]> git.karo-electronics.de Git - mv-sheeva.git/blob - kernel/perf_event.c
perf: Factorize callchain context handling
[mv-sheeva.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39  * Each CPU has a list of per CPU events:
40  */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53  * perf event paranoia level:
54  *  -1 - not paranoid at all
55  *   0 - disallow raw tracepoint access for unpriv
56  *   1 - disallow cpu events for unpriv
57  *   2 - disallow kernel profiling for unpriv
58  */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64  * max perf event sample rate
65  */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71  * Lock for (sysadmin-configurable) event reservations:
72  */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76  * Architecture provided APIs - weak aliases:
77  */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80         return NULL;
81 }
82
83 void __weak hw_perf_disable(void)               { barrier(); }
84 void __weak hw_perf_enable(void)                { barrier(); }
85
86 void __weak perf_event_print_debug(void)        { }
87
88 static DEFINE_PER_CPU(int, perf_disable_count);
89
90 void perf_disable(void)
91 {
92         if (!__get_cpu_var(perf_disable_count)++)
93                 hw_perf_disable();
94 }
95
96 void perf_enable(void)
97 {
98         if (!--__get_cpu_var(perf_disable_count))
99                 hw_perf_enable();
100 }
101
102 static void get_ctx(struct perf_event_context *ctx)
103 {
104         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 }
106
107 static void free_ctx(struct rcu_head *head)
108 {
109         struct perf_event_context *ctx;
110
111         ctx = container_of(head, struct perf_event_context, rcu_head);
112         kfree(ctx);
113 }
114
115 static void put_ctx(struct perf_event_context *ctx)
116 {
117         if (atomic_dec_and_test(&ctx->refcount)) {
118                 if (ctx->parent_ctx)
119                         put_ctx(ctx->parent_ctx);
120                 if (ctx->task)
121                         put_task_struct(ctx->task);
122                 call_rcu(&ctx->rcu_head, free_ctx);
123         }
124 }
125
126 static void unclone_ctx(struct perf_event_context *ctx)
127 {
128         if (ctx->parent_ctx) {
129                 put_ctx(ctx->parent_ctx);
130                 ctx->parent_ctx = NULL;
131         }
132 }
133
134 /*
135  * If we inherit events we want to return the parent event id
136  * to userspace.
137  */
138 static u64 primary_event_id(struct perf_event *event)
139 {
140         u64 id = event->id;
141
142         if (event->parent)
143                 id = event->parent->id;
144
145         return id;
146 }
147
148 /*
149  * Get the perf_event_context for a task and lock it.
150  * This has to cope with with the fact that until it is locked,
151  * the context could get moved to another task.
152  */
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155 {
156         struct perf_event_context *ctx;
157
158         rcu_read_lock();
159  retry:
160         ctx = rcu_dereference(task->perf_event_ctxp);
161         if (ctx) {
162                 /*
163                  * If this context is a clone of another, it might
164                  * get swapped for another underneath us by
165                  * perf_event_task_sched_out, though the
166                  * rcu_read_lock() protects us from any context
167                  * getting freed.  Lock the context and check if it
168                  * got swapped before we could get the lock, and retry
169                  * if so.  If we locked the right context, then it
170                  * can't get swapped on us any more.
171                  */
172                 raw_spin_lock_irqsave(&ctx->lock, *flags);
173                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175                         goto retry;
176                 }
177
178                 if (!atomic_inc_not_zero(&ctx->refcount)) {
179                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180                         ctx = NULL;
181                 }
182         }
183         rcu_read_unlock();
184         return ctx;
185 }
186
187 /*
188  * Get the context for a task and increment its pin_count so it
189  * can't get swapped to another task.  This also increments its
190  * reference count so that the context can't get freed.
191  */
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193 {
194         struct perf_event_context *ctx;
195         unsigned long flags;
196
197         ctx = perf_lock_task_context(task, &flags);
198         if (ctx) {
199                 ++ctx->pin_count;
200                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
201         }
202         return ctx;
203 }
204
205 static void perf_unpin_context(struct perf_event_context *ctx)
206 {
207         unsigned long flags;
208
209         raw_spin_lock_irqsave(&ctx->lock, flags);
210         --ctx->pin_count;
211         raw_spin_unlock_irqrestore(&ctx->lock, flags);
212         put_ctx(ctx);
213 }
214
215 static inline u64 perf_clock(void)
216 {
217         return cpu_clock(raw_smp_processor_id());
218 }
219
220 /*
221  * Update the record of the current time in a context.
222  */
223 static void update_context_time(struct perf_event_context *ctx)
224 {
225         u64 now = perf_clock();
226
227         ctx->time += now - ctx->timestamp;
228         ctx->timestamp = now;
229 }
230
231 /*
232  * Update the total_time_enabled and total_time_running fields for a event.
233  */
234 static void update_event_times(struct perf_event *event)
235 {
236         struct perf_event_context *ctx = event->ctx;
237         u64 run_end;
238
239         if (event->state < PERF_EVENT_STATE_INACTIVE ||
240             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241                 return;
242
243         if (ctx->is_active)
244                 run_end = ctx->time;
245         else
246                 run_end = event->tstamp_stopped;
247
248         event->total_time_enabled = run_end - event->tstamp_enabled;
249
250         if (event->state == PERF_EVENT_STATE_INACTIVE)
251                 run_end = event->tstamp_stopped;
252         else
253                 run_end = ctx->time;
254
255         event->total_time_running = run_end - event->tstamp_running;
256 }
257
258 /*
259  * Update total_time_enabled and total_time_running for all events in a group.
260  */
261 static void update_group_times(struct perf_event *leader)
262 {
263         struct perf_event *event;
264
265         update_event_times(leader);
266         list_for_each_entry(event, &leader->sibling_list, group_entry)
267                 update_event_times(event);
268 }
269
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272 {
273         if (event->attr.pinned)
274                 return &ctx->pinned_groups;
275         else
276                 return &ctx->flexible_groups;
277 }
278
279 /*
280  * Add a event from the lists for its context.
281  * Must be called with ctx->mutex and ctx->lock held.
282  */
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285 {
286         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
287         event->attach_state |= PERF_ATTACH_CONTEXT;
288
289         /*
290          * If we're a stand alone event or group leader, we go to the context
291          * list, group events are kept attached to the group so that
292          * perf_group_detach can, at all times, locate all siblings.
293          */
294         if (event->group_leader == event) {
295                 struct list_head *list;
296
297                 if (is_software_event(event))
298                         event->group_flags |= PERF_GROUP_SOFTWARE;
299
300                 list = ctx_group_list(event, ctx);
301                 list_add_tail(&event->group_entry, list);
302         }
303
304         list_add_rcu(&event->event_entry, &ctx->event_list);
305         ctx->nr_events++;
306         if (event->attr.inherit_stat)
307                 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312         struct perf_event *group_leader = event->group_leader;
313
314         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315         event->attach_state |= PERF_ATTACH_GROUP;
316
317         if (group_leader == event)
318                 return;
319
320         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321                         !is_software_event(event))
322                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324         list_add_tail(&event->group_entry, &group_leader->sibling_list);
325         group_leader->nr_siblings++;
326 }
327
328 /*
329  * Remove a event from the lists for its context.
330  * Must be called with ctx->mutex and ctx->lock held.
331  */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335         /*
336          * We can have double detach due to exit/hot-unplug + close.
337          */
338         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339                 return;
340
341         event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343         ctx->nr_events--;
344         if (event->attr.inherit_stat)
345                 ctx->nr_stat--;
346
347         list_del_rcu(&event->event_entry);
348
349         if (event->group_leader == event)
350                 list_del_init(&event->group_entry);
351
352         update_group_times(event);
353
354         /*
355          * If event was in error state, then keep it
356          * that way, otherwise bogus counts will be
357          * returned on read(). The only way to get out
358          * of error state is by explicit re-enabling
359          * of the event
360          */
361         if (event->state > PERF_EVENT_STATE_OFF)
362                 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367         struct perf_event *sibling, *tmp;
368         struct list_head *list = NULL;
369
370         /*
371          * We can have double detach due to exit/hot-unplug + close.
372          */
373         if (!(event->attach_state & PERF_ATTACH_GROUP))
374                 return;
375
376         event->attach_state &= ~PERF_ATTACH_GROUP;
377
378         /*
379          * If this is a sibling, remove it from its group.
380          */
381         if (event->group_leader != event) {
382                 list_del_init(&event->group_entry);
383                 event->group_leader->nr_siblings--;
384                 return;
385         }
386
387         if (!list_empty(&event->group_entry))
388                 list = &event->group_entry;
389
390         /*
391          * If this was a group event with sibling events then
392          * upgrade the siblings to singleton events by adding them
393          * to whatever list we are on.
394          */
395         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396                 if (list)
397                         list_move_tail(&sibling->group_entry, list);
398                 sibling->group_leader = sibling;
399
400                 /* Inherit group flags from the previous leader */
401                 sibling->group_flags = event->group_flags;
402         }
403 }
404
405 static void
406 event_sched_out(struct perf_event *event,
407                   struct perf_cpu_context *cpuctx,
408                   struct perf_event_context *ctx)
409 {
410         if (event->state != PERF_EVENT_STATE_ACTIVE)
411                 return;
412
413         event->state = PERF_EVENT_STATE_INACTIVE;
414         if (event->pending_disable) {
415                 event->pending_disable = 0;
416                 event->state = PERF_EVENT_STATE_OFF;
417         }
418         event->tstamp_stopped = ctx->time;
419         event->pmu->disable(event);
420         event->oncpu = -1;
421
422         if (!is_software_event(event))
423                 cpuctx->active_oncpu--;
424         ctx->nr_active--;
425         if (event->attr.exclusive || !cpuctx->active_oncpu)
426                 cpuctx->exclusive = 0;
427 }
428
429 static void
430 group_sched_out(struct perf_event *group_event,
431                 struct perf_cpu_context *cpuctx,
432                 struct perf_event_context *ctx)
433 {
434         struct perf_event *event;
435
436         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
437                 return;
438
439         event_sched_out(group_event, cpuctx, ctx);
440
441         /*
442          * Schedule out siblings (if any):
443          */
444         list_for_each_entry(event, &group_event->sibling_list, group_entry)
445                 event_sched_out(event, cpuctx, ctx);
446
447         if (group_event->attr.exclusive)
448                 cpuctx->exclusive = 0;
449 }
450
451 /*
452  * Cross CPU call to remove a performance event
453  *
454  * We disable the event on the hardware level first. After that we
455  * remove it from the context list.
