objectid;
3633         inode_set_bytes(inode, 0);
3634         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3635         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3636                                   struct btrfs_inode_item);
3637         fill_inode_item(trans, path->nodes[0], inode_item, inode);
3638
3639         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3640                              struct btrfs_inode_ref);
3641         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3642         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3643         ptr = (unsigned long)(ref + 1);
3644         write_extent_buffer(path->nodes[0], name, ptr, name_len);
3645
3646         btrfs_mark_buffer_dirty(path->nodes[0]);
3647         btrfs_free_path(path);
3648
3649         location = &BTRFS_I(inode)->location;
3650         location->objectid = objectid;
3651         location->offset = 0;
3652         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3653
3654         btrfs_inherit_iflags(inode, dir);
3655
3656         if ((mode & S_IFREG)) {
3657                 if (btrfs_test_opt(root, NODATASUM))
3658                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3659                 if (btrfs_test_opt(root, NODATACOW))
3660                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
3661         }
3662
3663         insert_inode_hash(inode);
3664         inode_tree_add(inode);
3665         return inode;
3666 fail:
3667         if (dir)
3668                 BTRFS_I(dir)->index_cnt--;
3669         btrfs_free_path(path);
3670         iput(inode);
3671         return ERR_PTR(ret);
3672 }
3673
3674 static inline u8 btrfs_inode_type(struct inode *inode)
3675 {
3676         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3677 }
3678
3679 /*
3680  * utility function to add 'inode' into 'parent_inode' with
3681  * a give name and a given sequence number.
3682  * if 'add_backref' is true, also insert a backref from the
3683  * inode to the parent directory.
3684  */
3685 int btrfs_add_link(struct btrfs_trans_handle *trans,
3686                    struct inode *parent_inode, struct inode *inode,
3687                    const char *name, int name_len, int add_backref, u64 index)
3688 {
3689         int ret;
3690         struct btrfs_key key;
3691         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3692
3693         key.objectid = inode->i_ino;
3694         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3695         key.offset = 0;
3696
3697         ret = btrfs_insert_dir_item(trans, root, name, name_len,
3698                                     parent_inode->i_ino,
3699                                     &key, btrfs_inode_type(inode),
3700                                     index);
3701         if (ret == 0) {
3702                 if (add_backref) {
3703                         ret = btrfs_insert_inode_ref(trans, root,
3704                                                      name, name_len,
3705                                                      inode->i_ino,
3706                                                      parent_inode->i_ino,
3707                                                      index);
3708                 }
3709                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3710                                    name_len * 2);
3711                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3712                 ret = btrfs_update_inode(trans, root, parent_inode);
3713         }
3714         return ret;
3715 }
3716
3717 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3718                             struct dentry *dentry, struct inode *inode,
3719                             int backref, u64 index)
3720 {
3721         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3722                                  inode, dentry->d_name.name,
3723                                  dentry->d_name.len, backref, index);
3724         if (!err) {
3725                 d_instantiate(dentry, inode);
3726                 return 0;
3727         }
3728         if (err > 0)
3729                 err = -EEXIST;
3730         return err;
3731 }
3732
3733 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3734                         int mode, dev_t rdev)
3735 {
3736         struct btrfs_trans_handle *trans;
3737         struct btrfs_root *root = BTRFS_I(dir)->root;
3738         struct inode *inode = NULL;
3739         int err;
3740         int drop_inode = 0;
3741         u64 objectid;
3742         unsigned long nr = 0;
3743         u64 index = 0;
3744
3745         if (!new_valid_dev(rdev))
3746                 return -EINVAL;
3747
3748         err = btrfs_check_metadata_free_space(root);
3749         if (err)
3750                 goto fail;
3751
3752         trans = btrfs_start_transaction(root, 1);
3753         btrfs_set_trans_block_group(trans, dir);
3754
3755         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3756         if (err) {
3757                 err = -ENOSPC;
3758                 goto out_unlock;
3759         }
3760
3761         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3762                                 dentry->d_name.len,
3763                                 dentry->d_parent->d_inode->i_ino, objectid,
3764                                 BTRFS_I(dir)->block_group, mode, &index);
3765         err = PTR_ERR(inode);
3766         if (IS_ERR(inode))
3767                 goto out_unlock;
3768
3769         err = btrfs_init_inode_security(inode, dir);
3770         if (err) {
3771                 drop_inode = 1;
3772                 goto out_unlock;
3773         }
3774
3775         btrfs_set_trans_block_group(trans, inode);
3776         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3777         if (err)
3778                 drop_inode = 1;
3779         else {
3780                 inode->i_op = &btrfs_special_inode_operations;
3781                 init_special_inode(inode, inode->i_mode, rdev);
3782                 btrfs_update_inode(trans, root, inode);
3783         }
3784         btrfs_update_inode_block_group(trans, inode);
3785         btrfs_update_inode_block_group(trans, dir);
3786 out_unlock:
3787         nr = trans->blocks_used;
3788         btrfs_end_transaction_throttle(trans, root);
3789 fail:
3790         if (drop_inode) {
3791                 inode_dec_link_count(inode);
3792                 iput(inode);
3793         }
3794         btrfs_btree_balance_dirty(root, nr);
3795         return err;
3796 }
3797
3798 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3799                         int mode, struct nameidata *nd)
3800 {
3801         struct btrfs_trans_handle *trans;
3802         struct btrfs_root *root = BTRFS_I(dir)->root;
3803         struct inode *inode = NULL;
3804         int err;
3805         int drop_inode = 0;
3806         unsigned long nr = 0;
3807         u64 objectid;
3808         u64 index = 0;
3809
3810         err = btrfs_check_metadata_free_space(root);
3811         if (err)
3812                 goto fail;
3813         trans = btrfs_start_transaction(root, 1);
3814         btrfs_set_trans_block_group(trans, dir);
3815
3816         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3817         if (err) {
3818                 err = -ENOSPC;
3819                 goto out_unlock;
3820         }
3821
3822         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3823                                 dentry->d_name.len,
3824                                 dentry->d_parent->d_inode->i_ino,
3825                                 objectid, BTRFS_I(dir)->block_group, mode,
3826                                 &index);
3827         err = PTR_ERR(inode);
3828         if (IS_ERR(inode))
3829                 goto out_unlock;
3830
3831         err = btrfs_init_inode_security(inode, dir);
3832         if (err) {
3833                 drop_inode = 1;
3834                 goto out_unlock;
3835         }
3836
3837         btrfs_set_trans_block_group(trans, inode);
3838         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3839         if (err)
