]> git.karo-electronics.de Git - mv-sheeva.git/blob - fs/nfs/nfs4proc.c
NFS: Remove use of the Big Kernel Lock around calls to rpc_call_sync
[mv-sheeva.git] / fs / nfs / nfs4proc.c
1 /*
2  *  fs/nfs/nfs4proc.c
3  *
4  *  Client-side procedure declarations for NFSv4.
5  *
6  *  Copyright (c) 2002 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Kendrick Smith <kmsmith@umich.edu>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "iostat.h"
55
56 #define NFSDBG_FACILITY         NFSDBG_PROC
57
58 #define NFS4_POLL_RETRY_MIN     (HZ/10)
59 #define NFS4_POLL_RETRY_MAX     (15*HZ)
60
61 struct nfs4_opendata;
62 static int _nfs4_proc_open(struct nfs4_opendata *data);
63 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
64 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
65 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp);
68
69 /* Prevent leaks of NFSv4 errors into userland */
70 int nfs4_map_errors(int err)
71 {
72         if (err < -1000) {
73                 dprintk("%s could not handle NFSv4 error %d\n",
74                                 __FUNCTION__, -err);
75                 return -EIO;
76         }
77         return err;
78 }
79
80 /*
81  * This is our standard bitmap for GETATTR requests.
82  */
83 const u32 nfs4_fattr_bitmap[2] = {
84         FATTR4_WORD0_TYPE
85         | FATTR4_WORD0_CHANGE
86         | FATTR4_WORD0_SIZE
87         | FATTR4_WORD0_FSID
88         | FATTR4_WORD0_FILEID,
89         FATTR4_WORD1_MODE
90         | FATTR4_WORD1_NUMLINKS
91         | FATTR4_WORD1_OWNER
92         | FATTR4_WORD1_OWNER_GROUP
93         | FATTR4_WORD1_RAWDEV
94         | FATTR4_WORD1_SPACE_USED
95         | FATTR4_WORD1_TIME_ACCESS
96         | FATTR4_WORD1_TIME_METADATA
97         | FATTR4_WORD1_TIME_MODIFY
98 };
99
100 const u32 nfs4_statfs_bitmap[2] = {
101         FATTR4_WORD0_FILES_AVAIL
102         | FATTR4_WORD0_FILES_FREE
103         | FATTR4_WORD0_FILES_TOTAL,
104         FATTR4_WORD1_SPACE_AVAIL
105         | FATTR4_WORD1_SPACE_FREE
106         | FATTR4_WORD1_SPACE_TOTAL
107 };
108
109 const u32 nfs4_pathconf_bitmap[2] = {
110         FATTR4_WORD0_MAXLINK
111         | FATTR4_WORD0_MAXNAME,
112         0
113 };
114
115 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
116                         | FATTR4_WORD0_MAXREAD
117                         | FATTR4_WORD0_MAXWRITE
118                         | FATTR4_WORD0_LEASE_TIME,
119                         0
120 };
121
122 const u32 nfs4_fs_locations_bitmap[2] = {
123         FATTR4_WORD0_TYPE
124         | FATTR4_WORD0_CHANGE
125         | FATTR4_WORD0_SIZE
126         | FATTR4_WORD0_FSID
127         | FATTR4_WORD0_FILEID
128         | FATTR4_WORD0_FS_LOCATIONS,
129         FATTR4_WORD1_MODE
130         | FATTR4_WORD1_NUMLINKS
131         | FATTR4_WORD1_OWNER
132         | FATTR4_WORD1_OWNER_GROUP
133         | FATTR4_WORD1_RAWDEV
134         | FATTR4_WORD1_SPACE_USED
135         | FATTR4_WORD1_TIME_ACCESS
136         | FATTR4_WORD1_TIME_METADATA
137         | FATTR4_WORD1_TIME_MODIFY
138         | FATTR4_WORD1_MOUNTED_ON_FILEID
139 };
140
141 static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry,
142                 struct nfs4_readdir_arg *readdir)
143 {
144         __be32 *start, *p;
145
146         BUG_ON(readdir->count < 80);
147         if (cookie > 2) {
148                 readdir->cookie = cookie;
149                 memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
150                 return;
151         }
152
153         readdir->cookie = 0;
154         memset(&readdir->verifier, 0, sizeof(readdir->verifier));
155         if (cookie == 2)
156                 return;
157         
158         /*
159          * NFSv4 servers do not return entries for '.' and '..'
160          * Therefore, we fake these entries here.  We let '.'
161          * have cookie 0 and '..' have cookie 1.  Note that
162          * when talking to the server, we always send cookie 0
163          * instead of 1 or 2.
164          */
165         start = p = kmap_atomic(*readdir->pages, KM_USER0);
166         
167         if (cookie == 0) {
168                 *p++ = xdr_one;                                  /* next */
169                 *p++ = xdr_zero;                   /* cookie, first word */
170                 *p++ = xdr_one;                   /* cookie, second word */
171                 *p++ = xdr_one;                             /* entry len */
172                 memcpy(p, ".\0\0\0", 4);                        /* entry */
173                 p++;
174                 *p++ = xdr_one;                         /* bitmap length */
175                 *p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
176                 *p++ = htonl(8);              /* attribute buffer length */
177                 p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
178         }
179         
180         *p++ = xdr_one;                                  /* next */
181         *p++ = xdr_zero;                   /* cookie, first word */
182         *p++ = xdr_two;                   /* cookie, second word */
183         *p++ = xdr_two;                             /* entry len */
184         memcpy(p, "..\0\0", 4);                         /* entry */
185         p++;
186         *p++ = xdr_one;                         /* bitmap length */
187         *p++ = htonl(FATTR4_WORD0_FILEID);             /* bitmap */
188         *p++ = htonl(8);              /* attribute buffer length */
189         p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
190
191         readdir->pgbase = (char *)p - (char *)start;
192         readdir->count -= readdir->pgbase;
193         kunmap_atomic(start, KM_USER0);
194 }
195
196 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
197 {
198         struct nfs_client *clp = server->nfs_client;
199         spin_lock(&clp->cl_lock);
200         if (time_before(clp->cl_last_renewal,timestamp))
201                 clp->cl_last_renewal = timestamp;
202         spin_unlock(&clp->cl_lock);
203 }
204
205 static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
206 {
207         struct nfs_inode *nfsi = NFS_I(dir);
208
209         spin_lock(&dir->i_lock);
210         nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
211         if (cinfo->before == nfsi->change_attr && cinfo->atomic)
212                 nfsi->change_attr = cinfo->after;
213         spin_unlock(&dir->i_lock);
214 }
215
216 struct nfs4_opendata {
217         atomic_t count;
218         struct nfs_openargs o_arg;
219         struct nfs_openres o_res;
220         struct nfs_open_confirmargs c_arg;
221         struct nfs_open_confirmres c_res;
222         struct nfs_fattr f_attr;
223         struct nfs_fattr dir_attr;
224         struct dentry *dentry;
225         struct dentry *dir;
226         struct nfs4_state_owner *owner;
227         struct iattr attrs;
228         unsigned long timestamp;
229         int rpc_status;
230         int cancelled;
231 };
232
233 static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
234                 struct nfs4_state_owner *sp, int flags,
235                 const struct iattr *attrs)
236 {
237         struct dentry *parent = dget_parent(dentry);
238         struct inode *dir = parent->d_inode;
239         struct nfs_server *server = NFS_SERVER(dir);
240         struct nfs4_opendata *p;
241
242         p = kzalloc(sizeof(*p), GFP_KERNEL);
243         if (p == NULL)
244                 goto err;
245         p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
246         if (p->o_arg.seqid == NULL)
247                 goto err_free;
248         atomic_set(&p->count, 1);
249         p->dentry = dget(dentry);
250         p->dir = parent;
251         p->owner = sp;
252         atomic_inc(&sp->so_count);
253         p->o_arg.fh = NFS_FH(dir);
254         p->o_arg.open_flags = flags,
255         p->o_arg.clientid = server->nfs_client->cl_clientid;
256         p->o_arg.id = sp->so_id;
257         p->o_arg.name = &dentry->d_name;
258         p->o_arg.server = server;
259         p->o_arg.bitmask = server->attr_bitmask;
260         p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
261         p->o_res.f_attr = &p->f_attr;
262         p->o_res.dir_attr = &p->dir_attr;
263         p->o_res.server = server;
264         nfs_fattr_init(&p->f_attr);
265         nfs_fattr_init(&p->dir_attr);
266         if (flags & O_EXCL) {
267                 u32 *s = (u32 *) p->o_arg.u.verifier.data;
268                 s[0] = jiffies;
269                 s[1] = current->pid;
270         } else if (flags & O_CREAT) {
271                 p->o_arg.u.attrs = &p->attrs;
272                 memcpy(&p->attrs, attrs, sizeof(p->attrs));
273         }
274         p->c_arg.fh = &p->o_res.fh;
275         p->c_arg.stateid = &p->o_res.stateid;
276         p->c_arg.seqid = p->o_arg.seqid;
277         return p;
278 err_free:
279         kfree(p);
280 err:
281         dput(parent);
282         return NULL;
283 }
284
285 static void nfs4_opendata_free(struct nfs4_opendata *p)
286 {
287         if (p != NULL && atomic_dec_and_test(&p->count)) {
288                 nfs_free_seqid(p->o_arg.seqid);
289                 nfs4_put_state_owner(p->owner);
290                 dput(p->dir);
291                 dput(p->dentry);
292                 kfree(p);
293         }
294 }
295
296 /* Helper for asynchronous RPC calls */
297 static int nfs4_call_async(struct rpc_clnt *clnt,
298                 const struct rpc_call_ops *tk_ops, void *calldata)
299 {
300         struct rpc_task *task;
301
302         if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata)))
303                 return -ENOMEM;
304         rpc_execute(task);
305         return 0;
306 }
307
308 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
309 {
310         sigset_t oldset;
311         int ret;
312
313         rpc_clnt_sigmask(task->tk_client, &oldset);
314         ret = rpc_wait_for_completion_task(task);
315         rpc_clnt_sigunmask(task->tk_client, &oldset);
316         return ret;
317 }
318
319 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
320 {
321         switch (open_flags) {
322                 case FMODE_WRITE:
323                         state->n_wronly++;
324                         break;
325                 case FMODE_READ:
326                         state->n_rdonly++;
327                         break;
328                 case FMODE_READ|FMODE_WRITE:
329                         state->n_rdwr++;
330         }
331 }
332
333 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
334 {
335         struct inode *inode = state->inode;
336
337         open_flags &= (FMODE_READ|FMODE_WRITE);
338         /* Protect against nfs4_find_state_byowner() */
339         spin_lock(&state->owner->so_lock);
340         spin_lock(&inode->i_lock);
341         memcpy(&state->stateid, stateid, sizeof(state->stateid));
342         update_open_stateflags(state, open_flags);
343         nfs4_state_set_mode_locked(state, state->state | open_flags);
344         spin_unlock(&inode->i_lock);
345         spin_unlock(&state->owner->so_lock);
346 }
347
348 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
349 {
350         struct inode *inode;
351         struct nfs4_state *state = NULL;
352
353         if (!(data->f_attr.valid & NFS_ATTR_FATTR))
354                 goto out;
355         inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
356         if (IS_ERR(inode))
357                 goto out;
358         state = nfs4_get_open_state(inode, data->owner);
359         if (state == NULL)
360                 goto put_inode;
361         update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
362 put_inode:
363         iput(inode);
364 out:
365         return state;
366 }
367
368 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
369 {
370         struct nfs_inode *nfsi = NFS_I(state->inode);
371         struct nfs_open_context *ctx;
372
373         spin_lock(&state->inode->i_lock);
374         list_for_each_entry(ctx, &nfsi->open_files, list) {
375                 if (ctx->state != state)
376                         continue;
377                 get_nfs_open_context(ctx);
378                 spin_unlock(&state->inode->i_lock);
379                 return ctx;
380         }
381         spin_unlock(&state->inode->i_lock);
382         return ERR_PTR(-ENOENT);
383 }
384
385 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid)
386 {
387         int ret;
388
389         opendata->o_arg.open_flags = openflags;
390         ret = _nfs4_proc_open(opendata);
391         if (ret != 0)
392                 return ret; 
393         memcpy(stateid->data, opendata->o_res.stateid.data,
394                         sizeof(stateid->data));
395         return 0;
396 }
397
398 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
399 {
400         nfs4_stateid stateid;
401         struct nfs4_state *newstate;
402         int mode = 0;
403         int delegation = 0;
404         int ret;
405
406         /* memory barrier prior to reading state->n_* */
407         smp_rmb();
408         if (state->n_rdwr != 0) {
409                 ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid);
410                 if (ret != 0)
411                         return ret;
412                 mode |= FMODE_READ|FMODE_WRITE;
413                 if (opendata->o_res.delegation_type != 0)
414                         delegation = opendata->o_res.delegation_type;
415                 smp_rmb();
416         }
417         if (state->n_wronly != 0) {
418                 ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid);
419                 if (ret != 0)
420                         return ret;
421                 mode |= FMODE_WRITE;
422                 if (opendata->o_res.delegation_type != 0)
423                         delegation = opendata->o_res.delegation_type;
424                 smp_rmb();
425         }
426         if (state->n_rdonly != 0) {
427                 ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid);
428                 if (ret != 0)
429                         return ret;
430                 mode |= FMODE_READ;
431         }
432         clear_bit(NFS_DELEGATED_STATE, &state->flags);
433         if (mode == 0)
434                 return 0;
435         if (opendata->o_res.delegation_type == 0)
436                 opendata->o_res.delegation_type = delegation;
437         opendata->o_arg.open_flags |= mode;
438         newstate = nfs4_opendata_to_nfs4_state(opendata);
439         if (newstate != NULL) {
440                 if (opendata->o_res.delegation_type != 0) {
441                         struct nfs_inode *nfsi = NFS_I(newstate->inode);
442                         int delegation_flags = 0;
443                         if (nfsi->delegation)
444                                 delegation_flags = nfsi->delegation->flags;
445                         if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
446                                 nfs_inode_set_delegation(newstate->inode,
447                                                 opendata->owner->so_cred,
448                                                 &opendata->o_res);
449                         else
450                                 nfs_inode_reclaim_delegation(newstate->inode,
451                                                 opendata->owner->so_cred,
452                                                 &opendata->o_res);
453                 }
454                 nfs4_close_state(newstate, opendata->o_arg.open_flags);
455         }
456         if (newstate != state)
457                 return -ESTALE;
458         return 0;
459 }
460
461 /*
462  * OPEN_RECLAIM:
463  *      reclaim state on the server after a reboot.