456  */
457 static void __perf_event_remove_from_context(void *info)
458 {
459         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
460         struct perf_event *event = info;
461         struct perf_event_context *ctx = event->ctx;
462
463         /*
464          * If this is a task context, we need to check whether it is
465          * the current task context of this cpu. If not it has been
466          * scheduled out before the smp call arrived.
467          */
468         if (ctx->task && cpuctx->task_ctx != ctx)
469                 return;
470
471         raw_spin_lock(&ctx->lock);
472         /*
473          * Protect the list operation against NMI by disabling the
474          * events on a global level.
475          */
476         perf_disable();
477
478         event_sched_out(event, cpuctx, ctx);
479
480         list_del_event(event, ctx);
481
482         if (!ctx->task) {
483                 /*
484                  * Allow more per task events with respect to the
485                  * reservation:
486                  */
487                 cpuctx->max_pertask =
488                         min(perf_max_events - ctx->nr_events,
489                             perf_max_events - perf_reserved_percpu);
490         }
491
492         perf_enable();
493         raw_spin_unlock(&ctx->lock);
494 }
495
496
497 /*
498  * Remove the event from a task's (or a CPU's) list of events.
499  *
500  * Must be called with ctx->mutex held.
501  *
502  * CPU events are removed with a smp call. For task events we only
503  * call when the task is on a CPU.
504  *
505  * If event->ctx is a cloned context, callers must make sure that
506  * every task struct that event->ctx->task could possibly point to
507  * remains valid.  This is OK when called from perf_release since
508  * that only calls us on the top-level context, which can't be a clone.
509  * When called from perf_event_exit_task, it's OK because the
510  * context has been detached from its task.
511  */
512 static void perf_event_remove_from_context(struct perf_event *event)
513 {
514         struct perf_event_context *ctx = event->ctx;
515         struct task_struct *task = ctx->task;
516
517         if (!task) {
518                 /*
519                  * Per cpu events are removed via an smp call and
520                  * the removal is always successful.
521                  */
522                 smp_call_function_single(event->cpu,
523                                          __perf_event_remove_from_context,
524                                          event, 1);
525                 return;
526         }
527
528 retry:
529         task_oncpu_function_call(task, __perf_event_remove_from_context,
530                                  event);
531
532         raw_spin_lock_irq(&ctx->lock);
533         /*
534          * If the context is active we need to retry the smp call.
535          */
536         if (ctx->nr_active && !list_empty(&event->group_entry)) {
537                 raw_spin_unlock_irq(&ctx->lock);
538                 goto retry;
539         }
540
541         /*
542          * The lock prevents that this context is scheduled in so we
543          * can remove the event safely, if the call above did not
544          * succeed.
545          */
546         if (!list_empty(&event->group_entry))
547                 list_del_event(event, ctx);
548         raw_spin_unlock_irq(&ctx->lock);
549 }
550
551 /*
552  * Cross CPU call to disable a performance event
553  */
554 static void __perf_event_disable(void *info)
555 {
556         struct perf_event *event = info;
557         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
558         struct perf_event_context *ctx = event->ctx;
559
560         /*
561          * If this is a per-task event, need to check whether this
562          * event's task is the current task on this cpu.
563          */
564         if (ctx->task && cpuctx->task_ctx != ctx)
565                 return;
566
567         raw_spin_lock(&ctx->lock);
568
569         /*
570          * If the event is on, turn it off.
571          * If it is in error state, leave it in error state.
572          */
573         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
574                 update_context_time(ctx);
575                 update_group_times(event);
576                 if (event == event->group_leader)
577                         group_sched_out(event, cpuctx, ctx);
578                 else
579                         event_sched_out(event, cpuctx, ctx);
580                 event->state = PERF_EVENT_STATE_OFF;
581         }
582
583         raw_spin_unlock(&ctx->lock);
584 }
585
586 /*
587  * Disable a event.
588  *
589  * If event->ctx is a cloned context, callers must make sure that
590  * every task struct that event->ctx->task could possibly point to
591  * remains valid.  This condition is satisifed when called through
592  * perf_event_for_each_child or perf_event_for_each because they
593  * hold the top-level event's child_mutex, so any descendant that
594  * goes to exit will block in sync_child_event.
595  * When called from perf_pending_event it's OK because event->ctx
596  * is the current context on this CPU and preemption is disabled,
597  * hence we can't get into perf_event_task_sched_out for this context.
598  */
599 void perf_event_disable(struct perf_event *event)
600 {
601         struct perf_event_context *ctx = event->ctx;
602         struct task_struct *task = ctx->task;
603
604         if (!task) {
605                 /*
606                  * Disable the event on the cpu that it's on
607                  */
608                 smp_call_function_single(event->cpu, __perf_event_disable,
609                                          event, 1);
610                 return;
611         }
612
613  retry:
614         task_oncpu_function_call(task, __perf_event_disable, event);
615
616         raw_spin_lock_irq(&ctx->lock);
617         /*
618          * If the event is still active, we need to retry the cross-call.
619          */
620         if (event->state == PERF_EVENT_STATE_ACTIVE) {
621                 raw_spin_unlock_irq(&ctx->lock);
622                 goto retry;
623         }
624
625         /*
626          * Since we have the lock this context can't be scheduled
627          * in, so we can change the state safely.
628          */
629         if (event->state == PERF_EVENT_STATE_INACTIVE) {
630                 update_group_times(event);
631                 event->state = PERF_EVENT_STATE_OFF;
632         }
633
634         raw_spin_unlock_irq(&ctx->lock);
635 }
636
637 static int
638 event_sched_in(struct perf_event *event,
639                  struct perf_cpu_context *cpuctx,
640                  struct perf_event_context *ctx)
641 {
642         if (event->state <= PERF_EVENT_STATE_OFF)
643                 return 0;
644
645         event->state = PERF_EVENT_STATE_ACTIVE;
646         event->oncpu = smp_processor_id();
647         /*
648          * The new state must be visible before we turn it on in the hardware:
649          */
650         smp_wmb();
651
652         if (event->pmu->enable(event)) {
653                 event->state = PERF_EVENT_STATE_INACTIVE;
654                 event->oncpu = -1;
655                 return -EAGAIN;
656         }
657
658         event->tstamp_running += ctx->time - event->tstamp_stopped;
659
660         if (!is_software_event(event))
661                 cpuctx->active_oncpu++;
662         ctx->nr_active++;
663
664         if (event->attr.exclusive)
665                 cpuctx->exclusive = 1;
666
667         return 0;
668 }
669
670 static int
671 group_sched_in(struct perf_event *group_event,
672                struct perf_cpu_context *cpuctx,
673                struct perf_event_context *ctx)
674 {
675         struct perf_event *event, *partial_group = NULL;
676         const struct pmu *pmu = group_event->pmu;
677         bool txn = false;
678
679         if (group_event->state == PERF_EVENT_STATE_OFF)
680                 return 0;
681
682         /* Check if group transaction availabe */
683         if (pmu->start_txn)
684                 txn = true;
685
686         if (txn)
687                 pmu->start_txn(pmu);
688
689         if (event_sched_in(group_event, cpuctx, ctx)) {
690                 if (txn)
691                         pmu->cancel_txn(pmu);
692                 return -EAGAIN;
693         }
694
695         /*
696          * Schedule in siblings as one group (if any):
697          */
698         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
699                 if (event_sched_in(event, cpuctx, ctx)) {
700                         partial_group = event;
701                         goto group_error;
702                 }
703         }
704
705         if (!txn || !pmu->commit_txn(pmu))
706                 return 0;
707
708 group_error:
709         /*
710          * Groups can be scheduled in as one unit only, so undo any
711          * partial group before returning:
712          */
713         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
714                 if (event == partial_group)
715                         break;
716                 event_sched_out(event, cpuctx, ctx);
717         }
718         event_sched_out(group_event, cpuctx, ctx);
719
720         if (txn)
721                 pmu->cancel_txn(pmu);
722
723         return -EAGAIN;
724 }
725
726 /*
727  * Work out whether we can put this event group on the CPU now.
728  */
729 static int group_can_go_on(struct perf_event *event,
730                            struct perf_cpu_context *cpuctx,
731                            int can_add_hw)
732 {
733         /*
734          * Groups consisting entirely of software events can always go on.
735          */
736         if (event->group_flags & PERF_GROUP_SOFTWARE)
737                 return 1;
738         /*
739          * If an exclusive group is already on, no other hardware
740          * events can go on.
741          */
742         if (cpuctx->exclusive)
743                 return 0;
744         /*
745          * If this group is exclusive and there are already
746          * events on the CPU, it can't go on.
747          */
748         if (event->attr.exclusive && cpuctx->active_oncpu)
749                 return 0;
750         /*
751          * Otherwise, try to add it if all previous groups were able
752          * to go on.
753          */
754         return can_add_hw;
755 }
756
757 static void add_event_to_ctx(struct perf_event *event,
758                                struct perf_event_context *ctx)
759 {
760         list_add_event(event, ctx);
761         perf_group_attach(event);
762         event->tstamp_enabled = ctx->time;
763         event->tstamp_running = ctx->time;
764         event->tstamp_stopped = ctx->time;
765 }
766
767 /*
768  * Cross CPU call to install and enable a performance event
769  *
770  * Must be called with ctx->mutex held
771  */
772 static void __perf_install_in_context(void *info)
773 {
774         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
775         struct perf_event *event = info;
776         struct perf_event_context *ctx = event->ctx;
777         struct perf_event *leader = event->group_leader;
778         int err;
779
780         /*
781          * If this is a task context, we need to check whether it is
782          * the current task context of this cpu. If not it has been
783          * scheduled out before the smp call arrived.