3840                 drop_inode = 1;
3841         else {
3842                 inode->i_mapping->a_ops = &btrfs_aops;
3843                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3844                 inode->i_fop = &btrfs_file_operations;
3845                 inode->i_op = &btrfs_file_inode_operations;
3846                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3847         }
3848         btrfs_update_inode_block_group(trans, inode);
3849         btrfs_update_inode_block_group(trans, dir);
3850 out_unlock:
3851         nr = trans->blocks_used;
3852         btrfs_end_transaction_throttle(trans, root);
3853 fail:
3854         if (drop_inode) {
3855                 inode_dec_link_count(inode);
3856                 iput(inode);
3857         }
3858         btrfs_btree_balance_dirty(root, nr);
3859         return err;
3860 }
3861
3862 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3863                       struct dentry *dentry)
3864 {
3865         struct btrfs_trans_handle *trans;
3866         struct btrfs_root *root = BTRFS_I(dir)->root;
3867         struct inode *inode = old_dentry->d_inode;
3868         u64 index;
3869         unsigned long nr = 0;
3870         int err;
3871         int drop_inode = 0;
3872
3873         if (inode->i_nlink == 0)
3874                 return -ENOENT;
3875
3876         btrfs_inc_nlink(inode);
3877         err = btrfs_check_metadata_free_space(root);
3878         if (err)
3879                 goto fail;
3880         err = btrfs_set_inode_index(dir, &index);
3881         if (err)
3882                 goto fail;
3883
3884         trans = btrfs_start_transaction(root, 1);
3885
3886         btrfs_set_trans_block_group(trans, dir);
3887         atomic_inc(&inode->i_count);
3888
3889         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3890
3891         if (err)
3892                 drop_inode = 1;
3893
3894         btrfs_update_inode_block_group(trans, dir);
3895         err = btrfs_update_inode(trans, root, inode);
3896
3897         if (err)
3898                 drop_inode = 1;
3899
3900         nr = trans->blocks_used;
3901
3902         btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
3903         btrfs_end_transaction_throttle(trans, root);
3904 fail:
3905         if (drop_inode) {
3906                 inode_dec_link_count(inode);
3907                 iput(inode);
3908         }
3909         btrfs_btree_balance_dirty(root, nr);
3910         return err;
3911 }
3912
3913 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3914 {
3915         struct inode *inode = NULL;
3916         struct btrfs_trans_handle *trans;
3917         struct btrfs_root *root = BTRFS_I(dir)->root;
3918         int err = 0;
3919         int drop_on_err = 0;
3920         u64 objectid = 0;
3921         u64 index = 0;
3922         unsigned long nr = 1;
3923
3924         err = btrfs_check_metadata_free_space(root);
3925         if (err)
3926                 goto out_unlock;
3927
3928         trans = btrfs_start_transaction(root, 1);
3929         btrfs_set_trans_block_group(trans, dir);
3930
3931         if (IS_ERR(trans)) {
3932                 err = PTR_ERR(trans);
3933                 goto out_unlock;
3934         }
3935
3936         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3937         if (err) {
3938                 err = -ENOSPC;
3939                 goto out_unlock;
3940         }
3941
3942         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3943                                 dentry->d_name.len,
3944                                 dentry->d_parent->d_inode->i_ino, objectid,
3945                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3946                                 &index);
3947         if (IS_ERR(inode)) {
3948                 err = PTR_ERR(inode);
3949                 goto out_fail;
3950         }
3951
3952         drop_on_err = 1;
3953
3954         err = btrfs_init_inode_security(inode, dir);
3955         if (err)
3956                 goto out_fail;
3957
3958         inode->i_op = &btrfs_dir_inode_operations;
3959         inode->i_fop = &btrfs_dir_file_operations;
3960         btrfs_set_trans_block_group(trans, inode);
3961
3962         btrfs_i_size_write(inode, 0);
3963         err = btrfs_update_inode(trans, root, inode);
3964         if (err)
3965                 goto out_fail;
3966
3967         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3968                                  inode, dentry->d_name.name,
3969                                  dentry->d_name.len, 0, index);
3970         if (err)
3971                 goto out_fail;
3972
3973         d_instantiate(dentry, inode);
3974         drop_on_err = 0;
3975         btrfs_update_inode_block_group(trans, inode);
3976         btrfs_update_inode_block_group(trans, dir);
3977
3978 out_fail:
3979         nr = trans->blocks_used;
3980         btrfs_end_transaction_throttle(trans, root);
3981
3982 out_unlock:
3983         if (drop_on_err)
3984                 iput(inode);
3985         btrfs_btree_balance_dirty(root, nr);
3986         return err;
3987 }
3988
3989 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3990  * and an extent that you want to insert, deal with overlap and insert
3991  * the new extent into the tree.
3992  */
3993 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3994                                 struct extent_map *existing,
3995                                 struct extent_map *em,
3996                                 u64 map_start, u64 map_len)
3997 {
3998         u64 start_diff;
3999
4000         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4001         start_diff = map_start - em->start;
4002         em->start = map_start;
4003         em->len = map_len;
4004         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4005             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4006                 em->block_start += start_diff;
4007                 em->block_len -= start_diff;
4008         }
4009         return add_extent_mapping(em_tree, em);
4010 }
4011
4012 static noinline int uncompress_inline(struct btrfs_path *path,
4013                                       struct inode *inode, struct page *page,
4014                                       size_t pg_offset, u64 extent_offset,
4015                                       struct btrfs_file_extent_item *item)
4016 {
4017         int ret;
4018         struct extent_buffer *leaf = path->nodes[0];
4019         char *tmp;
4020         size_t max_size;
4021         unsigned long inline_size;
4022         unsigned long ptr;
4023
4024         WARN_ON(pg_offset != 0);
4025         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4026         inline_size = btrfs_file_extent_inline_item_len(leaf,
4027                                         btrfs_item_nr(leaf, path->slots[0]));
4028         tmp = kmalloc(inline_size, GFP_NOFS);
4029         ptr = btrfs_file_extent_inline_start(item);
4030
4031         read_extent_buffer(leaf, tmp, ptr, inline_size);
4032
4033         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4034         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4035                                     inline_size, max_size);
4036         if (ret) {
4037                 char *kaddr = kmap_atomic(page, KM_USER0);
4038                 unsigned long copy_size = min_t(u64,
4039                                   PAGE_CACHE_SIZE - pg_offset,
4040                                   max_size - extent_offset);
4041                 memset(kaddr + pg_offset, 0, copy_size);
4042                 kunmap_atomic(kaddr, KM_USER0);
4043         }
4044         kfree(tmp);
4045         return 0;
4046 }
4047
4048 /*
4049  * a bit scary, this does extent mapping from logical file offset to the disk.
4050  * the ugly parts come from merging extents from the disk with the in-ram
4051  * representation.  This gets more complex because of the data=ordered code,
4052  * where the in-ram extents might be locked pending data=ordered completion.
4053  *
4054  * This also copies inline extents directly into the page.
