]> git.karo-electronics.de Git - mv-sheeva.git/blob - kernel/perf_event.c
perf: Register PMU implementations
[mv-sheeva.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 /*
38  * Each CPU has a list of per CPU events:
39  */
40 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41
42 int perf_max_events __read_mostly = 1;
43 static int perf_reserved_percpu __read_mostly;
44 static int perf_overcommit __read_mostly = 1;
45
46 static atomic_t nr_events __read_mostly;
47 static atomic_t nr_mmap_events __read_mostly;
48 static atomic_t nr_comm_events __read_mostly;
49 static atomic_t nr_task_events __read_mostly;
50
51 /*
52  * perf event paranoia level:
53  *  -1 - not paranoid at all
54  *   0 - disallow raw tracepoint access for unpriv
55  *   1 - disallow cpu events for unpriv
56  *   2 - disallow kernel profiling for unpriv
57  */
58 int sysctl_perf_event_paranoid __read_mostly = 1;
59
60 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
61
62 /*
63  * max perf event sample rate
64  */
65 int sysctl_perf_event_sample_rate __read_mostly = 100000;
66
67 static atomic64_t perf_event_id;
68
69 /*
70  * Lock for (sysadmin-configurable) event reservations:
71  */
72 static DEFINE_SPINLOCK(perf_resource_lock);
73
74 void __weak hw_perf_disable(void)               { barrier(); }
75 void __weak hw_perf_enable(void)                { barrier(); }
76
77 void __weak perf_event_print_debug(void)        { }
78
79 static DEFINE_PER_CPU(int, perf_disable_count);
80
81 void perf_disable(void)
82 {
83         if (!__get_cpu_var(perf_disable_count)++)
84                 hw_perf_disable();
85 }
86
87 void perf_enable(void)
88 {
89         if (!--__get_cpu_var(perf_disable_count))
90                 hw_perf_enable();
91 }
92
93 static void get_ctx(struct perf_event_context *ctx)
94 {
95         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
96 }
97
98 static void free_ctx(struct rcu_head *head)
99 {
100         struct perf_event_context *ctx;
101
102         ctx = container_of(head, struct perf_event_context, rcu_head);
103         kfree(ctx);
104 }
105
106 static void put_ctx(struct perf_event_context *ctx)
107 {
108         if (atomic_dec_and_test(&ctx->refcount)) {
109                 if (ctx->parent_ctx)
110                         put_ctx(ctx->parent_ctx);
111                 if (ctx->task)
112                         put_task_struct(ctx->task);
113                 call_rcu(&ctx->rcu_head, free_ctx);
114         }
115 }
116
117 static void unclone_ctx(struct perf_event_context *ctx)
118 {
119         if (ctx->parent_ctx) {
120                 put_ctx(ctx->parent_ctx);
121                 ctx->parent_ctx = NULL;
122         }
123 }
124
125 /*
126  * If we inherit events we want to return the parent event id
127  * to userspace.
128  */
129 static u64 primary_event_id(struct perf_event *event)
130 {
131         u64 id = event->id;
132
133         if (event->parent)
134                 id = event->parent->id;
135
136         return id;
137 }
138
139 /*
140  * Get the perf_event_context for a task and lock it.
141  * This has to cope with with the fact that until it is locked,
142  * the context could get moved to another task.
143  */
144 static struct perf_event_context *
145 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
146 {
147         struct perf_event_context *ctx;
148
149         rcu_read_lock();
150  retry:
151         ctx = rcu_dereference(task->perf_event_ctxp);
152         if (ctx) {
153                 /*
154                  * If this context is a clone of another, it might
155                  * get swapped for another underneath us by
156                  * perf_event_task_sched_out, though the
157                  * rcu_read_lock() protects us from any context
158                  * getting freed.  Lock the context and check if it
159                  * got swapped before we could get the lock, and retry
160                  * if so.  If we locked the right context, then it
161                  * can't get swapped on us any more.
162                  */
163                 raw_spin_lock_irqsave(&ctx->lock, *flags);
164                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
165                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
166                         goto retry;
167                 }
168
169                 if (!atomic_inc_not_zero(&ctx->refcount)) {
170                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
171                         ctx = NULL;
172                 }
173         }
174         rcu_read_unlock();
175         return ctx;
176 }
177
178 /*
179  * Get the context for a task and increment its pin_count so it
180  * can't get swapped to another task.  This also increments its
181  * reference count so that the context can't get freed.
182  */
183 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
184 {
185         struct perf_event_context *ctx;
186         unsigned long flags;
187
188         ctx = perf_lock_task_context(task, &flags);
189         if (ctx) {
190                 ++ctx->pin_count;
191                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
192         }
193         return ctx;
194 }
195
196 static void perf_unpin_context(struct perf_event_context *ctx)
197 {
198         unsigned long flags;
199
200         raw_spin_lock_irqsave(&ctx->lock, flags);
201         --ctx->pin_count;
202         raw_spin_unlock_irqrestore(&ctx->lock, flags);
203         put_ctx(ctx);
204 }
205
206 static inline u64 perf_clock(void)
207 {
208         return local_clock();
209 }
210
211 /*
212  * Update the record of the current time in a context.
213  */
214 static void update_context_time(struct perf_event_context *ctx)
215 {
216         u64 now = perf_clock();
217
218         ctx->time += now - ctx->timestamp;
219         ctx->timestamp = now;
220 }
221
222 /*
223  * Update the total_time_enabled and total_time_running fields for a event.
224  */
225 static void update_event_times(struct perf_event *event)
226 {
227         struct perf_event_context *ctx = event->ctx;
228         u64 run_end;
229
230         if (event->state < PERF_EVENT_STATE_INACTIVE ||
231             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
232                 return;
233
234         if (ctx->is_active)
235                 run_end = ctx->time;
236         else
237                 run_end = event->tstamp_stopped;
238
239         event->total_time_enabled = run_end - event->tstamp_enabled;
240
241         if (event->state == PERF_EVENT_STATE_INACTIVE)
242                 run_end = event->tstamp_stopped;
243         else
244                 run_end = ctx->time;
245
246         event->total_time_running = run_end - event->tstamp_running;
247 }
248
249 /*
250  * Update total_time_enabled and total_time_running for all events in a group.
251  */
252 static void update_group_times(struct perf_event *leader)
253 {
254         struct perf_event *event;
255
256         update_event_times(leader);
257         list_for_each_entry(event, &leader->sibling_list, group_entry)
258                 update_event_times(event);
259 }
260
261 static struct list_head *
262 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
263 {
264         if (event->attr.pinned)
265                 return &ctx->pinned_groups;
266         else
267                 return &ctx->flexible_groups;
268 }
269
270 /*
271  * Add a event from the lists for its context.
272  * Must be called with ctx->mutex and ctx->lock held.
273  */
274 static void
275 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
276 {
277         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
278         event->attach_state |= PERF_ATTACH_CONTEXT;
279
280         /*
281          * If we're a stand alone event or group leader, we go to the context
282          * list, group events are kept attached to the group so that
283          * perf_group_detach can, at all times, locate all siblings.
284          */
285         if (event->group_leader == event) {
286                 struct list_head *list;
287
288                 if (is_software_event(event))
289                         event->group_flags |= PERF_GROUP_SOFTWARE;
290
291                 list = ctx_group_list(event, ctx);
292                 list_add_tail(&event->group_entry, list);
293         }
294
295         list_add_rcu(&event->event_entry, &ctx->event_list);
296         ctx->nr_events++;
297         if (event->attr.inherit_stat)
298                 ctx->nr_stat++;
299 }
300
301 static void perf_group_attach(struct perf_event *event)
302 {
303         struct perf_event *group_leader = event->group_leader;
304
305         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
306         event->attach_state |= PERF_ATTACH_GROUP;
307
308         if (group_leader == event)
309                 return;
310
311         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
312                         !is_software_event(event))
313                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
314
315         list_add_tail(&event->group_entry, &group_leader->sibling_list);
316         group_leader->nr_siblings++;
317 }
318
319 /*
320  * Remove a event from the lists for its context.
321  * Must be called with ctx->mutex and ctx->lock held.
322  */
323 static void
324 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
325 {
326         /*
327          * We can have double detach due to exit/hot-unplug + close.
328          */
329         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
330                 return;
331
332         event->attach_state &= ~PERF_ATTACH_CONTEXT;
333
334         ctx->nr_events--;
335         if (event->attr.inherit_stat)
336                 ctx->nr_stat--;
337
338         list_del_rcu(&event->event_entry);
339
340         if (event->group_leader == event)
341                 list_del_init(&event->group_entry);
342
343         update_group_times(event);
344
345         /*
346          * If event was in error state, then keep it
347          * that way, otherwise bogus counts will be
348          * returned on read(). The only way to get out
349          * of error state is by explicit re-enabling
350          * of the event
351          */
352         if (event->state > PERF_EVENT_STATE_OFF)
353                 event->state = PERF_EVENT_STATE_OFF;
354 }
355
356 static void perf_group_detach(struct perf_event *event)
357 {
358         struct perf_event *sibling, *tmp;
359         struct list_head *list = NULL;
360
361         /*
362          * We can have double detach due to exit/hot-unplug + close.
363          */
364         if (!(event->attach_state & PERF_ATTACH_GROUP))
365                 return;
366
367         event->attach_state &= ~PERF_ATTACH_GROUP;
368
369         /*
370          * If this is a sibling, remove it from its group.
371          */
372         if (event->group_leader != event) {
373                 list_del_init(&event->group_entry);
374                 event->group_leader->nr_siblings--;
375                 return;
376         }
377
378         if (!list_empty(&event->group_entry))
379                 list = &event->group_entry;
380
381         /*
382          * If this was a group event with sibling events then
383          * upgrade the siblings to singleton events by adding them
384          * to whatever list we are on.
385          */
386         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
387                 if (list)
388                         list_move_tail(&sibling->group_entry, list);
389                 sibling->group_leader = sibling;
390
391                 /* Inherit group flags from the previous leader */
392                 sibling->group_flags = event->group_flags;
393         }
394 }
395
396 static inline int
397 event_filter_match(struct perf_event *event)
398 {
399         return event->cpu == -1 || event->cpu == smp_processor_id();
400 }
401
402 static void
403 event_sched_out(struct perf_event *event,
404                   struct perf_cpu_context *cpuctx,
405                   struct perf_event_context *ctx)
406 {
407         u64 delta;
408         /*
409          * An event which could not be activated because of
410          * filter mismatch still needs to have its timings
411          * maintained, otherwise bogus information is return
412          * via read() for time_enabled, time_running:
413          */
414         if (event->state == PERF_EVENT_STATE_INACTIVE
415             && !event_filter_match(event)) {
416                 delta = ctx->time - event->tstamp_stopped;
417                 event->tstamp_running += delta;
418                 event->tstamp_stopped = ctx->time;
419         }
420
421         if (event->state != PERF_EVENT_STATE_ACTIVE)
422                 return;
423
424         event->state = PERF_EVENT_STATE_INACTIVE;
425         if (event->pending_disable) {
426                 event->pending_disable = 0;
427                 event->state = PERF_EVENT_STATE_OFF;
428         }
429         event->tstamp_stopped = ctx->time;
430         event->pmu->disable(event);
431         event->oncpu = -1;
432
433         if (!is_software_event(event))
434                 cpuctx->active_oncpu--;
435         ctx->nr_active--;
436         if (event->attr.exclusive || !cpuctx->active_oncpu)
437                 cpuctx->exclusive = 0;
438 }
439
440 static void
441 group_sched_out(struct perf_event *group_event,
442                 struct perf_cpu_context *cpuctx,
443                 struct perf_event_context *ctx)
444 {
445         struct perf_event *event;
446         int state = group_event->state;
447
448         event_sched_out(group_event, cpuctx, ctx);
449
450         /*
451          * Schedule out siblings (if any):
452          */
453         list_for_each_entry(event, &group_event->sibling_list, group_entry)
454                 event_sched_out(event, cpuctx, ctx);
455
456         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
457                 cpuctx->exclusive = 0;
458 }
459
460 /*
461  * Cross CPU call to remove a performance event
462  *
463  * We disable the event on the hardware level first. After that we
464  * remove it from the context list.
465  */
466 static void __perf_event_remove_from_context(void *info)
467 {
468         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
469         struct perf_event *event = info;
470         struct perf_event_context *ctx = event->ctx;
471
472         /*
473          * If this is a task context, we need to check whether it is
474          * the current task context of this cpu. If not it has been
475          * scheduled out before the smp call arrived.
476          */
477         if (ctx->task && cpuctx->task_ctx != ctx)
478                 return;
479
480         raw_spin_lock(&ctx->lock);
481         /*
482          * Protect the list operation against NMI by disabling the
483          * events on a global level.
484          */
485         perf_disable();
486
487         event_sched_out(event, cpuctx, ctx);
488
489         list_del_event(event, ctx);
490
491         if (!ctx->task) {
492                 /*
493                  * Allow more per task events with respect to the
494                  * reservation:
495                  */
496                 cpuctx->max_pertask =
497                         min(perf_max_events - ctx->nr_events,
498                             perf_max_events - perf_reserved_percpu);
499         }
500
501         perf_enable();
502         raw_spin_unlock(&ctx->lock);
503 }
504
505
506 /*
507  * Remove the event from a task's (or a CPU's) list of events.
508  *
509  * Must be called with ctx->mutex held.
510  *
511  * CPU events are removed with a smp call. For task events we only
512  * call when the task is on a CPU.
513  *
514  * If event->ctx is a cloned context, callers must make sure that
515  * every task struct that event->ctx->task could possibly point to
516  * remains valid.  This is OK when called from perf_release since
517  * that only calls us on the top-level context, which can't be a clone.
518  * When called from perf_event_exit_task, it's OK because the
519  * context has been detached from its task.
520  */
521 static void perf_event_remove_from_context(struct perf_event *event)
522 {
523         struct perf_event_context *ctx = event->ctx;
524         struct task_struct *task = ctx->task;
525
526         if (!task) {
527                 /*
528                  * Per cpu events are removed via an smp call and
529                  * the removal is always successful.
530                  */
531                 smp_call_function_single(event->cpu,
532                                          __perf_event_remove_from_context,
533                                          event, 1);
534                 return;
535         }
536
537 retry:
538         task_oncpu_function_call(task, __perf_event_remove_from_context,
539                                  event);
540
541         raw_spin_lock_irq(&ctx->lock);
542         /*
543          * If the context is active we need to retry the smp call.
544          */
545         if (ctx->nr_active && !list_empty(&event->group_entry)) {
546                 raw_spin_unlock_irq(&ctx->lock);
547                 goto retry;
548         }
549
550         /*
551          * The lock prevents that this context is scheduled in so we
552          * can remove the event safely, if the call above did not
553          * succeed.
554          */
555         if (!list_empty(&event->group_entry))
556                 list_del_event(event, ctx);
557         raw_spin_unlock_irq(&ctx->lock);
558 }
559
560 /*
561  * Cross CPU call to disable a performance event
562  */
563 static void __perf_event_disable(void *info)
564 {
565         struct perf_event *event = info;
566         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
567         struct perf_event_context *ctx = event->ctx;
568
569         /*
570          * If this is a per-task event, need to check whether this
571          * event's task is the current task on this cpu.
572          */
573         if (ctx->task && cpuctx->task_ctx != ctx)
574                 return;
575
576         raw_spin_lock(&ctx->lock);
577
578         /*
579          * If the event is on, turn it off.
580          * If it is in error state, leave it in error state.
581          */
582         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
583                 update_context_time(ctx);
584                 update_group_times(event);
585                 if (event == event->group_leader)
586                         group_sched_out(event, cpuctx, ctx);
587                 else
588                         event_sched_out(event, cpuctx, ctx);
589                 event->state = PERF_EVENT_STATE_OFF;
590         }
591
592         raw_spin_unlock(&ctx->lock);
593 }
594
595 /*
596  * Disable a event.
597  *
598  * If event->ctx is a cloned context, callers must make sure that
599  * every task struct that event->ctx->task could possibly point to
600  * remains valid.  This condition is satisifed when called through
601  * perf_event_for_each_child or perf_event_for_each because they
602  * hold the top-level event's child_mutex, so any descendant that
603  * goes to exit will block in sync_child_event.
604  * When called from perf_pending_event it's OK because event->ctx
605  * is the current context on this CPU and preemption is disabled,
606  * hence we can't get into perf_event_task_sched_out for this context.
607  */
608 void perf_event_disable(struct perf_event *event)
609 {
610         struct perf_event_context *ctx = event->ctx;
611         struct task_struct *task = ctx->task;
612
613         if (!task) {
614                 /*
615                  * Disable the event on the cpu that it's on
616                  */
617                 smp_call_function_single(event->cpu, __perf_event_disable,
618                                          event, 1);
619                 return;
620         }
621
622  retry:
623         task_oncpu_function_call(task, __perf_event_disable, event);
624
625         raw_spin_lock_irq(&ctx->lock);
626         /*
627          * If the event is still active, we need to retry the cross-call.
628          */
629         if (event->state == PERF_EVENT_STATE_ACTIVE) {
630                 raw_spin_unlock_irq(&ctx->lock);
631                 goto retry;
632         }
633
634         /*
635          * Since we have the lock this context can't be scheduled
636          * in, so we can change the state safely.
637          */
638         if (event->state == PERF_EVENT_STATE_INACTIVE) {
639                 update_group_times(event);
640                 event->state = PERF_EVENT_STATE_OFF;
641         }
642
643         raw_spin_unlock_irq(&ctx->lock);
644 }
645
646 static int
647 event_sched_in(struct perf_event *event,
648                  struct perf_cpu_context *cpuctx,
649                  struct perf_event_context *ctx)
650 {
651         if (event->state <= PERF_EVENT_STATE_OFF)
652                 return 0;
653
654         event->state = PERF_EVENT_STATE_ACTIVE;
655         event->oncpu = smp_processor_id();
656         /*
657          * The new state must be visible before we turn it on in the hardware:
658          */
659         smp_wmb();
660
661         if (event->pmu->enable(event)) {
662                 event->state = PERF_EVENT_STATE_INACTIVE;
663                 event->oncpu = -1;
664                 return -EAGAIN;
665         }
666
667         event->tstamp_running += ctx->time - event->tstamp_stopped;
668
669         if (!is_software_event(event))
670                 cpuctx->active_oncpu++;
671         ctx->nr_active++;
672
673         if (event->attr.exclusive)
674                 cpuctx->exclusive = 1;
675
676         return 0;
677 }
678
679 static int
680 group_sched_in(struct perf_event *group_event,
681                struct perf_cpu_context *cpuctx,
682                struct perf_event_context *ctx)
683 {
684         struct perf_event *event, *partial_group = NULL;
685         struct pmu *pmu = group_event->pmu;
686         bool txn = false;
687
688         if (group_event->state == PERF_EVENT_STATE_OFF)
689                 return 0;
690
691         /* Check if group transaction availabe */
692         if (pmu->start_txn)
693                 txn = true;
694
695         if (txn)
696                 pmu->start_txn(pmu);
697
698         if (event_sched_in(group_event, cpuctx, ctx)) {
699                 if (txn)
700                         pmu->cancel_txn(pmu);
701                 return -EAGAIN;
702         }
703
704         /*
705          * Schedule in siblings as one group (if any):
706          */
707         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
708                 if (event_sched_in(event, cpuctx, ctx)) {
709                         partial_group = event;
710                         goto group_error;
711                 }
712         }
713
714         if (!txn || !pmu->commit_txn(pmu))
715                 return 0;
716
717 group_error:
718         /*
719          * Groups can be scheduled in as one unit only, so undo any
720          * partial group before returning:
721          */
722         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
723                 if (event == partial_group)
724                         break;
725                 event_sched_out(event, cpuctx, ctx);
726         }
727         event_sched_out(group_event, cpuctx, ctx);
728
729         if (txn)
730                 pmu->cancel_txn(pmu);
731
732         return -EAGAIN;
733 }
734
735 /*
736  * Work out whether we can put this event group on the CPU now.
737  */
738 static int group_can_go_on(struct perf_event *event,
739                            struct perf_cpu_context *cpuctx,
740                            int can_add_hw)
741 {
742         /*
743          * Groups consisting entirely of software events can always go on.
744          */
745         if (event->group_flags & PERF_GROUP_SOFTWARE)
746                 return 1;
747         /*
748          * If an exclusive group is already on, no other hardware
749          * events can go on.
750          */
751         if (cpuctx->exclusive)
752                 return 0;
753         /*
754          * If this group is exclusive and there are already
755          * events on the CPU, it can't go on.
756          */
757         if (event->attr.exclusive && cpuctx->active_oncpu)
758                 return 0;
759         /*
760          * Otherwise, try to add it if all previous groups were able
761          * to go on.
762          */
763         return can_add_hw;
764 }
765
766 static void add_event_to_ctx(struct perf_event *event,
767                                struct perf_event_context *ctx)
768 {
769         list_add_event(event, ctx);
770         perf_group_attach(event);
771         event->tstamp_enabled = ctx->time;
772         event->tstamp_running = ctx->time;
773         event->tstamp_stopped = ctx->time;
774 }
775
776 /*
777  * Cross CPU call to install and enable a performance event
778  *
779  * Must be called with ctx->mutex held
780  */
781 static void __perf_install_in_context(void *info)
782 {
783         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
784         struct perf_event *event = info;
785         struct perf_event_context *ctx = event->ctx;
786         struct perf_event *leader = event->group_leader;
787         int err;
788
789         /*
790          * If this is a task context, we need to check whether it is
791          * the current task context of this cpu. If not it has been
792          * scheduled out before the smp call arrived.
793          * Or possibly this is the right context but it isn't
794          * on this cpu because it had no events.
795          */
796         if (ctx->task && cpuctx->task_ctx != ctx) {
797                 if (cpuctx->task_ctx || ctx->task != current)
798                         return;
799                 cpuctx->task_ctx = ctx;
800         }
801
802         raw_spin_lock(&ctx->lock);
803         ctx->is_active = 1;
804         update_context_time(ctx);
805
806         /*
807          * Protect the list operation against NMI by disabling the
808          * events on a global level. NOP for non NMI based events.