784          * Or possibly this is the right context but it isn't
785          * on this cpu because it had no events.
786          */
787         if (ctx->task && cpuctx->task_ctx != ctx) {
788                 if (cpuctx->task_ctx || ctx->task != current)
789                         return;
790                 cpuctx->task_ctx = ctx;
791         }
792
793         raw_spin_lock(&ctx->lock);
794         ctx->is_active = 1;
795         update_context_time(ctx);
796
797         /*
798          * Protect the list operation against NMI by disabling the
799          * events on a global level. NOP for non NMI based events.
800          */
801         perf_disable();
802
803         add_event_to_ctx(event, ctx);
804
805         if (event->cpu != -1 && event->cpu != smp_processor_id())
806                 goto unlock;
807
808         /*
809          * Don't put the event on if it is disabled or if
810          * it is in a group and the group isn't on.
811          */
812         if (event->state != PERF_EVENT_STATE_INACTIVE ||
813             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
814                 goto unlock;
815
816         /*
817          * An exclusive event can't go on if there are already active
818          * hardware events, and no hardware event can go on if there
819          * is already an exclusive event on.
820          */
821         if (!group_can_go_on(event, cpuctx, 1))
822                 err = -EEXIST;
823         else
824                 err = event_sched_in(event, cpuctx, ctx);
825
826         if (err) {
827                 /*
828                  * This event couldn't go on.  If it is in a group
829                  * then we have to pull the whole group off.
830                  * If the event group is pinned then put it in error state.
831                  */
832                 if (leader != event)
833                         group_sched_out(leader, cpuctx, ctx);
834                 if (leader->attr.pinned) {
835                         update_group_times(leader);
836                         leader->state = PERF_EVENT_STATE_ERROR;
837                 }
838         }
839
840         if (!err && !ctx->task && cpuctx->max_pertask)
841                 cpuctx->max_pertask--;
842
843  unlock:
844         perf_enable();
845
846         raw_spin_unlock(&ctx->lock);
847 }
848
849 /*
850  * Attach a performance event to a context
851  *
852  * First we add the event to the list with the hardware enable bit
853  * in event->hw_config cleared.
854  *
855  * If the event is attached to a task which is on a CPU we use a smp
856  * call to enable it in the task context. The task might have been
857  * scheduled away, but we check this in the smp call again.
858  *
859  * Must be called with ctx->mutex held.
860  */
861 static void
862 perf_install_in_context(struct perf_event_context *ctx,
863                         struct perf_event *event,
864                         int cpu)
865 {
866         struct task_struct *task = ctx->task;
867
868         if (!task) {
869                 /*
870                  * Per cpu events are installed via an smp call and
871                  * the install is always successful.
872                  */
873                 smp_call_function_single(cpu, __perf_install_in_context,
874                                          event, 1);
875                 return;
876         }
877
878 retry:
879         task_oncpu_function_call(task, __perf_install_in_context,
880                                  event);
881
882         raw_spin_lock_irq(&ctx->lock);
883         /*
884          * we need to retry the smp call.
885          */
886         if (ctx->is_active && list_empty(&event->group_entry)) {
887                 raw_spin_unlock_irq(&ctx->lock);
888                 goto retry;
889         }
890
891         /*
892          * The lock prevents that this context is scheduled in so we
893          * can add the event safely, if it the call above did not
894          * succeed.
895          */
896         if (list_empty(&event->group_entry))
897                 add_event_to_ctx(event, ctx);
898         raw_spin_unlock_irq(&ctx->lock);
899 }
900
901 /*
902  * Put a event into inactive state and update time fields.
903  * Enabling the leader of a group effectively enables all
904  * the group members that aren't explicitly disabled, so we
905  * have to update their ->tstamp_enabled also.
906  * Note: this works for group members as well as group leaders
907  * since the non-leader members' sibling_lists will be empty.
908  */
909 static void __perf_event_mark_enabled(struct perf_event *event,
910                                         struct perf_event_context *ctx)
911 {
912         struct perf_event *sub;
913
914         event->state = PERF_EVENT_STATE_INACTIVE;
915         event->tstamp_enabled = ctx->time - event->total_time_enabled;
916         list_for_each_entry(sub, &event->sibling_list, group_entry)
917                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
918                         sub->tstamp_enabled =
919                                 ctx->time - sub->total_time_enabled;
920 }
921
922 /*
923  * Cross CPU call to enable a performance event
924  */
925 static void __perf_event_enable(void *info)
926 {
927         struct perf_event *event = info;
928         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
929         struct perf_event_context *ctx = event->ctx;
930         struct perf_event *leader = event->group_leader;
931         int err;
932
933         /*
934          * If this is a per-task event, need to check whether this
935          * event's task is the current task on this cpu.
936          */
937         if (ctx->task && cpuctx->task_ctx != ctx) {
938                 if (cpuctx->task_ctx || ctx->task != current)
939                         return;
940                 cpuctx->task_ctx = ctx;
941         }
942
943         raw_spin_lock(&ctx->lock);
944         ctx->is_active = 1;
945         update_context_time(ctx);
946
947         if (event->state >= PERF_EVENT_STATE_INACTIVE)
948                 goto unlock;
949         __perf_event_mark_enabled(event, ctx);
950
951         if (event->cpu != -1 && event->cpu != smp_processor_id())
952                 goto unlock;
953
954         /*
955          * If the event is in a group and isn't the group leader,
956          * then don't put it on unless the group is on.
957          */
958         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
959                 goto unlock;
960
961         if (!group_can_go_on(event, cpuctx, 1)) {
962                 err = -EEXIST;
963         } else {
964                 perf_disable();
965                 if (event == leader)
966                         err = group_sched_in(event, cpuctx, ctx);
967                 else
968                         err = event_sched_in(event, cpuctx, ctx);
969                 perf_enable();
970         }
971
972         if (err) {
973                 /*
974                  * If this event can't go on and it's part of a
975                  * group, then the whole group has to come off.
976                  */
977                 if (leader != event)
978                         group_sched_out(leader, cpuctx, ctx);
979                 if (leader->attr.pinned) {
980                         update_group_times(leader);
981                         leader->state = PERF_EVENT_STATE_ERROR;
982                 }
983         }
984
985  unlock:
986         raw_spin_unlock(&ctx->lock);
987 }
988
989 /*
990  * Enable a event.
991  *
992  * If event->ctx is a cloned context, callers must make sure that
993  * every task struct that event->ctx->task could possibly point to
994  * remains valid.  This condition is satisfied when called through
995  * perf_event_for_each_child or perf_event_for_each as described
996  * for perf_event_disable.
997  */
998 void perf_event_enable(struct perf_event *event)
999 {
1000         struct perf_event_context *ctx = event->ctx;
1001         struct task_struct *task = ctx->task;
1002
1003         if (!task) {
1004                 /*
1005                  * Enable the event on the cpu that it's on
1006                  */
1007                 smp_call_function_single(event->cpu, __perf_event_enable,
1008                                          event, 1);
1009                 return;
1010         }
1011
1012         raw_spin_lock_irq(&ctx->lock);
1013         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1014                 goto out;
1015
1016         /*
1017          * If the event is in error state, clear that first.
1018          * That way, if we see the event in error state below, we
1019          * know that it has gone back into error state, as distinct
1020          * from the task having been scheduled away before the
1021          * cross-call arrived.
1022          */
1023         if (event->state == PERF_EVENT_STATE_ERROR)
1024                 event->state = PERF_EVENT_STATE_OFF;
1025
1026  retry:
1027         raw_spin_unlock_irq(&ctx->lock);
1028         task_oncpu_function_call(task, __perf_event_enable, event);
1029
1030         raw_spin_lock_irq(&ctx->lock);
1031
1032         /*
1033          * If the context is active and the event is still off,
1034          * we need to retry the cross-call.
1035          */
1036         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1037                 goto retry;
1038
1039         /*
1040          * Since we have the lock this context can't be scheduled
1041          * in, so we can change the state safely.
1042          */
1043         if (event->state == PERF_EVENT_STATE_OFF)
1044                 __perf_event_mark_enabled(event, ctx);
1045
1046  out:
1047         raw_spin_unlock_irq(&ctx->lock);
1048 }
1049
1050 static int perf_event_refresh(struct perf_event *event, int refresh)
1051 {
1052         /*
1053          * not supported on inherited events
1054          */
1055         if (event->attr.inherit)
1056                 return -EINVAL;
1057
1058         atomic_add(refresh, &event->event_limit);
1059         perf_event_enable(event);
1060
1061         return 0;
1062 }
1063
1064 enum event_type_t {
1065         EVENT_FLEXIBLE = 0x1,
1066         EVENT_PINNED = 0x2,
1067         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1068 };
1069
1070 static void ctx_sched_out(struct perf_event_context *ctx,
1071                           struct perf_cpu_context *cpuctx,
1072                           enum event_type_t event_type)
1073 {
1074         struct perf_event *event;
1075
1076         raw_spin_lock(&ctx->lock);
1077         ctx->is_active = 0;
1078         if (likely(!ctx->nr_events))
1079                 goto out;
1080         update_context_time(ctx);
1081
1082         perf_disable();
1083         if (!ctx->nr_active)
1084                 goto out_enable;
1085
1086         if (event_type & EVENT_PINNED)
1087                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1088                         group_sched_out(event, cpuctx, ctx);
1089
1090         if (event_type & EVENT_FLEXIBLE)
1091                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1092                         group_sched_out(event, cpuctx, ctx);
1093
1094  out_enable:
1095         perf_enable();
1096  out:
1097         raw_spin_unlock(&ctx->lock);
1098 }
1099
1100 /*
1101  * Test whether two contexts are equivalent, i.e. whether they
1102  * have both been cloned from the same version of the same context
1103  * and they both have the same number of enabled events.