464  */
465 static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
466 {
467         struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
468         struct nfs4_opendata *opendata;
469         int delegation_type = 0;
470         int status;
471
472         if (delegation != NULL) {
473                 if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
474                         memcpy(&state->stateid, &delegation->stateid,
475                                         sizeof(state->stateid));
476                         set_bit(NFS_DELEGATED_STATE, &state->flags);
477                         return 0;
478                 }
479                 delegation_type = delegation->type;
480         }
481         opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
482         if (opendata == NULL)
483                 return -ENOMEM;
484         opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
485         opendata->o_arg.fh = NFS_FH(state->inode);
486         nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
487         opendata->o_arg.u.delegation_type = delegation_type;
488         status = nfs4_open_recover(opendata, state);
489         nfs4_opendata_free(opendata);
490         return status;
491 }
492
493 static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
494 {
495         struct nfs_server *server = NFS_SERVER(state->inode);
496         struct nfs4_exception exception = { };
497         int err;
498         do {
499                 err = _nfs4_do_open_reclaim(sp, state, dentry);
500                 if (err != -NFS4ERR_DELAY)
501                         break;
502                 nfs4_handle_exception(server, err, &exception);
503         } while (exception.retry);
504         return err;
505 }
506
507 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
508 {
509         struct nfs_open_context *ctx;
510         int ret;
511
512         ctx = nfs4_state_find_open_context(state);
513         if (IS_ERR(ctx))
514                 return PTR_ERR(ctx);
515         ret = nfs4_do_open_reclaim(sp, state, ctx->dentry);
516         put_nfs_open_context(ctx);
517         return ret;
518 }
519
520 static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
521 {
522         struct nfs4_state_owner  *sp  = state->owner;
523         struct nfs4_opendata *opendata;
524         int ret;
525
526         if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
527                 return 0;
528         opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
529         if (opendata == NULL)
530                 return -ENOMEM;
531         opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
532         memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
533                         sizeof(opendata->o_arg.u.delegation.data));
534         ret = nfs4_open_recover(opendata, state);
535         nfs4_opendata_free(opendata);
536         return ret;
537 }
538
539 int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
540 {
541         struct nfs4_exception exception = { };
542         struct nfs_server *server = NFS_SERVER(dentry->d_inode);
543         int err;
544         do {
545                 err = _nfs4_open_delegation_recall(dentry, state);
546                 switch (err) {
547                         case 0:
548                                 return err;
549                         case -NFS4ERR_STALE_CLIENTID:
550                         case -NFS4ERR_STALE_STATEID:
551                         case -NFS4ERR_EXPIRED:
552                                 /* Don't recall a delegation if it was lost */
553                                 nfs4_schedule_state_recovery(server->nfs_client);
554                                 return err;
555                 }
556                 err = nfs4_handle_exception(server, err, &exception);
557         } while (exception.retry);
558         return err;
559 }
560
561 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
562 {
563         struct nfs4_opendata *data = calldata;
564         struct  rpc_message msg = {
565                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
566                 .rpc_argp = &data->c_arg,
567                 .rpc_resp = &data->c_res,
568                 .rpc_cred = data->owner->so_cred,
569         };
570         data->timestamp = jiffies;
571         rpc_call_setup(task, &msg, 0);
572 }
573
574 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
575 {
576         struct nfs4_opendata *data = calldata;
577
578         data->rpc_status = task->tk_status;
579         if (RPC_ASSASSINATED(task))
580                 return;
581         if (data->rpc_status == 0) {
582                 memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
583                                 sizeof(data->o_res.stateid.data));
584                 renew_lease(data->o_res.server, data->timestamp);
585         }
586         nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
587         nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
588 }
589
590 static void nfs4_open_confirm_release(void *calldata)
591 {
592         struct nfs4_opendata *data = calldata;
593         struct nfs4_state *state = NULL;
594
595         /* If this request hasn't been cancelled, do nothing */
596         if (data->cancelled == 0)
597                 goto out_free;
598         /* In case of error, no cleanup! */
599         if (data->rpc_status != 0)
600                 goto out_free;
601         nfs_confirm_seqid(&data->owner->so_seqid, 0);
602         state = nfs4_opendata_to_nfs4_state(data);
603         if (state != NULL)
604                 nfs4_close_state(state, data->o_arg.open_flags);
605 out_free:
606         nfs4_opendata_free(data);
607 }
608
609 static const struct rpc_call_ops nfs4_open_confirm_ops = {
610         .rpc_call_prepare = nfs4_open_confirm_prepare,
611         .rpc_call_done = nfs4_open_confirm_done,
612         .rpc_release = nfs4_open_confirm_release,
613 };
614
615 /*
616  * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
617  */
618 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
619 {
620         struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
621         struct rpc_task *task;
622         int status;
623
624         atomic_inc(&data->count);
625         /*
626          * If rpc_run_task() ends up calling ->rpc_release(), we
627          * want to ensure that it takes the 'error' code path.
628          */
629         data->rpc_status = -ENOMEM;
630         task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
631         if (IS_ERR(task))
632                 return PTR_ERR(task);
633         status = nfs4_wait_for_completion_rpc_task(task);
634         if (status != 0) {
635                 data->cancelled = 1;
636                 smp_wmb();
637         } else
638                 status = data->rpc_status;
639         rpc_put_task(task);
640         return status;
641 }
642
643 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
644 {
645         struct nfs4_opendata *data = calldata;
646         struct nfs4_state_owner *sp = data->owner;
647         struct rpc_message msg = {
648                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
649                 .rpc_argp = &data->o_arg,
650                 .rpc_resp = &data->o_res,
651                 .rpc_cred = sp->so_cred,
652         };
653         
654         if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
655                 return;
656         /* Update sequence id. */
657         data->o_arg.id = sp->so_id;
658         data->o_arg.clientid = sp->so_client->cl_clientid;
659         if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
660                 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
661         data->timestamp = jiffies;
662         rpc_call_setup(task, &msg, 0);
663 }
664
665 static void nfs4_open_done(struct rpc_task *task, void *calldata)
666 {
667         struct nfs4_opendata *data = calldata;
668
669         data->rpc_status = task->tk_status;
670         if (RPC_ASSASSINATED(task))
671                 return;
672         if (task->tk_status == 0) {
673                 switch (data->o_res.f_attr->mode & S_IFMT) {
674                         case S_IFREG:
675                                 break;
676                         case S_IFLNK:
677                                 data->rpc_status = -ELOOP;
678                                 break;
679                         case S_IFDIR:
680                                 data->rpc_status = -EISDIR;
681                                 break;
682                         default:
683                                 data->rpc_status = -ENOTDIR;
684                 }
685                 renew_lease(data->o_res.server, data->timestamp);
686         }
687         nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
688 }
689
690 static void nfs4_open_release(void *calldata)
691 {
692         struct nfs4_opendata *data = calldata;
693         struct nfs4_state *state = NULL;
694
695         /* If this request hasn't been cancelled, do nothing */
696         if (data->cancelled == 0)
697                 goto out_free;
698         /* In case of error, no cleanup! */
699         if (data->rpc_status != 0)
700                 goto out_free;
701         /* In case we need an open_confirm, no cleanup! */
702         if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
703                 goto out_free;
704         nfs_confirm_seqid(&data->owner->so_seqid, 0);
705         state = nfs4_opendata_to_nfs4_state(data);
706         if (state != NULL)
707                 nfs4_close_state(state, data->o_arg.open_flags);
708 out_free:
709         nfs4_opendata_free(data);
710 }
711
712 static const struct rpc_call_ops nfs4_open_ops = {
713         .rpc_call_prepare = nfs4_open_prepare,
714         .rpc_call_done = nfs4_open_done,
715         .rpc_release = nfs4_open_release,
716 };
717
718 /*
719  * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
720  */
721 static int _nfs4_proc_open(struct nfs4_opendata *data)
722 {
723         struct inode *dir = data->dir->d_inode;
724         struct nfs_server *server = NFS_SERVER(dir);
725         struct nfs_openargs *o_arg = &data->o_arg;
726         struct nfs_openres *o_res = &data->o_res;
727         struct rpc_task *task;
728         int status;
729
730         atomic_inc(&data->count);
731         /*
732          * If rpc_run_task() ends up calling ->rpc_release(), we
733          * want to ensure that it takes the 'error' code path.
734          */
735         data->rpc_status = -ENOMEM;
736         task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
737         if (IS_ERR(task))
738                 return PTR_ERR(task);
739         status = nfs4_wait_for_completion_rpc_task(task);
740         if (status != 0) {
741                 data->cancelled = 1;
742                 smp_wmb();
743         } else
744                 status = data->rpc_status;
745         rpc_put_task(task);
746         if (status != 0)
747                 return status;
748
749         if (o_arg->open_flags & O_CREAT) {
750                 update_changeattr(dir, &o_res->cinfo);
751                 nfs_post_op_update_inode(dir, o_res->dir_attr);
752         } else
753                 nfs_refresh_inode(dir, o_res->dir_attr);
754         if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
755                 status = _nfs4_proc_open_confirm(data);
756                 if (status != 0)
757                         return status;
758         }
759         nfs_confirm_seqid(&data->owner->so_seqid, 0);
760         if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
761                 return server->nfs_client->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
762         return 0;
763 }
764
765 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
766 {
767         struct nfs_access_entry cache;
768         int mask = 0;
769         int status;
770
771         if (openflags & FMODE_READ)
772                 mask |= MAY_READ;
773         if (openflags & FMODE_WRITE)
774                 mask |= MAY_WRITE;
775         status = nfs_access_get_cached(inode, cred, &cache);
776         if (status == 0)
777                 goto out;
778
779         /* Be clever: ask server to check for all possible rights */
780         cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
781         cache.cred = cred;
782         cache.jiffies = jiffies;
783         status = _nfs4_proc_access(inode, &cache);
784         if (status != 0)
785                 return status;
786         nfs_access_add_cache(inode, &cache);
787 out:
788         if ((cache.mask & mask) == mask)
789                 return 0;
790         return -EACCES;
791 }
792
793 int nfs4_recover_expired_lease(struct nfs_server *server)
794 {
795         struct nfs_client *clp = server->nfs_client;
796         int ret;
797
798         for (;;) {
799                 ret = nfs4_wait_clnt_recover(server->client, clp);
800                 if (ret != 0)
801                         return ret;
802                 if (!test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
803                         break;
804                 nfs4_schedule_state_recovery(clp);
805         }
806         return 0;
807 }
808
809 /*
810  * OPEN_EXPIRED:
811  *      reclaim state on the server after a network partition.
812  *      Assumes caller holds the appropriate lock
813  */
814 static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
815 {
816         struct inode *inode = state->inode;
817         struct nfs_delegation *delegation = NFS_I(inode)->delegation;
818         struct nfs4_opendata *opendata;
819         int openflags = state->state & (FMODE_READ|FMODE_WRITE);
820         int ret;
821
822         if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
823                 ret = _nfs4_do_access(inode, sp->so_cred, openflags);
824                 if (ret < 0)
825                         return ret;
826                 memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
827                 set_bit(NFS_DELEGATED_STATE, &state->flags);
828                 return 0;
829         }
830         opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL);
831         if (opendata == NULL)
832                 return -ENOMEM;
833         ret = nfs4_open_recover(opendata, state);
834         if (ret == -ESTALE) {
835                 /* Invalidate the state owner so we don't ever use it again */
836                 nfs4_drop_state_owner(sp);
837                 d_drop(dentry);
838         }
839         nfs4_opendata_free(opendata);
840         return ret;
841 }
842
843 static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
844 {
845         struct nfs_server *server = NFS_SERVER(dentry->d_inode);
846         struct nfs4_exception exception = { };
847         int err;
848
849         do {
850                 err = _nfs4_open_expired(sp, state, dentry);
851                 if (err == -NFS4ERR_DELAY)
852                         nfs4_handle_exception(server, err, &exception);
853         } while (exception.retry);
854         return err;
855 }
856
857 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
858 {
859         struct nfs_open_context *ctx;
860         int ret;
861
862         ctx = nfs4_state_find_open_context(state);
863         if (IS_ERR(ctx))
864                 return PTR_ERR(ctx);
865         ret = nfs4_do_open_expired(sp, state, ctx->dentry);
866         put_nfs_open_context(ctx);
867         return ret;
868 }
869
870 /*
871  * Returns a referenced nfs4_state if there is an open delegation on the file
872  */
873 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
874 {
875         struct nfs_delegation *delegation;
876         struct nfs_server *server = NFS_SERVER(inode);
877         struct nfs_client *clp = server->nfs_client;
878         struct nfs_inode *nfsi = NFS_I(inode);
879         struct nfs4_state_owner *sp = NULL;
880         struct nfs4_state *state = NULL;
881         int open_flags = flags & (FMODE_READ|FMODE_WRITE);
882         int err;
883
884         err = -ENOMEM;
885         if (!(sp = nfs4_get_state_owner(server, cred))) {
886                 dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
887                 return err;
888         }
889         err = nfs4_recover_expired_lease(server);
890         if (err != 0)
891                 goto out_put_state_owner;
892         /* Protect against reboot recovery - NOTE ORDER! */
893         down_read(&clp->cl_sem);
894         /* Protect against delegation recall */
895         down_read(&nfsi->rwsem);
896         delegation = NFS_I(inode)->delegation;
897         err = -ENOENT;
898         if (delegation == NULL || (delegation->type & open_flags) != open_flags)
899                 goto out_err;
900         err = -ENOMEM;
901         state = nfs4_get_open_state(inode, sp);
902         if (state == NULL)
903                 goto out_err;
904
905         err = -ENOENT;
906         if ((state->state & open_flags) == open_flags) {
907                 spin_lock(&inode->i_lock);
908                 update_open_stateflags(state, open_flags);
909                 spin_unlock(&inode->i_lock);
910                 goto out_ok;
911         } else if (state->state != 0)
912                 goto out_put_open_state;
913
914         lock_kernel();
915         err = _nfs4_do_access(inode, cred, open_flags);
916         unlock_kernel();
917         if (err != 0)
918                 goto out_put_open_state;
919         set_bit(NFS_DELEGATED_STATE, &state->flags);
920         update_open_stateid(state, &delegation->stateid, open_flags);
921 out_ok:
922         nfs4_put_state_owner(sp);
923         up_read(&nfsi->rwsem);
924         up_read(&clp->cl_sem);
925         *res = state;
926         return 0;
927 out_put_open_state:
928         nfs4_put_open_state(state);
929 out_err:
930         up_read(&nfsi->rwsem);
931         up_read(&clp->cl_sem);
932         if (err != -EACCES)
933                 nfs_inode_return_delegation(inode);
934 out_put_state_owner:
935         nfs4_put_state_owner(sp);
936         return err;
937 }
938
939 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
940 {
941         struct nfs4_exception exception = { };
942         struct nfs4_state *res = ERR_PTR(-EIO);
943         int err;
944
945         do {
946                 err = _nfs4_open_delegated(inode, flags, cred, &res);
947                 if (err == 0)
948                         break;
949                 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
950                                         err, &exception));
951         } while (exception.retry);
952         return res;
953 }
954
955 /*
956  * Returns a referenced nfs4_state
957  */
958 static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
959 {
960         struct nfs4_state_owner  *sp;
961         struct nfs4_state     *state = NULL;
962         struct nfs_server       *server = NFS_SERVER(dir);
963         struct nfs_client *clp = server->nfs_client;
964         struct nfs4_opendata *opendata;
965         int                     status;
966
967         /* Protect against reboot recovery conflicts */
968         status = -ENOMEM;
969         if (!(sp = nfs4_get_state_owner(server, cred))) {
970                 dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
971                 goto out_err;
972         }
973         status = nfs4_recover_expired_lease(server);
974         if (status != 0)
975                 goto err_put_state_owner;
976         down_read(&clp->cl_sem);
977         status = -ENOMEM;
978         opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr);
979         if (opendata == NULL)
980                 goto err_release_rwsem;
981
982         status = _nfs4_proc_open(opendata);
983         if (status != 0)
984                 goto err_opendata_free;
985
986         status = -ENOMEM;
987         state = nfs4_opendata_to_nfs4_state(opendata);
988         if (state == NULL)
989                 goto err_opendata_free;
990         if (opendata->o_res.delegation_type != 0)
991                 nfs_inode_set_delegation(state->inode, cred, &opendata->o_res);
992         nfs4_opendata_free(opendata);
993         nfs4_put_state_owner(sp);
994         up_read(&clp->cl_sem);
995         *res = state;
996         return 0;
997 err_opendata_free:
998         nfs4_opendata_free(opendata);
999 err_release_rwsem:
1000         up_read(&clp->cl_sem);
1001 err_put_state_owner:
1002         nfs4_put_state_owner(sp);
1003 out_err:
1004         *res = NULL;
1005         return status;
1006 }
1007
1008
1009 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
1010 {
1011         struct nfs4_exception exception = { };
1012         struct nfs4_state *res;
1013         int status;
1014
1015         do {
1016                 status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
1017                 if (status == 0)
1018                         break;
1019                 /* NOTE: BAD_SEQID means the server and client disagree about the
1020                  * book-keeping w.r.t. state-changing operations
1021                  * (OPEN/CLOSE/LOCK/LOCKU...)