809          */
810         perf_disable();
811
812         add_event_to_ctx(event, ctx);
813
814         if (event->cpu != -1 && event->cpu != smp_processor_id())
815                 goto unlock;
816
817         /*
818          * Don't put the event on if it is disabled or if
819          * it is in a group and the group isn't on.
820          */
821         if (event->state != PERF_EVENT_STATE_INACTIVE ||
822             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
823                 goto unlock;
824
825         /*
826          * An exclusive event can't go on if there are already active
827          * hardware events, and no hardware event can go on if there
828          * is already an exclusive event on.
829          */
830         if (!group_can_go_on(event, cpuctx, 1))
831                 err = -EEXIST;
832         else
833                 err = event_sched_in(event, cpuctx, ctx);
834
835         if (err) {
836                 /*
837                  * This event couldn't go on.  If it is in a group
838                  * then we have to pull the whole group off.
839                  * If the event group is pinned then put it in error state.
840                  */
841                 if (leader != event)
842                         group_sched_out(leader, cpuctx, ctx);
843                 if (leader->attr.pinned) {
844                         update_group_times(leader);
845                         leader->state = PERF_EVENT_STATE_ERROR;
846                 }
847         }
848
849         if (!err && !ctx->task && cpuctx->max_pertask)
850                 cpuctx->max_pertask--;
851
852  unlock:
853         perf_enable();
854
855         raw_spin_unlock(&ctx->lock);
856 }
857
858 /*
859  * Attach a performance event to a context
860  *
861  * First we add the event to the list with the hardware enable bit
862  * in event->hw_config cleared.
863  *
864  * If the event is attached to a task which is on a CPU we use a smp
865  * call to enable it in the task context. The task might have been
866  * scheduled away, but we check this in the smp call again.
867  *
868  * Must be called with ctx->mutex held.
869  */
870 static void
871 perf_install_in_context(struct perf_event_context *ctx,
872                         struct perf_event *event,
873                         int cpu)
874 {
875         struct task_struct *task = ctx->task;
876
877         if (!task) {
878                 /*
879                  * Per cpu events are installed via an smp call and
880                  * the install is always successful.
881                  */
882                 smp_call_function_single(cpu, __perf_install_in_context,
883                                          event, 1);
884                 return;
885         }
886
887 retry:
888         task_oncpu_function_call(task, __perf_install_in_context,
889                                  event);
890
891         raw_spin_lock_irq(&ctx->lock);
892         /*
893          * we need to retry the smp call.
894          */
895         if (ctx->is_active && list_empty(&event->group_entry)) {
896                 raw_spin_unlock_irq(&ctx->lock);
897                 goto retry;
898         }
899
900         /*
901          * The lock prevents that this context is scheduled in so we
902          * can add the event safely, if it the call above did not
903          * succeed.
904          */
905         if (list_empty(&event->group_entry))
906                 add_event_to_ctx(event, ctx);
907         raw_spin_unlock_irq(&ctx->lock);
908 }
909
910 /*
911  * Put a event into inactive state and update time fields.
912  * Enabling the leader of a group effectively enables all
913  * the group members that aren't explicitly disabled, so we
914  * have to update their ->tstamp_enabled also.
915  * Note: this works for group members as well as group leaders
916  * since the non-leader members' sibling_lists will be empty.
917  */
918 static void __perf_event_mark_enabled(struct perf_event *event,
919                                         struct perf_event_context *ctx)
920 {
921         struct perf_event *sub;
922
923         event->state = PERF_EVENT_STATE_INACTIVE;
924         event->tstamp_enabled = ctx->time - event->total_time_enabled;
925         list_for_each_entry(sub, &event->sibling_list, group_entry)
926                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
927                         sub->tstamp_enabled =
928                                 ctx->time - sub->total_time_enabled;
929 }
930
931 /*
932  * Cross CPU call to enable a performance event
933  */
934 static void __perf_event_enable(void *info)
935 {
936         struct perf_event *event = info;
937         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
938         struct perf_event_context *ctx = event->ctx;
939         struct perf_event *leader = event->group_leader;
940         int err;
941
942         /*
943          * If this is a per-task event, need to check whether this
944          * event's task is the current task on this cpu.
945          */
946         if (ctx->task && cpuctx->task_ctx != ctx) {
947                 if (cpuctx->task_ctx || ctx->task != current)
948                         return;
949                 cpuctx->task_ctx = ctx;
950         }
951
952         raw_spin_lock(&ctx->lock);
953         ctx->is_active = 1;
954         update_context_time(ctx);
955
956         if (event->state >= PERF_EVENT_STATE_INACTIVE)
957                 goto unlock;
958         __perf_event_mark_enabled(event, ctx);
959
960         if (event->cpu != -1 && event->cpu != smp_processor_id())
961                 goto unlock;
962
963         /*
964          * If the event is in a group and isn't the group leader,
965          * then don't put it on unless the group is on.
966          */
967         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
968                 goto unlock;
969
970         if (!group_can_go_on(event, cpuctx, 1)) {
971                 err = -EEXIST;
972         } else {
973                 perf_disable();
974                 if (event == leader)
975                         err = group_sched_in(event, cpuctx, ctx);
976                 else
977                         err = event_sched_in(event, cpuctx, ctx);
978                 perf_enable();
979         }
980
981         if (err) {
982                 /*
983                  * If this event can't go on and it's part of a
984                  * group, then the whole group has to come off.
985                  */
986                 if (leader != event)
987                         group_sched_out(leader, cpuctx, ctx);
988                 if (leader->attr.pinned) {
989                         update_group_times(leader);
990                         leader->state = PERF_EVENT_STATE_ERROR;
991                 }
992         }
993
994  unlock:
995         raw_spin_unlock(&ctx->lock);
996 }
997
998 /*
999  * Enable a event.
1000  *
1001  * If event->ctx is a cloned context, callers must make sure that
1002  * every task struct that event->ctx->task could possibly point to
1003  * remains valid.  This condition is satisfied when called through
1004  * perf_event_for_each_child or perf_event_for_each as described
1005  * for perf_event_disable.
1006  */
1007 void perf_event_enable(struct perf_event *event)
1008 {
1009         struct perf_event_context *ctx = event->ctx;
1010         struct task_struct *task = ctx->task;
1011
1012         if (!task) {
1013                 /*
1014                  * Enable the event on the cpu that it's on
1015                  */
1016                 smp_call_function_single(event->cpu, __perf_event_enable,
1017                                          event, 1);
1018                 return;
1019         }
1020
1021         raw_spin_lock_irq(&ctx->lock);
1022         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1023                 goto out;
1024
1025         /*
1026          * If the event is in error state, clear that first.
1027          * That way, if we see the event in error state below, we
1028          * know that it has gone back into error state, as distinct
1029          * from the task having been scheduled away before the
1030          * cross-call arrived.
1031          */
1032         if (event->state == PERF_EVENT_STATE_ERROR)
1033                 event->state = PERF_EVENT_STATE_OFF;
1034
1035  retry:
1036         raw_spin_unlock_irq(&ctx->lock);
1037         task_oncpu_function_call(task, __perf_event_enable, event);
1038
1039         raw_spin_lock_irq(&ctx->lock);
1040
1041         /*
1042          * If the context is active and the event is still off,
1043          * we need to retry the cross-call.
1044          */
1045         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1046                 goto retry;
1047
1048         /*
1049          * Since we have the lock this context can't be scheduled
1050          * in, so we can change the state safely.
1051          */
1052         if (event->state == PERF_EVENT_STATE_OFF)
1053                 __perf_event_mark_enabled(event, ctx);
1054
1055  out:
1056         raw_spin_unlock_irq(&ctx->lock);
1057 }
1058
1059 static int perf_event_refresh(struct perf_event *event, int refresh)
1060 {
1061         /*
1062          * not supported on inherited events
1063          */
1064         if (event->attr.inherit)
1065                 return -EINVAL;
1066
1067         atomic_add(refresh, &event->event_limit);
1068         perf_event_enable(event);
1069
1070         return 0;
1071 }
1072
1073 enum event_type_t {
1074         EVENT_FLEXIBLE = 0x1,
1075         EVENT_PINNED = 0x2,
1076         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1077 };
1078
1079 static void ctx_sched_out(struct perf_event_context *ctx,
1080                           struct perf_cpu_context *cpuctx,
1081                           enum event_type_t event_type)
1082 {
1083         struct perf_event *event;
1084
1085         raw_spin_lock(&ctx->lock);
1086         ctx->is_active = 0;
1087         if (likely(!ctx->nr_events))
1088                 goto out;
1089         update_context_time(ctx);
1090
1091         perf_disable();
1092         if (!ctx->nr_active)
1093                 goto out_enable;
1094
1095         if (event_type & EVENT_PINNED)
1096                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1097                         group_sched_out(event, cpuctx, ctx);
1098
1099         if (event_type & EVENT_FLEXIBLE)
1100                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1101                         group_sched_out(event, cpuctx, ctx);
1102
1103  out_enable:
1104         perf_enable();
1105  out:
1106         raw_spin_unlock(&ctx->lock);
1107 }
1108
1109 /*
1110  * Test whether two contexts are equivalent, i.e. whether they
1111  * have both been cloned from the same version of the same context
1112  * and they both have the same number of enabled events.
1113  * If the number of enabled events is the same, then the set
1114  * of enabled events should be the same, because these are both
1115  * inherited contexts, therefore we can't access individual events
1116  * in them directly with an fd; we can only enable/disable all
1117  * events via prctl, or enable/disable all events in a family
1118  * via ioctl, which will have the same effect on both contexts.
1119  */
1120 static int context_equiv(struct perf_event_context *ctx1,
1121                          struct perf_event_context *ctx2)
1122 {
1123         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1124                 && ctx1->parent_gen == ctx2->parent_gen
1125                 && !ctx1->pin_count && !ctx2->pin_count;
1126 }
1127
1128 static void __perf_event_sync_stat(struct perf_event *event,
1129                                      struct perf_event *next_event)
1130 {
1131         u64 value;
1132
1133         if (!event->attr.inherit_stat)
1134                 return;
1135
1136         /*
1137          * Update the event value, we cannot use perf_event_read()
1138          * because we're in the middle of a context switch and have IRQs
1139          * disabled, which upsets smp_call_function_single(), however
1140          * we know the event must be on the current CPU, therefore we
1141          * don't need to use it.
1142          */
1143         switch (event->state) {
1144         case PERF_EVENT_STATE_ACTIVE:
1145                 event->pmu->read(event);
1146                 /* fall-through */
1147
1148         case PERF_EVENT_STATE_INACTIVE:
1149                 update_event_times(event);
1150                 break;
1151
1152         default:
1153                 break;
1154         }
1155
1156         /*
1157          * In order to keep per-task stats reliable we need to flip the event
1158          * values when we flip the contexts.
1159          */
1160         value = local64_read(&next_event->count);
1161         value = local64_xchg(&event->count, value);
1162         local64_set(&next_event->count, value);
1163
1164         swap(event->total_time_enabled, next_event->total_time_enabled);
1165         swap(event->total_time_running, next_event->total_time_running);
1166
1167         /*
1168          * Since we swizzled the values, update the user visible data too.
1169          */
1170         perf_event_update_userpage(event);
1171         perf_event_update_userpage(next_event);
1172 }
1173
1174 #define list_next_entry(pos, member) \
1175         list_entry(pos->member.next, typeof(*pos), member)
1176
1177 static void perf_event_sync_stat(struct perf_event_context *ctx,
1178                                    struct perf_event_context *next_ctx)
1179 {
1180         struct perf_event *event, *next_event;
1181
1182         if (!ctx->nr_stat)
1183                 return;
1184
1185         update_context_time(ctx);
1186
1187         event = list_first_entry(&ctx->event_list,
1188                                    struct perf_event, event_entry);
1189
1190         next_event = list_first_entry(&next_ctx->event_list,
1191                                         struct perf_event, event_entry);
1192
1193         while (&event->event_entry != &ctx->event_list &&
1194                &next_event->event_entry != &next_ctx->event_list) {
1195
1196                 __perf_event_sync_stat(event, next_event);
1197
1198                 event = list_next_entry(event, event_entry);
1199                 next_event = list_next_entry(next_event, event_entry);
1200         }
1201 }
1202
1203 /*
1204  * Called from scheduler to remove the events of the current task,
1205  * with interrupts disabled.
1206  *
1207  * We stop each event and update the event value in event->count.
1208  *
1209  * This does not protect us against NMI, but disable()
1210  * sets the disabled bit in the control field of event _before_
1211  * accessing the event control register. If a NMI hits, then it will
1212  * not restart the event.
1213  */
1214 void perf_event_task_sched_out(struct task_struct *task,
1215                                  struct task_struct *next)
1216 {
1217         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1218         struct perf_event_context *ctx = task->perf_event_ctxp;
1219         struct perf_event_context *next_ctx;
1220         struct perf_event_context *parent;
1221         int do_switch = 1;
1222
1223         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1224
1225         if (likely(!ctx || !cpuctx->task_ctx))
1226                 return;
1227
1228         rcu_read_lock();
1229         parent = rcu_dereference(ctx->parent_ctx);
1230         next_ctx = next->perf_event_ctxp;
1231         if (parent && next_ctx &&
1232             rcu_dereference(next_ctx->parent_ctx) == parent) {
1233                 /*
1234                  * Looks like the two contexts are clones, so we might be
1235                  * able to optimize the context switch.  We lock both
1236                  * contexts and check that they are clones under the
1237                  * lock (including re-checking that neither has been
1238                  * uncloned in the meantime).  It doesn't matter which
1239                  * order we take the locks because no other cpu could
1240                  * be trying to lock both of these tasks.
1241                  */
1242                 raw_spin_lock(&ctx->lock);
1243                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1244                 if (context_equiv(ctx, next_ctx)) {
1245                         /*
1246                          * XXX do we need a memory barrier of sorts
1247                          * wrt to rcu_dereference() of perf_event_ctxp
1248                          */
1249                         task->perf_event_ctxp = next_ctx;
1250                         next->perf_event_ctxp = ctx;
1251                         ctx->task = next;
1252                         next_ctx->task = task;
1253                         do_switch = 0;
1254
1255                         perf_event_sync_stat(ctx, next_ctx);
1256                 }
1257                 raw_spin_unlock(&next_ctx->lock);
1258                 raw_spin_unlock(&ctx->lock);
1259         }
1260         rcu_read_unlock();
1261
1262         if (do_switch) {
1263                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1264                 cpuctx->task_ctx = NULL;
1265         }
1266 }
1267
1268 static void task_ctx_sched_out(struct perf_event_context *ctx,
1269                                enum event_type_t event_type)
1270 {
1271         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1272
1273         if (!cpuctx->task_ctx)
1274                 return;
1275
1276         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1277                 return;
1278
1279         ctx_sched_out(ctx, cpuctx, event_type);
1280         cpuctx->task_ctx = NULL;
1281 }
1282
1283 /*
1284  * Called with IRQs disabled
1285  */
1286 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1287 {
1288         task_ctx_sched_out(ctx, EVENT_ALL);
1289 }
1290
1291 /*
1292  * Called with IRQs disabled
1293  */
1294 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1295                               enum event_type_t event_type)
1296 {
1297         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1298 }
1299
1300 static void
1301 ctx_pinned_sched_in(struct perf_event_context *ctx,
1302                     struct perf_cpu_context *cpuctx)
1303 {
1304         struct perf_event *event;
1305
1306         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1307                 if (event->state <= PERF_EVENT_STATE_OFF)
1308                         continue;
1309                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1310                         continue;
1311
1312                 if (group_can_go_on(event, cpuctx, 1))
1313                         group_sched_in(event, cpuctx, ctx);
1314
1315                 /*
1316                  * If this pinned group hasn't been scheduled,
1317                  * put it in error state.
1318                  */
1319                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1320                         update_group_times(event);
1321                         event->state = PERF_EVENT_STATE_ERROR;
1322                 }
1323         }
1324 }
1325
1326 static void
1327 ctx_flexible_sched_in(struct perf_event_context *ctx,
1328                       struct perf_cpu_context *cpuctx)
1329 {
1330         struct perf_event *event;
1331         int can_add_hw = 1;
1332
1333         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1334                 /* Ignore events in OFF or ERROR state */
1335                 if (event->state <= PERF_EVENT_STATE_OFF)
1336                         continue;
1337                 /*
1338                  * Listen to the 'cpu' scheduling filter constraint
1339                  * of events:
1340                  */
1341                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1342                         continue;
1343
1344                 if (group_can_go_on(event, cpuctx, can_add_hw))
1345                         if (group_sched_in(event, cpuctx, ctx))
1346                                 can_add_hw = 0;
1347         }
1348 }
1349
1350 static void
1351 ctx_sched_in(struct perf_event_context *ctx,
1352              struct perf_cpu_context *cpuctx,
1353              enum event_type_t event_type)
1354 {
1355         raw_spin_lock(&ctx->lock);
1356         ctx->is_active = 1;
1357         if (likely(!ctx->nr_events))
1358                 goto out;
1359
1360         ctx->timestamp = perf_clock();
1361
1362         perf_disable();
1363
1364         /*
1365          * First go through the list and put on any pinned groups
1366          * in order to give them the best chance of going on.
1367          */
1368         if (event_type & EVENT_PINNED)
1369                 ctx_pinned_sched_in(ctx, cpuctx);
1370
1371         /* Then walk through the lower prio flexible groups */
1372         if (event_type & EVENT_FLEXIBLE)
1373                 ctx_flexible_sched_in(ctx, cpuctx);
1374
1375         perf_enable();
1376  out:
1377         raw_spin_unlock(&ctx->lock);
1378 }
1379
1380 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1381                              enum event_type_t event_type)
1382 {
1383         struct perf_event_context *ctx = &cpuctx->ctx;
1384
1385         ctx_sched_in(ctx, cpuctx, event_type);
1386 }
1387
1388 static void task_ctx_sched_in(struct task_struct *task,
1389                               enum event_type_t event_type)
1390 {
1391         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1392         struct perf_event_context *ctx = task->perf_event_ctxp;
1393
1394         if (likely(!ctx))
1395                 return;
1396         if (cpuctx->task_ctx == ctx)
1397                 return;
1398         ctx_sched_in(ctx, cpuctx, event_type);
1399         cpuctx->task_ctx = ctx;
1400 }
1401 /*
1402  * Called from scheduler to add the events of the current task
1403  * with interrupts disabled.
1404  *
1405  * We restore the event value and then enable it.
1406  *
1407  * This does not protect us against NMI, but enable()
1408  * sets the enabled bit in the control field of event _before_
1409  * accessing the event control register. If a NMI hits, then it will
1410  * keep the event running.
1411  */
1412 void perf_event_task_sched_in(struct task_struct *task)
1413 {
1414         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1415         struct perf_event_context *ctx = task->perf_event_ctxp;
1416
1417         if (likely(!ctx))
1418                 return;
1419
1420         if (cpuctx->task_ctx == ctx)
1421                 return;
1422
1423         perf_disable();
1424
1425         /*
1426          * We want to keep the following priority order:
1427          * cpu pinned (that don't need to move), task pinned,
1428          * cpu flexible, task flexible.
1429          */
1430         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1431
1432         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1433         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1434         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1435
1436         cpuctx->task_ctx = ctx;
1437
1438         perf_enable();
1439 }
1440
1441 #define MAX_INTERRUPTS (~0ULL)
1442
1443 static void perf_log_throttle(struct perf_event *event, int enable);
1444
1445 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1446 {
1447         u64 frequency = event->attr.sample_freq;
1448         u64 sec = NSEC_PER_SEC;
1449         u64 divisor, dividend;
1450
1451         int count_fls, nsec_fls, frequency_fls, sec_fls;
1452
1453         count_fls = fls64(count);
1454         nsec_fls = fls64(nsec);
1455         frequency_fls = fls64(frequency);
1456         sec_fls = 30;
1457
1458         /*
1459          * We got @count in @nsec, with a target of sample_freq HZ
1460          * the target period becomes:
1461          *
1462          *             @count * 10^9
1463          * period = -------------------
1464          *          @nsec * sample_freq
1465          *
1466          */
1467
1468         /*
1469          * Reduce accuracy by one bit such that @a and @b converge
1470          * to a similar magnitude.
1471          */
1472 #define REDUCE_FLS(a, b)                \
1473 do {                                    \
1474         if (a##_fls > b##_fls) {        \
1475                 a >>= 1;                \
1476                 a##_fls--;              \
1477         } else {                        \
1478                 b >>= 1;                \
1479                 b##_fls--;              \
1480         }                               \
1481 } while (0)
1482
1483         /*
1484          * Reduce accuracy until either term fits in a u64, then proceed with
1485          * the other, so that finally we can do a u64/u64 division.