4055  */
4056
4057 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4058                                     size_t pg_offset, u64 start, u64 len,
4059                                     int create)
4060 {
4061         int ret;
4062         int err = 0;
4063         u64 bytenr;
4064         u64 extent_start = 0;
4065         u64 extent_end = 0;
4066         u64 objectid = inode->i_ino;
4067         u32 found_type;
4068         struct btrfs_path *path = NULL;
4069         struct btrfs_root *root = BTRFS_I(inode)->root;
4070         struct btrfs_file_extent_item *item;
4071         struct extent_buffer *leaf;
4072         struct btrfs_key found_key;
4073         struct extent_map *em = NULL;
4074         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4075         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4076         struct btrfs_trans_handle *trans = NULL;
4077         int compressed;
4078
4079 again:
4080         read_lock(&em_tree->lock);
4081         em = lookup_extent_mapping(em_tree, start, len);
4082         if (em)
4083                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4084         read_unlock(&em_tree->lock);
4085
4086         if (em) {
4087                 if (em->start > start || em->start + em->len <= start)
4088                         free_extent_map(em);
4089                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4090                         free_extent_map(em);
4091                 else
4092                         goto out;
4093         }
4094         em = alloc_extent_map(GFP_NOFS);
4095         if (!em) {
4096                 err = -ENOMEM;
4097                 goto out;
4098         }
4099         em->bdev = root->fs_info->fs_devices->latest_bdev;
4100         em->start = EXTENT_MAP_HOLE;
4101         em->orig_start = EXTENT_MAP_HOLE;
4102         em->len = (u64)-1;
4103         em->block_len = (u64)-1;
4104
4105         if (!path) {
4106                 path = btrfs_alloc_path();
4107                 BUG_ON(!path);
4108         }
4109
4110         ret = btrfs_lookup_file_extent(trans, root, path,
4111                                        objectid, start, trans != NULL);
4112         if (ret < 0) {
4113                 err = ret;
4114                 goto out;
4115         }
4116
4117         if (ret != 0) {
4118                 if (path->slots[0] == 0)
4119                         goto not_found;
4120                 path->slots[0]--;
4121         }
4122
4123         leaf = path->nodes[0];
4124         item = btrfs_item_ptr(leaf, path->slots[0],
4125                               struct btrfs_file_extent_item);
4126         /* are we inside the extent that was found? */
4127         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4128         found_type = btrfs_key_type(&found_key);
4129         if (found_key.objectid != objectid ||
4130             found_type != BTRFS_EXTENT_DATA_KEY) {
4131                 goto not_found;
4132         }
4133
4134         found_type = btrfs_file_extent_type(leaf, item);
4135         extent_start = found_key.offset;
4136         compressed = btrfs_file_extent_compression(leaf, item);
4137         if (found_type == BTRFS_FILE_EXTENT_REG ||
4138             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4139                 extent_end = extent_start +
4140                        btrfs_file_extent_num_bytes(leaf, item);
4141         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4142                 size_t size;
4143                 size = btrfs_file_extent_inline_len(leaf, item);
4144                 extent_end = (extent_start + size + root->sectorsize - 1) &
4145                         ~((u64)root->sectorsize - 1);
4146         }
4147
4148         if (start >= extent_end) {
4149                 path->slots[0]++;
4150                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4151                         ret = btrfs_next_leaf(root, path);
4152                         if (ret < 0) {
4153                                 err = ret;
4154                                 goto out;
4155                         }
4156                         if (ret > 0)
4157                                 goto not_found;
4158                         leaf = path->nodes[0];
4159                 }
4160                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4161                 if (found_key.objectid != objectid ||
4162                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4163                         goto not_found;
4164                 if (start + len <= found_key.offset)
4165                         goto not_found;
4166                 em->start = start;
4167                 em->len = found_key.offset - start;
4168                 goto not_found_em;
4169         }
4170
4171         if (found_type == BTRFS_FILE_EXTENT_REG ||
4172             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4173                 em->start = extent_start;
4174                 em->len = extent_end - extent_start;
4175                 em->orig_start = extent_start -
4176                                  btrfs_file_extent_offset(leaf, item);
4177                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4178                 if (bytenr == 0) {
4179                         em->block_start = EXTENT_MAP_HOLE;
4180                         goto insert;
4181                 }
4182                 if (compressed) {
4183                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4184                         em->block_start = bytenr;
4185                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4186                                                                          item);
4187                 } else {
4188                         bytenr += btrfs_file_extent_offset(leaf, item);
4189                         em->block_start = bytenr;
4190                         em->block_len = em->len;
4191                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4192                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4193                 }
4194                 goto insert;
4195         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4196                 unsigned long ptr;
4197                 char *map;
4198                 size_t size;
4199                 size_t extent_offset;
4200                 size_t copy_size;
4201
4202                 em->block_start = EXTENT_MAP_INLINE;
4203                 if (!page || create) {
4204                         em->start = extent_start;
4205                         em->len = extent_end - extent_start;
4206                         goto out;
4207                 }
4208
4209                 size = btrfs_file_extent_inline_len(leaf, item);
4210                 extent_offset = page_offset(page) + pg_offset - extent_start;
4211                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4212                                 size - extent_offset);
4213                 em->start = extent_start + extent_offset;
4214                 em->len = (copy_size + root->sectorsize - 1) &
4215                         ~((u64)root->sectorsize - 1);
4216                 em->orig_start = EXTENT_MAP_INLINE;
4217                 if (compressed)
4218                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4219                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4220                 if (create == 0 && !PageUptodate(page)) {
4221                         if (btrfs_file_extent_compression(leaf, item) ==
4222                             BTRFS_COMPRESS_ZLIB) {
4223                                 ret = uncompress_inline(path, inode, page,
4224                                                         pg_offset,
4225                                                         extent_offset, item);
4226                                 BUG_ON(ret);
4227                         } else {
4228                                 map = kmap(page);
4229                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4230                                                    copy_size);
4231                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4232                                         memset(map + pg_offset + copy_size, 0,
4233                                                PAGE_CACHE_SIZE - pg_offset -
4234                                                copy_size);
4235                                 }
4236                                 kunmap(page);
4237                         }
4238                         flush_dcache_page(page);
4239                 } else if (create && PageUptodate(page)) {
4240                         if (!trans) {
4241                                 kunmap(page);
4242                                 free_extent_map(em);
4243                                 em = NULL;
4244                                 btrfs_release_path(root, path);
4245                                 trans = btrfs_join_transaction(root, 1);
4246                                 goto again;
4247                         }
4248                         map = kmap(page);
4249                         write_extent_buffer(leaf, map + pg_offset, ptr,
4250                                             copy_size);
4251                         kunmap(page);
4252                         btrfs_mark_buffer_dirty(leaf);
4253                 }
4254                 set_extent_uptodate(io_tree, em->start,