1022                  * It is actually a sign of a bug on the client or on the server.
1023                  *
1024                  * If we receive a BAD_SEQID error in the particular case of
1025                  * doing an OPEN, we assume that nfs_increment_open_seqid() will
1026                  * have unhashed the old state_owner for us, and that we can
1027                  * therefore safely retry using a new one. We should still warn
1028                  * the user though...
1029                  */
1030                 if (status == -NFS4ERR_BAD_SEQID) {
1031                         printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
1032                         exception.retry = 1;
1033                         continue;
1034                 }
1035                 /*
1036                  * BAD_STATEID on OPEN means that the server cancelled our
1037                  * state before it received the OPEN_CONFIRM.
1038                  * Recover by retrying the request as per the discussion
1039                  * on Page 181 of RFC3530.
1040                  */
1041                 if (status == -NFS4ERR_BAD_STATEID) {
1042                         exception.retry = 1;
1043                         continue;
1044                 }
1045                 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1046                                         status, &exception));
1047         } while (exception.retry);
1048         return res;
1049 }
1050
1051 static int _nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1052                 struct iattr *sattr, struct nfs4_state *state)
1053 {
1054         struct nfs_server *server = NFS_SERVER(inode);
1055         struct nfs_setattrargs  arg = {
1056                 .fh             = NFS_FH(inode),
1057                 .iap            = sattr,
1058                 .server         = server,
1059                 .bitmask = server->attr_bitmask,
1060         };
1061         struct nfs_setattrres  res = {
1062                 .fattr          = fattr,
1063                 .server         = server,
1064         };
1065         struct rpc_message msg = {
1066                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1067                 .rpc_argp       = &arg,
1068                 .rpc_resp       = &res,
1069         };
1070         unsigned long timestamp = jiffies;
1071         int status;
1072
1073         nfs_fattr_init(fattr);
1074
1075         if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1076                 /* Use that stateid */
1077         } else if (state != NULL) {
1078                 msg.rpc_cred = state->owner->so_cred;
1079                 nfs4_copy_stateid(&arg.stateid, state, current->files);
1080         } else
1081                 memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1082
1083         status = rpc_call_sync(server->client, &msg, 0);
1084         if (status == 0 && state != NULL)
1085                 renew_lease(server, timestamp);
1086         return status;
1087 }
1088
1089 static int nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1090                 struct iattr *sattr, struct nfs4_state *state)
1091 {
1092         struct nfs_server *server = NFS_SERVER(inode);
1093         struct nfs4_exception exception = { };
1094         int err;
1095         do {
1096                 err = nfs4_handle_exception(server,
1097                                 _nfs4_do_setattr(inode, fattr, sattr, state),
1098                                 &exception);
1099         } while (exception.retry);
1100         return err;
1101 }
1102
1103 struct nfs4_closedata {
1104         struct inode *inode;
1105         struct nfs4_state *state;
1106         struct nfs_closeargs arg;
1107         struct nfs_closeres res;
1108         struct nfs_fattr fattr;
1109         unsigned long timestamp;
1110 };
1111
1112 static void nfs4_free_closedata(void *data)
1113 {
1114         struct nfs4_closedata *calldata = data;
1115         struct nfs4_state_owner *sp = calldata->state->owner;
1116
1117         nfs4_put_open_state(calldata->state);
1118         nfs_free_seqid(calldata->arg.seqid);
1119         nfs4_put_state_owner(sp);
1120         kfree(calldata);
1121 }
1122
1123 static void nfs4_close_done(struct rpc_task *task, void *data)
1124 {
1125         struct nfs4_closedata *calldata = data;
1126         struct nfs4_state *state = calldata->state;
1127         struct nfs_server *server = NFS_SERVER(calldata->inode);
1128
1129         if (RPC_ASSASSINATED(task))
1130                 return;
1131         /* hmm. we are done with the inode, and in the process of freeing
1132          * the state_owner. we keep this around to process errors
1133          */
1134         nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1135         switch (task->tk_status) {
1136                 case 0:
1137                         memcpy(&state->stateid, &calldata->res.stateid,
1138                                         sizeof(state->stateid));
1139                         renew_lease(server, calldata->timestamp);
1140                         break;
1141                 case -NFS4ERR_STALE_STATEID:
1142                 case -NFS4ERR_EXPIRED:
1143                         nfs4_schedule_state_recovery(server->nfs_client);
1144                         break;
1145                 default:
1146                         if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1147                                 rpc_restart_call(task);
1148                                 return;
1149                         }
1150         }
1151         nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1152 }
1153
1154 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1155 {
1156         struct nfs4_closedata *calldata = data;
1157         struct nfs4_state *state = calldata->state;
1158         struct rpc_message msg = {
1159                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1160                 .rpc_argp = &calldata->arg,
1161                 .rpc_resp = &calldata->res,
1162                 .rpc_cred = state->owner->so_cred,
1163         };
1164         int mode = 0, old_mode;
1165
1166         if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1167                 return;
1168         /* Recalculate the new open mode in case someone reopened the file
1169          * while we were waiting in line to be scheduled.
1170          */
1171         spin_lock(&state->owner->so_lock);
1172         spin_lock(&calldata->inode->i_lock);
1173         mode = old_mode = state->state;
1174         if (state->n_rdwr == 0) {
1175                 if (state->n_rdonly == 0)
1176                         mode &= ~FMODE_READ;
1177                 if (state->n_wronly == 0)
1178                         mode &= ~FMODE_WRITE;
1179         }
1180         nfs4_state_set_mode_locked(state, mode);
1181         spin_unlock(&calldata->inode->i_lock);
1182         spin_unlock(&state->owner->so_lock);
1183         if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
1184                 /* Note: exit _without_ calling nfs4_close_done */
1185                 task->tk_action = NULL;
1186                 return;
1187         }
1188         nfs_fattr_init(calldata->res.fattr);
1189         if (mode != 0)
1190                 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1191         calldata->arg.open_flags = mode;
1192         calldata->timestamp = jiffies;
1193         rpc_call_setup(task, &msg, 0);
1194 }
1195
1196 static const struct rpc_call_ops nfs4_close_ops = {
1197         .rpc_call_prepare = nfs4_close_prepare,
1198         .rpc_call_done = nfs4_close_done,
1199         .rpc_release = nfs4_free_closedata,
1200 };
1201
1202 /* 
1203  * It is possible for data to be read/written from a mem-mapped file 
1204  * after the sys_close call (which hits the vfs layer as a flush).
1205  * This means that we can't safely call nfsv4 close on a file until 
1206  * the inode is cleared. This in turn means that we are not good
1207  * NFSv4 citizens - we do not indicate to the server to update the file's 
1208  * share state even when we are done with one of the three share 
1209  * stateid's in the inode.
1210  *
1211  * NOTE: Caller must be holding the sp->so_owner semaphore!
1212  */
1213 int nfs4_do_close(struct inode *inode, struct nfs4_state *state) 
1214 {
1215         struct nfs_server *server = NFS_SERVER(inode);
1216         struct nfs4_closedata *calldata;
1217         int status = -ENOMEM;
1218
1219         calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1220         if (calldata == NULL)
1221                 goto out;
1222         calldata->inode = inode;
1223         calldata->state = state;
1224         calldata->arg.fh = NFS_FH(inode);
1225         calldata->arg.stateid = &state->stateid;
1226         /* Serialization for the sequence id */
1227         calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1228         if (calldata->arg.seqid == NULL)
1229                 goto out_free_calldata;
1230         calldata->arg.bitmask = server->attr_bitmask;
1231         calldata->res.fattr = &calldata->fattr;
1232         calldata->res.server = server;
1233
1234         status = nfs4_call_async(server->client, &nfs4_close_ops, calldata);
1235         if (status == 0)
1236                 goto out;
1237
1238         nfs_free_seqid(calldata->arg.seqid);
1239 out_free_calldata:
1240         kfree(calldata);
1241 out:
1242         return status;
1243 }
1244
1245 static int nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
1246 {
1247         struct file *filp;
1248
1249         filp = lookup_instantiate_filp(nd, dentry, NULL);
1250         if (!IS_ERR(filp)) {
1251                 struct nfs_open_context *ctx;
1252                 ctx = (struct nfs_open_context *)filp->private_data;
1253                 ctx->state = state;
1254                 return 0;
1255         }
1256         nfs4_close_state(state, nd->intent.open.flags);
1257         return PTR_ERR(filp);
1258 }
1259
1260 struct dentry *
1261 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1262 {
1263         struct iattr attr;
1264         struct rpc_cred *cred;
1265         struct nfs4_state *state;
1266         struct dentry *res;
1267
1268         if (nd->flags & LOOKUP_CREATE) {
1269                 attr.ia_mode = nd->intent.open.create_mode;
1270                 attr.ia_valid = ATTR_MODE;
1271                 if (!IS_POSIXACL(dir))
1272                         attr.ia_mode &= ~current->fs->umask;
1273         } else {
1274                 attr.ia_valid = 0;
1275                 BUG_ON(nd->intent.open.flags & O_CREAT);
1276         }
1277
1278         cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1279         if (IS_ERR(cred))
1280                 return (struct dentry *)cred;
1281         state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
1282         put_rpccred(cred);
1283         if (IS_ERR(state)) {
1284                 if (PTR_ERR(state) == -ENOENT)
1285                         d_add(dentry, NULL);
1286                 return (struct dentry *)state;
1287         }
1288         res = d_add_unique(dentry, igrab(state->inode));
1289         if (res != NULL)
1290                 dentry = res;
1291         nfs4_intent_set_file(nd, dentry, state);
1292         return res;
1293 }
1294
1295 int
1296 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1297 {
1298         struct rpc_cred *cred;
1299         struct nfs4_state *state;
1300
1301         cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1302         if (IS_ERR(cred))
1303                 return PTR_ERR(cred);
1304         state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1305         if (IS_ERR(state))
1306                 state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
1307         put_rpccred(cred);
1308         if (IS_ERR(state)) {
1309                 switch (PTR_ERR(state)) {
1310                         case -EPERM:
1311                         case -EACCES:
1312                         case -EDQUOT:
1313                         case -ENOSPC:
1314                         case -EROFS:
1315                                 lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1316                                 return 1;
1317                         default:
1318                                 goto out_drop;
1319                 }
1320         }
1321         if (state->inode == dentry->d_inode) {
1322                 nfs4_intent_set_file(nd, dentry, state);
1323                 return 1;
1324         }
1325         nfs4_close_state(state, openflags);
1326 out_drop:
1327         d_drop(dentry);
1328         return 0;
1329 }
1330
1331
1332 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1333 {
1334         struct nfs4_server_caps_res res = {};
1335         struct rpc_message msg = {
1336                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1337                 .rpc_argp = fhandle,
1338                 .rpc_resp = &res,
1339         };
1340         int status;
1341
1342         status = rpc_call_sync(server->client, &msg, 0);
1343         if (status == 0) {
1344                 memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1345                 if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1346                         server->caps |= NFS_CAP_ACLS;
1347                 if (res.has_links != 0)
1348                         server->caps |= NFS_CAP_HARDLINKS;
1349                 if (res.has_symlinks != 0)
1350                         server->caps |= NFS_CAP_SYMLINKS;
1351                 server->acl_bitmask = res.acl_bitmask;
1352         }
1353         return status;
1354 }
1355
1356 int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1357 {
1358         struct nfs4_exception exception = { };
1359         int err;
1360         do {
1361                 err = nfs4_handle_exception(server,
1362                                 _nfs4_server_capabilities(server, fhandle),
1363                                 &exception);
1364         } while (exception.retry);
1365         return err;
1366 }
1367
1368 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1369                 struct nfs_fsinfo *info)
1370 {
1371         struct nfs4_lookup_root_arg args = {
1372                 .bitmask = nfs4_fattr_bitmap,
1373         };
1374         struct nfs4_lookup_res res = {
1375                 .server = server,
1376                 .fattr = info->fattr,
1377                 .fh = fhandle,
1378         };
1379         struct rpc_message msg = {
1380                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1381                 .rpc_argp = &args,
1382                 .rpc_resp = &res,
1383         };
1384         nfs_fattr_init(info->fattr);
1385         return rpc_call_sync(server->client, &msg, 0);
1386 }
1387
1388 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1389                 struct nfs_fsinfo *info)
1390 {
1391         struct nfs4_exception exception = { };
1392         int err;
1393         do {
1394                 err = nfs4_handle_exception(server,
1395                                 _nfs4_lookup_root(server, fhandle, info),
1396                                 &exception);
1397         } while (exception.retry);
1398         return err;
1399 }
1400
1401 /*
1402  * get the file handle for the "/" directory on the server
1403  */
1404 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1405                               struct nfs_fsinfo *info)
1406 {
1407         int status;
1408
1409         status = nfs4_lookup_root(server, fhandle, info);
1410         if (status == 0)
1411                 status = nfs4_server_capabilities(server, fhandle);
1412         if (status == 0)
1413                 status = nfs4_do_fsinfo(server, fhandle, info);
1414         return nfs4_map_errors(status);
1415 }
1416
1417 /*
1418  * Get locations and (maybe) other attributes of a referral.