1104  * If the number of enabled events is the same, then the set
1105  * of enabled events should be the same, because these are both
1106  * inherited contexts, therefore we can't access individual events
1107  * in them directly with an fd; we can only enable/disable all
1108  * events via prctl, or enable/disable all events in a family
1109  * via ioctl, which will have the same effect on both contexts.
1110  */
1111 static int context_equiv(struct perf_event_context *ctx1,
1112                          struct perf_event_context *ctx2)
1113 {
1114         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1115                 && ctx1->parent_gen == ctx2->parent_gen
1116                 && !ctx1->pin_count && !ctx2->pin_count;
1117 }
1118
1119 static void __perf_event_sync_stat(struct perf_event *event,
1120                                      struct perf_event *next_event)
1121 {
1122         u64 value;
1123
1124         if (!event->attr.inherit_stat)
1125                 return;
1126
1127         /*
1128          * Update the event value, we cannot use perf_event_read()
1129          * because we're in the middle of a context switch and have IRQs
1130          * disabled, which upsets smp_call_function_single(), however
1131          * we know the event must be on the current CPU, therefore we
1132          * don't need to use it.
1133          */
1134         switch (event->state) {
1135         case PERF_EVENT_STATE_ACTIVE:
1136                 event->pmu->read(event);
1137                 /* fall-through */
1138
1139         case PERF_EVENT_STATE_INACTIVE:
1140                 update_event_times(event);
1141                 break;
1142
1143         default:
1144                 break;
1145         }
1146
1147         /*
1148          * In order to keep per-task stats reliable we need to flip the event
1149          * values when we flip the contexts.
1150          */
1151         value = local64_read(&next_event->count);
1152         value = local64_xchg(&event->count, value);
1153         local64_set(&next_event->count, value);
1154
1155         swap(event->total_time_enabled, next_event->total_time_enabled);
1156         swap(event->total_time_running, next_event->total_time_running);
1157
1158         /*
1159          * Since we swizzled the values, update the user visible data too.
1160          */
1161         perf_event_update_userpage(event);
1162         perf_event_update_userpage(next_event);
1163 }
1164
1165 #define list_next_entry(pos, member) \
1166         list_entry(pos->member.next, typeof(*pos), member)
1167
1168 static void perf_event_sync_stat(struct perf_event_context *ctx,
1169                                    struct perf_event_context *next_ctx)
1170 {
1171         struct perf_event *event, *next_event;
1172
1173         if (!ctx->nr_stat)
1174                 return;
1175
1176         update_context_time(ctx);
1177
1178         event = list_first_entry(&ctx->event_list,
1179                                    struct perf_event, event_entry);
1180
1181         next_event = list_first_entry(&next_ctx->event_list,
1182                                         struct perf_event, event_entry);
1183
1184         while (&event->event_entry != &ctx->event_list &&
1185                &next_event->event_entry != &next_ctx->event_list) {
1186
1187                 __perf_event_sync_stat(event, next_event);
1188
1189                 event = list_next_entry(event, event_entry);
1190                 next_event = list_next_entry(next_event, event_entry);
1191         }
1192 }
1193
1194 /*
1195  * Called from scheduler to remove the events of the current task,
1196  * with interrupts disabled.
1197  *
1198  * We stop each event and update the event value in event->count.
1199  *
1200  * This does not protect us against NMI, but disable()
1201  * sets the disabled bit in the control field of event _before_
1202  * accessing the event control register. If a NMI hits, then it will
1203  * not restart the event.
1204  */
1205 void perf_event_task_sched_out(struct task_struct *task,
1206                                  struct task_struct *next)
1207 {
1208         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1209         struct perf_event_context *ctx = task->perf_event_ctxp;
1210         struct perf_event_context *next_ctx;
1211         struct perf_event_context *parent;
1212         int do_switch = 1;
1213
1214         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1215
1216         if (likely(!ctx || !cpuctx->task_ctx))
1217                 return;
1218
1219         rcu_read_lock();
1220         parent = rcu_dereference(ctx->parent_ctx);
1221         next_ctx = next->perf_event_ctxp;
1222         if (parent && next_ctx &&
1223             rcu_dereference(next_ctx->parent_ctx) == parent) {
1224                 /*
1225                  * Looks like the two contexts are clones, so we might be
1226                  * able to optimize the context switch.  We lock both
1227                  * contexts and check that they are clones under the
1228                  * lock (including re-checking that neither has been
1229                  * uncloned in the meantime).  It doesn't matter which
1230                  * order we take the locks because no other cpu could
1231                  * be trying to lock both of these tasks.
1232                  */
1233                 raw_spin_lock(&ctx->lock);
1234                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1235                 if (context_equiv(ctx, next_ctx)) {
1236                         /*
1237                          * XXX do we need a memory barrier of sorts
1238                          * wrt to rcu_dereference() of perf_event_ctxp
1239                          */
1240                         task->perf_event_ctxp = next_ctx;
1241                         next->perf_event_ctxp = ctx;
1242                         ctx->task = next;
1243                         next_ctx->task = task;
1244                         do_switch = 0;
1245
1246                         perf_event_sync_stat(ctx, next_ctx);
1247                 }
1248                 raw_spin_unlock(&next_ctx->lock);
1249                 raw_spin_unlock(&ctx->lock);
1250         }
1251         rcu_read_unlock();
1252
1253         if (do_switch) {
1254                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1255                 cpuctx->task_ctx = NULL;
1256         }
1257 }
1258
1259 static void task_ctx_sched_out(struct perf_event_context *ctx,
1260                                enum event_type_t event_type)
1261 {
1262         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1263
1264         if (!cpuctx->task_ctx)
1265                 return;
1266
1267         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1268                 return;
1269
1270         ctx_sched_out(ctx, cpuctx, event_type);
1271         cpuctx->task_ctx = NULL;
1272 }
1273
1274 /*
1275  * Called with IRQs disabled
1276  */
1277 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1278 {
1279         task_ctx_sched_out(ctx, EVENT_ALL);
1280 }
1281
1282 /*
1283  * Called with IRQs disabled
1284  */
1285 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1286                               enum event_type_t event_type)
1287 {
1288         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1289 }
1290
1291 static void
1292 ctx_pinned_sched_in(struct perf_event_context *ctx,
1293                     struct perf_cpu_context *cpuctx)
1294 {
1295         struct perf_event *event;
1296
1297         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1298                 if (event->state <= PERF_EVENT_STATE_OFF)
1299                         continue;
1300                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1301                         continue;
1302
1303                 if (group_can_go_on(event, cpuctx, 1))
1304                         group_sched_in(event, cpuctx, ctx);
1305
1306                 /*
1307                  * If this pinned group hasn't been scheduled,
1308                  * put it in error state.
1309                  */
1310                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1311                         update_group_times(event);
1312                         event->state = PERF_EVENT_STATE_ERROR;
1313                 }
1314         }
1315 }
1316
1317 static void
1318 ctx_flexible_sched_in(struct perf_event_context *ctx,
1319                       struct perf_cpu_context *cpuctx)
1320 {
1321         struct perf_event *event;
1322         int can_add_hw = 1;
1323
1324         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1325                 /* Ignore events in OFF or ERROR state */
1326                 if (event->state <= PERF_EVENT_STATE_OFF)
1327                         continue;
1328                 /*
1329                  * Listen to the 'cpu' scheduling filter constraint
1330                  * of events:
1331                  */
1332                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1333                         continue;
1334
1335                 if (group_can_go_on(event, cpuctx, can_add_hw))
1336                         if (group_sched_in(event, cpuctx, ctx))
1337                                 can_add_hw = 0;
1338         }
1339 }
1340
1341 static void
1342 ctx_sched_in(struct perf_event_context *ctx,
1343              struct perf_cpu_context *cpuctx,
1344              enum event_type_t event_type)
1345 {
1346         raw_spin_lock(&ctx->lock);
1347         ctx->is_active = 1;
1348         if (likely(!ctx->nr_events))
1349                 goto out;
1350
1351         ctx->timestamp = perf_clock();
1352
1353         perf_disable();
1354
1355         /*
1356          * First go through the list and put on any pinned groups
1357          * in order to give them the best chance of going on.
1358          */
1359         if (event_type & EVENT_PINNED)
1360                 ctx_pinned_sched_in(ctx, cpuctx);
1361
1362         /* Then walk through the lower prio flexible groups */
1363         if (event_type & EVENT_FLEXIBLE)
1364                 ctx_flexible_sched_in(ctx, cpuctx);
1365
1366         perf_enable();
1367  out:
1368         raw_spin_unlock(&ctx->lock);
1369 }
1370
1371 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1372                              enum event_type_t event_type)
1373 {
1374         struct perf_event_context *ctx = &cpuctx->ctx;
1375
1376         ctx_sched_in(ctx, cpuctx, event_type);
1377 }
1378
1379 static void task_ctx_sched_in(struct task_struct *task,
1380                               enum event_type_t event_type)
1381 {
1382         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1383         struct perf_event_context *ctx = task->perf_event_ctxp;
1384
1385         if (likely(!ctx))
1386                 return;
1387         if (cpuctx->task_ctx == ctx)
1388                 return;
1389         ctx_sched_in(ctx, cpuctx, event_type);
1390         cpuctx->task_ctx = ctx;
1391 }
1392 /*
1393  * Called from scheduler to add the events of the current task
1394  * with interrupts disabled.
1395  *
1396  * We restore the event value and then enable it.
1397  *
1398  * This does not protect us against NMI, but enable()
1399  * sets the enabled bit in the control field of event _before_
1400  * accessing the event control register. If a NMI hits, then it will
1401  * keep the event running.
1402  */
1403 void perf_event_task_sched_in(struct task_struct *task)
1404 {
1405         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1406         struct perf_event_context *ctx = task->perf_event_ctxp;
1407
1408         if (likely(!ctx))
1409                 return;
1410
1411         if (cpuctx->task_ctx == ctx)
1412                 return;
1413
1414         perf_disable();
1415
1416         /*
1417          * We want to keep the following priority order:
1418          * cpu pinned (that don't need to move), task pinned,
1419          * cpu flexible, task flexible.