4255                                     extent_map_end(em) - 1, GFP_NOFS);
4256                 goto insert;
4257         } else {
4258                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4259                 WARN_ON(1);
4260         }
4261 not_found:
4262         em->start = start;
4263         em->len = len;
4264 not_found_em:
4265         em->block_start = EXTENT_MAP_HOLE;
4266         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4267 insert:
4268         btrfs_release_path(root, path);
4269         if (em->start > start || extent_map_end(em) <= start) {
4270                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4271                        "[%llu %llu]\n", (unsigned long long)em->start,
4272                        (unsigned long long)em->len,
4273                        (unsigned long long)start,
4274                        (unsigned long long)len);
4275                 err = -EIO;
4276                 goto out;
4277         }
4278
4279         err = 0;
4280         write_lock(&em_tree->lock);
4281         ret = add_extent_mapping(em_tree, em);
4282         /* it is possible that someone inserted the extent into the tree
4283          * while we had the lock dropped.  It is also possible that
4284          * an overlapping map exists in the tree
4285          */
4286         if (ret == -EEXIST) {
4287                 struct extent_map *existing;
4288
4289                 ret = 0;
4290
4291                 existing = lookup_extent_mapping(em_tree, start, len);
4292                 if (existing && (existing->start > start ||
4293                     existing->start + existing->len <= start)) {
4294                         free_extent_map(existing);
4295                         existing = NULL;
4296                 }
4297                 if (!existing) {
4298                         existing = lookup_extent_mapping(em_tree, em->start,
4299                                                          em->len);
4300                         if (existing) {
4301                                 err = merge_extent_mapping(em_tree, existing,
4302                                                            em, start,
4303                                                            root->sectorsize);
4304                                 free_extent_map(existing);
4305                                 if (err) {
4306                                         free_extent_map(em);
4307                                         em = NULL;
4308                                 }
4309                         } else {
4310                                 err = -EIO;
4311                                 free_extent_map(em);
4312                                 em = NULL;
4313                         }
4314                 } else {
4315                         free_extent_map(em);
4316                         em = existing;
4317                         err = 0;
4318                 }
4319         }
4320         write_unlock(&em_tree->lock);
4321 out:
4322         if (path)
4323                 btrfs_free_path(path);
4324         if (trans) {
4325                 ret = btrfs_end_transaction(trans, root);
4326                 if (!err)
4327                         err = ret;
4328         }
4329         if (err) {
4330                 free_extent_map(em);
4331                 return ERR_PTR(err);
4332         }
4333         return em;
4334 }
4335
4336 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4337                         const struct iovec *iov, loff_t offset,
4338                         unsigned long nr_segs)
4339 {
4340         return -EINVAL;
4341 }
4342
4343 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4344                 __u64 start, __u64 len)
4345 {
4346         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4347 }
4348
4349 int btrfs_readpage(struct file *file, struct page *page)
4350 {
4351         struct extent_io_tree *tree;
4352         tree = &BTRFS_I(page->mapping->host)->io_tree;
4353         return extent_read_full_page(tree, page, btrfs_get_extent);
4354 }
4355
4356 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4357 {
4358         struct extent_io_tree *tree;
4359
4360
4361         if (current->flags & PF_MEMALLOC) {
4362                 redirty_page_for_writepage(wbc, page);
4363                 unlock_page(page);
4364                 return 0;
4365         }
4366         tree = &BTRFS_I(page->mapping->host)->io_tree;
4367         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4368 }
4369
4370 int btrfs_writepages(struct address_space *mapping,
4371                      struct writeback_control *wbc)
4372 {
4373         struct extent_io_tree *tree;
4374
4375         tree = &BTRFS_I(mapping->host)->io_tree;
4376         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4377 }
4378
4379 static int
4380 btrfs_readpages(struct file *file, struct address_space *mapping,
4381                 struct list_head *pages, unsigned nr_pages)
4382 {
4383         struct extent_io_tree *tree;
4384         tree = &BTRFS_I(mapping->host)->io_tree;
4385         return extent_readpages(tree, mapping, pages, nr_pages,
4386                                 btrfs_get_extent);
4387 }
4388 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4389 {
4390         struct extent_io_tree *tree;
4391         struct extent_map_tree *map;
4392         int ret;
4393
4394         tree = &BTRFS_I(page->mapping->host)->io_tree;
4395         map = &BTRFS_I(page->mapping->host)->extent_tree;
4396         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4397         if (ret == 1) {
4398                 ClearPagePrivate(page);
4399                 set_page_private(page, 0);
4400                 page_cache_release(page);
4401         }
4402         return ret;
4403 }
4404
4405 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4406 {
4407         if (PageWriteback(page) || PageDirty(page))
4408                 return 0;
4409         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4410 }
4411
4412 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4413 {
4414         struct extent_io_tree *tree;
4415         struct btrfs_ordered_extent *ordered;
4416         u64 page_start = page_offset(page);
4417         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4418
4419
4420         /*
4421          * we have the page locked, so new writeback can't start,
4422          * and the dirty bit won't be cleared while we are here.
4423          *
4424          * Wait for IO on this page so that we can safely clear
4425          * the PagePrivate2 bit and do ordered accounting
4426          */
4427         wait_on_page_writeback(page);
4428
4429         tree = &BTRFS_I(page->mapping->host)->io_tree;
4430         if (offset) {
4431                 btrfs_releasepage(page, GFP_NOFS);
4432                 return;
4433         }
4434         lock_extent(tree, page_start, page_end, GFP_NOFS);
4435         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4436                                            page_offset(page));
4437         if (ordered) {
4438                 /*
4439                  * IO on this page will never be started, so we need
4440                  * to account for any ordered extents now
4441                  */
4442                 clear_extent_bit(tree, page_start, page_end,
4443                                  EXTENT_DIRTY | EXTENT_DELALLOC |
4444                                  EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
4445                 /*
4446                  * whoever cleared the private bit is responsible
4447                  * for the finish_ordered_io
4448                  */
4449                 if (TestClearPagePrivate2(page)) {
4450                         btrfs_finish_ordered_io(page->mapping->host,
4451                                                 page_start, page_end);
4452                 }
4453                 btrfs_put_ordered_extent(ordered);
4454                 lock_extent(tree, page_start, page_end, GFP_NOFS);
4455         }
4456         clear_extent_bit(tree, page_start, page_end,
4457                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
4458                  1, 1, NULL, GFP_NOFS);
4459         __btrfs_releasepage(page, GFP_NOFS);
4460
4461         ClearPageChecked(page);
4462         if (PagePrivate(page)) {
4463                 ClearPagePrivate(page);
4464                 set_page_private(page, 0);
4465                 page_cache_release(page);
4466         }
4467 }
4468
4469 /*
4470  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4471  * called from a page fault handler when a page is first dirtied. Hence we must
4472  * be careful to check for EOF conditions here. We set the page up correctly
4473  * for a written page which means we get ENOSPC checking when writing into
4474  * holes and correct delalloc and unwritten extent mapping on filesystems that
4475  * support these features.
4476  *
4477  * We are not allowed to take the i_mutex here so we have to play games to
4478  * protect against truncate races as the page could now be beyond EOF.  Because
4479  * vmtruncate() writes the inode size before removing pages, once we have the
4480  * page lock we can determine safely if the page is beyond EOF. If it is not
4481  * beyond EOF, then the page is guaranteed safe against truncation until we
4482  * unlock the page.