1419  * Note that we'll actually follow the referral later when
1420  * we detect fsid mismatch in inode revalidation
1421  */
1422 static int nfs4_get_referral(struct inode *dir, struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle)
1423 {
1424         int status = -ENOMEM;
1425         struct page *page = NULL;
1426         struct nfs4_fs_locations *locations = NULL;
1427         struct dentry dentry = {};
1428
1429         page = alloc_page(GFP_KERNEL);
1430         if (page == NULL)
1431                 goto out;
1432         locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
1433         if (locations == NULL)
1434                 goto out;
1435
1436         dentry.d_name.name = name->name;
1437         dentry.d_name.len = name->len;
1438         status = nfs4_proc_fs_locations(dir, &dentry, locations, page);
1439         if (status != 0)
1440                 goto out;
1441         /* Make sure server returned a different fsid for the referral */
1442         if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) {
1443                 dprintk("%s: server did not return a different fsid for a referral at %s\n", __FUNCTION__, name->name);
1444                 status = -EIO;
1445                 goto out;
1446         }
1447
1448         memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr));
1449         fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL;
1450         if (!fattr->mode)
1451                 fattr->mode = S_IFDIR;
1452         memset(fhandle, 0, sizeof(struct nfs_fh));
1453 out:
1454         if (page)
1455                 __free_page(page);
1456         if (locations)
1457                 kfree(locations);
1458         return status;
1459 }
1460
1461 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1462 {
1463         struct nfs4_getattr_arg args = {
1464                 .fh = fhandle,
1465                 .bitmask = server->attr_bitmask,
1466         };
1467         struct nfs4_getattr_res res = {
1468                 .fattr = fattr,
1469                 .server = server,
1470         };
1471         struct rpc_message msg = {
1472                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1473                 .rpc_argp = &args,
1474                 .rpc_resp = &res,
1475         };
1476         
1477         nfs_fattr_init(fattr);
1478         return rpc_call_sync(server->client, &msg, 0);
1479 }
1480
1481 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1482 {
1483         struct nfs4_exception exception = { };
1484         int err;
1485         do {
1486                 err = nfs4_handle_exception(server,
1487                                 _nfs4_proc_getattr(server, fhandle, fattr),
1488                                 &exception);
1489         } while (exception.retry);
1490         return err;
1491 }
1492
1493 /* 
1494  * The file is not closed if it is opened due to the a request to change
1495  * the size of the file. The open call will not be needed once the
1496  * VFS layer lookup-intents are implemented.
1497  *
1498  * Close is called when the inode is destroyed.
1499  * If we haven't opened the file for O_WRONLY, we
1500  * need to in the size_change case to obtain a stateid.
1501  *
1502  * Got race?
1503  * Because OPEN is always done by name in nfsv4, it is
1504  * possible that we opened a different file by the same
1505  * name.  We can recognize this race condition, but we
1506  * can't do anything about it besides returning an error.
1507  *
1508  * This will be fixed with VFS changes (lookup-intent).
1509  */
1510 static int
1511 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1512                   struct iattr *sattr)
1513 {
1514         struct rpc_cred *cred;
1515         struct inode *inode = dentry->d_inode;
1516         struct nfs_open_context *ctx;
1517         struct nfs4_state *state = NULL;
1518         int status;
1519
1520         nfs_fattr_init(fattr);
1521         
1522         cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1523         if (IS_ERR(cred))
1524                 return PTR_ERR(cred);
1525
1526         /* Search for an existing open(O_WRITE) file */
1527         ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1528         if (ctx != NULL)
1529                 state = ctx->state;
1530
1531         status = nfs4_do_setattr(inode, fattr, sattr, state);
1532         if (status == 0)
1533                 nfs_setattr_update_inode(inode, sattr);
1534         if (ctx != NULL)
1535                 put_nfs_open_context(ctx);
1536         put_rpccred(cred);
1537         return status;
1538 }
1539
1540 static int _nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1541                 struct qstr *name, struct nfs_fh *fhandle,
1542                 struct nfs_fattr *fattr)
1543 {
1544         int                    status;
1545         struct nfs4_lookup_arg args = {
1546                 .bitmask = server->attr_bitmask,
1547                 .dir_fh = dirfh,
1548                 .name = name,
1549         };
1550         struct nfs4_lookup_res res = {
1551                 .server = server,
1552                 .fattr = fattr,
1553                 .fh = fhandle,
1554         };
1555         struct rpc_message msg = {
1556                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1557                 .rpc_argp = &args,
1558                 .rpc_resp = &res,
1559         };
1560
1561         nfs_fattr_init(fattr);
1562
1563         dprintk("NFS call  lookupfh %s\n", name->name);
1564         status = rpc_call_sync(server->client, &msg, 0);
1565         dprintk("NFS reply lookupfh: %d\n", status);
1566         if (status == -NFS4ERR_MOVED)
1567                 status = -EREMOTE;
1568         return status;
1569 }
1570
1571 static int nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1572                               struct qstr *name, struct nfs_fh *fhandle,
1573                               struct nfs_fattr *fattr)
1574 {
1575         struct nfs4_exception exception = { };
1576         int err;
1577         do {
1578                 err = nfs4_handle_exception(server,
1579                                 _nfs4_proc_lookupfh(server, dirfh, name,
1580                                                     fhandle, fattr),
1581                                 &exception);
1582         } while (exception.retry);
1583         return err;
1584 }
1585
1586 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1587                 struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1588 {
1589         int                    status;
1590         struct nfs_server *server = NFS_SERVER(dir);
1591         struct nfs4_lookup_arg args = {
1592                 .bitmask = server->attr_bitmask,
1593                 .dir_fh = NFS_FH(dir),
1594                 .name = name,
1595         };
1596         struct nfs4_lookup_res res = {
1597                 .server = server,
1598                 .fattr = fattr,
1599                 .fh = fhandle,
1600         };
1601         struct rpc_message msg = {
1602                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1603                 .rpc_argp = &args,
1604                 .rpc_resp = &res,
1605         };
1606         
1607         nfs_fattr_init(fattr);
1608         
1609         dprintk("NFS call  lookup %s\n", name->name);
1610         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1611         if (status == -NFS4ERR_MOVED)
1612                 status = nfs4_get_referral(dir, name, fattr, fhandle);
1613         dprintk("NFS reply lookup: %d\n", status);
1614         return status;
1615 }
1616
1617 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1618 {
1619         struct nfs4_exception exception = { };
1620         int err;
1621         do {
1622                 err = nfs4_handle_exception(NFS_SERVER(dir),
1623                                 _nfs4_proc_lookup(dir, name, fhandle, fattr),
1624                                 &exception);
1625         } while (exception.retry);
1626         return err;
1627 }
1628
1629 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1630 {
1631         struct nfs4_accessargs args = {
1632                 .fh = NFS_FH(inode),
1633         };
1634         struct nfs4_accessres res = { 0 };
1635         struct rpc_message msg = {
1636                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1637                 .rpc_argp = &args,
1638                 .rpc_resp = &res,
1639                 .rpc_cred = entry->cred,
1640         };
1641         int mode = entry->mask;
1642         int status;
1643
1644         /*
1645          * Determine which access bits we want to ask for...
1646          */
1647         if (mode & MAY_READ)
1648                 args.access |= NFS4_ACCESS_READ;
1649         if (S_ISDIR(inode->i_mode)) {
1650                 if (mode & MAY_WRITE)
1651                         args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1652                 if (mode & MAY_EXEC)
1653                         args.access |= NFS4_ACCESS_LOOKUP;
1654         } else {
1655                 if (mode & MAY_WRITE)
1656                         args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1657                 if (mode & MAY_EXEC)
1658                         args.access |= NFS4_ACCESS_EXECUTE;
1659         }
1660         status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1661         if (!status) {
1662                 entry->mask = 0;
1663                 if (res.access & NFS4_ACCESS_READ)
1664                         entry->mask |= MAY_READ;
1665                 if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1666                         entry->mask |= MAY_WRITE;
1667                 if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1668                         entry->mask |= MAY_EXEC;
1669         }
1670         return status;
1671 }
1672
1673 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1674 {
1675         struct nfs4_exception exception = { };
1676         int err;
1677         do {
1678                 err = nfs4_handle_exception(NFS_SERVER(inode),
1679                                 _nfs4_proc_access(inode, entry),
1680                                 &exception);
1681         } while (exception.retry);
1682         return err;
1683 }
1684
1685 /*
1686  * TODO: For the time being, we don't try to get any attributes
1687  * along with any of the zero-copy operations READ, READDIR,
1688  * READLINK, WRITE.
1689  *
1690  * In the case of the first three, we want to put the GETATTR
1691  * after the read-type operation -- this is because it is hard
1692  * to predict the length of a GETATTR response in v4, and thus
1693  * align the READ data correctly.  This means that the GETATTR
1694  * may end up partially falling into the page cache, and we should
1695  * shift it into the 'tail' of the xdr_buf before processing.
1696  * To do this efficiently, we need to know the total length
1697  * of data received, which doesn't seem to be available outside
1698  * of the RPC layer.
1699  *
1700  * In the case of WRITE, we also want to put the GETATTR after
1701  * the operation -- in this case because we want to make sure
1702  * we get the post-operation mtime and size.  This means that
1703  * we can't use xdr_encode_pages() as written: we need a variant
1704  * of it which would leave room in the 'tail' iovec.
1705  *
1706  * Both of these changes to the XDR layer would in fact be quite
1707  * minor, but I decided to leave them for a subsequent patch.
1708  */
1709 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1710                 unsigned int pgbase, unsigned int pglen)
1711 {
1712         struct nfs4_readlink args = {
1713                 .fh       = NFS_FH(inode),
1714                 .pgbase   = pgbase,
1715                 .pglen    = pglen,
1716                 .pages    = &page,
1717         };
1718         struct rpc_message msg = {
1719                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1720                 .rpc_argp = &args,
1721                 .rpc_resp = NULL,
1722         };
1723
1724         return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1725 }
1726
1727 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1728                 unsigned int pgbase, unsigned int pglen)
1729 {
1730         struct nfs4_exception exception = { };
1731         int err;
1732         do {
1733                 err = nfs4_handle_exception(NFS_SERVER(inode),
1734                                 _nfs4_proc_readlink(inode, page, pgbase, pglen),
1735                                 &exception);
1736         } while (exception.retry);
1737         return err;
1738 }
1739
1740 static int _nfs4_proc_read(struct nfs_read_data *rdata)
1741 {
1742         int flags = rdata->flags;
1743         struct inode *inode = rdata->inode;
1744         struct nfs_fattr *fattr = rdata->res.fattr;
1745         struct nfs_server *server = NFS_SERVER(inode);
1746         struct rpc_message msg = {
1747                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_READ],
1748                 .rpc_argp       = &rdata->args,
1749                 .rpc_resp       = &rdata->res,
1750                 .rpc_cred       = rdata->cred,
1751         };
1752         unsigned long timestamp = jiffies;
1753         int status;
1754
1755         dprintk("NFS call  read %d @ %Ld\n", rdata->args.count,
1756                         (long long) rdata->args.offset);
1757
1758         nfs_fattr_init(fattr);
1759         status = rpc_call_sync(server->client, &msg, flags);
1760         if (!status)
1761                 renew_lease(server, timestamp);
1762         dprintk("NFS reply read: %d\n", status);
1763         return status;
1764 }
1765
1766 static int nfs4_proc_read(struct nfs_read_data *rdata)
1767 {
1768         struct nfs4_exception exception = { };
1769         int err;
1770         do {
1771                 err = nfs4_handle_exception(NFS_SERVER(rdata->inode),
1772                                 _nfs4_proc_read(rdata),
1773                                 &exception);
1774         } while (exception.retry);
1775         return err;
1776 }
1777
1778 static int _nfs4_proc_write(struct nfs_write_data *wdata)
1779 {
1780         int rpcflags = wdata->flags;
1781         struct inode *inode = wdata->inode;
1782         struct nfs_fattr *fattr = wdata->res.fattr;
1783         struct nfs_server *server = NFS_SERVER(inode);
1784         struct rpc_message msg = {
1785                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
1786                 .rpc_argp       = &wdata->args,
1787                 .rpc_resp       = &wdata->res,
1788                 .rpc_cred       = wdata->cred,
1789         };
1790         int status;
1791
1792         dprintk("NFS call  write %d @ %Ld\n", wdata->args.count,
1793                         (long long) wdata->args.offset);
1794
1795         wdata->args.bitmask = server->attr_bitmask;
1796         wdata->res.server = server;
1797         wdata->timestamp = jiffies;
1798         nfs_fattr_init(fattr);
1799         status = rpc_call_sync(server->client, &msg, rpcflags);
1800         dprintk("NFS reply write: %d\n", status);
1801         if (status < 0)
1802                 return status;
1803         renew_lease(server, wdata->timestamp);
1804         nfs_post_op_update_inode(inode, fattr);
1805         return wdata->res.count;
1806 }
1807
1808 static int nfs4_proc_write(struct nfs_write_data *wdata)
1809 {
1810         struct nfs4_exception exception = { };
1811         int err;
1812         do {
1813                 err = nfs4_handle_exception(NFS_SERVER(wdata->inode),
1814                                 _nfs4_proc_write(wdata),
1815                                 &exception);
1816         } while (exception.retry);
1817         return err;
1818 }
1819
1820 static int _nfs4_proc_commit(struct nfs_write_data *cdata)
1821 {
1822         struct inode *inode = cdata->inode;
1823         struct nfs_fattr *fattr = cdata->res.fattr;
1824         struct nfs_server *server = NFS_SERVER(inode);
1825         struct rpc_message msg = {
1826                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
1827                 .rpc_argp       = &cdata->args,
1828                 .rpc_resp       = &cdata->res,
1829                 .rpc_cred       = cdata->cred,
1830         };
1831         int status;
1832
1833         dprintk("NFS call  commit %d @ %Ld\n", cdata->args.count,
1834                         (long long) cdata->args.offset);
1835
1836         cdata->args.bitmask = server->attr_bitmask;
1837         cdata->res.server = server;
1838         cdata->timestamp = jiffies;
1839         nfs_fattr_init(fattr);
1840         status = rpc_call_sync(server->client, &msg, 0);
1841         if (status >= 0)
1842                 renew_lease(server, cdata->timestamp);
1843         dprintk("NFS reply commit: %d\n", status);
1844         if (status >= 0)
1845                 nfs_post_op_update_inode(inode, fattr);
1846         return status;
1847 }
1848
1849 static int nfs4_proc_commit(struct nfs_write_data *cdata)
1850 {
1851         struct nfs4_exception exception = { };
1852         int err;
1853         do {
1854                 err = nfs4_handle_exception(NFS_SERVER(cdata->inode),
1855                                 _nfs4_proc_commit(cdata),
1856                                 &exception);
1857         } while (exception.retry);
1858         return err;
1859 }
1860
1861 /*
1862  * Got race?
1863  * We will need to arrange for the VFS layer to provide an atomic open.
1864  * Until then, this create/open method is prone to inefficiency and race
1865  * conditions due to the lookup, create, and open VFS calls from sys_open()
1866  * placed on the wire.
1867  *
1868  * Given the above sorry state of affairs, I'm simply sending an OPEN.
1869  * The file will be opened again in the subsequent VFS open call
1870  * (nfs4_proc_file_open).