1420          */
1421         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1422
1423         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1424         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1425         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1426
1427         cpuctx->task_ctx = ctx;
1428
1429         perf_enable();
1430 }
1431
1432 #define MAX_INTERRUPTS (~0ULL)
1433
1434 static void perf_log_throttle(struct perf_event *event, int enable);
1435
1436 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1437 {
1438         u64 frequency = event->attr.sample_freq;
1439         u64 sec = NSEC_PER_SEC;
1440         u64 divisor, dividend;
1441
1442         int count_fls, nsec_fls, frequency_fls, sec_fls;
1443
1444         count_fls = fls64(count);
1445         nsec_fls = fls64(nsec);
1446         frequency_fls = fls64(frequency);
1447         sec_fls = 30;
1448
1449         /*
1450          * We got @count in @nsec, with a target of sample_freq HZ
1451          * the target period becomes:
1452          *
1453          *             @count * 10^9
1454          * period = -------------------
1455          *          @nsec * sample_freq
1456          *
1457          */
1458
1459         /*
1460          * Reduce accuracy by one bit such that @a and @b converge
1461          * to a similar magnitude.
1462          */
1463 #define REDUCE_FLS(a, b)                \
1464 do {                                    \
1465         if (a##_fls > b##_fls) {        \
1466                 a >>= 1;                \
1467                 a##_fls--;              \
1468         } else {                        \
1469                 b >>= 1;                \
1470                 b##_fls--;              \
1471         }                               \
1472 } while (0)
1473
1474         /*
1475          * Reduce accuracy until either term fits in a u64, then proceed with
1476          * the other, so that finally we can do a u64/u64 division.
1477          */
1478         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1479                 REDUCE_FLS(nsec, frequency);
1480                 REDUCE_FLS(sec, count);
1481         }
1482
1483         if (count_fls + sec_fls > 64) {
1484                 divisor = nsec * frequency;
1485
1486                 while (count_fls + sec_fls > 64) {
1487                         REDUCE_FLS(count, sec);
1488                         divisor >>= 1;
1489                 }
1490
1491                 dividend = count * sec;
1492         } else {
1493                 dividend = count * sec;
1494
1495                 while (nsec_fls + frequency_fls > 64) {
1496                         REDUCE_FLS(nsec, frequency);
1497                         dividend >>= 1;
1498                 }
1499
1500                 divisor = nsec * frequency;
1501         }
1502
1503         if (!divisor)
1504                 return dividend;
1505
1506         return div64_u64(dividend, divisor);
1507 }
1508
1509 static void perf_event_stop(struct perf_event *event)
1510 {
1511         if (!event->pmu->stop)
1512                 return event->pmu->disable(event);
1513
1514         return event->pmu->stop(event);
1515 }
1516
1517 static int perf_event_start(struct perf_event *event)
1518 {
1519         if (!event->pmu->start)
1520                 return event->pmu->enable(event);
1521
1522         return event->pmu->start(event);
1523 }
1524
1525 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1526 {
1527         struct hw_perf_event *hwc = &event->hw;
1528         s64 period, sample_period;
1529         s64 delta;
1530
1531         period = perf_calculate_period(event, nsec, count);
1532
1533         delta = (s64)(period - hwc->sample_period);
1534         delta = (delta + 7) / 8; /* low pass filter */
1535
1536         sample_period = hwc->sample_period + delta;
1537
1538         if (!sample_period)
1539                 sample_period = 1;
1540
1541         hwc->sample_period = sample_period;
1542
1543         if (local64_read(&hwc->period_left) > 8*sample_period) {
1544                 perf_disable();
1545                 perf_event_stop(event);
1546                 local64_set(&hwc->period_left, 0);
1547                 perf_event_start(event);
1548                 perf_enable();
1549         }
1550 }
1551
1552 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1553 {
1554         struct perf_event *event;
1555         struct hw_perf_event *hwc;
1556         u64 interrupts, now;
1557         s64 delta;
1558
1559         raw_spin_lock(&ctx->lock);
1560         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1561                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1562                         continue;
1563
1564                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1565                         continue;
1566
1567                 hwc = &event->hw;
1568
1569                 interrupts = hwc->interrupts;
1570                 hwc->interrupts = 0;
1571
1572                 /*
1573                  * unthrottle events on the tick
1574                  */
1575                 if (interrupts == MAX_INTERRUPTS) {
1576                         perf_log_throttle(event, 1);
1577                         perf_disable();
1578                         event->pmu->unthrottle(event);
1579                         perf_enable();
1580                 }
1581
1582                 if (!event->attr.freq || !event->attr.sample_freq)
1583                         continue;
1584
1585                 perf_disable();
1586                 event->pmu->read(event);
1587                 now = local64_read(&event->count);
1588                 delta = now - hwc->freq_count_stamp;
1589                 hwc->freq_count_stamp = now;
1590
1591                 if (delta > 0)
1592                         perf_adjust_period(event, TICK_NSEC, delta);
1593                 perf_enable();
1594         }
1595         raw_spin_unlock(&ctx->lock);
1596 }
1597
1598 /*
1599  * Round-robin a context's events:
1600  */
1601 static void rotate_ctx(struct perf_event_context *ctx)
1602 {
1603         raw_spin_lock(&ctx->lock);
1604
1605         /* Rotate the first entry last of non-pinned groups */
1606         list_rotate_left(&ctx->flexible_groups);
1607
1608         raw_spin_unlock(&ctx->lock);
1609 }
1610
1611 void perf_event_task_tick(struct task_struct *curr)
1612 {
1613         struct perf_cpu_context *cpuctx;
1614         struct perf_event_context *ctx;
1615         int rotate = 0;
1616
1617         if (!atomic_read(&nr_events))
1618                 return;
1619
1620         cpuctx = &__get_cpu_var(perf_cpu_context);
1621         if (cpuctx->ctx.nr_events &&
1622             cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1623                 rotate = 1;
1624
1625         ctx = curr->perf_event_ctxp;
1626         if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1627                 rotate = 1;
1628
1629         perf_ctx_adjust_freq(&cpuctx->ctx);
1630         if (ctx)
1631                 perf_ctx_adjust_freq(ctx);
1632
1633         if (!rotate)
1634                 return;
1635
1636         perf_disable();
1637         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1638         if (ctx)
1639                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1640
1641         rotate_ctx(&cpuctx->ctx);
1642         if (ctx)
1643                 rotate_ctx(ctx);
1644
1645         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1646         if (ctx)
1647                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1648         perf_enable();
1649 }
1650
1651 static int event_enable_on_exec(struct perf_event *event,
1652                                 struct perf_event_context *ctx)
1653 {
1654         if (!event->attr.enable_on_exec)
1655                 return 0;
1656
1657         event->attr.enable_on_exec = 0;
1658         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1659                 return 0;
1660
1661         __perf_event_mark_enabled(event, ctx);
1662
1663         return 1;
1664 }
1665
1666 /*
1667  * Enable all of a task's events that have been marked enable-on-exec.
1668  * This expects task == current.
1669  */
1670 static void perf_event_enable_on_exec(struct task_struct *task)
1671 {
1672         struct perf_event_context *ctx;
1673         struct perf_event *event;
1674         unsigned long flags;
1675         int enabled = 0;
1676         int ret;
1677
1678         local_irq_save(flags);
1679         ctx = task->perf_event_ctxp;
1680         if (!ctx || !ctx->nr_events)
1681                 goto out;
1682
1683         __perf_event_task_sched_out(ctx);
1684
1685         raw_spin_lock(&ctx->lock);
1686
1687         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1688                 ret = event_enable_on_exec(event, ctx);
1689                 if (ret)
1690                         enabled = 1;
1691         }
1692
1693         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1694                 ret = event_enable_on_exec(event, ctx);
1695                 if (ret)
1696                         enabled = 1;
1697         }
1698
1699         /*
1700          * Unclone this context if we enabled any event.
1701          */
1702         if (enabled)
1703                 unclone_ctx(ctx);
1704
1705         raw_spin_unlock(&ctx->lock);
1706
1707         perf_event_task_sched_in(task);
1708  out:
1709         local_irq_restore(flags);
1710 }
1711
1712 /*
1713  * Cross CPU call to read the hardware event
1714  */
1715 static void __perf_event_read(void *info)
1716 {
1717         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1718         struct perf_event *event = info;
1719         struct perf_event_context *ctx = event->ctx;
1720
1721         /*
1722          * If this is a task context, we need to check whether it is
1723          * the current task context of this cpu.  If not it has been
1724          * scheduled out before the smp call arrived.  In that case
1725          * event->count would have been updated to a recent sample
1726          * when the event was scheduled out.
1727          */
1728         if (ctx->task && cpuctx->task_ctx != ctx)
1729                 return;
1730
1731         raw_spin_lock(&ctx->lock);
1732         update_context_time(ctx);
1733         update_event_times(event);
1734         raw_spin_unlock(&ctx->lock);
1735
1736         event->pmu->read(event);
1737 }
1738
1739 static inline u64 perf_event_count(struct perf_event *event)
1740 {
1741         return local64_read(&event->count) + atomic64_read(&event->child_count);
1742 }
1743
1744 static u64 perf_event_read(struct perf_event *event)
1745 {
1746         /*
1747          * If event is enabled and currently active on a CPU, update the
1748          * value in the event structure:
1749          */
1750         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1751                 smp_call_function_single(event->oncpu,
1752                                          __perf_event_read, event, 1);
1753         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1754                 struct perf_event_context *ctx = event->ctx;
1755                 unsigned long flags;
1756
1757                 raw_spin_lock_irqsave(&ctx->lock, flags);
1758                 update_context_time(ctx);
1759                 update_event_times(event);
1760                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1761         }
1762
1763         return perf_event_count(event);
1764 }
1765
1766 /*
1767  * Initialize the perf_event context in a task_struct:
1768  */
1769 static void
1770 __perf_event_init_context(struct perf_event_context *ctx,
1771                             struct task_struct *task)
1772 {
1773         raw_spin_lock_init(&ctx->lock);
1774         mutex_init(&ctx->mutex);
1775         INIT_LIST_HEAD(&ctx->pinned_groups);
1776         INIT_LIST_HEAD(&ctx->flexible_groups);
1777         INIT_LIST_HEAD(&ctx->event_list);
1778         atomic_set(&ctx->refcount, 1);
1779         ctx->task = task;
1780 }
1781
1782 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1783 {
1784         struct perf_event_context *ctx;
1785         struct perf_cpu_context *cpuctx;
1786         struct task_struct *task;
1787         unsigned long flags;
1788         int err;
1789
1790         if (pid == -1 && cpu != -1) {
1791                 /* Must be root to operate on a CPU event: */
1792                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1793                         return ERR_PTR(-EACCES);
1794
1795                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1796                         return ERR_PTR(-EINVAL);
1797
1798                 /*
1799                  * We could be clever and allow to attach a event to an
1800                  * offline CPU and activate it when the CPU comes up, but
1801                  * that's for later.