1486          */
1487         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1488                 REDUCE_FLS(nsec, frequency);
1489                 REDUCE_FLS(sec, count);
1490         }
1491
1492         if (count_fls + sec_fls > 64) {
1493                 divisor = nsec * frequency;
1494
1495                 while (count_fls + sec_fls > 64) {
1496                         REDUCE_FLS(count, sec);
1497                         divisor >>= 1;
1498                 }
1499
1500                 dividend = count * sec;
1501         } else {
1502                 dividend = count * sec;
1503
1504                 while (nsec_fls + frequency_fls > 64) {
1505                         REDUCE_FLS(nsec, frequency);
1506                         dividend >>= 1;
1507                 }
1508
1509                 divisor = nsec * frequency;
1510         }
1511
1512         if (!divisor)
1513                 return dividend;
1514
1515         return div64_u64(dividend, divisor);
1516 }
1517
1518 static void perf_event_stop(struct perf_event *event)
1519 {
1520         if (!event->pmu->stop)
1521                 return event->pmu->disable(event);
1522
1523         return event->pmu->stop(event);
1524 }
1525
1526 static int perf_event_start(struct perf_event *event)
1527 {
1528         if (!event->pmu->start)
1529                 return event->pmu->enable(event);
1530
1531         return event->pmu->start(event);
1532 }
1533
1534 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1535 {
1536         struct hw_perf_event *hwc = &event->hw;
1537         s64 period, sample_period;
1538         s64 delta;
1539
1540         period = perf_calculate_period(event, nsec, count);
1541
1542         delta = (s64)(period - hwc->sample_period);
1543         delta = (delta + 7) / 8; /* low pass filter */
1544
1545         sample_period = hwc->sample_period + delta;
1546
1547         if (!sample_period)
1548                 sample_period = 1;
1549
1550         hwc->sample_period = sample_period;
1551
1552         if (local64_read(&hwc->period_left) > 8*sample_period) {
1553                 perf_disable();
1554                 perf_event_stop(event);
1555                 local64_set(&hwc->period_left, 0);
1556                 perf_event_start(event);
1557                 perf_enable();
1558         }
1559 }
1560
1561 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1562 {
1563         struct perf_event *event;
1564         struct hw_perf_event *hwc;
1565         u64 interrupts, now;
1566         s64 delta;
1567
1568         raw_spin_lock(&ctx->lock);
1569         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1570                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1571                         continue;
1572
1573                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1574                         continue;
1575
1576                 hwc = &event->hw;
1577
1578                 interrupts = hwc->interrupts;
1579                 hwc->interrupts = 0;
1580
1581                 /*
1582                  * unthrottle events on the tick
1583                  */
1584                 if (interrupts == MAX_INTERRUPTS) {
1585                         perf_log_throttle(event, 1);
1586                         perf_disable();
1587                         event->pmu->unthrottle(event);
1588                         perf_enable();
1589                 }
1590
1591                 if (!event->attr.freq || !event->attr.sample_freq)
1592                         continue;
1593
1594                 perf_disable();
1595                 event->pmu->read(event);
1596                 now = local64_read(&event->count);
1597                 delta = now - hwc->freq_count_stamp;
1598                 hwc->freq_count_stamp = now;
1599
1600                 if (delta > 0)
1601                         perf_adjust_period(event, TICK_NSEC, delta);
1602                 perf_enable();
1603         }
1604         raw_spin_unlock(&ctx->lock);
1605 }
1606
1607 /*
1608  * Round-robin a context's events:
1609  */
1610 static void rotate_ctx(struct perf_event_context *ctx)
1611 {
1612         raw_spin_lock(&ctx->lock);
1613
1614         /* Rotate the first entry last of non-pinned groups */
1615         list_rotate_left(&ctx->flexible_groups);
1616
1617         raw_spin_unlock(&ctx->lock);
1618 }
1619
1620 void perf_event_task_tick(struct task_struct *curr)
1621 {
1622         struct perf_cpu_context *cpuctx;
1623         struct perf_event_context *ctx;
1624         int rotate = 0;
1625
1626         if (!atomic_read(&nr_events))
1627                 return;
1628
1629         cpuctx = &__get_cpu_var(perf_cpu_context);
1630         if (cpuctx->ctx.nr_events &&
1631             cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1632                 rotate = 1;
1633
1634         ctx = curr->perf_event_ctxp;
1635         if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1636                 rotate = 1;
1637
1638         perf_ctx_adjust_freq(&cpuctx->ctx);
1639         if (ctx)
1640                 perf_ctx_adjust_freq(ctx);
1641
1642         if (!rotate)
1643                 return;
1644
1645         perf_disable();
1646         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1647         if (ctx)
1648                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1649
1650         rotate_ctx(&cpuctx->ctx);
1651         if (ctx)
1652                 rotate_ctx(ctx);
1653
1654         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1655         if (ctx)
1656                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1657         perf_enable();
1658 }
1659
1660 static int event_enable_on_exec(struct perf_event *event,
1661                                 struct perf_event_context *ctx)
1662 {
1663         if (!event->attr.enable_on_exec)
1664                 return 0;
1665
1666         event->attr.enable_on_exec = 0;
1667         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1668                 return 0;
1669
1670         __perf_event_mark_enabled(event, ctx);
1671
1672         return 1;
1673 }
1674
1675 /*
1676  * Enable all of a task's events that have been marked enable-on-exec.
1677  * This expects task == current.
1678  */
1679 static void perf_event_enable_on_exec(struct task_struct *task)
1680 {
1681         struct perf_event_context *ctx;
1682         struct perf_event *event;
1683         unsigned long flags;
1684         int enabled = 0;
1685         int ret;
1686
1687         local_irq_save(flags);
1688         ctx = task->perf_event_ctxp;
1689         if (!ctx || !ctx->nr_events)
1690                 goto out;
1691
1692         __perf_event_task_sched_out(ctx);
1693
1694         raw_spin_lock(&ctx->lock);
1695
1696         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1697                 ret = event_enable_on_exec(event, ctx);
1698                 if (ret)
1699                         enabled = 1;
1700         }
1701
1702         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1703                 ret = event_enable_on_exec(event, ctx);
1704                 if (ret)
1705                         enabled = 1;
1706         }
1707
1708         /*
1709          * Unclone this context if we enabled any event.
1710          */
1711         if (enabled)
1712                 unclone_ctx(ctx);
1713
1714         raw_spin_unlock(&ctx->lock);
1715
1716         perf_event_task_sched_in(task);
1717  out:
1718         local_irq_restore(flags);
1719 }
1720
1721 /*
1722  * Cross CPU call to read the hardware event
1723  */
1724 static void __perf_event_read(void *info)
1725 {
1726         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1727         struct perf_event *event = info;
1728         struct perf_event_context *ctx = event->ctx;
1729
1730         /*
1731          * If this is a task context, we need to check whether it is
1732          * the current task context of this cpu.  If not it has been
1733          * scheduled out before the smp call arrived.  In that case
1734          * event->count would have been updated to a recent sample
1735          * when the event was scheduled out.
1736          */
1737         if (ctx->task && cpuctx->task_ctx != ctx)
1738                 return;
1739
1740         raw_spin_lock(&ctx->lock);
1741         update_context_time(ctx);
1742         update_event_times(event);
1743         raw_spin_unlock(&ctx->lock);
1744
1745         event->pmu->read(event);
1746 }
1747
1748 static inline u64 perf_event_count(struct perf_event *event)
1749 {
1750         return local64_read(&event->count) + atomic64_read(&event->child_count);
1751 }
1752
1753 static u64 perf_event_read(struct perf_event *event)
1754 {
1755         /*
1756          * If event is enabled and currently active on a CPU, update the
1757          * value in the event structure:
1758          */
1759         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1760                 smp_call_function_single(event->oncpu,
1761                                          __perf_event_read, event, 1);
1762         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1763                 struct perf_event_context *ctx = event->ctx;
1764                 unsigned long flags;
1765
1766                 raw_spin_lock_irqsave(&ctx->lock, flags);
1767                 update_context_time(ctx);
1768                 update_event_times(event);
1769                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1770         }
1771
1772         return perf_event_count(event);
1773 }
1774
1775 /*
1776  * Callchain support
1777  */
1778
1779 struct callchain_cpus_entries {
1780         struct rcu_head                 rcu_head;
1781         struct perf_callchain_entry     *cpu_entries[0];
1782 };
1783
1784 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1785 static atomic_t nr_callchain_events;
1786 static DEFINE_MUTEX(callchain_mutex);
1787 struct callchain_cpus_entries *callchain_cpus_entries;
1788
1789
1790 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1791                                   struct pt_regs *regs)
1792 {
1793 }
1794
1795 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1796                                 struct pt_regs *regs)
1797 {
1798 }
1799
1800 static void release_callchain_buffers_rcu(struct rcu_head *head)
1801 {
1802         struct callchain_cpus_entries *entries;
1803         int cpu;
1804
1805         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1806
1807         for_each_possible_cpu(cpu)
1808                 kfree(entries->cpu_entries[cpu]);
1809
1810         kfree(entries);
1811 }
1812
1813 static void release_callchain_buffers(void)
1814 {
1815         struct callchain_cpus_entries *entries;
1816
1817         entries = callchain_cpus_entries;
1818         rcu_assign_pointer(callchain_cpus_entries, NULL);
1819         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1820 }
1821
1822 static int alloc_callchain_buffers(void)
1823 {
1824         int cpu;
1825         int size;
1826         struct callchain_cpus_entries *entries;
1827
1828         /*
1829          * We can't use the percpu allocation API for data that can be
1830          * accessed from NMI. Use a temporary manual per cpu allocation
1831          * until that gets sorted out.
1832          */
1833         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1834                 num_possible_cpus();
1835
1836         entries = kzalloc(size, GFP_KERNEL);
1837         if (!entries)
1838                 return -ENOMEM;
1839
1840         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1841
1842         for_each_possible_cpu(cpu) {
1843                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1844                                                          cpu_to_node(cpu));
1845                 if (!entries->cpu_entries[cpu])
1846                         goto fail;
1847         }
1848
1849         rcu_assign_pointer(callchain_cpus_entries, entries);
1850
1851         return 0;
1852
1853 fail:
1854         for_each_possible_cpu(cpu)
1855                 kfree(entries->cpu_entries[cpu]);
1856         kfree(entries);
1857
1858         return -ENOMEM;
1859 }
1860
1861 static int get_callchain_buffers(void)
1862 {
1863         int err = 0;
1864         int count;
1865
1866         mutex_lock(&callchain_mutex);
1867
1868         count = atomic_inc_return(&nr_callchain_events);
1869         if (WARN_ON_ONCE(count < 1)) {
1870                 err = -EINVAL;
1871                 goto exit;
1872         }
1873
1874         if (count > 1) {
1875                 /* If the allocation failed, give up */
1876                 if (!callchain_cpus_entries)
1877                         err = -ENOMEM;
1878                 goto exit;
1879         }
1880
1881         err = alloc_callchain_buffers();
1882         if (err)
1883                 release_callchain_buffers();
1884 exit:
1885         mutex_unlock(&callchain_mutex);
1886
1887         return err;
1888 }
1889
1890 static void put_callchain_buffers(void)
1891 {
1892         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1893                 release_callchain_buffers();
1894                 mutex_unlock(&callchain_mutex);
1895         }
1896 }
1897
1898 static int get_recursion_context(int *recursion)
1899 {
1900         int rctx;
1901
1902         if (in_nmi())
1903                 rctx = 3;
1904         else if (in_irq())
1905                 rctx = 2;
1906         else if (in_softirq())
1907                 rctx = 1;
1908         else
1909                 rctx = 0;
1910
1911         if (recursion[rctx])
1912                 return -1;
1913
1914         recursion[rctx]++;
1915         barrier();
1916
1917         return rctx;
1918 }
1919
1920 static inline void put_recursion_context(int *recursion, int rctx)
1921 {
1922         barrier();
1923         recursion[rctx]--;
1924 }
1925
1926 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1927 {
1928         int cpu;
1929         struct callchain_cpus_entries *entries;
1930
1931         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1932         if (*rctx == -1)
1933                 return NULL;
1934
1935         entries = rcu_dereference(callchain_cpus_entries);
1936         if (!entries)
1937                 return NULL;
1938
1939         cpu = smp_processor_id();
1940
1941         return &entries->cpu_entries[cpu][*rctx];
1942 }
1943
1944 static void
1945 put_callchain_entry(int rctx)
1946 {
1947         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1948 }
1949
1950 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1951 {
1952         int rctx;
1953         struct perf_callchain_entry *entry;
1954
1955
1956         entry = get_callchain_entry(&rctx);
1957         if (rctx == -1)
1958                 return NULL;
1959
1960         if (!entry)
1961                 goto exit_put;
1962
1963         entry->nr = 0;
1964
1965         if (!user_mode(regs)) {
1966                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
1967                 perf_callchain_kernel(entry, regs);
1968                 if (current->mm)
1969                         regs = task_pt_regs(current);
1970                 else
1971                         regs = NULL;
1972         }
1973
1974         if (regs) {
1975                 perf_callchain_store(entry, PERF_CONTEXT_USER);
1976                 perf_callchain_user(entry, regs);
1977         }
1978
1979 exit_put:
1980         put_callchain_entry(rctx);
1981
1982         return entry;
1983 }
1984
1985 /*
1986  * Initialize the perf_event context in a task_struct:
1987  */
1988 static void
1989 __perf_event_init_context(struct perf_event_context *ctx,
1990                             struct task_struct *task)
1991 {
1992         raw_spin_lock_init(&ctx->lock);
1993         mutex_init(&ctx->mutex);
1994         INIT_LIST_HEAD(&ctx->pinned_groups);
1995         INIT_LIST_HEAD(&ctx->flexible_groups);
1996         INIT_LIST_HEAD(&ctx->event_list);
1997         atomic_set(&ctx->refcount, 1);
1998         ctx->task = task;
1999 }
2000
2001 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
2002 {
2003         struct perf_event_context *ctx;
2004         struct perf_cpu_context *cpuctx;
2005         struct task_struct *task;
2006         unsigned long flags;
2007         int err;
2008
2009         if (pid == -1 && cpu != -1) {
2010                 /* Must be root to operate on a CPU event: */
2011                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2012                         return ERR_PTR(-EACCES);
2013
2014                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2015                         return ERR_PTR(-EINVAL);
2016
2017                 /*
2018                  * We could be clever and allow to attach a event to an
2019                  * offline CPU and activate it when the CPU comes up, but
2020                  * that's for later.
2021                  */
2022                 if (!cpu_online(cpu))
2023                         return ERR_PTR(-ENODEV);
2024
2025                 cpuctx = &per_cpu(perf_cpu_context, cpu);
2026                 ctx = &cpuctx->ctx;
2027                 get_ctx(ctx);
2028
2029                 return ctx;
2030         }
2031
2032         rcu_read_lock();
2033         if (!pid)
2034                 task = current;
2035         else
2036                 task = find_task_by_vpid(pid);
2037         if (task)
2038                 get_task_struct(task);
2039         rcu_read_unlock();
2040
2041         if (!task)
2042                 return ERR_PTR(-ESRCH);
2043
2044         /*
2045          * Can't attach events to a dying task.
2046          */
2047         err = -ESRCH;
2048         if (task->flags & PF_EXITING)
2049                 goto errout;
2050
2051         /* Reuse ptrace permission checks for now. */
2052         err = -EACCES;
2053         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2054                 goto errout;
2055
2056  retry:
2057         ctx = perf_lock_task_context(task, &flags);
2058         if (ctx) {
2059                 unclone_ctx(ctx);
2060                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2061         }
2062
2063         if (!ctx) {
2064                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2065                 err = -ENOMEM;
2066                 if (!ctx)
2067                         goto errout;
2068                 __perf_event_init_context(ctx, task);
2069                 get_ctx(ctx);
2070                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
2071                         /*
2072                          * We raced with some other task; use
2073                          * the context they set.
2074                          */
2075                         kfree(ctx);
2076                         goto retry;
2077                 }
2078                 get_task_struct(task);
2079         }
2080
2081         put_task_struct(task);
2082         return ctx;
2083
2084  errout:
2085         put_task_struct(task);
2086         return ERR_PTR(err);
2087 }
2088
2089 static void perf_event_free_filter(struct perf_event *event);
2090
2091 static void free_event_rcu(struct rcu_head *head)
2092 {
2093         struct perf_event *event;
2094
2095         event = container_of(head, struct perf_event, rcu_head);
2096         if (event->ns)
2097                 put_pid_ns(event->ns);
2098         perf_event_free_filter(event);
2099         kfree(event);
2100 }
2101
2102 static void perf_pending_sync(struct perf_event *event);
2103 static void perf_buffer_put(struct perf_buffer *buffer);
2104
2105 static void free_event(struct perf_event *event)
2106 {
2107         perf_pending_sync(event);
2108
2109         if (!event->parent) {
2110                 atomic_dec(&nr_events);
2111                 if (event->attr.mmap || event->attr.mmap_data)
2112                         atomic_dec(&nr_mmap_events);
2113                 if (event->attr.comm)
2114                         atomic_dec(&nr_comm_events);
2115                 if (event->attr.task)
2116                         atomic_dec(&nr_task_events);
2117                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2118                         put_callchain_buffers();
2119         }
2120
2121         if (event->buffer) {
2122                 perf_buffer_put(event->buffer);
2123                 event->buffer = NULL;
2124         }
2125
2126         if (event->destroy)
2127                 event->destroy(event);
2128
2129         put_ctx(event->ctx);
2130         call_rcu(&event->rcu_head, free_event_rcu);
2131 }
2132
2133 int perf_event_release_kernel(struct perf_event *event)
2134 {
2135         struct perf_event_context *ctx = event->ctx;
2136
2137         /*
2138          * Remove from the PMU, can't get re-enabled since we got
2139          * here because the last ref went.
2140          */
2141         perf_event_disable(event);
2142
2143         WARN_ON_ONCE(ctx->parent_ctx);
2144         /*
2145          * There are two ways this annotation is useful:
2146          *
2147          *  1) there is a lock recursion from perf_event_exit_task
2148          *     see the comment there.
2149          *
2150          *  2) there is a lock-inversion with mmap_sem through
2151          *     perf_event_read_group(), which takes faults while
2152          *     holding ctx->mutex, however this is called after
2153          *     the last filedesc died, so there is no possibility
2154          *     to trigger the AB-BA case.
2155          */
2156         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2157         raw_spin_lock_irq(&ctx->lock);
2158         perf_group_detach(event);
2159         list_del_event(event, ctx);
2160         raw_spin_unlock_irq(&ctx->lock);
2161         mutex_unlock(&ctx->mutex);
2162
2163         mutex_lock(&event->owner->perf_event_mutex);
2164         list_del_init(&event->owner_entry);
2165         mutex_unlock(&event->owner->perf_event_mutex);
2166         put_task_struct(event->owner);
2167
2168         free_event(event);
2169
2170         return 0;
2171 }
2172 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2173
2174 /*
2175  * Called when the last reference to the file is gone.
2176  */
2177 static int perf_release(struct inode *inode, struct file *file)
2178 {
2179         struct perf_event *event = file->private_data;
2180
2181         file->private_data = NULL;
2182
2183         return perf_event_release_kernel(event);
2184 }
2185
2186 static int perf_event_read_size(struct perf_event *event)
2187 {
2188         int entry = sizeof(u64); /* value */
2189         int size = 0;
2190         int nr = 1;
2191
2192         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2193                 size += sizeof(u64);
2194
2195         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2196                 size += sizeof(u64);
2197
2198         if (event->attr.read_format & PERF_FORMAT_ID)
2199                 entry += sizeof(u64);
2200
2201         if (event->attr.read_format & PERF_FORMAT_GROUP) {
2202                 nr += event->group_leader->nr_siblings;
2203                 size += sizeof(u64);
2204         }
2205
2206         size += entry * nr;
2207
2208         return size;
2209 }
2210
2211 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2212 {
2213         struct perf_event *child;
2214         u64 total = 0;
2215
2216         *enabled = 0;
2217         *running = 0;
2218
2219         mutex_lock(&event->child_mutex);
2220         total += perf_event_read(event);
2221         *enabled += event->total_time_enabled +
2222                         atomic64_read(&event->child_total_time_enabled);
2223         *running += event->total_time_running +
2224                         atomic64_read(&event->child_total_time_running);
2225
2226         list_for_each_entry(child, &event->child_list, child_list) {
2227                 total += perf_event_read(child);
2228                 *enabled += child->total_time_enabled;
2229                 *running += child->total_time_running;
2230         }
2231         mutex_unlock(&event->child_mutex);
2232
2233         return total;
2234 }
2235 EXPORT_SYMBOL_GPL(perf_event_read_value);
2236
2237 static int perf_event_read_group(struct perf_event *event,
2238                                    u64 read_format, char __user *buf)
2239 {
2240         struct perf_event *leader = event->group_leader, *sub;
2241         int n = 0, size = 0, ret = -EFAULT;
2242         struct perf_event_context *ctx = leader->ctx;
2243         u64 values[5];
2244         u64 count, enabled, running;
2245
2246         mutex_lock(&ctx->mutex);
2247         count = perf_event_read_value(leader, &enabled, &running);
2248
2249         values[n++] = 1 + leader->nr_siblings;
2250         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2251                 values[n++] = enabled;
2252         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2253                 values[n++] = running;
2254         values[n++] = count;
2255         if (read_format & PERF_FORMAT_ID)
2256                 values[n++] = primary_event_id(leader);
2257
2258         size = n * sizeof(u64);
2259
2260         if (copy_to_user(buf, values, size))
2261                 goto unlock;
2262
2263         ret = size;
2264
2265         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2266                 n = 0;
2267
2268                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2269                 if (read_format & PERF_FORMAT_ID)
2270                         values[n++] = primary_event_id(sub);
2271
2272                 size = n * sizeof(u64);
2273
2274                 if (copy_to_user(buf + ret, values, size)) {
2275                         ret = -EFAULT;
2276                         goto unlock;
2277                 }
2278
2279                 ret += size;
2280         }
2281 unlock:
2282         mutex_unlock(&ctx->mutex);
2283
2284         return ret;
2285 }
2286
2287 static int perf_event_read_one(struct perf_event *event,
2288                                  u64 read_format, char __user *buf)
2289 {
2290         u64 enabled, running;
2291         u64 values[4];
2292         int n = 0;
2293
2294         values[n++] = perf_event_read_value(event, &enabled, &running);
2295         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2296                 values[n++] = enabled;
2297         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2298                 values[n++] = running;
2299         if (read_format & PERF_FORMAT_ID)
2300                 values[n++] = primary_event_id(event);
2301
2302         if (copy_to_user(buf, values, n * sizeof(u64)))
2303                 return -EFAULT;
2304
2305         return n * sizeof(u64);
2306 }
2307
2308 /*
2309  * Read the performance event - simple non blocking version for now
2310  */
2311 static ssize_t
2312 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2313 {
2314         u64 read_format = event->attr.read_format;
2315         int ret;
2316
2317         /*
2318          * Return end-of-file for a read on a event that is in
2319          * error state (i.e. because it was pinned but it couldn't be
2320          * scheduled on to the CPU at some point).