1871  *
1872  * The open for read will just hang around to be used by any process that
1873  * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1874  */
1875
1876 static int
1877 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1878                  int flags, struct nameidata *nd)
1879 {
1880         struct nfs4_state *state;
1881         struct rpc_cred *cred;
1882         int status = 0;
1883
1884         cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1885         if (IS_ERR(cred)) {
1886                 status = PTR_ERR(cred);
1887                 goto out;
1888         }
1889         state = nfs4_do_open(dir, dentry, flags, sattr, cred);
1890         put_rpccred(cred);
1891         if (IS_ERR(state)) {
1892                 status = PTR_ERR(state);
1893                 goto out;
1894         }
1895         d_instantiate(dentry, igrab(state->inode));
1896         if (flags & O_EXCL) {
1897                 struct nfs_fattr fattr;
1898                 status = nfs4_do_setattr(state->inode, &fattr, sattr, state);
1899                 if (status == 0)
1900                         nfs_setattr_update_inode(state->inode, sattr);
1901         }
1902         if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
1903                 status = nfs4_intent_set_file(nd, dentry, state);
1904         else
1905                 nfs4_close_state(state, flags);
1906 out:
1907         return status;
1908 }
1909
1910 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1911 {
1912         struct nfs_server *server = NFS_SERVER(dir);
1913         struct nfs4_remove_arg args = {
1914                 .fh = NFS_FH(dir),
1915                 .name = name,
1916                 .bitmask = server->attr_bitmask,
1917         };
1918         struct nfs_fattr dir_attr;
1919         struct nfs4_remove_res  res = {
1920                 .server = server,
1921                 .dir_attr = &dir_attr,
1922         };
1923         struct rpc_message msg = {
1924                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1925                 .rpc_argp       = &args,
1926                 .rpc_resp       = &res,
1927         };
1928         int                     status;
1929
1930         nfs_fattr_init(res.dir_attr);
1931         status = rpc_call_sync(server->client, &msg, 0);
1932         if (status == 0) {
1933                 update_changeattr(dir, &res.cinfo);
1934                 nfs_post_op_update_inode(dir, res.dir_attr);
1935         }
1936         return status;
1937 }
1938
1939 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1940 {
1941         struct nfs4_exception exception = { };
1942         int err;
1943         do {
1944                 err = nfs4_handle_exception(NFS_SERVER(dir),
1945                                 _nfs4_proc_remove(dir, name),
1946                                 &exception);
1947         } while (exception.retry);
1948         return err;
1949 }
1950
1951 struct unlink_desc {
1952         struct nfs4_remove_arg  args;
1953         struct nfs4_remove_res  res;
1954         struct nfs_fattr dir_attr;
1955 };
1956
1957 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1958                 struct qstr *name)
1959 {
1960         struct nfs_server *server = NFS_SERVER(dir->d_inode);
1961         struct unlink_desc *up;
1962
1963         up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL);
1964         if (!up)
1965                 return -ENOMEM;
1966         
1967         up->args.fh = NFS_FH(dir->d_inode);
1968         up->args.name = name;
1969         up->args.bitmask = server->attr_bitmask;
1970         up->res.server = server;
1971         up->res.dir_attr = &up->dir_attr;
1972         
1973         msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1974         msg->rpc_argp = &up->args;
1975         msg->rpc_resp = &up->res;
1976         return 0;
1977 }
1978
1979 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1980 {
1981         struct rpc_message *msg = &task->tk_msg;
1982         struct unlink_desc *up;
1983         
1984         if (msg->rpc_resp != NULL) {
1985                 up = container_of(msg->rpc_resp, struct unlink_desc, res);
1986                 update_changeattr(dir->d_inode, &up->res.cinfo);
1987                 nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1988                 kfree(up);
1989                 msg->rpc_resp = NULL;
1990                 msg->rpc_argp = NULL;
1991         }
1992         return 0;
1993 }
1994
1995 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1996                 struct inode *new_dir, struct qstr *new_name)
1997 {
1998         struct nfs_server *server = NFS_SERVER(old_dir);
1999         struct nfs4_rename_arg arg = {
2000                 .old_dir = NFS_FH(old_dir),
2001                 .new_dir = NFS_FH(new_dir),
2002                 .old_name = old_name,
2003                 .new_name = new_name,
2004                 .bitmask = server->attr_bitmask,
2005         };
2006         struct nfs_fattr old_fattr, new_fattr;
2007         struct nfs4_rename_res res = {
2008                 .server = server,
2009                 .old_fattr = &old_fattr,
2010                 .new_fattr = &new_fattr,
2011         };
2012         struct rpc_message msg = {
2013                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
2014                 .rpc_argp = &arg,
2015                 .rpc_resp = &res,
2016         };
2017         int                     status;
2018         
2019         nfs_fattr_init(res.old_fattr);
2020         nfs_fattr_init(res.new_fattr);
2021         status = rpc_call_sync(server->client, &msg, 0);
2022
2023         if (!status) {
2024                 update_changeattr(old_dir, &res.old_cinfo);
2025                 nfs_post_op_update_inode(old_dir, res.old_fattr);
2026                 update_changeattr(new_dir, &res.new_cinfo);
2027                 nfs_post_op_update_inode(new_dir, res.new_fattr);
2028         }
2029         return status;
2030 }
2031
2032 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
2033                 struct inode *new_dir, struct qstr *new_name)
2034 {
2035         struct nfs4_exception exception = { };
2036         int err;
2037         do {
2038                 err = nfs4_handle_exception(NFS_SERVER(old_dir),
2039                                 _nfs4_proc_rename(old_dir, old_name,
2040                                         new_dir, new_name),
2041                                 &exception);
2042         } while (exception.retry);
2043         return err;
2044 }
2045
2046 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2047 {
2048         struct nfs_server *server = NFS_SERVER(inode);
2049         struct nfs4_link_arg arg = {
2050                 .fh     = NFS_FH(inode),
2051                 .dir_fh = NFS_FH(dir),
2052                 .name   = name,
2053                 .bitmask = server->attr_bitmask,
2054         };
2055         struct nfs_fattr fattr, dir_attr;
2056         struct nfs4_link_res res = {
2057                 .server = server,
2058                 .fattr = &fattr,
2059                 .dir_attr = &dir_attr,
2060         };
2061         struct rpc_message msg = {
2062                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
2063                 .rpc_argp = &arg,
2064                 .rpc_resp = &res,
2065         };
2066         int                     status;
2067
2068         nfs_fattr_init(res.fattr);
2069         nfs_fattr_init(res.dir_attr);
2070         status = rpc_call_sync(server->client, &msg, 0);
2071         if (!status) {
2072                 update_changeattr(dir, &res.cinfo);
2073                 nfs_post_op_update_inode(dir, res.dir_attr);
2074                 nfs_post_op_update_inode(inode, res.fattr);
2075         }
2076
2077         return status;
2078 }
2079
2080 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2081 {
2082         struct nfs4_exception exception = { };
2083         int err;
2084         do {
2085                 err = nfs4_handle_exception(NFS_SERVER(inode),
2086                                 _nfs4_proc_link(inode, dir, name),
2087                                 &exception);
2088         } while (exception.retry);
2089         return err;
2090 }
2091
2092 static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2093                 struct page *page, unsigned int len, struct iattr *sattr)
2094 {
2095         struct nfs_server *server = NFS_SERVER(dir);
2096         struct nfs_fh fhandle;
2097         struct nfs_fattr fattr, dir_fattr;
2098         struct nfs4_create_arg arg = {
2099                 .dir_fh = NFS_FH(dir),
2100                 .server = server,
2101                 .name = &dentry->d_name,
2102                 .attrs = sattr,
2103                 .ftype = NF4LNK,
2104                 .bitmask = server->attr_bitmask,
2105         };
2106         struct nfs4_create_res res = {
2107                 .server = server,
2108                 .fh = &fhandle,
2109                 .fattr = &fattr,
2110                 .dir_fattr = &dir_fattr,
2111         };
2112         struct rpc_message msg = {
2113                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
2114                 .rpc_argp = &arg,
2115                 .rpc_resp = &res,
2116         };
2117         int                     status;
2118
2119         if (len > NFS4_MAXPATHLEN)
2120                 return -ENAMETOOLONG;
2121
2122         arg.u.symlink.pages = &page;
2123         arg.u.symlink.len = len;
2124         nfs_fattr_init(&fattr);
2125         nfs_fattr_init(&dir_fattr);
2126         
2127         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2128         if (!status) {
2129                 update_changeattr(dir, &res.dir_cinfo);
2130                 nfs_post_op_update_inode(dir, res.dir_fattr);
2131                 status = nfs_instantiate(dentry, &fhandle, &fattr);
2132         }
2133         return status;
2134 }
2135
2136 static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2137                 struct page *page, unsigned int len, struct iattr *sattr)
2138 {
2139         struct nfs4_exception exception = { };
2140         int err;
2141         do {
2142                 err = nfs4_handle_exception(NFS_SERVER(dir),
2143                                 _nfs4_proc_symlink(dir, dentry, page,
2144                                                         len, sattr),
2145                                 &exception);
2146         } while (exception.retry);
2147         return err;
2148 }
2149
2150 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2151                 struct iattr *sattr)
2152 {
2153         struct nfs_server *server = NFS_SERVER(dir);
2154         struct nfs_fh fhandle;
2155         struct nfs_fattr fattr, dir_fattr;
2156         struct nfs4_create_arg arg = {
2157                 .dir_fh = NFS_FH(dir),
2158                 .server = server,
2159                 .name = &dentry->d_name,
2160                 .attrs = sattr,
2161                 .ftype = NF4DIR,
2162                 .bitmask = server->attr_bitmask,
2163         };
2164         struct nfs4_create_res res = {
2165                 .server = server,
2166                 .fh = &fhandle,
2167                 .fattr = &fattr,
2168                 .dir_fattr = &dir_fattr,
2169         };
2170         struct rpc_message msg = {
2171                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2172                 .rpc_argp = &arg,
2173                 .rpc_resp = &res,
2174         };
2175         int                     status;
2176
2177         nfs_fattr_init(&fattr);
2178         nfs_fattr_init(&dir_fattr);
2179         
2180         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2181         if (!status) {
2182                 update_changeattr(dir, &res.dir_cinfo);
2183                 nfs_post_op_update_inode(dir, res.dir_fattr);
2184                 status = nfs_instantiate(dentry, &fhandle, &fattr);
2185         }
2186         return status;
2187 }
2188
2189 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2190                 struct iattr *sattr)
2191 {
2192         struct nfs4_exception exception = { };
2193         int err;
2194         do {
2195                 err = nfs4_handle_exception(NFS_SERVER(dir),
2196                                 _nfs4_proc_mkdir(dir, dentry, sattr),
2197                                 &exception);
2198         } while (exception.retry);
2199         return err;
2200 }
2201
2202 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2203                   u64 cookie, struct page *page, unsigned int count, int plus)
2204 {
2205         struct inode            *dir = dentry->d_inode;
2206         struct nfs4_readdir_arg args = {
2207                 .fh = NFS_FH(dir),
2208                 .pages = &page,
2209                 .pgbase = 0,
2210                 .count = count,
2211                 .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2212         };
2213         struct nfs4_readdir_res res;
2214         struct rpc_message msg = {
2215                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2216                 .rpc_argp = &args,
2217                 .rpc_resp = &res,
2218                 .rpc_cred = cred,
2219         };
2220         int                     status;
2221
2222         dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2223                         dentry->d_parent->d_name.name,
2224                         dentry->d_name.name,
2225                         (unsigned long long)cookie);
2226         nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2227         res.pgbase = args.pgbase;
2228         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2229         if (status == 0)
2230                 memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2231         dprintk("%s: returns %d\n", __FUNCTION__, status);
2232         return status;
2233 }
2234
2235 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2236                   u64 cookie, struct page *page, unsigned int count, int plus)
2237 {
2238         struct nfs4_exception exception = { };
2239         int err;
2240         do {
2241                 err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2242                                 _nfs4_proc_readdir(dentry, cred, cookie,
2243                                         page, count, plus),
2244                                 &exception);
2245         } while (exception.retry);
2246         return err;
2247 }
2248
2249 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2250                 struct iattr *sattr, dev_t rdev)
2251 {
2252         struct nfs_server *server = NFS_SERVER(dir);
2253         struct nfs_fh fh;
2254         struct nfs_fattr fattr, dir_fattr;
2255         struct nfs4_create_arg arg = {
2256                 .dir_fh = NFS_FH(dir),
2257                 .server = server,
2258                 .name = &dentry->d_name,
2259                 .attrs = sattr,
2260                 .bitmask = server->attr_bitmask,
2261         };
2262         struct nfs4_create_res res = {
2263                 .server = server,
2264                 .fh = &fh,
2265                 .fattr = &fattr,
2266                 .dir_fattr = &dir_fattr,
2267         };
2268         struct rpc_message msg = {
2269                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2270                 .rpc_argp = &arg,
2271                 .rpc_resp = &res,
2272         };
2273         int                     status;
2274         int                     mode = sattr->ia_mode;
2275
2276         nfs_fattr_init(&fattr);
2277         nfs_fattr_init(&dir_fattr);
2278
2279         BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2280         BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2281         if (S_ISFIFO(mode))
2282                 arg.ftype = NF4FIFO;
2283         else if (S_ISBLK(mode)) {
2284                 arg.ftype = NF4BLK;
2285                 arg.u.device.specdata1 = MAJOR(rdev);
2286                 arg.u.device.specdata2 = MINOR(rdev);
2287         }
2288         else if (S_ISCHR(mode)) {
2289                 arg.ftype = NF4CHR;
2290                 arg.u.device.specdata1 = MAJOR(rdev);
2291                 arg.u.device.specdata2 = MINOR(rdev);
2292         }
2293         else
2294                 arg.ftype = NF4SOCK;
2295         
2296         status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2297         if (status == 0) {
2298                 update_changeattr(dir, &res.dir_cinfo);
2299                 nfs_post_op_update_inode(dir, res.dir_fattr);
2300                 status = nfs_instantiate(dentry, &fh, &fattr);
2301         }
2302         return status;
2303 }
2304
2305 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2306                 struct iattr *sattr, dev_t rdev)
2307 {
2308         struct nfs4_exception exception = { };
2309         int err;
2310         do {
2311                 err = nfs4_handle_exception(NFS_SERVER(dir),
2312                                 _nfs4_proc_mknod(dir, dentry, sattr, rdev),
2313                                 &exception);
2314         } while (exception.retry);
2315         return err;
2316 }
2317
2318 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2319                  struct nfs_fsstat *fsstat)
2320 {
2321         struct nfs4_statfs_arg args = {
2322                 .fh = fhandle,
2323                 .bitmask = server->attr_bitmask,
2324         };
2325         struct rpc_message msg = {
2326                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2327                 .rpc_argp = &args,
2328                 .rpc_resp = fsstat,
2329         };
2330
2331         nfs_fattr_init(fsstat->fattr);
2332         return rpc_call_sync(server->client, &msg, 0);
2333 }
2334
2335 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2336 {
2337         struct nfs4_exception exception = { };
2338         int err;
2339         do {
2340                 err = nfs4_handle_exception(server,
2341                                 _nfs4_proc_statfs(server, fhandle, fsstat),
2342                                 &exception);
2343         } while (exception.retry);
2344         return err;
2345 }
2346
2347 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2348                 struct nfs_fsinfo *fsinfo)
2349 {
2350         struct nfs4_fsinfo_arg args = {
2351                 .fh = fhandle,
2352                 .bitmask = server->attr_bitmask,
2353         };