4483  */
4484 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4485 {
4486         struct page *page = vmf->page;
4487         struct inode *inode = fdentry(vma->vm_file)->d_inode;
4488         struct btrfs_root *root = BTRFS_I(inode)->root;
4489         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4490         struct btrfs_ordered_extent *ordered;
4491         char *kaddr;
4492         unsigned long zero_start;
4493         loff_t size;
4494         int ret;
4495         u64 page_start;
4496         u64 page_end;
4497
4498         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4499         if (ret) {
4500                 if (ret == -ENOMEM)
4501                         ret = VM_FAULT_OOM;
4502                 else /* -ENOSPC, -EIO, etc */
4503                         ret = VM_FAULT_SIGBUS;
4504                 goto out;
4505         }
4506
4507         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4508 again:
4509         lock_page(page);
4510         size = i_size_read(inode);
4511         page_start = page_offset(page);
4512         page_end = page_start + PAGE_CACHE_SIZE - 1;
4513
4514         if ((page->mapping != inode->i_mapping) ||
4515             (page_start >= size)) {
4516                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4517                 /* page got truncated out from underneath us */
4518                 goto out_unlock;
4519         }
4520         wait_on_page_writeback(page);
4521
4522         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4523         set_page_extent_mapped(page);
4524
4525         /*
4526          * we can't set the delalloc bits if there are pending ordered
4527          * extents.  Drop our locks and wait for them to finish
4528          */
4529         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4530         if (ordered) {
4531                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4532                 unlock_page(page);
4533                 btrfs_start_ordered_extent(inode, ordered, 1);
4534                 btrfs_put_ordered_extent(ordered);
4535                 goto again;
4536         }
4537
4538         btrfs_set_extent_delalloc(inode, page_start, page_end);
4539         ret = 0;
4540
4541         /* page is wholly or partially inside EOF */
4542         if (page_start + PAGE_CACHE_SIZE > size)
4543                 zero_start = size & ~PAGE_CACHE_MASK;
4544         else
4545                 zero_start = PAGE_CACHE_SIZE;
4546
4547         if (zero_start != PAGE_CACHE_SIZE) {
4548                 kaddr = kmap(page);
4549                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4550                 flush_dcache_page(page);
4551                 kunmap(page);
4552         }
4553         ClearPageChecked(page);
4554         set_page_dirty(page);
4555         SetPageUptodate(page);
4556
4557         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4558         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4559
4560 out_unlock:
4561         if (!ret)
4562                 return VM_FAULT_LOCKED;
4563         unlock_page(page);
4564 out:
4565         return ret;
4566 }
4567
4568 static void btrfs_truncate(struct inode *inode)
4569 {
4570         struct btrfs_root *root = BTRFS_I(inode)->root;
4571         int ret;
4572         struct btrfs_trans_handle *trans;
4573         unsigned long nr;
4574         u64 mask = root->sectorsize - 1;
4575
4576         if (!S_ISREG(inode->i_mode))
4577                 return;
4578         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4579                 return;
4580
4581         btrfs_truncate_page(inode->i_mapping, inode->i_size);
4582         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4583
4584         trans = btrfs_start_transaction(root, 1);
4585
4586         /*
4587          * setattr is responsible for setting the ordered_data_close flag,
4588          * but that is only tested during the last file release.  That
4589          * could happen well after the next commit, leaving a great big
4590          * window where new writes may get lost if someone chooses to write
4591          * to this file after truncating to zero
4592          *
4593          * The inode doesn't have any dirty data here, and so if we commit
4594          * this is a noop.  If someone immediately starts writing to the inode
4595          * it is very likely we'll catch some of their writes in this
4596          * transaction, and the commit will find this file on the ordered
4597          * data list with good things to send down.
4598          *
4599          * This is a best effort solution, there is still a window where
4600          * using truncate to replace the contents of the file will
4601          * end up with a zero length file after a crash.
4602          */
4603         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4604                 btrfs_add_ordered_operation(trans, root, inode);
4605
4606         btrfs_set_trans_block_group(trans, inode);
4607         btrfs_i_size_write(inode, inode->i_size);
4608
4609         ret = btrfs_orphan_add(trans, inode);
4610         if (ret)
4611                 goto out;
4612         /* FIXME, add redo link to tree so we don't leak on crash */
4613         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4614                                       BTRFS_EXTENT_DATA_KEY);
4615         btrfs_update_inode(trans, root, inode);
4616
4617         ret = btrfs_orphan_del(trans, inode);
4618         BUG_ON(ret);
4619
4620 out:
4621         nr = trans->blocks_used;
4622         ret = btrfs_end_transaction_throttle(trans, root);
4623         BUG_ON(ret);
4624         btrfs_btree_balance_dirty(root, nr);
4625 }
4626
4627 /*
4628  * create a new subvolume directory/inode (helper for the ioctl).
4629  */
4630 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4631                              struct btrfs_root *new_root, struct dentry *dentry,
4632                              u64 new_dirid, u64 alloc_hint)
4633 {
4634         struct inode *inode;
4635         int error;
4636         u64 index = 0;
4637
4638         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4639                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4640         if (IS_ERR(inode))
4641                 return PTR_ERR(inode);
4642         inode->i_op = &btrfs_dir_inode_operations;
4643         inode->i_fop = &btrfs_dir_file_operations;
4644
4645         inode->i_nlink = 1;
4646         btrfs_i_size_write(inode, 0);
4647
4648         error = btrfs_update_inode(trans, new_root, inode);
4649         if (error)
4650                 return error;
4651
4652         d_instantiate(dentry, inode);
4653         return 0;
4654 }
4655
4656 /* helper function for file defrag and space balancing.  This
4657  * forces readahead on a given range of bytes in an inode
4658  */
4659 unsigned long btrfs_force_ra(struct address_space *mapping,
4660                               struct file_ra_state *ra, struct file *file,
4661                               pgoff_t offset, pgoff_t last_index)
4662 {
4663         pgoff_t req_size = last_index - offset + 1;
4664
4665         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4666         return offset + req_size;
4667 }
4668
4669 struct inode *btrfs_alloc_inode(struct super_block *sb)
4670 {
4671         struct btrfs_inode *ei;
4672
4673         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4674         if (!ei)
4675                 return NULL;
4676         ei->last_trans = 0;
4677         ei->logged_trans = 0;
4678         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4679         INIT_LIST_HEAD(&ei->i_orphan);
4680         INIT_LIST_HEAD(&ei->ordered_operations);
4681         return &ei->vfs_inode;
4682 }
4683
4684 void btrfs_destroy_inode(struct inode *inode)
4685 {
4686         struct btrfs_ordered_extent *ordered;
4687         struct btrfs_root *root = BTRFS_I(inode)->root;
4688
4689         WARN_ON(!list_empty(&inode->i_dentry));
4690         WARN_ON(inode->i_data.nrpages);
4691
4692         /*
4693          * Make sure we're properly removed from the ordered operation
4694          * lists.