2321          */
2322         if (event->state == PERF_EVENT_STATE_ERROR)
2323                 return 0;
2324
2325         if (count < perf_event_read_size(event))
2326                 return -ENOSPC;
2327
2328         WARN_ON_ONCE(event->ctx->parent_ctx);
2329         if (read_format & PERF_FORMAT_GROUP)
2330                 ret = perf_event_read_group(event, read_format, buf);
2331         else
2332                 ret = perf_event_read_one(event, read_format, buf);
2333
2334         return ret;
2335 }
2336
2337 static ssize_t
2338 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2339 {
2340         struct perf_event *event = file->private_data;
2341
2342         return perf_read_hw(event, buf, count);
2343 }
2344
2345 static unsigned int perf_poll(struct file *file, poll_table *wait)
2346 {
2347         struct perf_event *event = file->private_data;
2348         struct perf_buffer *buffer;
2349         unsigned int events = POLL_HUP;
2350
2351         rcu_read_lock();
2352         buffer = rcu_dereference(event->buffer);
2353         if (buffer)
2354                 events = atomic_xchg(&buffer->poll, 0);
2355         rcu_read_unlock();
2356
2357         poll_wait(file, &event->waitq, wait);
2358
2359         return events;
2360 }
2361
2362 static void perf_event_reset(struct perf_event *event)
2363 {
2364         (void)perf_event_read(event);
2365         local64_set(&event->count, 0);
2366         perf_event_update_userpage(event);
2367 }
2368
2369 /*
2370  * Holding the top-level event's child_mutex means that any
2371  * descendant process that has inherited this event will block
2372  * in sync_child_event if it goes to exit, thus satisfying the
2373  * task existence requirements of perf_event_enable/disable.
2374  */
2375 static void perf_event_for_each_child(struct perf_event *event,
2376                                         void (*func)(struct perf_event *))
2377 {
2378         struct perf_event *child;
2379
2380         WARN_ON_ONCE(event->ctx->parent_ctx);
2381         mutex_lock(&event->child_mutex);
2382         func(event);
2383         list_for_each_entry(child, &event->child_list, child_list)
2384                 func(child);
2385         mutex_unlock(&event->child_mutex);
2386 }
2387
2388 static void perf_event_for_each(struct perf_event *event,
2389                                   void (*func)(struct perf_event *))
2390 {
2391         struct perf_event_context *ctx = event->ctx;
2392         struct perf_event *sibling;
2393
2394         WARN_ON_ONCE(ctx->parent_ctx);
2395         mutex_lock(&ctx->mutex);
2396         event = event->group_leader;
2397
2398         perf_event_for_each_child(event, func);
2399         func(event);
2400         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2401                 perf_event_for_each_child(event, func);
2402         mutex_unlock(&ctx->mutex);
2403 }
2404
2405 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2406 {
2407         struct perf_event_context *ctx = event->ctx;
2408         unsigned long size;
2409         int ret = 0;
2410         u64 value;
2411
2412         if (!event->attr.sample_period)
2413                 return -EINVAL;
2414
2415         size = copy_from_user(&value, arg, sizeof(value));
2416         if (size != sizeof(value))
2417                 return -EFAULT;
2418
2419         if (!value)
2420                 return -EINVAL;
2421
2422         raw_spin_lock_irq(&ctx->lock);
2423         if (event->attr.freq) {
2424                 if (value > sysctl_perf_event_sample_rate) {
2425                         ret = -EINVAL;
2426                         goto unlock;
2427                 }
2428
2429                 event->attr.sample_freq = value;
2430         } else {
2431                 event->attr.sample_period = value;
2432                 event->hw.sample_period = value;
2433         }
2434 unlock:
2435         raw_spin_unlock_irq(&ctx->lock);
2436
2437         return ret;
2438 }
2439
2440 static const struct file_operations perf_fops;
2441
2442 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2443 {
2444         struct file *file;
2445
2446         file = fget_light(fd, fput_needed);
2447         if (!file)
2448                 return ERR_PTR(-EBADF);
2449
2450         if (file->f_op != &perf_fops) {
2451                 fput_light(file, *fput_needed);
2452                 *fput_needed = 0;
2453                 return ERR_PTR(-EBADF);
2454         }
2455
2456         return file->private_data;
2457 }
2458
2459 static int perf_event_set_output(struct perf_event *event,
2460                                  struct perf_event *output_event);
2461 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2462
2463 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2464 {
2465         struct perf_event *event = file->private_data;
2466         void (*func)(struct perf_event *);
2467         u32 flags = arg;
2468
2469         switch (cmd) {
2470         case PERF_EVENT_IOC_ENABLE:
2471                 func = perf_event_enable;
2472                 break;
2473         case PERF_EVENT_IOC_DISABLE:
2474                 func = perf_event_disable;
2475                 break;
2476         case PERF_EVENT_IOC_RESET:
2477                 func = perf_event_reset;
2478                 break;
2479
2480         case PERF_EVENT_IOC_REFRESH:
2481                 return perf_event_refresh(event, arg);
2482
2483         case PERF_EVENT_IOC_PERIOD:
2484                 return perf_event_period(event, (u64 __user *)arg);
2485
2486         case PERF_EVENT_IOC_SET_OUTPUT:
2487         {
2488                 struct perf_event *output_event = NULL;
2489                 int fput_needed = 0;
2490                 int ret;
2491
2492                 if (arg != -1) {
2493                         output_event = perf_fget_light(arg, &fput_needed);
2494                         if (IS_ERR(output_event))
2495                                 return PTR_ERR(output_event);
2496                 }
2497
2498                 ret = perf_event_set_output(event, output_event);
2499                 if (output_event)
2500                         fput_light(output_event->filp, fput_needed);
2501
2502                 return ret;
2503         }
2504
2505         case PERF_EVENT_IOC_SET_FILTER:
2506                 return perf_event_set_filter(event, (void __user *)arg);
2507
2508         default:
2509                 return -ENOTTY;
2510         }
2511
2512         if (flags & PERF_IOC_FLAG_GROUP)
2513                 perf_event_for_each(event, func);
2514         else
2515                 perf_event_for_each_child(event, func);
2516
2517         return 0;
2518 }
2519
2520 int perf_event_task_enable(void)
2521 {
2522         struct perf_event *event;
2523
2524         mutex_lock(&current->perf_event_mutex);
2525         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2526                 perf_event_for_each_child(event, perf_event_enable);
2527         mutex_unlock(&current->perf_event_mutex);
2528
2529         return 0;
2530 }
2531
2532 int perf_event_task_disable(void)
2533 {
2534         struct perf_event *event;
2535
2536         mutex_lock(&current->perf_event_mutex);
2537         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2538                 perf_event_for_each_child(event, perf_event_disable);
2539         mutex_unlock(&current->perf_event_mutex);
2540
2541         return 0;
2542 }
2543
2544 #ifndef PERF_EVENT_INDEX_OFFSET
2545 # define PERF_EVENT_INDEX_OFFSET 0
2546 #endif
2547
2548 static int perf_event_index(struct perf_event *event)
2549 {
2550         if (event->state != PERF_EVENT_STATE_ACTIVE)
2551                 return 0;
2552
2553         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2554 }
2555
2556 /*
2557  * Callers need to ensure there can be no nesting of this function, otherwise
2558  * the seqlock logic goes bad. We can not serialize this because the arch
2559  * code calls this from NMI context.
2560  */
2561 void perf_event_update_userpage(struct perf_event *event)
2562 {
2563         struct perf_event_mmap_page *userpg;
2564         struct perf_buffer *buffer;
2565
2566         rcu_read_lock();
2567         buffer = rcu_dereference(event->buffer);
2568         if (!buffer)
2569                 goto unlock;
2570
2571         userpg = buffer->user_page;
2572
2573         /*
2574          * Disable preemption so as to not let the corresponding user-space
2575          * spin too long if we get preempted.
2576          */
2577         preempt_disable();
2578         ++userpg->lock;
2579         barrier();
2580         userpg->index = perf_event_index(event);
2581         userpg->offset = perf_event_count(event);
2582         if (event->state == PERF_EVENT_STATE_ACTIVE)
2583                 userpg->offset -= local64_read(&event->hw.prev_count);
2584
2585         userpg->time_enabled = event->total_time_enabled +
2586                         atomic64_read(&event->child_total_time_enabled);
2587
2588         userpg->time_running = event->total_time_running +
2589                         atomic64_read(&event->child_total_time_running);
2590
2591         barrier();
2592         ++userpg->lock;
2593         preempt_enable();
2594 unlock:
2595         rcu_read_unlock();
2596 }
2597
2598 static unsigned long perf_data_size(struct perf_buffer *buffer);
2599
2600 static void
2601 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2602 {
2603         long max_size = perf_data_size(buffer);
2604
2605         if (watermark)
2606                 buffer->watermark = min(max_size, watermark);
2607
2608         if (!buffer->watermark)
2609                 buffer->watermark = max_size / 2;
2610
2611         if (flags & PERF_BUFFER_WRITABLE)
2612                 buffer->writable = 1;
2613
2614         atomic_set(&buffer->refcount, 1);
2615 }
2616
2617 #ifndef CONFIG_PERF_USE_VMALLOC
2618
2619 /*
2620  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2621  */
2622
2623 static struct page *
2624 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2625 {
2626         if (pgoff > buffer->nr_pages)
2627                 return NULL;
2628
2629         if (pgoff == 0)
2630                 return virt_to_page(buffer->user_page);
2631
2632         return virt_to_page(buffer->data_pages[pgoff - 1]);
2633 }
2634
2635 static void *perf_mmap_alloc_page(int cpu)
2636 {
2637         struct page *page;
2638         int node;
2639
2640         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2641         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2642         if (!page)
2643                 return NULL;
2644
2645         return page_address(page);
2646 }
2647
2648 static struct perf_buffer *
2649 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2650 {
2651         struct perf_buffer *buffer;
2652         unsigned long size;
2653         int i;
2654
2655         size = sizeof(struct perf_buffer);
2656         size += nr_pages * sizeof(void *);
2657
2658         buffer = kzalloc(size, GFP_KERNEL);
2659         if (!buffer)
2660                 goto fail;
2661
2662         buffer->user_page = perf_mmap_alloc_page(cpu);
2663         if (!buffer->user_page)
2664                 goto fail_user_page;
2665
2666         for (i = 0; i < nr_pages; i++) {
2667                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2668                 if (!buffer->data_pages[i])
2669                         goto fail_data_pages;
2670         }
2671
2672         buffer->nr_pages = nr_pages;
2673
2674         perf_buffer_init(buffer, watermark, flags);
2675
2676         return buffer;
2677
2678 fail_data_pages:
2679         for (i--; i >= 0; i--)
2680                 free_page((unsigned long)buffer->data_pages[i]);
2681
2682         free_page((unsigned long)buffer->user_page);
2683
2684 fail_user_page:
2685         kfree(buffer);
2686
2687 fail:
2688         return NULL;
2689 }
2690
2691 static void perf_mmap_free_page(unsigned long addr)
2692 {
2693         struct page *page = virt_to_page((void *)addr);
2694
2695         page->mapping = NULL;
2696         __free_page(page);
2697 }
2698
2699 static void perf_buffer_free(struct perf_buffer *buffer)
2700 {
2701         int i;
2702
2703         perf_mmap_free_page((unsigned long)buffer->user_page);
2704         for (i = 0; i < buffer->nr_pages; i++)
2705                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2706         kfree(buffer);
2707 }
2708
2709 static inline int page_order(struct perf_buffer *buffer)
2710 {
2711         return 0;
2712 }
2713
2714 #else
2715
2716 /*
2717  * Back perf_mmap() with vmalloc memory.
2718  *
2719  * Required for architectures that have d-cache aliasing issues.
2720  */
2721
2722 static inline int page_order(struct perf_buffer *buffer)
2723 {
2724         return buffer->page_order;
2725 }
2726
2727 static struct page *
2728 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2729 {
2730         if (pgoff > (1UL << page_order(buffer)))
2731                 return NULL;
2732
2733         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2734 }
2735
2736 static void perf_mmap_unmark_page(void *addr)
2737 {
2738         struct page *page = vmalloc_to_page(addr);
2739
2740         page->mapping = NULL;
2741 }
2742
2743 static void perf_buffer_free_work(struct work_struct *work)
2744 {
2745         struct perf_buffer *buffer;
2746         void *base;
2747         int i, nr;
2748
2749         buffer = container_of(work, struct perf_buffer, work);
2750         nr = 1 << page_order(buffer);
2751
2752         base = buffer->user_page;
2753         for (i = 0; i < nr + 1; i++)
2754                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2755
2756         vfree(base);
2757         kfree(buffer);
2758 }
2759
2760 static void perf_buffer_free(struct perf_buffer *buffer)
2761 {
2762         schedule_work(&buffer->work);
2763 }
2764
2765 static struct perf_buffer *
2766 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2767 {
2768         struct perf_buffer *buffer;
2769         unsigned long size;
2770         void *all_buf;
2771
2772         size = sizeof(struct perf_buffer);
2773         size += sizeof(void *);
2774
2775         buffer = kzalloc(size, GFP_KERNEL);
2776         if (!buffer)
2777                 goto fail;
2778
2779         INIT_WORK(&buffer->work, perf_buffer_free_work);
2780
2781         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2782         if (!all_buf)
2783                 goto fail_all_buf;
2784
2785         buffer->user_page = all_buf;
2786         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2787         buffer->page_order = ilog2(nr_pages);
2788         buffer->nr_pages = 1;
2789
2790         perf_buffer_init(buffer, watermark, flags);
2791
2792         return buffer;
2793
2794 fail_all_buf:
2795         kfree(buffer);
2796
2797 fail:
2798         return NULL;
2799 }
2800
2801 #endif
2802
2803 static unsigned long perf_data_size(struct perf_buffer *buffer)
2804 {
2805         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2806 }
2807
2808 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2809 {
2810         struct perf_event *event = vma->vm_file->private_data;
2811         struct perf_buffer *buffer;
2812         int ret = VM_FAULT_SIGBUS;
2813
2814         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2815                 if (vmf->pgoff == 0)
2816                         ret = 0;
2817                 return ret;
2818         }
2819
2820         rcu_read_lock();
2821         buffer = rcu_dereference(event->buffer);
2822         if (!buffer)
2823                 goto unlock;
2824
2825         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2826                 goto unlock;
2827
2828         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2829         if (!vmf->page)
2830                 goto unlock;
2831
2832         get_page(vmf->page);
2833         vmf->page->mapping = vma->vm_file->f_mapping;
2834         vmf->page->index   = vmf->pgoff;
2835
2836         ret = 0;
2837 unlock:
2838         rcu_read_unlock();
2839
2840         return ret;
2841 }
2842
2843 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2844 {
2845         struct perf_buffer *buffer;
2846
2847         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2848         perf_buffer_free(buffer);
2849 }
2850
2851 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2852 {
2853         struct perf_buffer *buffer;
2854
2855         rcu_read_lock();
2856         buffer = rcu_dereference(event->buffer);
2857         if (buffer) {
2858                 if (!atomic_inc_not_zero(&buffer->refcount))
2859                         buffer = NULL;
2860         }
2861         rcu_read_unlock();
2862
2863         return buffer;
2864 }
2865
2866 static void perf_buffer_put(struct perf_buffer *buffer)
2867 {
2868         if (!atomic_dec_and_test(&buffer->refcount))
2869                 return;
2870
2871         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2872 }
2873
2874 static void perf_mmap_open(struct vm_area_struct *vma)
2875 {
2876         struct perf_event *event = vma->vm_file->private_data;
2877
2878         atomic_inc(&event->mmap_count);
2879 }
2880
2881 static void perf_mmap_close(struct vm_area_struct *vma)
2882 {
2883         struct perf_event *event = vma->vm_file->private_data;
2884
2885         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2886                 unsigned long size = perf_data_size(event->buffer);
2887                 struct user_struct *user = event->mmap_user;
2888                 struct perf_buffer *buffer = event->buffer;
2889
2890                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2891                 vma->vm_mm->locked_vm -= event->mmap_locked;
2892                 rcu_assign_pointer(event->buffer, NULL);
2893                 mutex_unlock(&event->mmap_mutex);
2894
2895                 perf_buffer_put(buffer);
2896                 free_uid(user);
2897         }
2898 }
2899
2900 static const struct vm_operations_struct perf_mmap_vmops = {
2901         .open           = perf_mmap_open,
2902         .close          = perf_mmap_close,
2903         .fault          = perf_mmap_fault,
2904         .page_mkwrite   = perf_mmap_fault,
2905 };
2906
2907 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2908 {
2909         struct perf_event *event = file->private_data;
2910         unsigned long user_locked, user_lock_limit;
2911         struct user_struct *user = current_user();
2912         unsigned long locked, lock_limit;
2913         struct perf_buffer *buffer;
2914         unsigned long vma_size;
2915         unsigned long nr_pages;
2916         long user_extra, extra;
2917         int ret = 0, flags = 0;
2918
2919         /*
2920          * Don't allow mmap() of inherited per-task counters. This would
2921          * create a performance issue due to all children writing to the
2922          * same buffer.
2923          */
2924         if (event->cpu == -1 && event->attr.inherit)
2925                 return -EINVAL;
2926
2927         if (!(vma->vm_flags & VM_SHARED))
2928                 return -EINVAL;
2929
2930         vma_size = vma->vm_end - vma->vm_start;
2931         nr_pages = (vma_size / PAGE_SIZE) - 1;
2932
2933         /*
2934          * If we have buffer pages ensure they're a power-of-two number, so we
2935          * can do bitmasks instead of modulo.
2936          */
2937         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2938                 return -EINVAL;
2939
2940         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2941                 return -EINVAL;
2942
2943         if (vma->vm_pgoff != 0)
2944                 return -EINVAL;
2945
2946         WARN_ON_ONCE(event->ctx->parent_ctx);
2947         mutex_lock(&event->mmap_mutex);
2948         if (event->buffer) {
2949                 if (event->buffer->nr_pages == nr_pages)
2950                         atomic_inc(&event->buffer->refcount);
2951                 else
2952                         ret = -EINVAL;
2953                 goto unlock;
2954         }
2955
2956         user_extra = nr_pages + 1;
2957         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2958
2959         /*
2960          * Increase the limit linearly with more CPUs:
2961          */
2962         user_lock_limit *= num_online_cpus();
2963
2964         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2965
2966         extra = 0;
2967         if (user_locked > user_lock_limit)
2968                 extra = user_locked - user_lock_limit;
2969
2970         lock_limit = rlimit(RLIMIT_MEMLOCK);
2971         lock_limit >>= PAGE_SHIFT;
2972         locked = vma->vm_mm->locked_vm + extra;
2973
2974         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2975                 !capable(CAP_IPC_LOCK)) {
2976                 ret = -EPERM;
2977                 goto unlock;
2978         }
2979
2980         WARN_ON(event->buffer);
2981
2982         if (vma->vm_flags & VM_WRITE)
2983                 flags |= PERF_BUFFER_WRITABLE;
2984
2985         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
2986                                    event->cpu, flags);
2987         if (!buffer) {
2988                 ret = -ENOMEM;
2989                 goto unlock;
2990         }
2991         rcu_assign_pointer(event->buffer, buffer);
2992
2993         atomic_long_add(user_extra, &user->locked_vm);
2994         event->mmap_locked = extra;
2995         event->mmap_user = get_current_user();
2996         vma->vm_mm->locked_vm += event->mmap_locked;
2997
2998 unlock:
2999         if (!ret)
3000                 atomic_inc(&event->mmap_count);
3001         mutex_unlock(&event->mmap_mutex);
3002
3003         vma->vm_flags |= VM_RESERVED;
3004         vma->vm_ops = &perf_mmap_vmops;
3005
3006         return ret;
3007 }
3008
3009 static int perf_fasync(int fd, struct file *filp, int on)
3010 {
3011         struct inode *inode = filp->f_path.dentry->d_inode;
3012         struct perf_event *event = filp->private_data;
3013         int retval;
3014
3015         mutex_lock(&inode->i_mutex);
3016         retval = fasync_helper(fd, filp, on, &event->fasync);
3017         mutex_unlock(&inode->i_mutex);
3018
3019         if (retval < 0)
3020                 return retval;
3021
3022         return 0;
3023 }
3024
3025 static const struct file_operations perf_fops = {
3026         .llseek                 = no_llseek,
3027         .release                = perf_release,
3028         .read                   = perf_read,
3029         .poll                   = perf_poll,
3030         .unlocked_ioctl         = perf_ioctl,
3031         .compat_ioctl           = perf_ioctl,
3032         .mmap                   = perf_mmap,
3033         .fasync                 = perf_fasync,
3034 };
3035
3036 /*
3037  * Perf event wakeup
3038  *
3039  * If there's data, ensure we set the poll() state and publish everything
3040  * to user-space before waking everybody up.
3041  */
3042
3043 void perf_event_wakeup(struct perf_event *event)
3044 {
3045         wake_up_all(&event->waitq);
3046
3047         if (event->pending_kill) {
3048                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3049                 event->pending_kill = 0;
3050         }
3051 }
3052
3053 /*
3054  * Pending wakeups
3055  *
3056  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
3057  *
3058  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
3059  * single linked list and use cmpxchg() to add entries lockless.