2354         struct rpc_message msg = {
2355                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2356                 .rpc_argp = &args,
2357                 .rpc_resp = fsinfo,
2358         };
2359
2360         return rpc_call_sync(server->client, &msg, 0);
2361 }
2362
2363 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2364 {
2365         struct nfs4_exception exception = { };
2366         int err;
2367
2368         do {
2369                 err = nfs4_handle_exception(server,
2370                                 _nfs4_do_fsinfo(server, fhandle, fsinfo),
2371                                 &exception);
2372         } while (exception.retry);
2373         return err;
2374 }
2375
2376 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2377 {
2378         nfs_fattr_init(fsinfo->fattr);
2379         return nfs4_do_fsinfo(server, fhandle, fsinfo);
2380 }
2381
2382 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2383                 struct nfs_pathconf *pathconf)
2384 {
2385         struct nfs4_pathconf_arg args = {
2386                 .fh = fhandle,
2387                 .bitmask = server->attr_bitmask,
2388         };
2389         struct rpc_message msg = {
2390                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2391                 .rpc_argp = &args,
2392                 .rpc_resp = pathconf,
2393         };
2394
2395         /* None of the pathconf attributes are mandatory to implement */
2396         if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2397                 memset(pathconf, 0, sizeof(*pathconf));
2398                 return 0;
2399         }
2400
2401         nfs_fattr_init(pathconf->fattr);
2402         return rpc_call_sync(server->client, &msg, 0);
2403 }
2404
2405 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2406                 struct nfs_pathconf *pathconf)
2407 {
2408         struct nfs4_exception exception = { };
2409         int err;
2410
2411         do {
2412                 err = nfs4_handle_exception(server,
2413                                 _nfs4_proc_pathconf(server, fhandle, pathconf),
2414                                 &exception);
2415         } while (exception.retry);
2416         return err;
2417 }
2418
2419 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2420 {
2421         struct nfs_server *server = NFS_SERVER(data->inode);
2422
2423         if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2424                 rpc_restart_call(task);
2425                 return -EAGAIN;
2426         }
2427         if (task->tk_status > 0)
2428                 renew_lease(server, data->timestamp);
2429         return 0;
2430 }
2431
2432 static void nfs4_proc_read_setup(struct nfs_read_data *data)
2433 {
2434         struct rpc_message msg = {
2435                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2436                 .rpc_argp = &data->args,
2437                 .rpc_resp = &data->res,
2438                 .rpc_cred = data->cred,
2439         };
2440
2441         data->timestamp   = jiffies;
2442
2443         rpc_call_setup(&data->task, &msg, 0);
2444 }
2445
2446 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2447 {
2448         struct inode *inode = data->inode;
2449         
2450         if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2451                 rpc_restart_call(task);
2452                 return -EAGAIN;
2453         }
2454         if (task->tk_status >= 0) {
2455                 renew_lease(NFS_SERVER(inode), data->timestamp);
2456                 nfs_post_op_update_inode(inode, data->res.fattr);
2457         }
2458         return 0;
2459 }
2460
2461 static void nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2462 {
2463         struct rpc_message msg = {
2464                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2465                 .rpc_argp = &data->args,
2466                 .rpc_resp = &data->res,
2467                 .rpc_cred = data->cred,
2468         };
2469         struct inode *inode = data->inode;
2470         struct nfs_server *server = NFS_SERVER(inode);
2471         int stable;
2472         
2473         if (how & FLUSH_STABLE) {
2474                 if (!NFS_I(inode)->ncommit)
2475                         stable = NFS_FILE_SYNC;
2476                 else
2477                         stable = NFS_DATA_SYNC;
2478         } else
2479                 stable = NFS_UNSTABLE;
2480         data->args.stable = stable;
2481         data->args.bitmask = server->attr_bitmask;
2482         data->res.server = server;
2483
2484         data->timestamp   = jiffies;
2485
2486         /* Finalize the task. */
2487         rpc_call_setup(&data->task, &msg, 0);
2488 }
2489
2490 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2491 {
2492         struct inode *inode = data->inode;
2493         
2494         if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2495                 rpc_restart_call(task);
2496                 return -EAGAIN;
2497         }
2498         if (task->tk_status >= 0)
2499                 nfs_post_op_update_inode(inode, data->res.fattr);
2500         return 0;
2501 }
2502
2503 static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2504 {
2505         struct rpc_message msg = {
2506                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2507                 .rpc_argp = &data->args,
2508                 .rpc_resp = &data->res,
2509                 .rpc_cred = data->cred,
2510         };      
2511         struct nfs_server *server = NFS_SERVER(data->inode);
2512         
2513         data->args.bitmask = server->attr_bitmask;
2514         data->res.server = server;
2515
2516         rpc_call_setup(&data->task, &msg, 0);
2517 }
2518
2519 /*
2520  * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2521  * standalone procedure for queueing an asynchronous RENEW.
2522  */
2523 static void nfs4_renew_done(struct rpc_task *task, void *data)
2524 {
2525         struct nfs_client *clp = (struct nfs_client *)task->tk_msg.rpc_argp;
2526         unsigned long timestamp = (unsigned long)data;
2527
2528         if (task->tk_status < 0) {
2529                 switch (task->tk_status) {
2530                         case -NFS4ERR_STALE_CLIENTID:
2531                         case -NFS4ERR_EXPIRED:
2532                         case -NFS4ERR_CB_PATH_DOWN:
2533                                 nfs4_schedule_state_recovery(clp);
2534                 }
2535                 return;
2536         }
2537         spin_lock(&clp->cl_lock);
2538         if (time_before(clp->cl_last_renewal,timestamp))
2539                 clp->cl_last_renewal = timestamp;
2540         spin_unlock(&clp->cl_lock);
2541 }
2542
2543 static const struct rpc_call_ops nfs4_renew_ops = {
2544         .rpc_call_done = nfs4_renew_done,
2545 };
2546
2547 int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred)
2548 {
2549         struct rpc_message msg = {
2550                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2551                 .rpc_argp       = clp,
2552                 .rpc_cred       = cred,
2553         };
2554
2555         return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2556                         &nfs4_renew_ops, (void *)jiffies);
2557 }
2558
2559 int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred)
2560 {
2561         struct rpc_message msg = {
2562                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2563                 .rpc_argp       = clp,
2564                 .rpc_cred       = cred,
2565         };
2566         unsigned long now = jiffies;
2567         int status;
2568
2569         status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2570         if (status < 0)
2571                 return status;
2572         spin_lock(&clp->cl_lock);
2573         if (time_before(clp->cl_last_renewal,now))
2574                 clp->cl_last_renewal = now;
2575         spin_unlock(&clp->cl_lock);
2576         return 0;
2577 }
2578
2579 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2580 {
2581         return (server->caps & NFS_CAP_ACLS)
2582                 && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2583                 && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2584 }
2585
2586 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2587  * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2588  * the stack.
2589  */
2590 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2591
2592 static void buf_to_pages(const void *buf, size_t buflen,
2593                 struct page **pages, unsigned int *pgbase)
2594 {
2595         const void *p = buf;
2596
2597         *pgbase = offset_in_page(buf);
2598         p -= *pgbase;
2599         while (p < buf + buflen) {
2600                 *(pages++) = virt_to_page(p);
2601                 p += PAGE_CACHE_SIZE;
2602         }
2603 }
2604
2605 struct nfs4_cached_acl {
2606         int cached;
2607         size_t len;
2608         char data[0];
2609 };
2610
2611 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2612 {
2613         struct nfs_inode *nfsi = NFS_I(inode);
2614
2615         spin_lock(&inode->i_lock);
2616         kfree(nfsi->nfs4_acl);
2617         nfsi->nfs4_acl = acl;
2618         spin_unlock(&inode->i_lock);
2619 }
2620
2621 static void nfs4_zap_acl_attr(struct inode *inode)
2622 {
2623         nfs4_set_cached_acl(inode, NULL);
2624 }
2625
2626 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2627 {
2628         struct nfs_inode *nfsi = NFS_I(inode);
2629         struct nfs4_cached_acl *acl;
2630         int ret = -ENOENT;
2631
2632         spin_lock(&inode->i_lock);
2633         acl = nfsi->nfs4_acl;
2634         if (acl == NULL)
2635                 goto out;
2636         if (buf == NULL) /* user is just asking for length */
2637                 goto out_len;
2638         if (acl->cached == 0)
2639                 goto out;
2640         ret = -ERANGE; /* see getxattr(2) man page */
2641         if (acl->len > buflen)
2642                 goto out;
2643         memcpy(buf, acl->data, acl->len);
2644 out_len:
2645         ret = acl->len;
2646 out:
2647         spin_unlock(&inode->i_lock);
2648         return ret;
2649 }
2650
2651 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2652 {
2653         struct nfs4_cached_acl *acl;
2654
2655         if (buf && acl_len <= PAGE_SIZE) {
2656                 acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2657                 if (acl == NULL)
2658                         goto out;
2659                 acl->cached = 1;
2660                 memcpy(acl->data, buf, acl_len);
2661         } else {
2662                 acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2663                 if (acl == NULL)
2664                         goto out;
2665                 acl->cached = 0;
2666         }
2667         acl->len = acl_len;
2668 out:
2669         nfs4_set_cached_acl(inode, acl);
2670 }
2671
2672 static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2673 {
2674         struct page *pages[NFS4ACL_MAXPAGES];
2675         struct nfs_getaclargs args = {
2676                 .fh = NFS_FH(inode),
2677                 .acl_pages = pages,
2678                 .acl_len = buflen,
2679         };
2680         size_t resp_len = buflen;
2681         void *resp_buf;
2682         struct rpc_message msg = {
2683                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2684                 .rpc_argp = &args,
2685                 .rpc_resp = &resp_len,
2686         };
2687         struct page *localpage = NULL;
2688         int ret;
2689
2690         if (buflen < PAGE_SIZE) {
2691                 /* As long as we're doing a round trip to the server anyway,
2692                  * let's be prepared for a page of acl data. */
2693                 localpage = alloc_page(GFP_KERNEL);
2694                 resp_buf = page_address(localpage);
2695                 if (localpage == NULL)
2696                         return -ENOMEM;
2697                 args.acl_pages[0] = localpage;
2698                 args.acl_pgbase = 0;
2699                 resp_len = args.acl_len = PAGE_SIZE;
2700         } else {
2701                 resp_buf = buf;
2702                 buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2703         }
2704         ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2705         if (ret)
2706                 goto out_free;
2707         if (resp_len > args.acl_len)
2708                 nfs4_write_cached_acl(inode, NULL, resp_len);
2709         else
2710                 nfs4_write_cached_acl(inode, resp_buf, resp_len);
2711         if (buf) {
2712                 ret = -ERANGE;
2713                 if (resp_len > buflen)
2714                         goto out_free;
2715                 if (localpage)
2716                         memcpy(buf, resp_buf, resp_len);
2717         }
2718         ret = resp_len;
2719 out_free:
2720         if (localpage)
2721                 __free_page(localpage);
2722         return ret;
2723 }
2724
2725 static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2726 {
2727         struct nfs4_exception exception = { };
2728         ssize_t ret;
2729         do {
2730                 ret = __nfs4_get_acl_uncached(inode, buf, buflen);
2731                 if (ret >= 0)
2732                         break;
2733                 ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
2734         } while (exception.retry);
2735         return ret;
2736 }
2737
2738 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2739 {
2740         struct nfs_server *server = NFS_SERVER(inode);
2741         int ret;
2742
2743         if (!nfs4_server_supports_acls(server))
2744                 return -EOPNOTSUPP;
2745         ret = nfs_revalidate_inode(server, inode);
2746         if (ret < 0)
2747                 return ret;
2748         ret = nfs4_read_cached_acl(inode, buf, buflen);
2749         if (ret != -ENOENT)
2750                 return ret;
2751         return nfs4_get_acl_uncached(inode, buf, buflen);
2752 }
2753
2754 static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2755 {
2756         struct nfs_server *server = NFS_SERVER(inode);
2757         struct page *pages[NFS4ACL_MAXPAGES];
2758         struct nfs_setaclargs arg = {
2759                 .fh             = NFS_FH(inode),
2760                 .acl_pages      = pages,
2761                 .acl_len        = buflen,
2762         };
2763         struct rpc_message msg = {
2764                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2765                 .rpc_argp       = &arg,
2766                 .rpc_resp       = NULL,
2767         };
2768         int ret;
2769
2770         if (!nfs4_server_supports_acls(server))
2771                 return -EOPNOTSUPP;
2772         nfs_inode_return_delegation(inode);
2773         buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2774         ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2775         if (ret == 0)
2776                 nfs4_write_cached_acl(inode, buf, buflen);
2777         return ret;
2778 }
2779
2780 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2781 {
2782         struct nfs4_exception exception = { };
2783         int err;
2784         do {
2785                 err = nfs4_handle_exception(NFS_SERVER(inode),
2786                                 __nfs4_proc_set_acl(inode, buf, buflen),
2787                                 &exception);
2788         } while (exception.retry);
2789         return err;
2790 }
2791
2792 static int
2793 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2794 {
2795         struct nfs_client *clp = server->nfs_client;
2796
2797         if (!clp || task->tk_status >= 0)
2798                 return 0;
2799         switch(task->tk_status) {
2800                 case -NFS4ERR_STALE_CLIENTID:
2801                 case -NFS4ERR_STALE_STATEID:
2802                 case -NFS4ERR_EXPIRED:
2803                         rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2804                         nfs4_schedule_state_recovery(clp);
2805                         if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2806                                 rpc_wake_up_task(task);
2807                         task->tk_status = 0;
2808                         return -EAGAIN;
2809                 case -NFS4ERR_DELAY:
2810                         nfs_inc_server_stats((struct nfs_server *) server,
2811                                                 NFSIOS_DELAY);
2812                 case -NFS4ERR_GRACE:
2813                         rpc_delay(task, NFS4_POLL_RETRY_MAX);
2814                         task->tk_status = 0;
2815                         return -EAGAIN;
2816                 case -NFS4ERR_OLD_STATEID:
2817                         task->tk_status = 0;
2818                         return -EAGAIN;
2819         }
2820         task->tk_status = nfs4_map_errors(task->tk_status);
2821         return 0;
2822 }
2823
2824 static int nfs4_wait_bit_interruptible(void *word)
2825 {
2826         if (signal_pending(current))
2827                 return -ERESTARTSYS;
2828         schedule();
2829         return 0;
2830 }
2831
2832 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp)
2833 {
2834         sigset_t oldset;
2835         int res;
2836
2837         might_sleep();
2838
2839         rpc_clnt_sigmask(clnt, &oldset);
2840         res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2841                         nfs4_wait_bit_interruptible,
2842                         TASK_INTERRUPTIBLE);
2843         rpc_clnt_sigunmask(clnt, &oldset);
2844         return res;
2845 }
2846
2847 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2848 {
2849         sigset_t oldset;
2850         int res = 0;
2851
2852         might_sleep();
2853
2854         if (*timeout <= 0)
2855                 *timeout = NFS4_POLL_RETRY_MIN;
2856         if (*timeout > NFS4_POLL_RETRY_MAX)
2857                 *timeout = NFS4_POLL_RETRY_MAX;
2858         rpc_clnt_sigmask(clnt, &oldset);
2859         if (clnt->cl_intr) {
2860                 schedule_timeout_interruptible(*timeout);
2861                 if (signalled())
2862                         res = -ERESTARTSYS;
2863         } else
2864                 schedule_timeout_uninterruptible(*timeout);
2865         rpc_clnt_sigunmask(clnt, &oldset);
2866         *timeout <<= 1;
2867         return res;
2868 }
2869
2870 /* This is the error handling routine for processes that are allowed
2871  * to sleep.