1802                  */
1803                 if (!cpu_online(cpu))
1804                         return ERR_PTR(-ENODEV);
1805
1806                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1807                 ctx = &cpuctx->ctx;
1808                 get_ctx(ctx);
1809
1810                 return ctx;
1811         }
1812
1813         rcu_read_lock();
1814         if (!pid)
1815                 task = current;
1816         else
1817                 task = find_task_by_vpid(pid);
1818         if (task)
1819                 get_task_struct(task);
1820         rcu_read_unlock();
1821
1822         if (!task)
1823                 return ERR_PTR(-ESRCH);
1824
1825         /*
1826          * Can't attach events to a dying task.
1827          */
1828         err = -ESRCH;
1829         if (task->flags & PF_EXITING)
1830                 goto errout;
1831
1832         /* Reuse ptrace permission checks for now. */
1833         err = -EACCES;
1834         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1835                 goto errout;
1836
1837  retry:
1838         ctx = perf_lock_task_context(task, &flags);
1839         if (ctx) {
1840                 unclone_ctx(ctx);
1841                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1842         }
1843
1844         if (!ctx) {
1845                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1846                 err = -ENOMEM;
1847                 if (!ctx)
1848                         goto errout;
1849                 __perf_event_init_context(ctx, task);
1850                 get_ctx(ctx);
1851                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1852                         /*
1853                          * We raced with some other task; use
1854                          * the context they set.
1855                          */
1856                         kfree(ctx);
1857                         goto retry;
1858                 }
1859                 get_task_struct(task);
1860         }
1861
1862         put_task_struct(task);
1863         return ctx;
1864
1865  errout:
1866         put_task_struct(task);
1867         return ERR_PTR(err);
1868 }
1869
1870 static void perf_event_free_filter(struct perf_event *event);
1871
1872 static void free_event_rcu(struct rcu_head *head)
1873 {
1874         struct perf_event *event;
1875
1876         event = container_of(head, struct perf_event, rcu_head);
1877         if (event->ns)
1878                 put_pid_ns(event->ns);
1879         perf_event_free_filter(event);
1880         kfree(event);
1881 }
1882
1883 static void perf_pending_sync(struct perf_event *event);
1884 static void perf_buffer_put(struct perf_buffer *buffer);
1885
1886 static void free_event(struct perf_event *event)
1887 {
1888         perf_pending_sync(event);
1889
1890         if (!event->parent) {
1891                 atomic_dec(&nr_events);
1892                 if (event->attr.mmap || event->attr.mmap_data)
1893                         atomic_dec(&nr_mmap_events);
1894                 if (event->attr.comm)
1895                         atomic_dec(&nr_comm_events);
1896                 if (event->attr.task)
1897                         atomic_dec(&nr_task_events);
1898         }
1899
1900         if (event->buffer) {
1901                 perf_buffer_put(event->buffer);
1902                 event->buffer = NULL;
1903         }
1904
1905         if (event->destroy)
1906                 event->destroy(event);
1907
1908         put_ctx(event->ctx);
1909         call_rcu(&event->rcu_head, free_event_rcu);
1910 }
1911
1912 int perf_event_release_kernel(struct perf_event *event)
1913 {
1914         struct perf_event_context *ctx = event->ctx;
1915
1916         /*
1917          * Remove from the PMU, can't get re-enabled since we got
1918          * here because the last ref went.
1919          */
1920         perf_event_disable(event);
1921
1922         WARN_ON_ONCE(ctx->parent_ctx);
1923         /*
1924          * There are two ways this annotation is useful:
1925          *
1926          *  1) there is a lock recursion from perf_event_exit_task
1927          *     see the comment there.
1928          *
1929          *  2) there is a lock-inversion with mmap_sem through
1930          *     perf_event_read_group(), which takes faults while
1931          *     holding ctx->mutex, however this is called after
1932          *     the last filedesc died, so there is no possibility
1933          *     to trigger the AB-BA case.
1934          */
1935         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1936         raw_spin_lock_irq(&ctx->lock);
1937         perf_group_detach(event);
1938         list_del_event(event, ctx);
1939         raw_spin_unlock_irq(&ctx->lock);
1940         mutex_unlock(&ctx->mutex);
1941
1942         mutex_lock(&event->owner->perf_event_mutex);
1943         list_del_init(&event->owner_entry);
1944         mutex_unlock(&event->owner->perf_event_mutex);
1945         put_task_struct(event->owner);
1946
1947         free_event(event);
1948
1949         return 0;
1950 }
1951 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1952
1953 /*
1954  * Called when the last reference to the file is gone.
1955  */
1956 static int perf_release(struct inode *inode, struct file *file)
1957 {
1958         struct perf_event *event = file->private_data;
1959
1960         file->private_data = NULL;
1961
1962         return perf_event_release_kernel(event);
1963 }
1964
1965 static int perf_event_read_size(struct perf_event *event)
1966 {
1967         int entry = sizeof(u64); /* value */
1968         int size = 0;
1969         int nr = 1;
1970
1971         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1972                 size += sizeof(u64);
1973
1974         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1975                 size += sizeof(u64);
1976
1977         if (event->attr.read_format & PERF_FORMAT_ID)
1978                 entry += sizeof(u64);
1979
1980         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1981                 nr += event->group_leader->nr_siblings;
1982                 size += sizeof(u64);
1983         }
1984
1985         size += entry * nr;
1986
1987         return size;
1988 }
1989
1990 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1991 {
1992         struct perf_event *child;
1993         u64 total = 0;
1994
1995         *enabled = 0;
1996         *running = 0;
1997
1998         mutex_lock(&event->child_mutex);
1999         total += perf_event_read(event);
2000         *enabled += event->total_time_enabled +
2001                         atomic64_read(&event->child_total_time_enabled);
2002         *running += event->total_time_running +
2003                         atomic64_read(&event->child_total_time_running);
2004
2005         list_for_each_entry(child, &event->child_list, child_list) {
2006                 total += perf_event_read(child);
2007                 *enabled += child->total_time_enabled;
2008                 *running += child->total_time_running;
2009         }
2010         mutex_unlock(&event->child_mutex);
2011
2012         return total;
2013 }
2014 EXPORT_SYMBOL_GPL(perf_event_read_value);
2015
2016 static int perf_event_read_group(struct perf_event *event,
2017                                    u64 read_format, char __user *buf)
2018 {
2019         struct perf_event *leader = event->group_leader, *sub;
2020         int n = 0, size = 0, ret = -EFAULT;
2021         struct perf_event_context *ctx = leader->ctx;
2022         u64 values[5];
2023         u64 count, enabled, running;
2024
2025         mutex_lock(&ctx->mutex);
2026         count = perf_event_read_value(leader, &enabled, &running);
2027
2028         values[n++] = 1 + leader->nr_siblings;
2029         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2030                 values[n++] = enabled;
2031         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2032                 values[n++] = running;
2033         values[n++] = count;
2034         if (read_format & PERF_FORMAT_ID)
2035                 values[n++] = primary_event_id(leader);
2036
2037         size = n * sizeof(u64);
2038
2039         if (copy_to_user(buf, values, size))
2040                 goto unlock;
2041
2042         ret = size;
2043
2044         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2045                 n = 0;
2046
2047                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2048                 if (read_format & PERF_FORMAT_ID)
2049                         values[n++] = primary_event_id(sub);
2050
2051                 size = n * sizeof(u64);
2052
2053                 if (copy_to_user(buf + ret, values, size)) {
2054                         ret = -EFAULT;
2055                         goto unlock;
2056                 }
2057
2058                 ret += size;
2059         }
2060 unlock:
2061         mutex_unlock(&ctx->mutex);
2062
2063         return ret;
2064 }
2065
2066 static int perf_event_read_one(struct perf_event *event,
2067                                  u64 read_format, char __user *buf)
2068 {
2069         u64 enabled, running;
2070         u64 values[4];
2071         int n = 0;
2072
2073         values[n++] = perf_event_read_value(event, &enabled, &running);
2074         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2075                 values[n++] = enabled;
2076         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2077                 values[n++] = running;
2078         if (read_format & PERF_FORMAT_ID)
2079                 values[n++] = primary_event_id(event);
2080
2081         if (copy_to_user(buf, values, n * sizeof(u64)))
2082                 return -EFAULT;
2083
2084         return n * sizeof(u64);
2085 }
2086
2087 /*
2088  * Read the performance event - simple non blocking version for now
2089  */
2090 static ssize_t
2091 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2092 {
2093         u64 read_format = event->attr.read_format;
2094         int ret;
2095
2096         /*
2097          * Return end-of-file for a read on a event that is in
2098          * error state (i.e. because it was pinned but it couldn't be
2099          * scheduled on to the CPU at some point).