3060  */
3061
3062 static void perf_pending_event(struct perf_pending_entry *entry)
3063 {
3064         struct perf_event *event = container_of(entry,
3065                         struct perf_event, pending);
3066
3067         if (event->pending_disable) {
3068                 event->pending_disable = 0;
3069                 __perf_event_disable(event);
3070         }
3071
3072         if (event->pending_wakeup) {
3073                 event->pending_wakeup = 0;
3074                 perf_event_wakeup(event);
3075         }
3076 }
3077
3078 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3079
3080 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3081         PENDING_TAIL,
3082 };
3083
3084 static void perf_pending_queue(struct perf_pending_entry *entry,
3085                                void (*func)(struct perf_pending_entry *))
3086 {
3087         struct perf_pending_entry **head;
3088
3089         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3090                 return;
3091
3092         entry->func = func;
3093
3094         head = &get_cpu_var(perf_pending_head);
3095
3096         do {
3097                 entry->next = *head;
3098         } while (cmpxchg(head, entry->next, entry) != entry->next);
3099
3100         set_perf_event_pending();
3101
3102         put_cpu_var(perf_pending_head);
3103 }
3104
3105 static int __perf_pending_run(void)
3106 {
3107         struct perf_pending_entry *list;
3108         int nr = 0;
3109
3110         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3111         while (list != PENDING_TAIL) {
3112                 void (*func)(struct perf_pending_entry *);
3113                 struct perf_pending_entry *entry = list;
3114
3115                 list = list->next;
3116
3117                 func = entry->func;
3118                 entry->next = NULL;
3119                 /*
3120                  * Ensure we observe the unqueue before we issue the wakeup,
3121                  * so that we won't be waiting forever.
3122                  * -- see perf_not_pending().
3123                  */
3124                 smp_wmb();
3125
3126                 func(entry);
3127                 nr++;
3128         }
3129
3130         return nr;
3131 }
3132
3133 static inline int perf_not_pending(struct perf_event *event)
3134 {
3135         /*
3136          * If we flush on whatever cpu we run, there is a chance we don't
3137          * need to wait.
3138          */
3139         get_cpu();
3140         __perf_pending_run();
3141         put_cpu();
3142
3143         /*
3144          * Ensure we see the proper queue state before going to sleep
3145          * so that we do not miss the wakeup. -- see perf_pending_handle()
3146          */
3147         smp_rmb();
3148         return event->pending.next == NULL;
3149 }
3150
3151 static void perf_pending_sync(struct perf_event *event)
3152 {
3153         wait_event(event->waitq, perf_not_pending(event));
3154 }
3155
3156 void perf_event_do_pending(void)
3157 {
3158         __perf_pending_run();
3159 }
3160
3161 /*
3162  * We assume there is only KVM supporting the callbacks.
3163  * Later on, we might change it to a list if there is
3164  * another virtualization implementation supporting the callbacks.
3165  */
3166 struct perf_guest_info_callbacks *perf_guest_cbs;
3167
3168 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3169 {
3170         perf_guest_cbs = cbs;
3171         return 0;
3172 }
3173 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3174
3175 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3176 {
3177         perf_guest_cbs = NULL;
3178         return 0;
3179 }
3180 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3181
3182 /*
3183  * Output
3184  */
3185 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3186                               unsigned long offset, unsigned long head)
3187 {
3188         unsigned long mask;
3189
3190         if (!buffer->writable)
3191                 return true;
3192
3193         mask = perf_data_size(buffer) - 1;
3194
3195         offset = (offset - tail) & mask;
3196         head   = (head   - tail) & mask;
3197
3198         if ((int)(head - offset) < 0)
3199                 return false;
3200
3201         return true;
3202 }
3203
3204 static void perf_output_wakeup(struct perf_output_handle *handle)
3205 {
3206         atomic_set(&handle->buffer->poll, POLL_IN);
3207
3208         if (handle->nmi) {
3209                 handle->event->pending_wakeup = 1;
3210                 perf_pending_queue(&handle->event->pending,
3211                                    perf_pending_event);
3212         } else
3213                 perf_event_wakeup(handle->event);
3214 }
3215
3216 /*
3217  * We need to ensure a later event_id doesn't publish a head when a former
3218  * event isn't done writing. However since we need to deal with NMIs we
3219  * cannot fully serialize things.
3220  *
3221  * We only publish the head (and generate a wakeup) when the outer-most
3222  * event completes.
3223  */
3224 static void perf_output_get_handle(struct perf_output_handle *handle)
3225 {
3226         struct perf_buffer *buffer = handle->buffer;
3227
3228         preempt_disable();
3229         local_inc(&buffer->nest);
3230         handle->wakeup = local_read(&buffer->wakeup);
3231 }
3232
3233 static void perf_output_put_handle(struct perf_output_handle *handle)
3234 {
3235         struct perf_buffer *buffer = handle->buffer;
3236         unsigned long head;
3237
3238 again:
3239         head = local_read(&buffer->head);
3240
3241         /*
3242          * IRQ/NMI can happen here, which means we can miss a head update.
3243          */
3244
3245         if (!local_dec_and_test(&buffer->nest))
3246                 goto out;
3247
3248         /*
3249          * Publish the known good head. Rely on the full barrier implied
3250          * by atomic_dec_and_test() order the buffer->head read and this
3251          * write.
3252          */
3253         buffer->user_page->data_head = head;
3254
3255         /*
3256          * Now check if we missed an update, rely on the (compiler)
3257          * barrier in atomic_dec_and_test() to re-read buffer->head.
3258          */
3259         if (unlikely(head != local_read(&buffer->head))) {
3260                 local_inc(&buffer->nest);
3261                 goto again;
3262         }
3263
3264         if (handle->wakeup != local_read(&buffer->wakeup))
3265                 perf_output_wakeup(handle);
3266
3267  out:
3268         preempt_enable();
3269 }
3270
3271 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3272                       const void *buf, unsigned int len)
3273 {
3274         do {
3275                 unsigned long size = min_t(unsigned long, handle->size, len);
3276
3277                 memcpy(handle->addr, buf, size);
3278
3279                 len -= size;
3280                 handle->addr += size;
3281                 buf += size;
3282                 handle->size -= size;
3283                 if (!handle->size) {
3284                         struct perf_buffer *buffer = handle->buffer;
3285
3286                         handle->page++;
3287                         handle->page &= buffer->nr_pages - 1;
3288                         handle->addr = buffer->data_pages[handle->page];
3289                         handle->size = PAGE_SIZE << page_order(buffer);
3290                 }
3291         } while (len);
3292 }
3293
3294 int perf_output_begin(struct perf_output_handle *handle,
3295                       struct perf_event *event, unsigned int size,
3296                       int nmi, int sample)
3297 {
3298         struct perf_buffer *buffer;
3299         unsigned long tail, offset, head;
3300         int have_lost;
3301         struct {
3302                 struct perf_event_header header;
3303                 u64                      id;
3304                 u64                      lost;
3305         } lost_event;
3306
3307         rcu_read_lock();
3308         /*
3309          * For inherited events we send all the output towards the parent.
3310          */
3311         if (event->parent)
3312                 event = event->parent;
3313
3314         buffer = rcu_dereference(event->buffer);
3315         if (!buffer)
3316                 goto out;
3317
3318         handle->buffer  = buffer;
3319         handle->event   = event;
3320         handle->nmi     = nmi;
3321         handle->sample  = sample;
3322
3323         if (!buffer->nr_pages)
3324                 goto out;
3325
3326         have_lost = local_read(&buffer->lost);
3327         if (have_lost)
3328                 size += sizeof(lost_event);
3329
3330         perf_output_get_handle(handle);
3331
3332         do {
3333                 /*
3334                  * Userspace could choose to issue a mb() before updating the
3335                  * tail pointer. So that all reads will be completed before the
3336                  * write is issued.
3337                  */
3338                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3339                 smp_rmb();
3340                 offset = head = local_read(&buffer->head);
3341                 head += size;
3342                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3343                         goto fail;
3344         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3345
3346         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3347                 local_add(buffer->watermark, &buffer->wakeup);
3348
3349         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3350         handle->page &= buffer->nr_pages - 1;
3351         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3352         handle->addr = buffer->data_pages[handle->page];
3353         handle->addr += handle->size;
3354         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3355
3356         if (have_lost) {
3357                 lost_event.header.type = PERF_RECORD_LOST;
3358                 lost_event.header.misc = 0;
3359                 lost_event.header.size = sizeof(lost_event);
3360                 lost_event.id          = event->id;
3361                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3362
3363                 perf_output_put(handle, lost_event);
3364         }
3365
3366         return 0;
3367
3368 fail:
3369         local_inc(&buffer->lost);
3370         perf_output_put_handle(handle);
3371 out:
3372         rcu_read_unlock();
3373
3374         return -ENOSPC;
3375 }
3376
3377 void perf_output_end(struct perf_output_handle *handle)
3378 {
3379         struct perf_event *event = handle->event;
3380         struct perf_buffer *buffer = handle->buffer;
3381
3382         int wakeup_events = event->attr.wakeup_events;
3383
3384         if (handle->sample && wakeup_events) {
3385                 int events = local_inc_return(&buffer->events);
3386                 if (events >= wakeup_events) {
3387                         local_sub(wakeup_events, &buffer->events);
3388                         local_inc(&buffer->wakeup);
3389                 }
3390         }
3391
3392         perf_output_put_handle(handle);
3393         rcu_read_unlock();
3394 }
3395
3396 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3397 {
3398         /*
3399          * only top level events have the pid namespace they were created in
3400          */
3401         if (event->parent)
3402                 event = event->parent;
3403
3404         return task_tgid_nr_ns(p, event->ns);
3405 }
3406
3407 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3408 {
3409         /*
3410          * only top level events have the pid namespace they were created in
3411          */
3412         if (event->parent)
3413                 event = event->parent;
3414
3415         return task_pid_nr_ns(p, event->ns);
3416 }
3417
3418 static void perf_output_read_one(struct perf_output_handle *handle,
3419                                  struct perf_event *event)
3420 {
3421         u64 read_format = event->attr.read_format;
3422         u64 values[4];
3423         int n = 0;
3424
3425         values[n++] = perf_event_count(event);
3426         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3427                 values[n++] = event->total_time_enabled +
3428                         atomic64_read(&event->child_total_time_enabled);
3429         }
3430         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3431                 values[n++] = event->total_time_running +
3432                         atomic64_read(&event->child_total_time_running);
3433         }
3434         if (read_format & PERF_FORMAT_ID)
3435                 values[n++] = primary_event_id(event);
3436
3437         perf_output_copy(handle, values, n * sizeof(u64));
3438 }
3439
3440 /*
3441  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3442  */
3443 static void perf_output_read_group(struct perf_output_handle *handle,
3444                             struct perf_event *event)
3445 {
3446         struct perf_event *leader = event->group_leader, *sub;
3447         u64 read_format = event->attr.read_format;
3448         u64 values[5];
3449         int n = 0;
3450
3451         values[n++] = 1 + leader->nr_siblings;
3452
3453         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3454                 values[n++] = leader->total_time_enabled;
3455
3456         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3457                 values[n++] = leader->total_time_running;
3458
3459         if (leader != event)
3460                 leader->pmu->read(leader);
3461
3462         values[n++] = perf_event_count(leader);
3463         if (read_format & PERF_FORMAT_ID)
3464                 values[n++] = primary_event_id(leader);
3465
3466         perf_output_copy(handle, values, n * sizeof(u64));
3467
3468         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3469                 n = 0;
3470
3471                 if (sub != event)
3472                         sub->pmu->read(sub);
3473
3474                 values[n++] = perf_event_count(sub);
3475                 if (read_format & PERF_FORMAT_ID)
3476                         values[n++] = primary_event_id(sub);
3477
3478                 perf_output_copy(handle, values, n * sizeof(u64));
3479         }
3480 }
3481
3482 static void perf_output_read(struct perf_output_handle *handle,
3483                              struct perf_event *event)
3484 {
3485         if (event->attr.read_format & PERF_FORMAT_GROUP)
3486                 perf_output_read_group(handle, event);
3487         else
3488                 perf_output_read_one(handle, event);
3489 }
3490
3491 void perf_output_sample(struct perf_output_handle *handle,
3492                         struct perf_event_header *header,
3493                         struct perf_sample_data *data,
3494                         struct perf_event *event)
3495 {
3496         u64 sample_type = data->type;
3497
3498         perf_output_put(handle, *header);
3499
3500         if (sample_type & PERF_SAMPLE_IP)
3501                 perf_output_put(handle, data->ip);
3502
3503         if (sample_type & PERF_SAMPLE_TID)
3504                 perf_output_put(handle, data->tid_entry);
3505
3506         if (sample_type & PERF_SAMPLE_TIME)
3507                 perf_output_put(handle, data->time);
3508
3509         if (sample_type & PERF_SAMPLE_ADDR)
3510                 perf_output_put(handle, data->addr);
3511
3512         if (sample_type & PERF_SAMPLE_ID)
3513                 perf_output_put(handle, data->id);
3514
3515         if (sample_type & PERF_SAMPLE_STREAM_ID)
3516                 perf_output_put(handle, data->stream_id);
3517
3518         if (sample_type & PERF_SAMPLE_CPU)
3519                 perf_output_put(handle, data->cpu_entry);
3520
3521         if (sample_type & PERF_SAMPLE_PERIOD)
3522                 perf_output_put(handle, data->period);
3523
3524         if (sample_type & PERF_SAMPLE_READ)
3525                 perf_output_read(handle, event);
3526
3527         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3528                 if (data->callchain) {
3529                         int size = 1;
3530
3531                         if (data->callchain)
3532                                 size += data->callchain->nr;
3533
3534                         size *= sizeof(u64);
3535
3536                         perf_output_copy(handle, data->callchain, size);
3537                 } else {
3538                         u64 nr = 0;
3539                         perf_output_put(handle, nr);
3540                 }
3541         }
3542
3543         if (sample_type & PERF_SAMPLE_RAW) {
3544                 if (data->raw) {
3545                         perf_output_put(handle, data->raw->size);
3546                         perf_output_copy(handle, data->raw->data,
3547                                          data->raw->size);
3548                 } else {
3549                         struct {
3550                                 u32     size;
3551                                 u32     data;
3552                         } raw = {
3553                                 .size = sizeof(u32),
3554                                 .data = 0,
3555                         };
3556                         perf_output_put(handle, raw);
3557                 }
3558         }
3559 }
3560
3561 void perf_prepare_sample(struct perf_event_header *header,
3562                          struct perf_sample_data *data,
3563                          struct perf_event *event,
3564                          struct pt_regs *regs)
3565 {
3566         u64 sample_type = event->attr.sample_type;
3567
3568         data->type = sample_type;
3569
3570         header->type = PERF_RECORD_SAMPLE;
3571         header->size = sizeof(*header);
3572
3573         header->misc = 0;
3574         header->misc |= perf_misc_flags(regs);
3575
3576         if (sample_type & PERF_SAMPLE_IP) {
3577                 data->ip = perf_instruction_pointer(regs);
3578
3579                 header->size += sizeof(data->ip);
3580         }
3581
3582         if (sample_type & PERF_SAMPLE_TID) {
3583                 /* namespace issues */
3584                 data->tid_entry.pid = perf_event_pid(event, current);
3585                 data->tid_entry.tid = perf_event_tid(event, current);
3586
3587                 header->size += sizeof(data->tid_entry);
3588         }
3589
3590         if (sample_type & PERF_SAMPLE_TIME) {
3591                 data->time = perf_clock();
3592
3593                 header->size += sizeof(data->time);
3594         }
3595
3596         if (sample_type & PERF_SAMPLE_ADDR)
3597                 header->size += sizeof(data->addr);
3598
3599         if (sample_type & PERF_SAMPLE_ID) {
3600                 data->id = primary_event_id(event);
3601
3602                 header->size += sizeof(data->id);
3603         }
3604
3605         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3606                 data->stream_id = event->id;
3607
3608                 header->size += sizeof(data->stream_id);
3609         }
3610
3611         if (sample_type & PERF_SAMPLE_CPU) {
3612                 data->cpu_entry.cpu             = raw_smp_processor_id();
3613                 data->cpu_entry.reserved        = 0;
3614
3615                 header->size += sizeof(data->cpu_entry);
3616         }
3617
3618         if (sample_type & PERF_SAMPLE_PERIOD)
3619                 header->size += sizeof(data->period);
3620
3621         if (sample_type & PERF_SAMPLE_READ)
3622                 header->size += perf_event_read_size(event);
3623
3624         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3625                 int size = 1;
3626
3627                 data->callchain = perf_callchain(regs);
3628
3629                 if (data->callchain)
3630                         size += data->callchain->nr;
3631
3632                 header->size += size * sizeof(u64);
3633         }
3634
3635         if (sample_type & PERF_SAMPLE_RAW) {
3636                 int size = sizeof(u32);
3637
3638                 if (data->raw)
3639                         size += data->raw->size;
3640                 else
3641                         size += sizeof(u32);
3642
3643                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3644                 header->size += size;
3645         }
3646 }
3647
3648 static void perf_event_output(struct perf_event *event, int nmi,
3649                                 struct perf_sample_data *data,
3650                                 struct pt_regs *regs)
3651 {
3652         struct perf_output_handle handle;
3653         struct perf_event_header header;
3654
3655         /* protect the callchain buffers */
3656         rcu_read_lock();
3657
3658         perf_prepare_sample(&header, data, event, regs);
3659
3660         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3661                 goto exit;
3662
3663         perf_output_sample(&handle, &header, data, event);
3664
3665         perf_output_end(&handle);
3666
3667 exit:
3668         rcu_read_unlock();
3669 }
3670
3671 /*
3672  * read event_id
3673  */
3674
3675 struct perf_read_event {
3676         struct perf_event_header        header;
3677
3678         u32                             pid;
3679         u32                             tid;
3680 };
3681
3682 static void
3683 perf_event_read_event(struct perf_event *event,
3684                         struct task_struct *task)
3685 {
3686         struct perf_output_handle handle;
3687         struct perf_read_event read_event = {
3688                 .header = {
3689                         .type = PERF_RECORD_READ,
3690                         .misc = 0,
3691                         .size = sizeof(read_event) + perf_event_read_size(event),
3692                 },
3693                 .pid = perf_event_pid(event, task),
3694                 .tid = perf_event_tid(event, task),
3695         };
3696         int ret;
3697
3698         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3699         if (ret)
3700                 return;
3701
3702         perf_output_put(&handle, read_event);
3703         perf_output_read(&handle, event);
3704
3705         perf_output_end(&handle);
3706 }
3707
3708 /*
3709  * task tracking -- fork/exit
3710  *
3711  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3712  */
3713
3714 struct perf_task_event {
3715         struct task_struct              *task;
3716         struct perf_event_context       *task_ctx;
3717
3718         struct {
3719                 struct perf_event_header        header;
3720
3721                 u32                             pid;
3722                 u32                             ppid;
3723                 u32                             tid;
3724                 u32                             ptid;
3725                 u64                             time;
3726         } event_id;
3727 };
3728
3729 static void perf_event_task_output(struct perf_event *event,
3730                                      struct perf_task_event *task_event)
3731 {
3732         struct perf_output_handle handle;
3733         struct task_struct *task = task_event->task;
3734         int size, ret;
3735
3736         size  = task_event->event_id.header.size;
3737         ret = perf_output_begin(&handle, event, size, 0, 0);
3738
3739         if (ret)
3740                 return;
3741
3742         task_event->event_id.pid = perf_event_pid(event, task);
3743         task_event->event_id.ppid = perf_event_pid(event, current);
3744
3745         task_event->event_id.tid = perf_event_tid(event, task);
3746         task_event->event_id.ptid = perf_event_tid(event, current);
3747
3748         perf_output_put(&handle, task_event->event_id);
3749
3750         perf_output_end(&handle);
3751 }
3752
3753 static int perf_event_task_match(struct perf_event *event)
3754 {
3755         if (event->state < PERF_EVENT_STATE_INACTIVE)
3756                 return 0;
3757
3758         if (event->cpu != -1 && event->cpu != smp_processor_id())
3759                 return 0;
3760
3761         if (event->attr.comm || event->attr.mmap ||
3762             event->attr.mmap_data || event->attr.task)
3763                 return 1;
3764
3765         return 0;
3766 }
3767
3768 static void perf_event_task_ctx(struct perf_event_context *ctx,
3769                                   struct perf_task_event *task_event)
3770 {
3771         struct perf_event *event;
3772
3773         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3774                 if (perf_event_task_match(event))
3775                         perf_event_task_output(event, task_event);
3776         }
3777 }
3778
3779 static void perf_event_task_event(struct perf_task_event *task_event)
3780 {
3781         struct perf_cpu_context *cpuctx;
3782         struct perf_event_context *ctx = task_event->task_ctx;
3783
3784         rcu_read_lock();
3785         cpuctx = &get_cpu_var(perf_cpu_context);
3786         perf_event_task_ctx(&cpuctx->ctx, task_event);
3787         if (!ctx)
3788                 ctx = rcu_dereference(current->perf_event_ctxp);
3789         if (ctx)
3790                 perf_event_task_ctx(ctx, task_event);
3791         put_cpu_var(perf_cpu_context);
3792         rcu_read_unlock();
3793 }
3794
3795 static void perf_event_task(struct task_struct *task,
3796                               struct perf_event_context *task_ctx,
3797                               int new)
3798 {
3799         struct perf_task_event task_event;
3800
3801         if (!atomic_read(&nr_comm_events) &&
3802             !atomic_read(&nr_mmap_events) &&
3803             !atomic_read(&nr_task_events))
3804                 return;
3805
3806         task_event = (struct perf_task_event){
3807                 .task     = task,
3808                 .task_ctx = task_ctx,
3809                 .event_id    = {
3810                         .header = {
3811                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3812                                 .misc = 0,
3813                                 .size = sizeof(task_event.event_id),
3814                         },
3815                         /* .pid  */
3816                         /* .ppid */
3817                         /* .tid  */
3818                         /* .ptid */
3819                         .time = perf_clock(),
3820                 },
3821         };
3822
3823         perf_event_task_event(&task_event);
3824 }
3825
3826 void perf_event_fork(struct task_struct *task)
3827 {
3828         perf_event_task(task, NULL, 1);
3829 }
3830
3831 /*
3832  * comm tracking
3833  */
3834
3835 struct perf_comm_event {
3836         struct task_struct      *task;
3837         char                    *comm;
3838         int                     comm_size;
3839
3840         struct {
3841                 struct perf_event_header        header;
3842
3843                 u32                             pid;
3844                 u32                             tid;
3845         } event_id;
3846 };
3847
3848 static void perf_event_comm_output(struct perf_event *event,
3849                                      struct perf_comm_event *comm_event)
3850 {
3851         struct perf_output_handle handle;
3852         int size = comm_event->event_id.header.size;
3853         int ret = perf_output_begin(&handle, event, size, 0, 0);
3854
3855         if (ret)
3856                 return;
3857
3858         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3859         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3860
3861         perf_output_put(&handle, comm_event->event_id);
3862         perf_output_copy(&handle, comm_event->comm,
3863                                    comm_event->comm_size);
3864         perf_output_end(&handle);
3865 }
3866
3867 static int perf_event_comm_match(struct perf_event *event)
3868 {
3869         if (event->state < PERF_EVENT_STATE_INACTIVE)
3870                 return 0;
3871
3872         if (event->cpu != -1 && event->cpu != smp_processor_id())
3873                 return 0;
3874
3875         if (event->attr.comm)
3876                 return 1;
3877
3878         return 0;
3879 }
3880
3881 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3882                                   struct perf_comm_event *comm_event)
3883 {
3884         struct perf_event *event;
3885
3886         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3887                 if (perf_event_comm_match(event))
3888                         perf_event_comm_output(event, comm_event);
3889         }
3890 }
3891
3892 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3893 {
3894         struct perf_cpu_context *cpuctx;
3895         struct perf_event_context *ctx;
3896         unsigned int size;
3897         char comm[TASK_COMM_LEN];
3898
3899         memset(comm, 0, sizeof(comm));
3900         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3901         size = ALIGN(strlen(comm)+1, sizeof(u64));
3902
3903         comm_event->comm = comm;
3904         comm_event->comm_size = size;
3905
3906         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3907
3908         rcu_read_lock();
3909         cpuctx = &get_cpu_var(perf_cpu_context);
3910         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3911         ctx = rcu_dereference(current->perf_event_ctxp);
3912         if (ctx)
3913                 perf_event_comm_ctx(ctx, comm_event);
3914         put_cpu_var(perf_cpu_context);
3915         rcu_read_unlock();
3916 }
3917
3918 void perf_event_comm(struct task_struct *task)
3919 {
3920         struct perf_comm_event comm_event;
3921
3922         if (task->perf_event_ctxp)
3923                 perf_event_enable_on_exec(task);
3924
3925         if (!atomic_read(&nr_comm_events))
3926                 return;
3927
3928         comm_event = (struct perf_comm_event){
3929                 .task   = task,
3930                 /* .comm      */
3931                 /* .comm_size */
3932                 .event_id  = {
3933                         .header = {
3934                                 .type = PERF_RECORD_COMM,
3935                                 .misc = 0,
3936                                 /* .size */
3937                         },
3938                         /* .pid */
3939                         /* .tid */
3940                 },
3941         };
3942
3943         perf_event_comm_event(&comm_event);
3944 }
3945
3946 /*
3947  * mmap tracking
3948  */
3949
3950 struct perf_mmap_event {
3951         struct vm_area_struct   *vma;
3952
3953         const char              *file_name;
3954         int                     file_size;
3955
3956         struct {
3957                 struct perf_event_header        header;
3958
3959                 u32                             pid;
3960                 u32                             tid;
3961                 u64                             start;
3962                 u64                             len;
3963                 u64                             pgoff;
3964         } event_id;
3965 };
3966
3967 static void perf_event_mmap_output(struct perf_event *event,
3968                                      struct perf_mmap_event *mmap_event)
3969 {
3970         struct perf_output_handle handle;
3971         int size = mmap_event->event_id.header.size;
3972         int ret = perf_output_begin(&handle, event, size, 0, 0);
3973
3974         if (ret)
3975                 return;
3976
3977         mmap_event->event_id.pid = perf_event_pid(event, current);
3978         mmap_event->event_id.tid = perf_event_tid(event, current);
3979
3980         perf_output_put(&handle, mmap_event->event_id);
3981         perf_output_copy(&handle, mmap_event->file_name,
3982                                    mmap_event->file_size);
3983         perf_output_end(&handle);
3984 }
3985
3986 static int perf_event_mmap_match(struct perf_event *event,
3987                                    struct perf_mmap_event *mmap_event,
3988                                    int executable)
3989 {
3990         if (event->state < PERF_EVENT_STATE_INACTIVE)
3991                 return 0;
3992
3993         if (event->cpu != -1 && event->cpu != smp_processor_id())
3994                 return 0;
3995
3996         if ((!executable && event->attr.mmap_data) ||
3997             (executable && event->attr.mmap))
3998                 return 1;
3999
4000         return 0;
4001 }
4002
4003 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4004                                   struct perf_mmap_event *mmap_event,
4005                                   int executable)
4006 {
4007         struct perf_event *event;
4008
4009         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4010                 if (perf_event_mmap_match(event, mmap_event, executable))
4011                         perf_event_mmap_output(event, mmap_event);
4012         }
4013 }
4014
4015 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4016 {
4017         struct perf_cpu_context *cpuctx;
4018         struct perf_event_context *ctx;
4019         struct vm_area_struct *vma = mmap_event->vma;
4020         struct file *file = vma->vm_file;
4021         unsigned int size;
4022         char tmp[16];
4023         char *buf = NULL;
4024         const char *name;
4025
4026         memset(tmp, 0, sizeof(tmp));
4027
4028         if (file) {
4029                 /*
4030                  * d_path works from the end of the buffer backwards, so we
4031                  * need to add enough zero bytes after the string to handle
4032                  * the 64bit alignment we do later.