2872  */
2873 int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2874 {
2875         struct nfs_client *clp = server->nfs_client;
2876         int ret = errorcode;
2877
2878         exception->retry = 0;
2879         switch(errorcode) {
2880                 case 0:
2881                         return 0;
2882                 case -NFS4ERR_STALE_CLIENTID:
2883                 case -NFS4ERR_STALE_STATEID:
2884                 case -NFS4ERR_EXPIRED:
2885                         nfs4_schedule_state_recovery(clp);
2886                         ret = nfs4_wait_clnt_recover(server->client, clp);
2887                         if (ret == 0)
2888                                 exception->retry = 1;
2889                         break;
2890                 case -NFS4ERR_FILE_OPEN:
2891                 case -NFS4ERR_GRACE:
2892                 case -NFS4ERR_DELAY:
2893                         ret = nfs4_delay(server->client, &exception->timeout);
2894                         if (ret != 0)
2895                                 break;
2896                 case -NFS4ERR_OLD_STATEID:
2897                         exception->retry = 1;
2898         }
2899         /* We failed to handle the error */
2900         return nfs4_map_errors(ret);
2901 }
2902
2903 int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2904 {
2905         nfs4_verifier sc_verifier;
2906         struct nfs4_setclientid setclientid = {
2907                 .sc_verifier = &sc_verifier,
2908                 .sc_prog = program,
2909         };
2910         struct rpc_message msg = {
2911                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2912                 .rpc_argp = &setclientid,
2913                 .rpc_resp = clp,
2914                 .rpc_cred = cred,
2915         };
2916         __be32 *p;
2917         int loop = 0;
2918         int status;
2919
2920         p = (__be32*)sc_verifier.data;
2921         *p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2922         *p = htonl((u32)clp->cl_boot_time.tv_nsec);
2923
2924         for(;;) {
2925                 setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2926                                 sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2927                                 clp->cl_ipaddr, NIPQUAD(clp->cl_addr.sin_addr),
2928                                 cred->cr_ops->cr_name,
2929                                 clp->cl_id_uniquifier);
2930                 setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2931                                 sizeof(setclientid.sc_netid), "tcp");
2932                 setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2933                                 sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2934                                 clp->cl_ipaddr, port >> 8, port & 255);
2935
2936                 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2937                 if (status != -NFS4ERR_CLID_INUSE)
2938                         break;
2939                 if (signalled())
2940                         break;
2941                 if (loop++ & 1)
2942                         ssleep(clp->cl_lease_time + 1);
2943                 else
2944                         if (++clp->cl_id_uniquifier == 0)
2945                                 break;
2946         }
2947         return status;
2948 }
2949
2950 static int _nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2951 {
2952         struct nfs_fsinfo fsinfo;
2953         struct rpc_message msg = {
2954                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2955                 .rpc_argp = clp,
2956                 .rpc_resp = &fsinfo,
2957                 .rpc_cred = cred,
2958         };
2959         unsigned long now;
2960         int status;
2961
2962         now = jiffies;
2963         status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2964         if (status == 0) {
2965                 spin_lock(&clp->cl_lock);
2966                 clp->cl_lease_time = fsinfo.lease_time * HZ;
2967                 clp->cl_last_renewal = now;
2968                 clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2969                 spin_unlock(&clp->cl_lock);
2970         }
2971         return status;
2972 }
2973
2974 int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2975 {
2976         long timeout;
2977         int err;
2978         do {
2979                 err = _nfs4_proc_setclientid_confirm(clp, cred);
2980                 switch (err) {
2981                         case 0:
2982                                 return err;
2983                         case -NFS4ERR_RESOURCE:
2984                                 /* The IBM lawyers misread another document! */
2985                         case -NFS4ERR_DELAY:
2986                                 err = nfs4_delay(clp->cl_rpcclient, &timeout);
2987                 }
2988         } while (err == 0);
2989         return err;
2990 }
2991
2992 struct nfs4_delegreturndata {
2993         struct nfs4_delegreturnargs args;
2994         struct nfs4_delegreturnres res;
2995         struct nfs_fh fh;
2996         nfs4_stateid stateid;
2997         struct rpc_cred *cred;
2998         unsigned long timestamp;
2999         struct nfs_fattr fattr;
3000         int rpc_status;
3001 };
3002
3003 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
3004 {
3005         struct nfs4_delegreturndata *data = calldata;
3006         struct rpc_message msg = {
3007                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
3008                 .rpc_argp = &data->args,
3009                 .rpc_resp = &data->res,
3010                 .rpc_cred = data->cred,
3011         };
3012         nfs_fattr_init(data->res.fattr);
3013         rpc_call_setup(task, &msg, 0);
3014 }
3015
3016 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
3017 {
3018         struct nfs4_delegreturndata *data = calldata;
3019         data->rpc_status = task->tk_status;
3020         if (data->rpc_status == 0)
3021                 renew_lease(data->res.server, data->timestamp);
3022 }
3023
3024 static void nfs4_delegreturn_release(void *calldata)
3025 {
3026         struct nfs4_delegreturndata *data = calldata;
3027
3028         put_rpccred(data->cred);
3029         kfree(calldata);
3030 }
3031
3032 static const struct rpc_call_ops nfs4_delegreturn_ops = {
3033         .rpc_call_prepare = nfs4_delegreturn_prepare,
3034         .rpc_call_done = nfs4_delegreturn_done,
3035         .rpc_release = nfs4_delegreturn_release,
3036 };
3037
3038 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
3039 {
3040         struct nfs4_delegreturndata *data;
3041         struct nfs_server *server = NFS_SERVER(inode);
3042         struct rpc_task *task;
3043         int status;
3044
3045         data = kmalloc(sizeof(*data), GFP_KERNEL);
3046         if (data == NULL)
3047                 return -ENOMEM;
3048         data->args.fhandle = &data->fh;
3049         data->args.stateid = &data->stateid;
3050         data->args.bitmask = server->attr_bitmask;
3051         nfs_copy_fh(&data->fh, NFS_FH(inode));
3052         memcpy(&data->stateid, stateid, sizeof(data->stateid));
3053         data->res.fattr = &data->fattr;
3054         data->res.server = server;
3055         data->cred = get_rpccred(cred);
3056         data->timestamp = jiffies;
3057         data->rpc_status = 0;
3058
3059         task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
3060         if (IS_ERR(task))
3061                 return PTR_ERR(task);
3062         status = nfs4_wait_for_completion_rpc_task(task);
3063         if (status == 0) {
3064                 status = data->rpc_status;
3065                 if (status == 0)
3066                         nfs_post_op_update_inode(inode, &data->fattr);
3067         }
3068         rpc_put_task(task);
3069         return status;
3070 }
3071
3072 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
3073 {
3074         struct nfs_server *server = NFS_SERVER(inode);
3075         struct nfs4_exception exception = { };
3076         int err;
3077         do {
3078                 err = _nfs4_proc_delegreturn(inode, cred, stateid);
3079                 switch (err) {
3080                         case -NFS4ERR_STALE_STATEID:
3081                         case -NFS4ERR_EXPIRED:
3082                                 nfs4_schedule_state_recovery(server->nfs_client);
3083                         case 0:
3084                                 return 0;
3085                 }
3086                 err = nfs4_handle_exception(server, err, &exception);
3087         } while (exception.retry);
3088         return err;
3089 }
3090
3091 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
3092 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
3093
3094 /* 
3095  * sleep, with exponential backoff, and retry the LOCK operation. 
3096  */
3097 static unsigned long
3098 nfs4_set_lock_task_retry(unsigned long timeout)
3099 {
3100         schedule_timeout_interruptible(timeout);
3101         timeout <<= 1;
3102         if (timeout > NFS4_LOCK_MAXTIMEOUT)
3103                 return NFS4_LOCK_MAXTIMEOUT;
3104         return timeout;
3105 }
3106
3107 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3108 {
3109         struct inode *inode = state->inode;
3110         struct nfs_server *server = NFS_SERVER(inode);
3111         struct nfs_client *clp = server->nfs_client;
3112         struct nfs_lockt_args arg = {
3113                 .fh = NFS_FH(inode),
3114                 .fl = request,
3115         };
3116         struct nfs_lockt_res res = {
3117                 .denied = request,
3118         };
3119         struct rpc_message msg = {
3120                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3121                 .rpc_argp       = &arg,
3122                 .rpc_resp       = &res,
3123                 .rpc_cred       = state->owner->so_cred,
3124         };
3125         struct nfs4_lock_state *lsp;
3126         int status;
3127
3128         down_read(&clp->cl_sem);
3129         arg.lock_owner.clientid = clp->cl_clientid;
3130         status = nfs4_set_lock_state(state, request);
3131         if (status != 0)
3132                 goto out;
3133         lsp = request->fl_u.nfs4_fl.owner;
3134         arg.lock_owner.id = lsp->ls_id; 
3135         status = rpc_call_sync(server->client, &msg, 0);
3136         switch (status) {
3137                 case 0:
3138                         request->fl_type = F_UNLCK;
3139                         break;
3140                 case -NFS4ERR_DENIED:
3141                         status = 0;
3142         }
3143 out:
3144         up_read(&clp->cl_sem);
3145         return status;
3146 }
3147
3148 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3149 {
3150         struct nfs4_exception exception = { };
3151         int err;
3152
3153         do {
3154                 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3155                                 _nfs4_proc_getlk(state, cmd, request),
3156                                 &exception);
3157         } while (exception.retry);
3158         return err;
3159 }
3160
3161 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3162 {
3163         int res = 0;
3164         switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3165                 case FL_POSIX:
3166                         res = posix_lock_file_wait(file, fl);
3167                         break;
3168                 case FL_FLOCK:
3169                         res = flock_lock_file_wait(file, fl);
3170                         break;
3171                 default:
3172                         BUG();
3173         }
3174         return res;
3175 }
3176
3177 struct nfs4_unlockdata {
3178         struct nfs_locku_args arg;
3179         struct nfs_locku_res res;
3180         struct nfs4_lock_state *lsp;
3181         struct nfs_open_context *ctx;
3182         struct file_lock fl;
3183         const struct nfs_server *server;
3184         unsigned long timestamp;
3185 };
3186
3187 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3188                 struct nfs_open_context *ctx,
3189                 struct nfs4_lock_state *lsp,
3190                 struct nfs_seqid *seqid)
3191 {
3192         struct nfs4_unlockdata *p;
3193         struct inode *inode = lsp->ls_state->inode;
3194
3195         p = kmalloc(sizeof(*p), GFP_KERNEL);
3196         if (p == NULL)
3197                 return NULL;
3198         p->arg.fh = NFS_FH(inode);
3199         p->arg.fl = &p->fl;
3200         p->arg.seqid = seqid;
3201         p->arg.stateid = &lsp->ls_stateid;
3202         p->lsp = lsp;
3203         atomic_inc(&lsp->ls_count);
3204         /* Ensure we don't close file until we're done freeing locks! */
3205         p->ctx = get_nfs_open_context(ctx);
3206         memcpy(&p->fl, fl, sizeof(p->fl));
3207         p->server = NFS_SERVER(inode);
3208         return p;
3209 }
3210
3211 static void nfs4_locku_release_calldata(void *data)
3212 {
3213         struct nfs4_unlockdata *calldata = data;
3214         nfs_free_seqid(calldata->arg.seqid);
3215         nfs4_put_lock_state(calldata->lsp);
3216         put_nfs_open_context(calldata->ctx);
3217         kfree(calldata);
3218 }
3219
3220 static void nfs4_locku_done(struct rpc_task *task, void *data)
3221 {
3222         struct nfs4_unlockdata *calldata = data;
3223
3224         if (RPC_ASSASSINATED(task))
3225                 return;
3226         nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3227         switch (task->tk_status) {
3228                 case 0:
3229                         memcpy(calldata->lsp->ls_stateid.data,
3230                                         calldata->res.stateid.data,
3231                                         sizeof(calldata->lsp->ls_stateid.data));
3232                         renew_lease(calldata->server, calldata->timestamp);
3233                         break;
3234                 case -NFS4ERR_STALE_STATEID:
3235                 case -NFS4ERR_EXPIRED:
3236                         nfs4_schedule_state_recovery(calldata->server->nfs_client);
3237                         break;
3238                 default:
3239                         if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) {
3240                                 rpc_restart_call(task);
3241                         }
3242         }
3243 }
3244
3245 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3246 {
3247         struct nfs4_unlockdata *calldata = data;
3248         struct rpc_message msg = {
3249                 .rpc_proc       = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3250                 .rpc_argp       = &calldata->arg,
3251                 .rpc_resp       = &calldata->res,
3252                 .rpc_cred       = calldata->lsp->ls_state->owner->so_cred,
3253         };
3254
3255         if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3256                 return;
3257         if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3258                 /* Note: exit _without_ running nfs4_locku_done */
3259                 task->tk_action = NULL;
3260                 return;
3261         }
3262         calldata->timestamp = jiffies;
3263         rpc_call_setup(task, &msg, 0);
3264 }
3265
3266 static const struct rpc_call_ops nfs4_locku_ops = {
3267         .rpc_call_prepare = nfs4_locku_prepare,
3268         .rpc_call_done = nfs4_locku_done,
3269         .rpc_release = nfs4_locku_release_calldata,
3270 };
3271
3272 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3273                 struct nfs_open_context *ctx,
3274                 struct nfs4_lock_state *lsp,
3275                 struct nfs_seqid *seqid)
3276 {
3277         struct nfs4_unlockdata *data;
3278
3279         data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3280         if (data == NULL) {
3281                 nfs_free_seqid(seqid);
3282                 return ERR_PTR(-ENOMEM);
3283         }
3284
3285         return rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3286 }
3287
3288 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3289 {
3290         struct nfs_seqid *seqid;
3291         struct nfs4_lock_state *lsp;
3292         struct rpc_task *task;
3293         int status = 0;
3294
3295         status = nfs4_set_lock_state(state, request);
3296         /* Unlock _before_ we do the RPC call */
3297         request->fl_flags |= FL_EXISTS;
3298         if (do_vfs_lock(request->fl_file, request) == -ENOENT)
3299                 goto out;
3300         if (status != 0)
3301                 goto out;
3302         /* Is this a delegated lock? */
3303         if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3304                 goto out;
3305         lsp = request->fl_u.nfs4_fl.owner;
3306         seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3307         status = -ENOMEM;
3308         if (seqid == NULL)
3309                 goto out;
3310         task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3311         status = PTR_ERR(task);
3312         if (IS_ERR(task))
3313                 goto out;
3314         status = nfs4_wait_for_completion_rpc_task(task);
3315         rpc_put_task(task);
3316 out:
3317         return status;
3318 }
3319
3320 struct nfs4_lockdata {
3321         struct nfs_lock_args arg;
3322         struct nfs_lock_res res;
3323         struct nfs4_lock_state *lsp;
3324         struct nfs_open_context *ctx;
3325         struct file_lock fl;