2100          */
2101         if (event->state == PERF_EVENT_STATE_ERROR)
2102                 return 0;
2103
2104         if (count < perf_event_read_size(event))
2105                 return -ENOSPC;
2106
2107         WARN_ON_ONCE(event->ctx->parent_ctx);
2108         if (read_format & PERF_FORMAT_GROUP)
2109                 ret = perf_event_read_group(event, read_format, buf);
2110         else
2111                 ret = perf_event_read_one(event, read_format, buf);
2112
2113         return ret;
2114 }
2115
2116 static ssize_t
2117 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2118 {
2119         struct perf_event *event = file->private_data;
2120
2121         return perf_read_hw(event, buf, count);
2122 }
2123
2124 static unsigned int perf_poll(struct file *file, poll_table *wait)
2125 {
2126         struct perf_event *event = file->private_data;
2127         struct perf_buffer *buffer;
2128         unsigned int events = POLL_HUP;
2129
2130         rcu_read_lock();
2131         buffer = rcu_dereference(event->buffer);
2132         if (buffer)
2133                 events = atomic_xchg(&buffer->poll, 0);
2134         rcu_read_unlock();
2135
2136         poll_wait(file, &event->waitq, wait);
2137
2138         return events;
2139 }
2140
2141 static void perf_event_reset(struct perf_event *event)
2142 {
2143         (void)perf_event_read(event);
2144         local64_set(&event->count, 0);
2145         perf_event_update_userpage(event);
2146 }
2147
2148 /*
2149  * Holding the top-level event's child_mutex means that any
2150  * descendant process that has inherited this event will block
2151  * in sync_child_event if it goes to exit, thus satisfying the
2152  * task existence requirements of perf_event_enable/disable.
2153  */
2154 static void perf_event_for_each_child(struct perf_event *event,
2155                                         void (*func)(struct perf_event *))
2156 {
2157         struct perf_event *child;
2158
2159         WARN_ON_ONCE(event->ctx->parent_ctx);
2160         mutex_lock(&event->child_mutex);
2161         func(event);
2162         list_for_each_entry(child, &event->child_list, child_list)
2163                 func(child);
2164         mutex_unlock(&event->child_mutex);
2165 }
2166
2167 static void perf_event_for_each(struct perf_event *event,
2168                                   void (*func)(struct perf_event *))
2169 {
2170         struct perf_event_context *ctx = event->ctx;
2171         struct perf_event *sibling;
2172
2173         WARN_ON_ONCE(ctx->parent_ctx);
2174         mutex_lock(&ctx->mutex);
2175         event = event->group_leader;
2176
2177         perf_event_for_each_child(event, func);
2178         func(event);
2179         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2180                 perf_event_for_each_child(event, func);
2181         mutex_unlock(&ctx->mutex);
2182 }
2183
2184 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2185 {
2186         struct perf_event_context *ctx = event->ctx;
2187         unsigned long size;
2188         int ret = 0;
2189         u64 value;
2190
2191         if (!event->attr.sample_period)
2192                 return -EINVAL;
2193
2194         size = copy_from_user(&value, arg, sizeof(value));
2195         if (size != sizeof(value))
2196                 return -EFAULT;
2197
2198         if (!value)
2199                 return -EINVAL;
2200
2201         raw_spin_lock_irq(&ctx->lock);
2202         if (event->attr.freq) {
2203                 if (value > sysctl_perf_event_sample_rate) {
2204                         ret = -EINVAL;
2205                         goto unlock;
2206                 }
2207
2208                 event->attr.sample_freq = value;
2209         } else {
2210                 event->attr.sample_period = value;
2211                 event->hw.sample_period = value;
2212         }
2213 unlock:
2214         raw_spin_unlock_irq(&ctx->lock);
2215
2216         return ret;
2217 }
2218
2219 static const struct file_operations perf_fops;
2220
2221 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2222 {
2223         struct file *file;
2224
2225         file = fget_light(fd, fput_needed);
2226         if (!file)
2227                 return ERR_PTR(-EBADF);
2228
2229         if (file->f_op != &perf_fops) {
2230                 fput_light(file, *fput_needed);
2231                 *fput_needed = 0;
2232                 return ERR_PTR(-EBADF);
2233         }
2234
2235         return file->private_data;
2236 }
2237
2238 static int perf_event_set_output(struct perf_event *event,
2239                                  struct perf_event *output_event);
2240 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2241
2242 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2243 {
2244         struct perf_event *event = file->private_data;
2245         void (*func)(struct perf_event *);
2246         u32 flags = arg;
2247
2248         switch (cmd) {
2249         case PERF_EVENT_IOC_ENABLE:
2250                 func = perf_event_enable;
2251                 break;
2252         case PERF_EVENT_IOC_DISABLE:
2253                 func = perf_event_disable;
2254                 break;
2255         case PERF_EVENT_IOC_RESET:
2256                 func = perf_event_reset;
2257                 break;
2258
2259         case PERF_EVENT_IOC_REFRESH:
2260                 return perf_event_refresh(event, arg);
2261
2262         case PERF_EVENT_IOC_PERIOD:
2263                 return perf_event_period(event, (u64 __user *)arg);
2264
2265         case PERF_EVENT_IOC_SET_OUTPUT:
2266         {
2267                 struct perf_event *output_event = NULL;
2268                 int fput_needed = 0;
2269                 int ret;
2270
2271                 if (arg != -1) {
2272                         output_event = perf_fget_light(arg, &fput_needed);
2273                         if (IS_ERR(output_event))
2274                                 return PTR_ERR(output_event);
2275                 }
2276
2277                 ret = perf_event_set_output(event, output_event);
2278                 if (output_event)
2279                         fput_light(output_event->filp, fput_needed);
2280
2281                 return ret;
2282         }
2283
2284         case PERF_EVENT_IOC_SET_FILTER:
2285                 return perf_event_set_filter(event, (void __user *)arg);
2286
2287         default:
2288                 return -ENOTTY;
2289         }
2290
2291         if (flags & PERF_IOC_FLAG_GROUP)
2292                 perf_event_for_each(event, func);
2293         else
2294                 perf_event_for_each_child(event, func);
2295
2296         return 0;
2297 }
2298
2299 int perf_event_task_enable(void)
2300 {
2301         struct perf_event *event;
2302
2303         mutex_lock(&current->perf_event_mutex);
2304         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2305                 perf_event_for_each_child(event, perf_event_enable);
2306         mutex_unlock(&current->perf_event_mutex);
2307
2308         return 0;
2309 }
2310
2311 int perf_event_task_disable(void)
2312 {
2313         struct perf_event *event;
2314
2315         mutex_lock(&current->perf_event_mutex);
2316         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2317                 perf_event_for_each_child(event, perf_event_disable);
2318         mutex_unlock(&current->perf_event_mutex);
2319
2320         return 0;
2321 }
2322
2323 #ifndef PERF_EVENT_INDEX_OFFSET
2324 # define PERF_EVENT_INDEX_OFFSET 0
2325 #endif
2326
2327 static int perf_event_index(struct perf_event *event)
2328 {
2329         if (event->state != PERF_EVENT_STATE_ACTIVE)
2330                 return 0;
2331
2332         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2333 }
2334
2335 /*
2336  * Callers need to ensure there can be no nesting of this function, otherwise
2337  * the seqlock logic goes bad. We can not serialize this because the arch
2338  * code calls this from NMI context.
2339  */
2340 void perf_event_update_userpage(struct perf_event *event)
2341 {
2342         struct perf_event_mmap_page *userpg;
2343         struct perf_buffer *buffer;
2344
2345         rcu_read_lock();
2346         buffer = rcu_dereference(event->buffer);
2347         if (!buffer)
2348                 goto unlock;
2349
2350         userpg = buffer->user_page;
2351
2352         /*
2353          * Disable preemption so as to not let the corresponding user-space
2354          * spin too long if we get preempted.
2355          */
2356         preempt_disable();
2357         ++userpg->lock;
2358         barrier();
2359         userpg->index = perf_event_index(event);
2360         userpg->offset = perf_event_count(event);
2361         if (event->state == PERF_EVENT_STATE_ACTIVE)
2362                 userpg->offset -= local64_read(&event->hw.prev_count);
2363
2364         userpg->time_enabled = event->total_time_enabled +
2365                         atomic64_read(&event->child_total_time_enabled);
2366
2367         userpg->time_running = event->total_time_running +
2368                         atomic64_read(&event->child_total_time_running);
2369
2370         barrier();
2371         ++userpg->lock;
2372         preempt_enable();
2373 unlock:
2374         rcu_read_unlock();
2375 }
2376
2377 static unsigned long perf_data_size(struct perf_buffer *buffer);
2378
2379 static void
2380 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2381 {
2382         long max_size = perf_data_size(buffer);
2383
2384         if (watermark)
2385                 buffer->watermark = min(max_size, watermark);
2386
2387         if (!buffer->watermark)
2388                 buffer->watermark = max_size / 2;
2389
2390         if (flags & PERF_BUFFER_WRITABLE)
2391                 buffer->writable = 1;
2392
2393         atomic_set(&buffer->refcount, 1);
2394 }
2395
2396 #ifndef CONFIG_PERF_USE_VMALLOC
2397
2398 /*
2399  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2400  */
2401
2402 static struct page *
2403 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2404 {
2405         if (pgoff > buffer->nr_pages)
2406                 return NULL;
2407
2408         if (pgoff == 0)
2409                 return virt_to_page(buffer->user_page);
2410
2411         return virt_to_page(buffer->data_pages[pgoff - 1]);
2412 }
2413
2414 static void *perf_mmap_alloc_page(int cpu)
2415 {
2416         struct page *page;
2417         int node;
2418
2419         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2420         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2421         if (!page)
2422                 return NULL;
2423
2424         return page_address(page);
2425 }
2426
2427 static struct perf_buffer *
2428 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2429 {
2430         struct perf_buffer *buffer;
2431         unsigned long size;
2432         int i;
2433
2434         size = sizeof(struct perf_buffer);
2435         size += nr_pages * sizeof(void *);
2436
2437         buffer = kzalloc(size, GFP_KERNEL);
2438         if (!buffer)
2439                 goto fail;
2440
2441         buffer->user_page = perf_mmap_alloc_page(cpu);
2442         if (!buffer->user_page)
2443                 goto fail_user_page;
2444
2445         for (i = 0; i < nr_pages; i++) {
2446                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2447                 if (!buffer->data_pages[i])
2448                         goto fail_data_pages;
2449         }
2450
2451         buffer->nr_pages = nr_pages;
2452
2453         perf_buffer_init(buffer, watermark, flags);
2454
2455         return buffer;
2456
2457 fail_data_pages:
2458         for (i--; i >= 0; i--)
2459                 free_page((unsigned long)buffer->data_pages[i]);
2460
2461         free_page((unsigned long)buffer->user_page);
2462
2463 fail_user_page:
2464         kfree(buffer);
2465
2466 fail:
2467         return NULL;
2468 }
2469
2470 static void perf_mmap_free_page(unsigned long addr)
2471 {
2472         struct page *page = virt_to_page((void *)addr);
2473
2474         page->mapping = NULL;
2475         __free_page(page);
2476 }
2477
2478 static void perf_buffer_free(struct perf_buffer *buffer)
2479 {
2480         int i;
2481
2482         perf_mmap_free_page((unsigned long)buffer->user_page);
2483         for (i = 0; i < buffer->nr_pages; i++)
2484                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2485         kfree(buffer);
2486 }
2487
2488 static inline int page_order(struct perf_buffer *buffer)
2489 {
2490         return 0;
2491 }
2492
2493 #else
2494
2495 /*
2496  * Back perf_mmap() with vmalloc memory.