4033                  */
4034                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4035                 if (!buf) {
4036                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4037                         goto got_name;
4038                 }
4039                 name = d_path(&file->f_path, buf, PATH_MAX);
4040                 if (IS_ERR(name)) {
4041                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4042                         goto got_name;
4043                 }
4044         } else {
4045                 if (arch_vma_name(mmap_event->vma)) {
4046                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4047                                        sizeof(tmp));
4048                         goto got_name;
4049                 }
4050
4051                 if (!vma->vm_mm) {
4052                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4053                         goto got_name;
4054                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4055                                 vma->vm_end >= vma->vm_mm->brk) {
4056                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4057                         goto got_name;
4058                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4059                                 vma->vm_end >= vma->vm_mm->start_stack) {
4060                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4061                         goto got_name;
4062                 }
4063
4064                 name = strncpy(tmp, "//anon", sizeof(tmp));
4065                 goto got_name;
4066         }
4067
4068 got_name:
4069         size = ALIGN(strlen(name)+1, sizeof(u64));
4070
4071         mmap_event->file_name = name;
4072         mmap_event->file_size = size;
4073
4074         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4075
4076         rcu_read_lock();
4077         cpuctx = &get_cpu_var(perf_cpu_context);
4078         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
4079         ctx = rcu_dereference(current->perf_event_ctxp);
4080         if (ctx)
4081                 perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
4082         put_cpu_var(perf_cpu_context);
4083         rcu_read_unlock();
4084
4085         kfree(buf);
4086 }
4087
4088 void perf_event_mmap(struct vm_area_struct *vma)
4089 {
4090         struct perf_mmap_event mmap_event;
4091
4092         if (!atomic_read(&nr_mmap_events))
4093                 return;
4094
4095         mmap_event = (struct perf_mmap_event){
4096                 .vma    = vma,
4097                 /* .file_name */
4098                 /* .file_size */
4099                 .event_id  = {
4100                         .header = {
4101                                 .type = PERF_RECORD_MMAP,
4102                                 .misc = PERF_RECORD_MISC_USER,
4103                                 /* .size */
4104                         },
4105                         /* .pid */
4106                         /* .tid */
4107                         .start  = vma->vm_start,
4108                         .len    = vma->vm_end - vma->vm_start,
4109                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4110                 },
4111         };
4112
4113         perf_event_mmap_event(&mmap_event);
4114 }
4115
4116 /*
4117  * IRQ throttle logging
4118  */
4119
4120 static void perf_log_throttle(struct perf_event *event, int enable)
4121 {
4122         struct perf_output_handle handle;
4123         int ret;
4124
4125         struct {
4126                 struct perf_event_header        header;
4127                 u64                             time;
4128                 u64                             id;
4129                 u64                             stream_id;
4130         } throttle_event = {
4131                 .header = {
4132                         .type = PERF_RECORD_THROTTLE,
4133                         .misc = 0,
4134                         .size = sizeof(throttle_event),
4135                 },
4136                 .time           = perf_clock(),
4137                 .id             = primary_event_id(event),
4138                 .stream_id      = event->id,
4139         };
4140
4141         if (enable)
4142                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4143
4144         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4145         if (ret)
4146                 return;
4147
4148         perf_output_put(&handle, throttle_event);
4149         perf_output_end(&handle);
4150 }
4151
4152 /*
4153  * Generic event overflow handling, sampling.
4154  */
4155
4156 static int __perf_event_overflow(struct perf_event *event, int nmi,
4157                                    int throttle, struct perf_sample_data *data,
4158                                    struct pt_regs *regs)
4159 {
4160         int events = atomic_read(&event->event_limit);
4161         struct hw_perf_event *hwc = &event->hw;
4162         int ret = 0;
4163
4164         throttle = (throttle && event->pmu->unthrottle != NULL);
4165
4166         if (!throttle) {
4167                 hwc->interrupts++;
4168         } else {
4169                 if (hwc->interrupts != MAX_INTERRUPTS) {
4170                         hwc->interrupts++;
4171                         if (HZ * hwc->interrupts >
4172                                         (u64)sysctl_perf_event_sample_rate) {
4173                                 hwc->interrupts = MAX_INTERRUPTS;
4174                                 perf_log_throttle(event, 0);
4175                                 ret = 1;
4176                         }
4177                 } else {
4178                         /*
4179                          * Keep re-disabling events even though on the previous
4180                          * pass we disabled it - just in case we raced with a
4181                          * sched-in and the event got enabled again:
4182                          */
4183                         ret = 1;
4184                 }
4185         }
4186
4187         if (event->attr.freq) {
4188                 u64 now = perf_clock();
4189                 s64 delta = now - hwc->freq_time_stamp;
4190
4191                 hwc->freq_time_stamp = now;
4192
4193                 if (delta > 0 && delta < 2*TICK_NSEC)
4194                         perf_adjust_period(event, delta, hwc->last_period);
4195         }
4196
4197         /*
4198          * XXX event_limit might not quite work as expected on inherited
4199          * events
4200          */
4201
4202         event->pending_kill = POLL_IN;
4203         if (events && atomic_dec_and_test(&event->event_limit)) {
4204                 ret = 1;
4205                 event->pending_kill = POLL_HUP;
4206                 if (nmi) {
4207                         event->pending_disable = 1;
4208                         perf_pending_queue(&event->pending,
4209                                            perf_pending_event);
4210                 } else
4211                         perf_event_disable(event);
4212         }
4213
4214         if (event->overflow_handler)
4215                 event->overflow_handler(event, nmi, data, regs);
4216         else
4217                 perf_event_output(event, nmi, data, regs);
4218
4219         return ret;
4220 }
4221
4222 int perf_event_overflow(struct perf_event *event, int nmi,
4223                           struct perf_sample_data *data,
4224                           struct pt_regs *regs)
4225 {
4226         return __perf_event_overflow(event, nmi, 1, data, regs);
4227 }
4228
4229 /*
4230  * Generic software event infrastructure
4231  */
4232
4233 /*
4234  * We directly increment event->count and keep a second value in
4235  * event->hw.period_left to count intervals. This period event
4236  * is kept in the range [-sample_period, 0] so that we can use the
4237  * sign as trigger.
4238  */
4239
4240 static u64 perf_swevent_set_period(struct perf_event *event)
4241 {
4242         struct hw_perf_event *hwc = &event->hw;
4243         u64 period = hwc->last_period;
4244         u64 nr, offset;
4245         s64 old, val;
4246
4247         hwc->last_period = hwc->sample_period;
4248
4249 again:
4250         old = val = local64_read(&hwc->period_left);
4251         if (val < 0)
4252                 return 0;
4253
4254         nr = div64_u64(period + val, period);
4255         offset = nr * period;
4256         val -= offset;
4257         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4258                 goto again;
4259
4260         return nr;
4261 }
4262
4263 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4264                                     int nmi, struct perf_sample_data *data,
4265                                     struct pt_regs *regs)
4266 {
4267         struct hw_perf_event *hwc = &event->hw;
4268         int throttle = 0;
4269
4270         data->period = event->hw.last_period;
4271         if (!overflow)
4272                 overflow = perf_swevent_set_period(event);
4273
4274         if (hwc->interrupts == MAX_INTERRUPTS)
4275                 return;
4276
4277         for (; overflow; overflow--) {
4278                 if (__perf_event_overflow(event, nmi, throttle,
4279                                             data, regs)) {
4280                         /*
4281                          * We inhibit the overflow from happening when
4282                          * hwc->interrupts == MAX_INTERRUPTS.
4283                          */
4284                         break;
4285                 }
4286                 throttle = 1;
4287         }
4288 }
4289
4290 static void perf_swevent_add(struct perf_event *event, u64 nr,
4291                                int nmi, struct perf_sample_data *data,
4292                                struct pt_regs *regs)
4293 {
4294         struct hw_perf_event *hwc = &event->hw;
4295
4296         local64_add(nr, &event->count);
4297
4298         if (!regs)
4299                 return;
4300
4301         if (!hwc->sample_period)
4302                 return;
4303
4304         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4305                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4306
4307         if (local64_add_negative(nr, &hwc->period_left))
4308                 return;
4309
4310         perf_swevent_overflow(event, 0, nmi, data, regs);
4311 }
4312
4313 static int perf_exclude_event(struct perf_event *event,
4314                               struct pt_regs *regs)
4315 {
4316         if (regs) {
4317                 if (event->attr.exclude_user && user_mode(regs))
4318                         return 1;
4319
4320                 if (event->attr.exclude_kernel && !user_mode(regs))
4321                         return 1;
4322         }
4323
4324         return 0;
4325 }
4326
4327 static int perf_swevent_match(struct perf_event *event,
4328                                 enum perf_type_id type,
4329                                 u32 event_id,
4330                                 struct perf_sample_data *data,
4331                                 struct pt_regs *regs)
4332 {
4333         if (event->attr.type != type)
4334                 return 0;
4335
4336         if (event->attr.config != event_id)
4337                 return 0;
4338
4339         if (perf_exclude_event(event, regs))
4340                 return 0;
4341
4342         return 1;
4343 }
4344
4345 static inline u64 swevent_hash(u64 type, u32 event_id)
4346 {
4347         u64 val = event_id | (type << 32);
4348
4349         return hash_64(val, SWEVENT_HLIST_BITS);
4350 }
4351
4352 static inline struct hlist_head *
4353 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4354 {
4355         u64 hash = swevent_hash(type, event_id);
4356
4357         return &hlist->heads[hash];
4358 }
4359
4360 /* For the read side: events when they trigger */
4361 static inline struct hlist_head *
4362 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4363 {
4364         struct swevent_hlist *hlist;
4365
4366         hlist = rcu_dereference(ctx->swevent_hlist);
4367         if (!hlist)
4368                 return NULL;
4369
4370         return __find_swevent_head(hlist, type, event_id);
4371 }
4372
4373 /* For the event head insertion and removal in the hlist */
4374 static inline struct hlist_head *
4375 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4376 {
4377         struct swevent_hlist *hlist;
4378         u32 event_id = event->attr.config;
4379         u64 type = event->attr.type;
4380
4381         /*
4382          * Event scheduling is always serialized against hlist allocation
4383          * and release. Which makes the protected version suitable here.
4384          * The context lock guarantees that.
4385          */
4386         hlist = rcu_dereference_protected(ctx->swevent_hlist,
4387                                           lockdep_is_held(&event->ctx->lock));
4388         if (!hlist)
4389                 return NULL;
4390
4391         return __find_swevent_head(hlist, type, event_id);
4392 }
4393
4394 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4395                                     u64 nr, int nmi,
4396                                     struct perf_sample_data *data,
4397                                     struct pt_regs *regs)
4398 {
4399         struct perf_cpu_context *cpuctx;
4400         struct perf_event *event;
4401         struct hlist_node *node;
4402         struct hlist_head *head;
4403
4404         cpuctx = &__get_cpu_var(perf_cpu_context);
4405
4406         rcu_read_lock();
4407
4408         head = find_swevent_head_rcu(cpuctx, type, event_id);
4409
4410         if (!head)
4411                 goto end;
4412
4413         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4414                 if (perf_swevent_match(event, type, event_id, data, regs))
4415                         perf_swevent_add(event, nr, nmi, data, regs);
4416         }
4417 end:
4418         rcu_read_unlock();
4419 }
4420
4421 int perf_swevent_get_recursion_context(void)
4422 {
4423         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4424
4425         return get_recursion_context(cpuctx->recursion);
4426 }
4427 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4428
4429 void inline perf_swevent_put_recursion_context(int rctx)
4430 {
4431         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4432
4433         put_recursion_context(cpuctx->recursion, rctx);
4434 }
4435
4436 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4437                             struct pt_regs *regs, u64 addr)
4438 {
4439         struct perf_sample_data data;
4440         int rctx;
4441
4442         preempt_disable_notrace();
4443         rctx = perf_swevent_get_recursion_context();
4444         if (rctx < 0)
4445                 return;
4446
4447         perf_sample_data_init(&data, addr);
4448
4449         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4450
4451         perf_swevent_put_recursion_context(rctx);
4452         preempt_enable_notrace();
4453 }
4454
4455 static void perf_swevent_read(struct perf_event *event)
4456 {
4457 }
4458
4459 static int perf_swevent_enable(struct perf_event *event)
4460 {
4461         struct hw_perf_event *hwc = &event->hw;
4462         struct perf_cpu_context *cpuctx;
4463         struct hlist_head *head;
4464
4465         cpuctx = &__get_cpu_var(perf_cpu_context);
4466
4467         if (hwc->sample_period) {
4468                 hwc->last_period = hwc->sample_period;
4469                 perf_swevent_set_period(event);
4470         }
4471
4472         head = find_swevent_head(cpuctx, event);
4473         if (WARN_ON_ONCE(!head))
4474                 return -EINVAL;
4475
4476         hlist_add_head_rcu(&event->hlist_entry, head);
4477
4478         return 0;
4479 }
4480
4481 static void perf_swevent_disable(struct perf_event *event)
4482 {
4483         hlist_del_rcu(&event->hlist_entry);
4484 }
4485
4486 static void perf_swevent_void(struct perf_event *event)
4487 {
4488 }
4489
4490 static int perf_swevent_int(struct perf_event *event)
4491 {
4492         return 0;
4493 }
4494
4495 /* Deref the hlist from the update side */
4496 static inline struct swevent_hlist *
4497 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4498 {
4499         return rcu_dereference_protected(cpuctx->swevent_hlist,
4500                                          lockdep_is_held(&cpuctx->hlist_mutex));
4501 }
4502
4503 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4504 {
4505         struct swevent_hlist *hlist;
4506
4507         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4508         kfree(hlist);
4509 }
4510
4511 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4512 {
4513         struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4514
4515         if (!hlist)
4516                 return;
4517
4518         rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4519         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4520 }
4521
4522 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4523 {
4524         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4525
4526         mutex_lock(&cpuctx->hlist_mutex);
4527
4528         if (!--cpuctx->hlist_refcount)
4529                 swevent_hlist_release(cpuctx);
4530
4531         mutex_unlock(&cpuctx->hlist_mutex);
4532 }
4533
4534 static void swevent_hlist_put(struct perf_event *event)
4535 {
4536         int cpu;
4537
4538         if (event->cpu != -1) {
4539                 swevent_hlist_put_cpu(event, event->cpu);
4540                 return;
4541         }
4542
4543         for_each_possible_cpu(cpu)
4544                 swevent_hlist_put_cpu(event, cpu);
4545 }
4546
4547 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4548 {
4549         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4550         int err = 0;
4551
4552         mutex_lock(&cpuctx->hlist_mutex);
4553
4554         if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4555                 struct swevent_hlist *hlist;
4556
4557                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4558                 if (!hlist) {
4559                         err = -ENOMEM;
4560                         goto exit;
4561                 }
4562                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4563         }
4564         cpuctx->hlist_refcount++;
4565  exit:
4566         mutex_unlock(&cpuctx->hlist_mutex);
4567
4568         return err;
4569 }
4570
4571 static int swevent_hlist_get(struct perf_event *event)
4572 {
4573         int err;
4574         int cpu, failed_cpu;
4575
4576         if (event->cpu != -1)
4577                 return swevent_hlist_get_cpu(event, event->cpu);
4578
4579         get_online_cpus();
4580         for_each_possible_cpu(cpu) {
4581                 err = swevent_hlist_get_cpu(event, cpu);
4582                 if (err) {
4583                         failed_cpu = cpu;
4584                         goto fail;
4585                 }
4586         }
4587         put_online_cpus();
4588
4589         return 0;
4590  fail:
4591         for_each_possible_cpu(cpu) {
4592                 if (cpu == failed_cpu)
4593                         break;
4594                 swevent_hlist_put_cpu(event, cpu);
4595         }
4596
4597         put_online_cpus();
4598         return err;
4599 }
4600
4601 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4602
4603 static void sw_perf_event_destroy(struct perf_event *event)
4604 {
4605         u64 event_id = event->attr.config;
4606
4607         WARN_ON(event->parent);
4608
4609         atomic_dec(&perf_swevent_enabled[event_id]);
4610         swevent_hlist_put(event);
4611 }
4612
4613 static int perf_swevent_init(struct perf_event *event)
4614 {
4615         int event_id = event->attr.config;
4616
4617         if (event->attr.type != PERF_TYPE_SOFTWARE)
4618                 return -ENOENT;
4619
4620         switch (event_id) {
4621         case PERF_COUNT_SW_CPU_CLOCK:
4622         case PERF_COUNT_SW_TASK_CLOCK:
4623                 return -ENOENT;
4624
4625         default:
4626                 break;
4627         }
4628
4629         if (event_id > PERF_COUNT_SW_MAX)
4630                 return -ENOENT;
4631
4632         if (!event->parent) {
4633                 int err;
4634
4635                 err = swevent_hlist_get(event);
4636                 if (err)
4637                         return err;
4638
4639                 atomic_inc(&perf_swevent_enabled[event_id]);
4640                 event->destroy = sw_perf_event_destroy;
4641         }
4642
4643         return 0;
4644 }
4645
4646 static struct pmu perf_swevent = {
4647         .event_init     = perf_swevent_init,
4648         .enable         = perf_swevent_enable,
4649         .disable        = perf_swevent_disable,
4650         .start          = perf_swevent_int,
4651         .stop           = perf_swevent_void,
4652         .read           = perf_swevent_read,
4653         .unthrottle     = perf_swevent_void, /* hwc->interrupts already reset */
4654 };
4655
4656 #ifdef CONFIG_EVENT_TRACING
4657
4658 static int perf_tp_filter_match(struct perf_event *event,
4659                                 struct perf_sample_data *data)
4660 {
4661         void *record = data->raw->data;
4662
4663         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4664                 return 1;
4665         return 0;
4666 }
4667
4668 static int perf_tp_event_match(struct perf_event *event,
4669                                 struct perf_sample_data *data,
4670                                 struct pt_regs *regs)
4671 {
4672         /*
4673          * All tracepoints are from kernel-space.