4695          */
4696         smp_mb();
4697         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4698                 spin_lock(&root->fs_info->ordered_extent_lock);
4699                 list_del_init(&BTRFS_I(inode)->ordered_operations);
4700                 spin_unlock(&root->fs_info->ordered_extent_lock);
4701         }
4702
4703         spin_lock(&root->list_lock);
4704         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4705                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4706                        " list\n", inode->i_ino);
4707                 dump_stack();
4708         }
4709         spin_unlock(&root->list_lock);
4710
4711         while (1) {
4712                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4713                 if (!ordered)
4714                         break;
4715                 else {
4716                         printk(KERN_ERR "btrfs found ordered "
4717                                "extent %llu %llu on inode cleanup\n",
4718                                (unsigned long long)ordered->file_offset,
4719                                (unsigned long long)ordered->len);
4720                         btrfs_remove_ordered_extent(inode, ordered);
4721                         btrfs_put_ordered_extent(ordered);
4722                         btrfs_put_ordered_extent(ordered);
4723                 }
4724         }
4725         inode_tree_del(inode);
4726         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4727         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4728 }
4729
4730 static void init_once(void *foo)
4731 {
4732         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4733
4734         inode_init_once(&ei->vfs_inode);
4735 }
4736
4737 void btrfs_destroy_cachep(void)
4738 {
4739         if (btrfs_inode_cachep)
4740                 kmem_cache_destroy(btrfs_inode_cachep);
4741         if (btrfs_trans_handle_cachep)
4742                 kmem_cache_destroy(btrfs_trans_handle_cachep);
4743         if (btrfs_transaction_cachep)
4744                 kmem_cache_destroy(btrfs_transaction_cachep);
4745         if (btrfs_path_cachep)
4746                 kmem_cache_destroy(btrfs_path_cachep);
4747 }
4748
4749 int btrfs_init_cachep(void)
4750 {
4751         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
4752                         sizeof(struct btrfs_inode), 0,
4753                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
4754         if (!btrfs_inode_cachep)
4755                 goto fail;
4756
4757         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
4758                         sizeof(struct btrfs_trans_handle), 0,
4759                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4760         if (!btrfs_trans_handle_cachep)
4761                 goto fail;
4762
4763         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
4764                         sizeof(struct btrfs_transaction), 0,
4765                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4766         if (!btrfs_transaction_cachep)
4767                 goto fail;
4768
4769         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
4770                         sizeof(struct btrfs_path), 0,
4771                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4772         if (!btrfs_path_cachep)
4773                 goto fail;
4774
4775         return 0;
4776 fail:
4777         btrfs_destroy_cachep();
4778         return -ENOMEM;
4779 }
4780
4781 static int btrfs_getattr(struct vfsmount *mnt,
4782                          struct dentry *dentry, struct kstat *stat)
4783 {
4784         struct inode *inode = dentry->d_inode;
4785         generic_fillattr(inode, stat);
4786         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4787         stat->blksize = PAGE_CACHE_SIZE;
4788         stat->blocks = (inode_get_bytes(inode) +
4789                         BTRFS_I(inode)->delalloc_bytes) >> 9;
4790         return 0;
4791 }
4792
4793 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4794                            struct inode *new_dir, struct dentry *new_dentry)
4795 {
4796         struct btrfs_trans_handle *trans;
4797         struct btrfs_root *root = BTRFS_I(old_dir)->root;
4798         struct inode *new_inode = new_dentry->d_inode;
4799         struct inode *old_inode = old_dentry->d_inode;
4800         struct timespec ctime = CURRENT_TIME;
4801         u64 index = 0;
4802         int ret;
4803
4804         /* we're not allowed to rename between subvolumes */
4805         if (BTRFS_I(old_inode)->root->root_key.objectid !=
4806             BTRFS_I(new_dir)->root->root_key.objectid)
4807                 return -EXDEV;
4808
4809         if (S_ISDIR(old_inode->i_mode) && new_inode &&
4810             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4811                 return -ENOTEMPTY;
4812         }
4813
4814         /* to rename a snapshot or subvolume, we need to juggle the
4815          * backrefs.  This isn't coded yet
4816          */
4817         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4818                 return -EXDEV;
4819
4820         ret = btrfs_check_metadata_free_space(root);
4821         if (ret)
4822                 goto out_unlock;
4823
4824         /*
4825          * we're using rename to replace one file with another.
4826          * and the replacement file is large.  Start IO on it now so
4827          * we don't add too much work to the end of the transaction
4828          */
4829         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
4830             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
4831                 filemap_flush(old_inode->i_mapping);
4832
4833         trans = btrfs_start_transaction(root, 1);
4834
4835         /*
4836          * make sure the inode gets flushed if it is replacing
4837          * something.
4838          */
4839         if (new_inode && new_inode->i_size &&
4840             old_inode && S_ISREG(old_inode->i_mode)) {
4841                 btrfs_add_ordered_operation(trans, root, old_inode);
4842         }
4843
4844         /*
4845          * this is an ugly little race, but the rename is required to make
4846          * sure that if we crash, the inode is either at the old name
4847          * or the new one.  pinning the log transaction lets us make sure
4848          * we don't allow a log commit to come in after we unlink the
4849          * name but before we add the new name back in.
4850          */
4851         btrfs_pin_log_trans(root);
4852
4853         btrfs_set_trans_block_group(trans, new_dir);
4854
4855         btrfs_inc_nlink(old_dentry->d_inode);
4856         old_dir->i_ctime = old_dir->i_mtime = ctime;
4857         new_dir->i_ctime = new_dir->i_mtime = ctime;
4858         old_inode->i_ctime = ctime;
4859
4860         if (old_dentry->d_parent != new_dentry->d_parent)
4861                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
4862
4863         ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4864                                  old_dentry->d_name.name,
4865                                  old_dentry->d_name.len);
4866         if (ret)
4867                 goto out_fail;
4868
4869         if (new_inode) {
4870                 new_inode->i_ctime = CURRENT_TIME;
4871                 ret = btrfs_unlink_inode(trans, root, new_dir,
4872                                          new_dentry->d_inode,
4873                                          new_dentry->d_name.name,
4874                                          new_dentry->d_name.len);
4875                 if (ret)
4876                         goto out_fail;
4877                 if (new_inode->i_nlink == 0) {
4878                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4879                         if (ret)
4880                                 goto out_fail;
4881                 }
4882
4883         }
4884         ret = btrfs_set_inode_index(new_dir, &index);
4885         if (ret)
4886                 goto out_fail;
4887
4888         ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4889                              old_inode, new_dentry->d_name.name,
4890                              new_dentry->d_name.len, 1, index);
4891         if (ret)
4892                 goto out_fail;
4893
4894         btrfs_log_new_name(trans, old_inode, old_dir,
4895                                        new_dentry->d_parent);
4896 out_fail:
4897
4898         /* this btrfs_end_log_trans just allows the current
4899          * log-sub transaction to complete
4900          */
4901         btrfs_end_log_trans(root);
4902         btrfs_end_transaction_throttle(trans, root);
4903 out_unlock:
4904         return ret;
4905 }
4906
4907 /*
4908  * some fairly slow code that needs optimization. This walks the list
4909  * of all the inodes with pending delalloc and forces them to disk.