3326         unsigned long timestamp;
3327         int rpc_status;
3328         int cancelled;
3329 };
3330
3331 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3332                 struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3333 {
3334         struct nfs4_lockdata *p;
3335         struct inode *inode = lsp->ls_state->inode;
3336         struct nfs_server *server = NFS_SERVER(inode);
3337
3338         p = kzalloc(sizeof(*p), GFP_KERNEL);
3339         if (p == NULL)
3340                 return NULL;
3341
3342         p->arg.fh = NFS_FH(inode);
3343         p->arg.fl = &p->fl;
3344         p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3345         if (p->arg.lock_seqid == NULL)
3346                 goto out_free;
3347         p->arg.lock_stateid = &lsp->ls_stateid;
3348         p->arg.lock_owner.clientid = server->nfs_client->cl_clientid;
3349         p->arg.lock_owner.id = lsp->ls_id;
3350         p->lsp = lsp;
3351         atomic_inc(&lsp->ls_count);
3352         p->ctx = get_nfs_open_context(ctx);
3353         memcpy(&p->fl, fl, sizeof(p->fl));
3354         return p;
3355 out_free:
3356         kfree(p);
3357         return NULL;
3358 }
3359
3360 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3361 {
3362         struct nfs4_lockdata *data = calldata;
3363         struct nfs4_state *state = data->lsp->ls_state;
3364         struct nfs4_state_owner *sp = state->owner;
3365         struct rpc_message msg = {
3366                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3367                 .rpc_argp = &data->arg,
3368                 .rpc_resp = &data->res,
3369                 .rpc_cred = sp->so_cred,
3370         };
3371
3372         if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3373                 return;
3374         dprintk("%s: begin!\n", __FUNCTION__);
3375         /* Do we need to do an open_to_lock_owner? */
3376         if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3377                 data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3378                 if (data->arg.open_seqid == NULL) {
3379                         data->rpc_status = -ENOMEM;
3380                         task->tk_action = NULL;
3381                         goto out;
3382                 }
3383                 data->arg.open_stateid = &state->stateid;
3384                 data->arg.new_lock_owner = 1;
3385         }
3386         data->timestamp = jiffies;
3387         rpc_call_setup(task, &msg, 0);
3388 out:
3389         dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3390 }
3391
3392 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3393 {
3394         struct nfs4_lockdata *data = calldata;
3395
3396         dprintk("%s: begin!\n", __FUNCTION__);
3397
3398         data->rpc_status = task->tk_status;
3399         if (RPC_ASSASSINATED(task))
3400                 goto out;
3401         if (data->arg.new_lock_owner != 0) {
3402                 nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3403                 if (data->rpc_status == 0)
3404                         nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3405                 else
3406                         goto out;
3407         }
3408         if (data->rpc_status == 0) {
3409                 memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3410                                         sizeof(data->lsp->ls_stateid.data));
3411                 data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3412                 renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp);
3413         }
3414         nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3415 out:
3416         dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3417 }
3418
3419 static void nfs4_lock_release(void *calldata)
3420 {
3421         struct nfs4_lockdata *data = calldata;
3422
3423         dprintk("%s: begin!\n", __FUNCTION__);
3424         if (data->arg.open_seqid != NULL)
3425                 nfs_free_seqid(data->arg.open_seqid);
3426         if (data->cancelled != 0) {
3427                 struct rpc_task *task;
3428                 task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3429                                 data->arg.lock_seqid);
3430                 if (!IS_ERR(task))
3431                         rpc_put_task(task);
3432                 dprintk("%s: cancelling lock!\n", __FUNCTION__);
3433         } else
3434                 nfs_free_seqid(data->arg.lock_seqid);
3435         nfs4_put_lock_state(data->lsp);
3436         put_nfs_open_context(data->ctx);
3437         kfree(data);
3438         dprintk("%s: done!\n", __FUNCTION__);
3439 }
3440
3441 static const struct rpc_call_ops nfs4_lock_ops = {
3442         .rpc_call_prepare = nfs4_lock_prepare,
3443         .rpc_call_done = nfs4_lock_done,
3444         .rpc_release = nfs4_lock_release,
3445 };
3446
3447 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3448 {
3449         struct nfs4_lockdata *data;
3450         struct rpc_task *task;
3451         int ret;
3452
3453         dprintk("%s: begin!\n", __FUNCTION__);
3454         data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3455                         fl->fl_u.nfs4_fl.owner);
3456         if (data == NULL)
3457                 return -ENOMEM;
3458         if (IS_SETLKW(cmd))
3459                 data->arg.block = 1;
3460         if (reclaim != 0)
3461                 data->arg.reclaim = 1;
3462         task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3463                         &nfs4_lock_ops, data);
3464         if (IS_ERR(task))
3465                 return PTR_ERR(task);
3466         ret = nfs4_wait_for_completion_rpc_task(task);
3467         if (ret == 0) {
3468                 ret = data->rpc_status;
3469                 if (ret == -NFS4ERR_DENIED)
3470                         ret = -EAGAIN;
3471         } else
3472                 data->cancelled = 1;
3473         rpc_put_task(task);
3474         dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
3475         return ret;
3476 }
3477
3478 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3479 {
3480         struct nfs_server *server = NFS_SERVER(state->inode);
3481         struct nfs4_exception exception = { };
3482         int err;
3483
3484         do {
3485                 /* Cache the lock if possible... */
3486                 if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3487                         return 0;
3488                 err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3489                 if (err != -NFS4ERR_DELAY)
3490                         break;
3491                 nfs4_handle_exception(server, err, &exception);
3492         } while (exception.retry);
3493         return err;
3494 }
3495
3496 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3497 {
3498         struct nfs_server *server = NFS_SERVER(state->inode);
3499         struct nfs4_exception exception = { };
3500         int err;
3501
3502         err = nfs4_set_lock_state(state, request);
3503         if (err != 0)
3504                 return err;
3505         do {
3506                 if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3507                         return 0;
3508                 err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3509                 if (err != -NFS4ERR_DELAY)
3510                         break;
3511                 nfs4_handle_exception(server, err, &exception);
3512         } while (exception.retry);
3513         return err;
3514 }
3515
3516 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3517 {
3518         struct nfs_client *clp = state->owner->so_client;
3519         unsigned char fl_flags = request->fl_flags;
3520         int status;
3521
3522         /* Is this a delegated open? */
3523         status = nfs4_set_lock_state(state, request);
3524         if (status != 0)
3525                 goto out;
3526         request->fl_flags |= FL_ACCESS;
3527         status = do_vfs_lock(request->fl_file, request);
3528         if (status < 0)
3529                 goto out;
3530         down_read(&clp->cl_sem);
3531         if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3532                 struct nfs_inode *nfsi = NFS_I(state->inode);
3533                 /* Yes: cache locks! */
3534                 down_read(&nfsi->rwsem);
3535                 /* ...but avoid races with delegation recall... */
3536                 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3537                         request->fl_flags = fl_flags & ~FL_SLEEP;
3538                         status = do_vfs_lock(request->fl_file, request);
3539                         up_read(&nfsi->rwsem);
3540                         goto out_unlock;
3541                 }
3542                 up_read(&nfsi->rwsem);
3543         }
3544         status = _nfs4_do_setlk(state, cmd, request, 0);
3545         if (status != 0)
3546                 goto out_unlock;
3547         /* Note: we always want to sleep here! */
3548         request->fl_flags = fl_flags | FL_SLEEP;
3549         if (do_vfs_lock(request->fl_file, request) < 0)
3550                 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3551 out_unlock:
3552         up_read(&clp->cl_sem);
3553 out:
3554         request->fl_flags = fl_flags;
3555         return status;
3556 }
3557
3558 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3559 {
3560         struct nfs4_exception exception = { };
3561         int err;
3562
3563         do {
3564                 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3565                                 _nfs4_proc_setlk(state, cmd, request),
3566                                 &exception);
3567         } while (exception.retry);
3568         return err;
3569 }
3570
3571 static int
3572 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3573 {
3574         struct nfs_open_context *ctx;
3575         struct nfs4_state *state;
3576         unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3577         int status;
3578
3579         /* verify open state */
3580         ctx = (struct nfs_open_context *)filp->private_data;
3581         state = ctx->state;
3582
3583         if (request->fl_start < 0 || request->fl_end < 0)
3584                 return -EINVAL;
3585
3586         if (IS_GETLK(cmd))
3587                 return nfs4_proc_getlk(state, F_GETLK, request);
3588
3589         if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3590                 return -EINVAL;
3591
3592         if (request->fl_type == F_UNLCK)
3593                 return nfs4_proc_unlck(state, cmd, request);
3594
3595         do {
3596                 status = nfs4_proc_setlk(state, cmd, request);
3597                 if ((status != -EAGAIN) || IS_SETLK(cmd))
3598                         break;
3599                 timeout = nfs4_set_lock_task_retry(timeout);
3600                 status = -ERESTARTSYS;
3601                 if (signalled())
3602                         break;
3603         } while(status < 0);
3604         return status;
3605 }
3606
3607 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3608 {
3609         struct nfs_server *server = NFS_SERVER(state->inode);
3610         struct nfs4_exception exception = { };
3611         int err;
3612
3613         err = nfs4_set_lock_state(state, fl);
3614         if (err != 0)
3615                 goto out;
3616         do {
3617                 err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3618                 if (err != -NFS4ERR_DELAY)
3619                         break;
3620                 err = nfs4_handle_exception(server, err, &exception);
3621         } while (exception.retry);
3622 out:
3623         return err;
3624 }
3625
3626 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3627
3628 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3629                 size_t buflen, int flags)
3630 {
3631         struct inode *inode = dentry->d_inode;
3632
3633         if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3634                 return -EOPNOTSUPP;
3635
3636         if (!S_ISREG(inode->i_mode) &&
3637             (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3638                 return -EPERM;
3639
3640         return nfs4_proc_set_acl(inode, buf, buflen);
3641 }
3642
3643 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3644  * and that's what we'll do for e.g. user attributes that haven't been set.
3645  * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3646  * attributes in kernel-managed attribute namespaces. */
3647 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3648                 size_t buflen)
3649 {
3650         struct inode *inode = dentry->d_inode;
3651
3652         if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3653                 return -EOPNOTSUPP;
3654
3655         return nfs4_proc_get_acl(inode, buf, buflen);
3656 }
3657
3658 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3659 {
3660         size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3661
3662         if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
3663                 return 0;
3664         if (buf && buflen < len)
3665                 return -ERANGE;
3666         if (buf)
3667                 memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3668         return len;
3669 }
3670
3671 int nfs4_proc_fs_locations(struct inode *dir, struct dentry *dentry,
3672                 struct nfs4_fs_locations *fs_locations, struct page *page)
3673 {
3674         struct nfs_server *server = NFS_SERVER(dir);
3675         u32 bitmask[2] = {
3676                 [0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
3677                 [1] = FATTR4_WORD1_MOUNTED_ON_FILEID,
3678         };
3679         struct nfs4_fs_locations_arg args = {
3680                 .dir_fh = NFS_FH(dir),
3681                 .name = &dentry->d_name,
3682                 .page = page,
3683                 .bitmask = bitmask,
3684         };
3685         struct rpc_message msg = {
3686                 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
3687                 .rpc_argp = &args,
3688                 .rpc_resp = fs_locations,
3689         };
3690         int status;
3691
3692         dprintk("%s: start\n", __FUNCTION__);
3693         fs_locations->fattr.valid = 0;
3694         fs_locations->server = server;
3695         fs_locations->nlocations = 0;
3696         status = rpc_call_sync(server->client, &msg, 0);
3697         dprintk("%s: returned status = %d\n", __FUNCTION__, status);
3698         return status;
3699 }
3700
3701 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3702         .recover_open   = nfs4_open_reclaim,
3703         .recover_lock   = nfs4_lock_reclaim,
3704 };
3705
3706 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3707         .recover_open   = nfs4_open_expired,
3708         .recover_lock   = nfs4_lock_expired,
3709 };
3710
3711 static struct inode_operations nfs4_file_inode_operations = {
3712         .permission     = nfs_permission,
3713         .getattr        = nfs_getattr,
3714         .setattr        = nfs_setattr,
3715         .getxattr       = nfs4_getxattr,
3716         .setxattr       = nfs4_setxattr,
3717         .listxattr      = nfs4_listxattr,
3718 };
3719
3720 const struct nfs_rpc_ops nfs_v4_clientops = {
3721         .version        = 4,                    /* protocol version */
3722         .dentry_ops     = &nfs4_dentry_operations,
3723         .dir_inode_ops  = &nfs4_dir_inode_operations,
3724         .file_inode_ops = &nfs4_file_inode_operations,
3725         .getroot        = nfs4_proc_get_root,
3726         .getattr        = nfs4_proc_getattr,
3727         .setattr        = nfs4_proc_setattr,
3728         .lookupfh       = nfs4_proc_lookupfh,
3729         .lookup         = nfs4_proc_lookup,
3730         .access         = nfs4_proc_access,
3731         .readlink       = nfs4_proc_readlink,
3732         .read           = nfs4_proc_read,
3733         .write          = nfs4_proc_write,
3734         .commit         = nfs4_proc_commit,
3735         .create         = nfs4_proc_create,
3736         .remove         = nfs4_proc_remove,
3737         .unlink_setup   = nfs4_proc_unlink_setup,
3738         .unlink_done    = nfs4_proc_unlink_done,
3739         .rename         = nfs4_proc_rename,
3740         .link           = nfs4_proc_link,
3741         .symlink        = nfs4_proc_symlink,
3742         .mkdir          = nfs4_proc_mkdir,
3743         .rmdir          = nfs4_proc_remove,
3744         .readdir        = nfs4_proc_readdir,
3745         .mknod          = nfs4_proc_mknod,
3746         .statfs         = nfs4_proc_statfs,
3747         .fsinfo         = nfs4_proc_fsinfo,
3748         .pathconf       = nfs4_proc_pathconf,
3749         .set_capabilities = nfs4_server_capabilities,
3750         .decode_dirent  = nfs4_decode_dirent,
3751         .read_setup     = nfs4_proc_read_setup,
3752         .read_done      = nfs4_read_done,
3753         .write_setup    = nfs4_proc_write_setup,
3754         .write_done     = nfs4_write_done,
3755         .commit_setup   = nfs4_proc_commit_setup,
3756         .commit_done    = nfs4_commit_done,
3757         .file_open      = nfs_open,
3758         .file_release   = nfs_release,
3759         .lock           = nfs4_proc_lock,
3760         .clear_acl_cache = nfs4_zap_acl_attr,
3761 };
3762
3763 /*
3764  * Local variables:
3765  *  c-basic-offset: 8
3766  * End:
3767  */