4674          */
4675         if (event->attr.exclude_kernel)
4676                 return 0;
4677
4678         if (!perf_tp_filter_match(event, data))
4679                 return 0;
4680
4681         return 1;
4682 }
4683
4684 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4685                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4686 {
4687         struct perf_sample_data data;
4688         struct perf_event *event;
4689         struct hlist_node *node;
4690
4691         struct perf_raw_record raw = {
4692                 .size = entry_size,
4693                 .data = record,
4694         };
4695
4696         perf_sample_data_init(&data, addr);
4697         data.raw = &raw;
4698
4699         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4700                 if (perf_tp_event_match(event, &data, regs))
4701                         perf_swevent_add(event, count, 1, &data, regs);
4702         }
4703
4704         perf_swevent_put_recursion_context(rctx);
4705 }
4706 EXPORT_SYMBOL_GPL(perf_tp_event);
4707
4708 static void tp_perf_event_destroy(struct perf_event *event)
4709 {
4710         perf_trace_destroy(event);
4711 }
4712
4713 static int perf_tp_event_init(struct perf_event *event)
4714 {
4715         int err;
4716
4717         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4718                 return -ENOENT;
4719
4720         /*
4721          * Raw tracepoint data is a severe data leak, only allow root to
4722          * have these.
4723          */
4724         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4725                         perf_paranoid_tracepoint_raw() &&
4726                         !capable(CAP_SYS_ADMIN))
4727                 return -EPERM;
4728
4729         err = perf_trace_init(event);
4730         if (err)
4731                 return err;
4732
4733         event->destroy = tp_perf_event_destroy;
4734
4735         return 0;
4736 }
4737
4738 static struct pmu perf_tracepoint = {
4739         .event_init     = perf_tp_event_init,
4740         .enable         = perf_trace_enable,
4741         .disable        = perf_trace_disable,
4742         .start          = perf_swevent_int,
4743         .stop           = perf_swevent_void,
4744         .read           = perf_swevent_read,
4745         .unthrottle     = perf_swevent_void,
4746 };
4747
4748 static inline void perf_tp_register(void)
4749 {
4750         perf_pmu_register(&perf_tracepoint);
4751 }
4752
4753 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4754 {
4755         char *filter_str;
4756         int ret;
4757
4758         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4759                 return -EINVAL;
4760
4761         filter_str = strndup_user(arg, PAGE_SIZE);
4762         if (IS_ERR(filter_str))
4763                 return PTR_ERR(filter_str);
4764
4765         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4766
4767         kfree(filter_str);
4768         return ret;
4769 }
4770
4771 static void perf_event_free_filter(struct perf_event *event)
4772 {
4773         ftrace_profile_free_filter(event);
4774 }
4775
4776 #else
4777
4778 static inline void perf_tp_register(void)
4779 {
4780 }
4781
4782 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4783 {
4784         return -ENOENT;
4785 }
4786
4787 static void perf_event_free_filter(struct perf_event *event)
4788 {
4789 }
4790
4791 #endif /* CONFIG_EVENT_TRACING */
4792
4793 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4794 void perf_bp_event(struct perf_event *bp, void *data)
4795 {
4796         struct perf_sample_data sample;
4797         struct pt_regs *regs = data;
4798
4799         perf_sample_data_init(&sample, bp->attr.bp_addr);
4800
4801         if (!perf_exclude_event(bp, regs))
4802                 perf_swevent_add(bp, 1, 1, &sample, regs);
4803 }
4804 #endif
4805
4806 /*
4807  * hrtimer based swevent callback
4808  */
4809
4810 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4811 {
4812         enum hrtimer_restart ret = HRTIMER_RESTART;
4813         struct perf_sample_data data;
4814         struct pt_regs *regs;
4815         struct perf_event *event;
4816         u64 period;
4817
4818         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4819         event->pmu->read(event);
4820
4821         perf_sample_data_init(&data, 0);
4822         data.period = event->hw.last_period;
4823         regs = get_irq_regs();
4824
4825         if (regs && !perf_exclude_event(event, regs)) {
4826                 if (!(event->attr.exclude_idle && current->pid == 0))
4827                         if (perf_event_overflow(event, 0, &data, regs))
4828                                 ret = HRTIMER_NORESTART;
4829         }
4830
4831         period = max_t(u64, 10000, event->hw.sample_period);
4832         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4833
4834         return ret;
4835 }
4836
4837 static void perf_swevent_start_hrtimer(struct perf_event *event)
4838 {
4839         struct hw_perf_event *hwc = &event->hw;
4840
4841         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4842         hwc->hrtimer.function = perf_swevent_hrtimer;
4843         if (hwc->sample_period) {
4844                 u64 period;
4845
4846                 if (hwc->remaining) {
4847                         if (hwc->remaining < 0)
4848                                 period = 10000;
4849                         else
4850                                 period = hwc->remaining;
4851                         hwc->remaining = 0;
4852                 } else {
4853                         period = max_t(u64, 10000, hwc->sample_period);
4854                 }
4855                 __hrtimer_start_range_ns(&hwc->hrtimer,
4856                                 ns_to_ktime(period), 0,
4857                                 HRTIMER_MODE_REL, 0);
4858         }
4859 }
4860
4861 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4862 {
4863         struct hw_perf_event *hwc = &event->hw;
4864
4865         if (hwc->sample_period) {
4866                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4867                 hwc->remaining = ktime_to_ns(remaining);
4868
4869                 hrtimer_cancel(&hwc->hrtimer);
4870         }
4871 }
4872
4873 /*
4874  * Software event: cpu wall time clock
4875  */
4876
4877 static void cpu_clock_event_update(struct perf_event *event)
4878 {
4879         int cpu = raw_smp_processor_id();
4880         s64 prev;
4881         u64 now;
4882
4883         now = cpu_clock(cpu);
4884         prev = local64_xchg(&event->hw.prev_count, now);
4885         local64_add(now - prev, &event->count);
4886 }
4887
4888 static int cpu_clock_event_enable(struct perf_event *event)
4889 {
4890         struct hw_perf_event *hwc = &event->hw;
4891         int cpu = raw_smp_processor_id();
4892
4893         local64_set(&hwc->prev_count, cpu_clock(cpu));
4894         perf_swevent_start_hrtimer(event);
4895
4896         return 0;
4897 }
4898
4899 static void cpu_clock_event_disable(struct perf_event *event)
4900 {
4901         perf_swevent_cancel_hrtimer(event);
4902         cpu_clock_event_update(event);
4903 }
4904
4905 static void cpu_clock_event_read(struct perf_event *event)
4906 {
4907         cpu_clock_event_update(event);
4908 }
4909
4910 static int cpu_clock_event_init(struct perf_event *event)
4911 {
4912         if (event->attr.type != PERF_TYPE_SOFTWARE)
4913                 return -ENOENT;
4914
4915         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4916                 return -ENOENT;
4917
4918         return 0;
4919 }
4920
4921 static struct pmu perf_cpu_clock = {
4922         .event_init     = cpu_clock_event_init,
4923         .enable         = cpu_clock_event_enable,
4924         .disable        = cpu_clock_event_disable,
4925         .read           = cpu_clock_event_read,
4926 };
4927
4928 /*
4929  * Software event: task time clock
4930  */
4931
4932 static void task_clock_event_update(struct perf_event *event, u64 now)
4933 {
4934         u64 prev;
4935         s64 delta;
4936
4937         prev = local64_xchg(&event->hw.prev_count, now);
4938         delta = now - prev;
4939         local64_add(delta, &event->count);
4940 }
4941
4942 static int task_clock_event_enable(struct perf_event *event)
4943 {
4944         struct hw_perf_event *hwc = &event->hw;
4945         u64 now;
4946
4947         now = event->ctx->time;
4948
4949         local64_set(&hwc->prev_count, now);
4950
4951         perf_swevent_start_hrtimer(event);
4952
4953         return 0;
4954 }
4955
4956 static void task_clock_event_disable(struct perf_event *event)
4957 {
4958         perf_swevent_cancel_hrtimer(event);
4959         task_clock_event_update(event, event->ctx->time);
4960
4961 }
4962
4963 static void task_clock_event_read(struct perf_event *event)
4964 {
4965         u64 time;
4966
4967         if (!in_nmi()) {
4968                 update_context_time(event->ctx);
4969                 time = event->ctx->time;
4970         } else {
4971                 u64 now = perf_clock();
4972                 u64 delta = now - event->ctx->timestamp;
4973                 time = event->ctx->time + delta;
4974         }
4975
4976         task_clock_event_update(event, time);
4977 }
4978
4979 static int task_clock_event_init(struct perf_event *event)
4980 {
4981         if (event->attr.type != PERF_TYPE_SOFTWARE)
4982                 return -ENOENT;
4983
4984         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
4985                 return -ENOENT;
4986
4987         return 0;
4988 }
4989
4990 static struct pmu perf_task_clock = {
4991         .event_init     = task_clock_event_init,
4992         .enable         = task_clock_event_enable,
4993         .disable        = task_clock_event_disable,
4994         .read           = task_clock_event_read,
4995 };
4996
4997 static LIST_HEAD(pmus);
4998 static DEFINE_MUTEX(pmus_lock);
4999 static struct srcu_struct pmus_srcu;
5000
5001 int perf_pmu_register(struct pmu *pmu)
5002 {
5003         mutex_lock(&pmus_lock);
5004         list_add_rcu(&pmu->entry, &pmus);
5005         mutex_unlock(&pmus_lock);
5006
5007         return 0;
5008 }
5009
5010 void perf_pmu_unregister(struct pmu *pmu)
5011 {
5012         mutex_lock(&pmus_lock);
5013         list_del_rcu(&pmu->entry);
5014         mutex_unlock(&pmus_lock);
5015
5016         synchronize_srcu(&pmus_srcu);
5017 }
5018
5019 struct pmu *perf_init_event(struct perf_event *event)
5020 {
5021         struct pmu *pmu = NULL;
5022         int idx;
5023
5024         idx = srcu_read_lock(&pmus_srcu);
5025         list_for_each_entry_rcu(pmu, &pmus, entry) {
5026                 int ret = pmu->event_init(event);
5027                 if (!ret)
5028                         break;
5029                 if (ret != -ENOENT) {
5030                         pmu = ERR_PTR(ret);
5031                         break;
5032                 }
5033         }
5034         srcu_read_unlock(&pmus_srcu, idx);
5035
5036         return pmu;
5037 }
5038
5039 /*
5040  * Allocate and initialize a event structure
5041  */
5042 static struct perf_event *
5043 perf_event_alloc(struct perf_event_attr *attr,
5044                    int cpu,
5045                    struct perf_event_context *ctx,
5046                    struct perf_event *group_leader,
5047                    struct perf_event *parent_event,
5048                    perf_overflow_handler_t overflow_handler,
5049                    gfp_t gfpflags)
5050 {
5051         struct pmu *pmu;
5052         struct perf_event *event;
5053         struct hw_perf_event *hwc;
5054         long err;
5055
5056         event = kzalloc(sizeof(*event), gfpflags);
5057         if (!event)
5058                 return ERR_PTR(-ENOMEM);
5059
5060         /*
5061          * Single events are their own group leaders, with an
5062          * empty sibling list:
5063          */
5064         if (!group_leader)
5065                 group_leader = event;
5066
5067         mutex_init(&event->child_mutex);
5068         INIT_LIST_HEAD(&event->child_list);
5069
5070         INIT_LIST_HEAD(&event->group_entry);
5071         INIT_LIST_HEAD(&event->event_entry);
5072         INIT_LIST_HEAD(&event->sibling_list);
5073         init_waitqueue_head(&event->waitq);
5074
5075         mutex_init(&event->mmap_mutex);
5076
5077         event->cpu              = cpu;
5078         event->attr             = *attr;
5079         event->group_leader     = group_leader;
5080         event->pmu              = NULL;
5081         event->ctx              = ctx;
5082         event->oncpu            = -1;
5083
5084         event->parent           = parent_event;
5085
5086         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5087         event->id               = atomic64_inc_return(&perf_event_id);
5088
5089         event->state            = PERF_EVENT_STATE_INACTIVE;
5090
5091         if (!overflow_handler && parent_event)
5092                 overflow_handler = parent_event->overflow_handler;
5093         
5094         event->overflow_handler = overflow_handler;
5095
5096         if (attr->disabled)
5097                 event->state = PERF_EVENT_STATE_OFF;
5098
5099         pmu = NULL;
5100
5101         hwc = &event->hw;
5102         hwc->sample_period = attr->sample_period;
5103         if (attr->freq && attr->sample_freq)
5104                 hwc->sample_period = 1;
5105         hwc->last_period = hwc->sample_period;
5106
5107         local64_set(&hwc->period_left, hwc->sample_period);
5108
5109         /*
5110          * we currently do not support PERF_FORMAT_GROUP on inherited events
5111          */
5112         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5113                 goto done;
5114
5115         pmu = perf_init_event(event);
5116
5117 done:
5118         err = 0;
5119         if (!pmu)
5120                 err = -EINVAL;
5121         else if (IS_ERR(pmu))
5122                 err = PTR_ERR(pmu);
5123
5124         if (err) {
5125                 if (event->ns)
5126                         put_pid_ns(event->ns);
5127                 kfree(event);
5128                 return ERR_PTR(err);
5129         }
5130
5131         event->pmu = pmu;
5132
5133         if (!event->parent) {
5134                 atomic_inc(&nr_events);
5135                 if (event->attr.mmap || event->attr.mmap_data)
5136                         atomic_inc(&nr_mmap_events);
5137                 if (event->attr.comm)
5138                         atomic_inc(&nr_comm_events);
5139                 if (event->attr.task)
5140                         atomic_inc(&nr_task_events);
5141                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5142                         err = get_callchain_buffers();
5143                         if (err) {
5144                                 free_event(event);
5145                                 return ERR_PTR(err);
5146                         }
5147                 }
5148         }
5149
5150         return event;
5151 }
5152
5153 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5154                           struct perf_event_attr *attr)
5155 {
5156         u32 size;
5157         int ret;
5158
5159         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5160                 return -EFAULT;
5161
5162         /*
5163          * zero the full structure, so that a short copy will be nice.
5164          */
5165         memset(attr, 0, sizeof(*attr));
5166
5167         ret = get_user(size, &uattr->size);
5168         if (ret)
5169                 return ret;
5170
5171         if (size > PAGE_SIZE)   /* silly large */
5172                 goto err_size;
5173
5174         if (!size)              /* abi compat */
5175                 size = PERF_ATTR_SIZE_VER0;
5176
5177         if (size < PERF_ATTR_SIZE_VER0)
5178                 goto err_size;
5179
5180         /*
5181          * If we're handed a bigger struct than we know of,
5182          * ensure all the unknown bits are 0 - i.e. new
5183          * user-space does not rely on any kernel feature
5184          * extensions we dont know about yet.
5185          */
5186         if (size > sizeof(*attr)) {
5187                 unsigned char __user *addr;
5188                 unsigned char __user *end;
5189                 unsigned char val;
5190
5191                 addr = (void __user *)uattr + sizeof(*attr);
5192                 end  = (void __user *)uattr + size;
5193
5194                 for (; addr < end; addr++) {
5195                         ret = get_user(val, addr);
5196                         if (ret)
5197                                 return ret;
5198                         if (val)
5199                                 goto err_size;
5200                 }
5201                 size = sizeof(*attr);
5202         }
5203
5204         ret = copy_from_user(attr, uattr, size);
5205         if (ret)
5206                 return -EFAULT;
5207
5208         /*
5209          * If the type exists, the corresponding creation will verify
5210          * the attr->config.
5211          */
5212         if (attr->type >= PERF_TYPE_MAX)
5213                 return -EINVAL;
5214
5215         if (attr->__reserved_1)
5216                 return -EINVAL;
5217
5218         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5219                 return -EINVAL;
5220
5221         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5222                 return -EINVAL;
5223
5224 out:
5225         return ret;
5226
5227 err_size:
5228         put_user(sizeof(*attr), &uattr->size);
5229         ret = -E2BIG;
5230         goto out;
5231 }
5232
5233 static int
5234 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5235 {
5236         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5237         int ret = -EINVAL;
5238
5239         if (!output_event)
5240                 goto set;
5241
5242         /* don't allow circular references */
5243         if (event == output_event)
5244                 goto out;
5245
5246         /*
5247          * Don't allow cross-cpu buffers
5248          */
5249         if (output_event->cpu != event->cpu)
5250                 goto out;
5251
5252         /*
5253          * If its not a per-cpu buffer, it must be the same task.
5254          */
5255         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5256                 goto out;
5257
5258 set:
5259         mutex_lock(&event->mmap_mutex);
5260         /* Can't redirect output if we've got an active mmap() */
5261         if (atomic_read(&event->mmap_count))
5262                 goto unlock;
5263
5264         if (output_event) {
5265                 /* get the buffer we want to redirect to */
5266                 buffer = perf_buffer_get(output_event);
5267                 if (!buffer)
5268                         goto unlock;
5269         }
5270
5271         old_buffer = event->buffer;
5272         rcu_assign_pointer(event->buffer, buffer);
5273         ret = 0;
5274 unlock:
5275         mutex_unlock(&event->mmap_mutex);
5276
5277         if (old_buffer)
5278                 perf_buffer_put(old_buffer);
5279 out:
5280         return ret;
5281 }
5282
5283 /**
5284  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5285  *
5286  * @attr_uptr:  event_id type attributes for monitoring/sampling
5287  * @pid:                target pid
5288  * @cpu:                target cpu
5289  * @group_fd:           group leader event fd
5290  */
5291 SYSCALL_DEFINE5(perf_event_open,
5292                 struct perf_event_attr __user *, attr_uptr,
5293                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5294 {
5295         struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5296         struct perf_event_attr attr;
5297         struct perf_event_context *ctx;
5298         struct file *event_file = NULL;
5299         struct file *group_file = NULL;
5300         int event_fd;
5301         int fput_needed = 0;
5302         int err;
5303
5304         /* for future expandability... */
5305         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5306                 return -EINVAL;
5307
5308         err = perf_copy_attr(attr_uptr, &attr);
5309         if (err)
5310                 return err;
5311
5312         if (!attr.exclude_kernel) {
5313                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5314                         return -EACCES;
5315         }
5316
5317         if (attr.freq) {
5318                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5319                         return -EINVAL;
5320         }
5321
5322         event_fd = get_unused_fd_flags(O_RDWR);
5323         if (event_fd < 0)
5324                 return event_fd;
5325
5326         /*
5327          * Get the target context (task or percpu):
5328          */
5329         ctx = find_get_context(pid, cpu);
5330         if (IS_ERR(ctx)) {
5331                 err = PTR_ERR(ctx);
5332                 goto err_fd;
5333         }
5334
5335         if (group_fd != -1) {
5336                 group_leader = perf_fget_light(group_fd, &fput_needed);
5337                 if (IS_ERR(group_leader)) {
5338                         err = PTR_ERR(group_leader);
5339                         goto err_put_context;
5340                 }
5341                 group_file = group_leader->filp;
5342                 if (flags & PERF_FLAG_FD_OUTPUT)
5343                         output_event = group_leader;
5344                 if (flags & PERF_FLAG_FD_NO_GROUP)
5345                         group_leader = NULL;
5346         }
5347
5348         /*
5349          * Look up the group leader (we will attach this event to it):
5350          */
5351         if (group_leader) {
5352                 err = -EINVAL;
5353
5354                 /*
5355                  * Do not allow a recursive hierarchy (this new sibling
5356                  * becoming part of another group-sibling):
5357                  */
5358                 if (group_leader->group_leader != group_leader)
5359                         goto err_put_context;
5360                 /*
5361                  * Do not allow to attach to a group in a different
5362                  * task or CPU context:
5363                  */
5364                 if (group_leader->ctx != ctx)
5365                         goto err_put_context;
5366                 /*
5367                  * Only a group leader can be exclusive or pinned
5368                  */
5369                 if (attr.exclusive || attr.pinned)
5370                         goto err_put_context;
5371         }
5372
5373         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5374                                      NULL, NULL, GFP_KERNEL);
5375         if (IS_ERR(event)) {
5376                 err = PTR_ERR(event);
5377                 goto err_put_context;
5378         }
5379
5380         if (output_event) {
5381                 err = perf_event_set_output(event, output_event);
5382                 if (err)
5383                         goto err_free_put_context;
5384         }
5385
5386         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5387         if (IS_ERR(event_file)) {
5388                 err = PTR_ERR(event_file);
5389                 goto err_free_put_context;
5390         }
5391
5392         event->filp = event_file;
5393         WARN_ON_ONCE(ctx->parent_ctx);
5394         mutex_lock(&ctx->mutex);
5395         perf_install_in_context(ctx, event, cpu);
5396         ++ctx->generation;
5397         mutex_unlock(&ctx->mutex);
5398
5399         event->owner = current;
5400         get_task_struct(current);
5401         mutex_lock(&current->perf_event_mutex);
5402         list_add_tail(&event->owner_entry, &current->perf_event_list);
5403         mutex_unlock(&current->perf_event_mutex);
5404
5405         /*
5406          * Drop the reference on the group_event after placing the
5407          * new event on the sibling_list. This ensures destruction
5408          * of the group leader will find the pointer to itself in
5409          * perf_group_detach().