4910  */
4911 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4912 {
4913         struct list_head *head = &root->fs_info->delalloc_inodes;
4914         struct btrfs_inode *binode;
4915         struct inode *inode;
4916
4917         if (root->fs_info->sb->s_flags & MS_RDONLY)
4918                 return -EROFS;
4919
4920         spin_lock(&root->fs_info->delalloc_lock);
4921         while (!list_empty(head)) {
4922                 binode = list_entry(head->next, struct btrfs_inode,
4923                                     delalloc_inodes);
4924                 inode = igrab(&binode->vfs_inode);
4925                 if (!inode)
4926                         list_del_init(&binode->delalloc_inodes);
4927                 spin_unlock(&root->fs_info->delalloc_lock);
4928                 if (inode) {
4929                         filemap_flush(inode->i_mapping);
4930                         iput(inode);
4931                 }
4932                 cond_resched();
4933                 spin_lock(&root->fs_info->delalloc_lock);
4934         }
4935         spin_unlock(&root->fs_info->delalloc_lock);
4936
4937         /* the filemap_flush will queue IO into the worker threads, but
4938          * we have to make sure the IO is actually started and that
4939          * ordered extents get created before we return
4940          */
4941         atomic_inc(&root->fs_info->async_submit_draining);
4942         while (atomic_read(&root->fs_info->nr_async_submits) ||
4943               atomic_read(&root->fs_info->async_delalloc_pages)) {
4944                 wait_event(root->fs_info->async_submit_wait,
4945                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4946                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4947         }
4948         atomic_dec(&root->fs_info->async_submit_draining);
4949         return 0;
4950 }
4951
4952 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4953                          const char *symname)
4954 {
4955         struct btrfs_trans_handle *trans;
4956         struct btrfs_root *root = BTRFS_I(dir)->root;
4957         struct btrfs_path *path;
4958         struct btrfs_key key;
4959         struct inode *inode = NULL;
4960         int err;
4961         int drop_inode = 0;
4962         u64 objectid;
4963         u64 index = 0 ;
4964         int name_len;
4965         int datasize;
4966         unsigned long ptr;
4967         struct btrfs_file_extent_item *ei;
4968         struct extent_buffer *leaf;
4969         unsigned long nr = 0;
4970
4971         name_len = strlen(symname) + 1;
4972         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4973                 return -ENAMETOOLONG;
4974
4975         err = btrfs_check_metadata_free_space(root);
4976         if (err)
4977                 goto out_fail;
4978
4979         trans = btrfs_start_transaction(root, 1);
4980         btrfs_set_trans_block_group(trans, dir);
4981
4982         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4983         if (err) {
4984                 err = -ENOSPC;
4985                 goto out_unlock;
4986         }
4987
4988         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4989                                 dentry->d_name.len,
4990                                 dentry->d_parent->d_inode->i_ino, objectid,
4991                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4992                                 &index);
4993         err = PTR_ERR(inode);
4994         if (IS_ERR(inode))
4995                 goto out_unlock;
4996
4997         err = btrfs_init_inode_security(inode, dir);
4998         if (err) {
4999                 drop_inode = 1;
5000                 goto out_unlock;
5001         }
5002
5003         btrfs_set_trans_block_group(trans, inode);
5004         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5005         if (err)
5006                 drop_inode = 1;
5007         else {
5008                 inode->i_mapping->a_ops = &btrfs_aops;
5009                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5010                 inode->i_fop = &btrfs_file_operations;
5011                 inode->i_op = &btrfs_file_inode_operations;
5012                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5013         }
5014         btrfs_update_inode_block_group(trans, inode);
5015         btrfs_update_inode_block_group(trans, dir);
5016         if (drop_inode)
5017                 goto out_unlock;
5018
5019         path = btrfs_alloc_path();
5020         BUG_ON(!path);
5021         key.objectid = inode->i_ino;
5022         key.offset = 0;
5023         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5024         datasize = btrfs_file_extent_calc_inline_size(name_len);
5025         err = btrfs_insert_empty_item(trans, root, path, &key,
5026                                       datasize);
5027         if (err) {
5028                 drop_inode = 1;
5029                 goto out_unlock;
5030         }
5031         leaf = path->nodes[0];
5032         ei = btrfs_item_ptr(leaf, path->slots[0],
5033                             struct btrfs_file_extent_item);
5034         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5035         btrfs_set_file_extent_type(leaf, ei,
5036                                    BTRFS_FILE_EXTENT_INLINE);
5037         btrfs_set_file_extent_encryption(leaf, ei, 0);
5038         btrfs_set_file_extent_compression(leaf, ei, 0);
5039         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5040         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5041
5042         ptr = btrfs_file_extent_inline_start(ei);
5043         write_extent_buffer(leaf, symname, ptr, name_len);
5044         btrfs_mark_buffer_dirty(leaf);
5045         btrfs_free_path(path);
5046
5047         inode->i_op = &btrfs_symlink_inode_operations;
5048         inode->i_mapping->a_ops = &btrfs_symlink_aops;
5049         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5050         inode_set_bytes(inode, name_len);
5051         btrfs_i_size_write(inode, name_len - 1);
5052         err = btrfs_update_inode(trans, root, inode);
5053         if (err)
5054                 drop_inode = 1;
5055
5056 out_unlock:
5057         nr = trans->blocks_used;
5058         btrfs_end_transaction_throttle(trans, root);
5059 out_fail:
5060         if (drop_inode) {
5061                 inode_dec_link_count(inode);
5062                 iput(inode);
5063         }
5064         btrfs_btree_balance_dirty(root, nr);
5065         return err;
5066 }
5067
5068 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5069                                struct inode *inode, u64 start, u64 end,
5070                                u64 locked_end, u64 alloc_hint, int mode)
5071 {
5072         struct btrfs_root *root = BTRFS_I(inode)->root;
5073         struct btrfs_key ins;
5074         u64 alloc_size;
5075         u64 cur_offset = start;
5076         u64 num_bytes = end - start;
5077         int ret = 0;
5078
5079         while (num_bytes > 0) {
5080                 alloc_size = min(num_bytes, root->fs_info->max_extent);
5081                 ret = btrfs_reserve_extent(trans, root, alloc_size,
5082                                            root->sectorsize, 0, alloc_hint,
5083                                            (u64)-1, &ins, 1);
5084                 if (ret) {
5085                         WARN_ON(1);
5086                         goto out;
5087                 }
5088                 ret = insert_reserved_file_extent(trans, inode,
5089                                                   cur_offset, ins.objectid,
5090                                                   ins.offset, ins.offset,
5091                                                   ins.offset, locked_end,
5092                                                   0, 0, 0,
5093                                                   BTRFS_FILE_EXTENT_PREALLOC);
5094                 BUG_ON(ret);
5095                 btrfs_drop_extent_cache(inode, cur_offset,
5096                                         cur_offset + ins.offset -1, 0);
5097                 num_bytes -= ins.offset;
5098                 cur_offset += ins.offset;
5099                 alloc_hint = ins.objectid + ins.offset;
5100         }
5101 out:
5102         if (cur_offset > start) {
5103                 inode->i_ctime = CURRENT_TIME;
5104                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5105                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5106                     cur_offset > i_size_read(inode))
5107                         btrfs_i_size_write(inode, cur_offset);
5108                 ret = btrfs_update_inode(trans, root, inode);
5109                 BUG_ON(ret);
5110         }
5111
5112         return ret;
5113 }
5114
5115 static long btrfs_fallocate(struct inode *inode, int mode,
5116                             loff_t offset, loff_t len)
5117 {
5118         u64 cur_offset;
5119         u64 last_byte;
5120         u64 alloc_start;
5121         u64 alloc_end;
5122         u64 alloc_hint = 0;
5123         u64 locked_end;
5124         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5125         struct extent_map *em;
5126         struct btrfs_trans_handle *trans;
5127         struct btrfs_root *root;
5128         int ret;
5129
5130         alloc_start = offset & ~mask;
5131         alloc_end =  (offset + len + mask) & ~mask;
5132
5133         /*
5134          * wait for ordered IO before we have any locks.  We'll loop again
5135          * below with the locks held.