5410          */
5411         fput_light(group_file, fput_needed);
5412         fd_install(event_fd, event_file);
5413         return event_fd;
5414
5415 err_free_put_context:
5416         free_event(event);
5417 err_put_context:
5418         fput_light(group_file, fput_needed);
5419         put_ctx(ctx);
5420 err_fd:
5421         put_unused_fd(event_fd);
5422         return err;
5423 }
5424
5425 /**
5426  * perf_event_create_kernel_counter
5427  *
5428  * @attr: attributes of the counter to create
5429  * @cpu: cpu in which the counter is bound
5430  * @pid: task to profile
5431  */
5432 struct perf_event *
5433 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5434                                  pid_t pid,
5435                                  perf_overflow_handler_t overflow_handler)
5436 {
5437         struct perf_event *event;
5438         struct perf_event_context *ctx;
5439         int err;
5440
5441         /*
5442          * Get the target context (task or percpu):
5443          */
5444
5445         ctx = find_get_context(pid, cpu);
5446         if (IS_ERR(ctx)) {
5447                 err = PTR_ERR(ctx);
5448                 goto err_exit;
5449         }
5450
5451         event = perf_event_alloc(attr, cpu, ctx, NULL,
5452                                  NULL, overflow_handler, GFP_KERNEL);
5453         if (IS_ERR(event)) {
5454                 err = PTR_ERR(event);
5455                 goto err_put_context;
5456         }
5457
5458         event->filp = NULL;
5459         WARN_ON_ONCE(ctx->parent_ctx);
5460         mutex_lock(&ctx->mutex);
5461         perf_install_in_context(ctx, event, cpu);
5462         ++ctx->generation;
5463         mutex_unlock(&ctx->mutex);
5464
5465         event->owner = current;
5466         get_task_struct(current);
5467         mutex_lock(&current->perf_event_mutex);
5468         list_add_tail(&event->owner_entry, &current->perf_event_list);
5469         mutex_unlock(&current->perf_event_mutex);
5470
5471         return event;
5472
5473  err_put_context:
5474         put_ctx(ctx);
5475  err_exit:
5476         return ERR_PTR(err);
5477 }
5478 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5479
5480 /*
5481  * inherit a event from parent task to child task:
5482  */
5483 static struct perf_event *
5484 inherit_event(struct perf_event *parent_event,
5485               struct task_struct *parent,
5486               struct perf_event_context *parent_ctx,
5487               struct task_struct *child,
5488               struct perf_event *group_leader,
5489               struct perf_event_context *child_ctx)
5490 {
5491         struct perf_event *child_event;
5492
5493         /*
5494          * Instead of creating recursive hierarchies of events,
5495          * we link inherited events back to the original parent,
5496          * which has a filp for sure, which we use as the reference
5497          * count:
5498          */
5499         if (parent_event->parent)
5500                 parent_event = parent_event->parent;
5501
5502         child_event = perf_event_alloc(&parent_event->attr,
5503                                            parent_event->cpu, child_ctx,
5504                                            group_leader, parent_event,
5505                                            NULL, GFP_KERNEL);
5506         if (IS_ERR(child_event))
5507                 return child_event;
5508         get_ctx(child_ctx);
5509
5510         /*
5511          * Make the child state follow the state of the parent event,
5512          * not its attr.disabled bit.  We hold the parent's mutex,
5513          * so we won't race with perf_event_{en, dis}able_family.
5514          */
5515         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5516                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5517         else
5518                 child_event->state = PERF_EVENT_STATE_OFF;
5519
5520         if (parent_event->attr.freq) {
5521                 u64 sample_period = parent_event->hw.sample_period;
5522                 struct hw_perf_event *hwc = &child_event->hw;
5523
5524                 hwc->sample_period = sample_period;
5525                 hwc->last_period   = sample_period;
5526
5527                 local64_set(&hwc->period_left, sample_period);
5528         }
5529
5530         child_event->overflow_handler = parent_event->overflow_handler;
5531
5532         /*
5533          * Link it up in the child's context:
5534          */
5535         add_event_to_ctx(child_event, child_ctx);
5536
5537         /*
5538          * Get a reference to the parent filp - we will fput it
5539          * when the child event exits. This is safe to do because
5540          * we are in the parent and we know that the filp still
5541          * exists and has a nonzero count:
5542          */
5543         atomic_long_inc(&parent_event->filp->f_count);
5544
5545         /*
5546          * Link this into the parent event's child list
5547          */
5548         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5549         mutex_lock(&parent_event->child_mutex);
5550         list_add_tail(&child_event->child_list, &parent_event->child_list);
5551         mutex_unlock(&parent_event->child_mutex);
5552
5553         return child_event;
5554 }
5555
5556 static int inherit_group(struct perf_event *parent_event,
5557               struct task_struct *parent,
5558               struct perf_event_context *parent_ctx,
5559               struct task_struct *child,
5560               struct perf_event_context *child_ctx)
5561 {
5562         struct perf_event *leader;
5563         struct perf_event *sub;
5564         struct perf_event *child_ctr;
5565
5566         leader = inherit_event(parent_event, parent, parent_ctx,
5567                                  child, NULL, child_ctx);
5568         if (IS_ERR(leader))
5569                 return PTR_ERR(leader);
5570         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5571                 child_ctr = inherit_event(sub, parent, parent_ctx,
5572                                             child, leader, child_ctx);
5573                 if (IS_ERR(child_ctr))
5574                         return PTR_ERR(child_ctr);
5575         }
5576         return 0;
5577 }
5578
5579 static void sync_child_event(struct perf_event *child_event,
5580                                struct task_struct *child)
5581 {
5582         struct perf_event *parent_event = child_event->parent;
5583         u64 child_val;
5584
5585         if (child_event->attr.inherit_stat)
5586                 perf_event_read_event(child_event, child);
5587
5588         child_val = perf_event_count(child_event);
5589
5590         /*
5591          * Add back the child's count to the parent's count:
5592          */
5593         atomic64_add(child_val, &parent_event->child_count);
5594         atomic64_add(child_event->total_time_enabled,
5595                      &parent_event->child_total_time_enabled);
5596         atomic64_add(child_event->total_time_running,
5597                      &parent_event->child_total_time_running);
5598
5599         /*
5600          * Remove this event from the parent's list
5601          */
5602         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5603         mutex_lock(&parent_event->child_mutex);
5604         list_del_init(&child_event->child_list);
5605         mutex_unlock(&parent_event->child_mutex);
5606
5607         /*
5608          * Release the parent event, if this was the last
5609          * reference to it.
5610          */
5611         fput(parent_event->filp);
5612 }
5613
5614 static void
5615 __perf_event_exit_task(struct perf_event *child_event,
5616                          struct perf_event_context *child_ctx,
5617                          struct task_struct *child)
5618 {
5619         struct perf_event *parent_event;
5620
5621         perf_event_remove_from_context(child_event);
5622
5623         parent_event = child_event->parent;
5624         /*
5625          * It can happen that parent exits first, and has events
5626          * that are still around due to the child reference. These
5627          * events need to be zapped - but otherwise linger.
5628          */
5629         if (parent_event) {
5630                 sync_child_event(child_event, child);
5631                 free_event(child_event);
5632         }
5633 }
5634
5635 /*
5636  * When a child task exits, feed back event values to parent events.
5637  */
5638 void perf_event_exit_task(struct task_struct *child)
5639 {
5640         struct perf_event *child_event, *tmp;
5641         struct perf_event_context *child_ctx;
5642         unsigned long flags;
5643
5644         if (likely(!child->perf_event_ctxp)) {
5645                 perf_event_task(child, NULL, 0);
5646                 return;
5647         }
5648
5649         local_irq_save(flags);
5650         /*
5651          * We can't reschedule here because interrupts are disabled,
5652          * and either child is current or it is a task that can't be
5653          * scheduled, so we are now safe from rescheduling changing
5654          * our context.
5655          */
5656         child_ctx = child->perf_event_ctxp;
5657         __perf_event_task_sched_out(child_ctx);
5658
5659         /*
5660          * Take the context lock here so that if find_get_context is
5661          * reading child->perf_event_ctxp, we wait until it has
5662          * incremented the context's refcount before we do put_ctx below.
5663          */
5664         raw_spin_lock(&child_ctx->lock);
5665         child->perf_event_ctxp = NULL;
5666         /*
5667          * If this context is a clone; unclone it so it can't get
5668          * swapped to another process while we're removing all
5669          * the events from it.
5670          */
5671         unclone_ctx(child_ctx);
5672         update_context_time(child_ctx);
5673         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5674
5675         /*
5676          * Report the task dead after unscheduling the events so that we
5677          * won't get any samples after PERF_RECORD_EXIT. We can however still
5678          * get a few PERF_RECORD_READ events.
5679          */
5680         perf_event_task(child, child_ctx, 0);
5681
5682         /*
5683          * We can recurse on the same lock type through:
5684          *
5685          *   __perf_event_exit_task()
5686          *     sync_child_event()
5687          *       fput(parent_event->filp)
5688          *         perf_release()
5689          *           mutex_lock(&ctx->mutex)
5690          *
5691          * But since its the parent context it won't be the same instance.
5692          */
5693         mutex_lock(&child_ctx->mutex);
5694
5695 again:
5696         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5697                                  group_entry)
5698                 __perf_event_exit_task(child_event, child_ctx, child);
5699
5700         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5701                                  group_entry)
5702                 __perf_event_exit_task(child_event, child_ctx, child);
5703
5704         /*
5705          * If the last event was a group event, it will have appended all
5706          * its siblings to the list, but we obtained 'tmp' before that which
5707          * will still point to the list head terminating the iteration.
5708          */
5709         if (!list_empty(&child_ctx->pinned_groups) ||
5710             !list_empty(&child_ctx->flexible_groups))
5711                 goto again;
5712
5713         mutex_unlock(&child_ctx->mutex);
5714
5715         put_ctx(child_ctx);
5716 }
5717
5718 static void perf_free_event(struct perf_event *event,
5719                             struct perf_event_context *ctx)
5720 {
5721         struct perf_event *parent = event->parent;
5722
5723         if (WARN_ON_ONCE(!parent))
5724                 return;
5725
5726         mutex_lock(&parent->child_mutex);
5727         list_del_init(&event->child_list);
5728         mutex_unlock(&parent->child_mutex);
5729
5730         fput(parent->filp);
5731
5732         perf_group_detach(event);
5733         list_del_event(event, ctx);
5734         free_event(event);
5735 }
5736
5737 /*
5738  * free an unexposed, unused context as created by inheritance by
5739  * init_task below, used by fork() in case of fail.
5740  */
5741 void perf_event_free_task(struct task_struct *task)
5742 {
5743         struct perf_event_context *ctx = task->perf_event_ctxp;
5744         struct perf_event *event, *tmp;
5745
5746         if (!ctx)
5747                 return;
5748
5749         mutex_lock(&ctx->mutex);
5750 again:
5751         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5752                 perf_free_event(event, ctx);
5753
5754         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5755                                  group_entry)
5756                 perf_free_event(event, ctx);
5757
5758         if (!list_empty(&ctx->pinned_groups) ||
5759             !list_empty(&ctx->flexible_groups))
5760                 goto again;
5761
5762         mutex_unlock(&ctx->mutex);
5763
5764         put_ctx(ctx);
5765 }
5766
5767 static int
5768 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5769                    struct perf_event_context *parent_ctx,
5770                    struct task_struct *child,
5771                    int *inherited_all)
5772 {
5773         int ret;
5774         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5775
5776         if (!event->attr.inherit) {
5777                 *inherited_all = 0;
5778                 return 0;
5779         }
5780
5781         if (!child_ctx) {
5782                 /*
5783                  * This is executed from the parent task context, so
5784                  * inherit events that have been marked for cloning.
5785                  * First allocate and initialize a context for the
5786                  * child.
5787                  */
5788
5789                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5790                                     GFP_KERNEL);
5791                 if (!child_ctx)
5792                         return -ENOMEM;
5793
5794                 __perf_event_init_context(child_ctx, child);
5795                 child->perf_event_ctxp = child_ctx;
5796                 get_task_struct(child);
5797         }
5798
5799         ret = inherit_group(event, parent, parent_ctx,
5800                             child, child_ctx);
5801
5802         if (ret)
5803                 *inherited_all = 0;
5804
5805         return ret;
5806 }
5807
5808
5809 /*
5810  * Initialize the perf_event context in task_struct
5811  */
5812 int perf_event_init_task(struct task_struct *child)
5813 {
5814         struct perf_event_context *child_ctx, *parent_ctx;
5815         struct perf_event_context *cloned_ctx;
5816         struct perf_event *event;
5817         struct task_struct *parent = current;
5818         int inherited_all = 1;
5819         int ret = 0;
5820
5821         child->perf_event_ctxp = NULL;
5822
5823         mutex_init(&child->perf_event_mutex);
5824         INIT_LIST_HEAD(&child->perf_event_list);
5825
5826         if (likely(!parent->perf_event_ctxp))
5827                 return 0;
5828
5829         /*
5830          * If the parent's context is a clone, pin it so it won't get
5831          * swapped under us.
5832          */
5833         parent_ctx = perf_pin_task_context(parent);
5834
5835         /*
5836          * No need to check if parent_ctx != NULL here; since we saw
5837          * it non-NULL earlier, the only reason for it to become NULL
5838          * is if we exit, and since we're currently in the middle of
5839          * a fork we can't be exiting at the same time.
5840          */
5841
5842         /*
5843          * Lock the parent list. No need to lock the child - not PID
5844          * hashed yet and not running, so nobody can access it.
5845          */
5846         mutex_lock(&parent_ctx->mutex);
5847
5848         /*
5849          * We dont have to disable NMIs - we are only looking at
5850          * the list, not manipulating it:
5851          */
5852         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5853                 ret = inherit_task_group(event, parent, parent_ctx, child,
5854                                          &inherited_all);
5855                 if (ret)
5856                         break;
5857         }
5858
5859         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5860                 ret = inherit_task_group(event, parent, parent_ctx, child,
5861                                          &inherited_all);
5862                 if (ret)
5863                         break;
5864         }
5865
5866         child_ctx = child->perf_event_ctxp;
5867
5868         if (child_ctx && inherited_all) {
5869                 /*
5870                  * Mark the child context as a clone of the parent
5871                  * context, or of whatever the parent is a clone of.
5872                  * Note that if the parent is a clone, it could get
5873                  * uncloned at any point, but that doesn't matter
5874                  * because the list of events and the generation
5875                  * count can't have changed since we took the mutex.
5876                  */
5877                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5878                 if (cloned_ctx) {
5879                         child_ctx->parent_ctx = cloned_ctx;
5880                         child_ctx->parent_gen = parent_ctx->parent_gen;
5881                 } else {
5882                         child_ctx->parent_ctx = parent_ctx;
5883                         child_ctx->parent_gen = parent_ctx->generation;
5884                 }
5885                 get_ctx(child_ctx->parent_ctx);
5886         }
5887
5888         mutex_unlock(&parent_ctx->mutex);
5889
5890         perf_unpin_context(parent_ctx);
5891
5892         return ret;
5893 }
5894
5895 static void __init perf_event_init_all_cpus(void)
5896 {
5897         int cpu;
5898         struct perf_cpu_context *cpuctx;
5899
5900         for_each_possible_cpu(cpu) {
5901                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5902                 mutex_init(&cpuctx->hlist_mutex);
5903                 __perf_event_init_context(&cpuctx->ctx, NULL);
5904         }
5905 }
5906
5907 static void __cpuinit perf_event_init_cpu(int cpu)
5908 {
5909         struct perf_cpu_context *cpuctx;
5910
5911         cpuctx = &per_cpu(perf_cpu_context, cpu);
5912
5913         spin_lock(&perf_resource_lock);
5914         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5915         spin_unlock(&perf_resource_lock);
5916
5917         mutex_lock(&cpuctx->hlist_mutex);
5918         if (cpuctx->hlist_refcount > 0) {
5919                 struct swevent_hlist *hlist;
5920
5921                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5922                 WARN_ON_ONCE(!hlist);
5923                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5924         }
5925         mutex_unlock(&cpuctx->hlist_mutex);
5926 }
5927
5928 #ifdef CONFIG_HOTPLUG_CPU
5929 static void __perf_event_exit_cpu(void *info)
5930 {
5931         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5932         struct perf_event_context *ctx = &cpuctx->ctx;
5933         struct perf_event *event, *tmp;
5934
5935         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5936                 __perf_event_remove_from_context(event);
5937         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5938                 __perf_event_remove_from_context(event);
5939 }
5940 static void perf_event_exit_cpu(int cpu)
5941 {
5942         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5943         struct perf_event_context *ctx = &cpuctx->ctx;
5944
5945         mutex_lock(&cpuctx->hlist_mutex);
5946         swevent_hlist_release(cpuctx);
5947         mutex_unlock(&cpuctx->hlist_mutex);
5948
5949         mutex_lock(&ctx->mutex);
5950         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5951         mutex_unlock(&ctx->mutex);
5952 }
5953 #else
5954 static inline void perf_event_exit_cpu(int cpu) { }
5955 #endif
5956
5957 static int __cpuinit
5958 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5959 {
5960         unsigned int cpu = (long)hcpu;
5961
5962         switch (action & ~CPU_TASKS_FROZEN) {
5963
5964         case CPU_UP_PREPARE:
5965         case CPU_DOWN_FAILED:
5966                 perf_event_init_cpu(cpu);
5967                 break;
5968
5969         case CPU_UP_CANCELED:
5970         case CPU_DOWN_PREPARE:
5971                 perf_event_exit_cpu(cpu);
5972                 break;
5973
5974         default:
5975                 break;
5976         }
5977
5978         return NOTIFY_OK;
5979 }
5980
5981 void __init perf_event_init(void)
5982 {
5983         perf_event_init_all_cpus();
5984         init_srcu_struct(&pmus_srcu);
5985         perf_pmu_register(&perf_swevent);
5986         perf_pmu_register(&perf_cpu_clock);
5987         perf_pmu_register(&perf_task_clock);
5988         perf_tp_register();
5989         perf_cpu_notifier(perf_cpu_notify);
5990 }
5991
5992 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5993                                         struct sysdev_class_attribute *attr,
5994                                         char *buf)
5995 {
5996         return sprintf(buf, "%d\n", perf_reserved_percpu);
5997 }
5998
5999 static ssize_t
6000 perf_set_reserve_percpu(struct sysdev_class *class,
6001                         struct sysdev_class_attribute *attr,
6002                         const char *buf,
6003                         size_t count)
6004 {
6005         struct perf_cpu_context *cpuctx;
6006         unsigned long val;
6007         int err, cpu, mpt;
6008
6009         err = strict_strtoul(buf, 10, &val);
6010         if (err)
6011                 return err;
6012         if (val > perf_max_events)
6013                 return -EINVAL;
6014
6015         spin_lock(&perf_resource_lock);
6016         perf_reserved_percpu = val;
6017         for_each_online_cpu(cpu) {
6018                 cpuctx = &per_cpu(perf_cpu_context, cpu);
6019                 raw_spin_lock_irq(&cpuctx->ctx.lock);
6020                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
6021                           perf_max_events - perf_reserved_percpu);
6022                 cpuctx->max_pertask = mpt;
6023                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
6024         }
6025         spin_unlock(&perf_resource_lock);
6026
6027         return count;
6028 }
6029
6030 static ssize_t perf_show_overcommit(struct sysdev_class *class,
6031                                     struct sysdev_class_attribute *attr,
6032                                     char *buf)
6033 {
6034         return sprintf(buf, "%d\n", perf_overcommit);
6035 }
6036
6037 static ssize_t
6038 perf_set_overcommit(struct sysdev_class *class,
6039                     struct sysdev_class_attribute *attr,
6040                     const char *buf, size_t count)
6041 {
6042         unsigned long val;
6043         int err;
6044
6045         err = strict_strtoul(buf, 10, &val);
6046         if (err)
6047                 return err;
6048         if (val > 1)
6049                 return -EINVAL;
6050
6051         spin_lock(&perf_resource_lock);
6052         perf_overcommit = val;
6053         spin_unlock(&perf_resource_lock);
6054
6055         return count;
6056 }
6057
6058 static SYSDEV_CLASS_ATTR(
6059                                 reserve_percpu,
6060                                 0644,
6061                                 perf_show_reserve_percpu,
6062                                 perf_set_reserve_percpu
6063                         );
6064
6065 static SYSDEV_CLASS_ATTR(
6066                                 overcommit,
6067                                 0644,
6068                                 perf_show_overcommit,
6069                                 perf_set_overcommit
6070                         );
6071
6072 static struct attribute *perfclass_attrs[] = {
6073         &attr_reserve_percpu.attr,
6074         &attr_overcommit.attr,
6075         NULL
6076 };
6077
6078 static struct attribute_group perfclass_attr_group = {
6079         .attrs                  = perfclass_attrs,
6080         .name                   = "perf_events",
6081 };
6082
6083 static int __init perf_event_sysfs_init(void)
6084 {
6085         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
6086                                   &perfclass_attr_group);
6087 }
6088 device_initcall(perf_event_sysfs_init);