5136          */
5137         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5138
5139         mutex_lock(&inode->i_mutex);
5140         if (alloc_start > inode->i_size) {
5141                 ret = btrfs_cont_expand(inode, alloc_start);
5142                 if (ret)
5143                         goto out;
5144         }
5145
5146         root = BTRFS_I(inode)->root;
5147
5148         ret = btrfs_check_data_free_space(root, inode,
5149                                           alloc_end - alloc_start);
5150         if (ret)
5151                 goto out;
5152
5153         locked_end = alloc_end - 1;
5154         while (1) {
5155                 struct btrfs_ordered_extent *ordered;
5156
5157                 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5158                 if (!trans) {
5159                         ret = -EIO;
5160                         goto out_free;
5161                 }
5162
5163                 /* the extent lock is ordered inside the running
5164                  * transaction
5165                  */
5166                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5167                             GFP_NOFS);
5168                 ordered = btrfs_lookup_first_ordered_extent(inode,
5169                                                             alloc_end - 1);
5170                 if (ordered &&
5171                     ordered->file_offset + ordered->len > alloc_start &&
5172                     ordered->file_offset < alloc_end) {
5173                         btrfs_put_ordered_extent(ordered);
5174                         unlock_extent(&BTRFS_I(inode)->io_tree,
5175                                       alloc_start, locked_end, GFP_NOFS);
5176                         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5177
5178                         /*
5179                          * we can't wait on the range with the transaction
5180                          * running or with the extent lock held
5181                          */
5182                         btrfs_wait_ordered_range(inode, alloc_start,
5183                                                  alloc_end - alloc_start);
5184                 } else {
5185                         if (ordered)
5186                                 btrfs_put_ordered_extent(ordered);
5187                         break;
5188                 }
5189         }
5190
5191         cur_offset = alloc_start;
5192         while (1) {
5193                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5194                                       alloc_end - cur_offset, 0);
5195                 BUG_ON(IS_ERR(em) || !em);
5196                 last_byte = min(extent_map_end(em), alloc_end);
5197                 last_byte = (last_byte + mask) & ~mask;
5198                 if (em->block_start == EXTENT_MAP_HOLE) {
5199                         ret = prealloc_file_range(trans, inode, cur_offset,
5200                                         last_byte, locked_end + 1,
5201                                         alloc_hint, mode);
5202                         if (ret < 0) {
5203                                 free_extent_map(em);
5204                                 break;
5205                         }
5206                 }
5207                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5208                         alloc_hint = em->block_start;
5209                 free_extent_map(em);
5210
5211                 cur_offset = last_byte;
5212                 if (cur_offset >= alloc_end) {
5213                         ret = 0;
5214                         break;
5215                 }
5216         }
5217         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5218                       GFP_NOFS);
5219
5220         btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5221 out_free:
5222         btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
5223 out:
5224         mutex_unlock(&inode->i_mutex);
5225         return ret;
5226 }
5227
5228 static int btrfs_set_page_dirty(struct page *page)
5229 {
5230         return __set_page_dirty_nobuffers(page);
5231 }
5232
5233 static int btrfs_permission(struct inode *inode, int mask)
5234 {
5235         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5236                 return -EACCES;
5237         return generic_permission(inode, mask, btrfs_check_acl);
5238 }
5239
5240 static struct inode_operations btrfs_dir_inode_operations = {
5241         .getattr        = btrfs_getattr,
5242         .lookup         = btrfs_lookup,
5243         .create         = btrfs_create,
5244         .unlink         = btrfs_unlink,
5245         .link           = btrfs_link,
5246         .mkdir          = btrfs_mkdir,
5247         .rmdir          = btrfs_rmdir,
5248         .rename         = btrfs_rename,
5249         .symlink        = btrfs_symlink,
5250         .setattr        = btrfs_setattr,
5251         .mknod          = btrfs_mknod,
5252         .setxattr       = btrfs_setxattr,
5253         .getxattr       = btrfs_getxattr,
5254         .listxattr      = btrfs_listxattr,
5255         .removexattr    = btrfs_removexattr,
5256         .permission     = btrfs_permission,
5257 };
5258 static struct inode_operations btrfs_dir_ro_inode_operations = {
5259         .lookup         = btrfs_lookup,
5260         .permission     = btrfs_permission,
5261 };
5262 static struct file_operations btrfs_dir_file_operations = {
5263         .llseek         = generic_file_llseek,
5264         .read           = generic_read_dir,
5265         .readdir        = btrfs_real_readdir,
5266         .unlocked_ioctl = btrfs_ioctl,
5267 #ifdef CONFIG_COMPAT
5268         .compat_ioctl   = btrfs_ioctl,
5269 #endif
5270         .release        = btrfs_release_file,
5271         .fsync          = btrfs_sync_file,
5272 };
5273
5274 static struct extent_io_ops btrfs_extent_io_ops = {
5275         .fill_delalloc = run_delalloc_range,
5276         .submit_bio_hook = btrfs_submit_bio_hook,
5277         .merge_bio_hook = btrfs_merge_bio_hook,
5278         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5279         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5280         .writepage_start_hook = btrfs_writepage_start_hook,
5281         .readpage_io_failed_hook = btrfs_io_failed_hook,
5282         .set_bit_hook = btrfs_set_bit_hook,
5283         .clear_bit_hook = btrfs_clear_bit_hook,
5284 };
5285
5286 /*
5287  * btrfs doesn't support the bmap operation because swapfiles
5288  * use bmap to make a mapping of extents in the file.  They assume
5289  * these extents won't change over the life of the file and they
5290  * use the bmap result to do IO directly to the drive.
5291  *
5292  * the btrfs bmap call would return logical addresses that aren't
5293  * suitable for IO and they also will change frequently as COW
5294  * operations happen.  So, swapfile + btrfs == corruption.
5295  *
5296  * For now we're avoiding this by dropping bmap.
5297  */
5298 static struct address_space_operations btrfs_aops = {
5299         .readpage       = btrfs_readpage,
5300         .writepage      = btrfs_writepage,
5301         .writepages     = btrfs_writepages,
5302         .readpages      = btrfs_readpages,
5303         .sync_page      = block_sync_page,
5304         .direct_IO      = btrfs_direct_IO,
5305         .invalidatepage = btrfs_invalidatepage,
5306         .releasepage    = btrfs_releasepage,
5307         .set_page_dirty = btrfs_set_page_dirty,
5308 };
5309
5310 static struct address_space_operations btrfs_symlink_aops = {
5311         .readpage       = btrfs_readpage,
5312         .writepage      = btrfs_writepage,
5313         .invalidatepage = btrfs_invalidatepage,
5314         .releasepage    = btrfs_releasepage,
5315 };
5316
5317 static struct inode_operations btrfs_file_inode_operations = {
5318         .truncate       = btrfs_truncate,
5319         .getattr        = btrfs_getattr,
5320         .setattr        = btrfs_setattr,
5321         .setxattr       = btrfs_setxattr,
5322         .getxattr       = btrfs_getxattr,
5323         .listxattr      = btrfs_listxattr,
5324         .removexattr    = btrfs_removexattr,
5325         .permission     = btrfs_permission,
5326         .fallocate      = btrfs_fallocate,
5327         .fiemap         = btrfs_fiemap,
5328 };
5329 static struct inode_operations btrfs_special_inode_operations = {
5330         .getattr        = btrfs_getattr,
5331         .setattr        = btrfs_setattr,
5332         .permission     = btrfs_permission,
5333         .setxattr       = btrfs_setxattr,
5334         .getxattr       = btrfs_getxattr,
5335         .listxattr      = btrfs_listxattr,
5336         .removexattr    = btrfs_removexattr,
5337 };
5338 static struct inode_operations btrfs_symlink_inode_operations = {
5339         .readlink       = generic_readlink,
5340         .follow_link    = page_follow_link_light,
5341         .put_link       = page_put_link,
5342         .permission     = btrfs_permission,
5343         .setxattr       = btrfs_setxattr,
5344         .getxattr       = btrfs_getxattr,
5345         .listxattr      = btrfs_listxattr,
5346         .removexattr    = btrfs_removexattr,
5347 };