2497  *
2498  * Required for architectures that have d-cache aliasing issues.
2499  */
2500
2501 static inline int page_order(struct perf_buffer *buffer)
2502 {
2503         return buffer->page_order;
2504 }
2505
2506 static struct page *
2507 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2508 {
2509         if (pgoff > (1UL << page_order(buffer)))
2510                 return NULL;
2511
2512         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2513 }
2514
2515 static void perf_mmap_unmark_page(void *addr)
2516 {
2517         struct page *page = vmalloc_to_page(addr);
2518
2519         page->mapping = NULL;
2520 }
2521
2522 static void perf_buffer_free_work(struct work_struct *work)
2523 {
2524         struct perf_buffer *buffer;
2525         void *base;
2526         int i, nr;
2527
2528         buffer = container_of(work, struct perf_buffer, work);
2529         nr = 1 << page_order(buffer);
2530
2531         base = buffer->user_page;
2532         for (i = 0; i < nr + 1; i++)
2533                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2534
2535         vfree(base);
2536         kfree(buffer);
2537 }
2538
2539 static void perf_buffer_free(struct perf_buffer *buffer)
2540 {
2541         schedule_work(&buffer->work);
2542 }
2543
2544 static struct perf_buffer *
2545 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2546 {
2547         struct perf_buffer *buffer;
2548         unsigned long size;
2549         void *all_buf;
2550
2551         size = sizeof(struct perf_buffer);
2552         size += sizeof(void *);
2553
2554         buffer = kzalloc(size, GFP_KERNEL);
2555         if (!buffer)
2556                 goto fail;
2557
2558         INIT_WORK(&buffer->work, perf_buffer_free_work);
2559
2560         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2561         if (!all_buf)
2562                 goto fail_all_buf;
2563
2564         buffer->user_page = all_buf;
2565         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2566         buffer->page_order = ilog2(nr_pages);
2567         buffer->nr_pages = 1;
2568
2569         perf_buffer_init(buffer, watermark, flags);
2570
2571         return buffer;
2572
2573 fail_all_buf:
2574         kfree(buffer);
2575
2576 fail:
2577         return NULL;
2578 }
2579
2580 #endif
2581
2582 static unsigned long perf_data_size(struct perf_buffer *buffer)
2583 {
2584         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2585 }
2586
2587 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2588 {
2589         struct perf_event *event = vma->vm_file->private_data;
2590         struct perf_buffer *buffer;
2591         int ret = VM_FAULT_SIGBUS;
2592
2593         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2594                 if (vmf->pgoff == 0)
2595                         ret = 0;
2596                 return ret;
2597         }
2598
2599         rcu_read_lock();
2600         buffer = rcu_dereference(event->buffer);
2601         if (!buffer)
2602                 goto unlock;
2603
2604         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2605                 goto unlock;
2606
2607         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2608         if (!vmf->page)
2609                 goto unlock;
2610
2611         get_page(vmf->page);
2612         vmf->page->mapping = vma->vm_file->f_mapping;
2613         vmf->page->index   = vmf->pgoff;
2614
2615         ret = 0;
2616 unlock:
2617         rcu_read_unlock();
2618
2619         return ret;
2620 }
2621
2622 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2623 {
2624         struct perf_buffer *buffer;
2625
2626         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2627         perf_buffer_free(buffer);
2628 }
2629
2630 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2631 {
2632         struct perf_buffer *buffer;
2633
2634         rcu_read_lock();
2635         buffer = rcu_dereference(event->buffer);
2636         if (buffer) {
2637                 if (!atomic_inc_not_zero(&buffer->refcount))
2638                         buffer = NULL;
2639         }
2640         rcu_read_unlock();
2641
2642         return buffer;
2643 }
2644
2645 static void perf_buffer_put(struct perf_buffer *buffer)
2646 {
2647         if (!atomic_dec_and_test(&buffer->refcount))
2648                 return;
2649
2650         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2651 }
2652
2653 static void perf_mmap_open(struct vm_area_struct *vma)
2654 {
2655         struct perf_event *event = vma->vm_file->private_data;
2656
2657         atomic_inc(&event->mmap_count);
2658 }
2659
2660 static void perf_mmap_close(struct vm_area_struct *vma)
2661 {
2662         struct perf_event *event = vma->vm_file->private_data;
2663
2664         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2665                 unsigned long size = perf_data_size(event->buffer);
2666                 struct user_struct *user = event->mmap_user;
2667                 struct perf_buffer *buffer = event->buffer;
2668
2669                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2670                 vma->vm_mm->locked_vm -= event->mmap_locked;
2671                 rcu_assign_pointer(event->buffer, NULL);
2672                 mutex_unlock(&event->mmap_mutex);
2673
2674                 perf_buffer_put(buffer);
2675                 free_uid(user);
2676         }
2677 }
2678
2679 static const struct vm_operations_struct perf_mmap_vmops = {
2680         .open           = perf_mmap_open,
2681         .close          = perf_mmap_close,
2682         .fault          = perf_mmap_fault,
2683         .page_mkwrite   = perf_mmap_fault,
2684 };
2685
2686 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2687 {
2688         struct perf_event *event = file->private_data;
2689         unsigned long user_locked, user_lock_limit;
2690         struct user_struct *user = current_user();
2691         unsigned long locked, lock_limit;
2692         struct perf_buffer *buffer;
2693         unsigned long vma_size;
2694         unsigned long nr_pages;
2695         long user_extra, extra;
2696         int ret = 0, flags = 0;
2697
2698         /*
2699          * Don't allow mmap() of inherited per-task counters. This would
2700          * create a performance issue due to all children writing to the
2701          * same buffer.
2702          */
2703         if (event->cpu == -1 && event->attr.inherit)
2704                 return -EINVAL;
2705
2706         if (!(vma->vm_flags & VM_SHARED))
2707                 return -EINVAL;
2708
2709         vma_size = vma->vm_end - vma->vm_start;
2710         nr_pages = (vma_size / PAGE_SIZE) - 1;
2711
2712         /*
2713          * If we have buffer pages ensure they're a power-of-two number, so we
2714          * can do bitmasks instead of modulo.
2715          */
2716         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2717                 return -EINVAL;
2718
2719         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2720                 return -EINVAL;
2721
2722         if (vma->vm_pgoff != 0)
2723                 return -EINVAL;
2724
2725         WARN_ON_ONCE(event->ctx->parent_ctx);
2726         mutex_lock(&event->mmap_mutex);
2727         if (event->buffer) {
2728                 if (event->buffer->nr_pages == nr_pages)
2729                         atomic_inc(&event->buffer->refcount);
2730                 else
2731                         ret = -EINVAL;
2732                 goto unlock;
2733         }
2734
2735         user_extra = nr_pages + 1;
2736         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2737
2738         /*
2739          * Increase the limit linearly with more CPUs:
2740          */
2741         user_lock_limit *= num_online_cpus();
2742
2743         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2744
2745         extra = 0;
2746         if (user_locked > user_lock_limit)
2747                 extra = user_locked - user_lock_limit;
2748
2749         lock_limit = rlimit(RLIMIT_MEMLOCK);
2750         lock_limit >>= PAGE_SHIFT;
2751         locked = vma->vm_mm->locked_vm + extra;
2752
2753         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2754                 !capable(CAP_IPC_LOCK)) {
2755                 ret = -EPERM;
2756                 goto unlock;
2757         }
2758
2759         WARN_ON(event->buffer);
2760
2761         if (vma->vm_flags & VM_WRITE)
2762                 flags |= PERF_BUFFER_WRITABLE;
2763
2764         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
2765                                    event->cpu, flags);
2766         if (!buffer) {
2767                 ret = -ENOMEM;
2768                 goto unlock;
2769         }
2770         rcu_assign_pointer(event->buffer, buffer);
2771
2772         atomic_long_add(user_extra, &user->locked_vm);
2773         event->mmap_locked = extra;
2774         event->mmap_user = get_current_user();
2775         vma->vm_mm->locked_vm += event->mmap_locked;
2776
2777 unlock:
2778         if (!ret)
2779                 atomic_inc(&event->mmap_count);
2780         mutex_unlock(&event->mmap_mutex);
2781
2782         vma->vm_flags |= VM_RESERVED;
2783         vma->vm_ops = &perf_mmap_vmops;
2784
2785         return ret;
2786 }
2787
2788 static int perf_fasync(int fd, struct file *filp, int on)
2789 {
2790         struct inode *inode = filp->f_path.dentry->d_inode;
2791         struct perf_event *event = filp->private_data;
2792         int retval;
2793
2794         mutex_lock(&inode->i_mutex);
2795         retval = fasync_helper(fd, filp, on, &event->fasync);
2796         mutex_unlock(&inode->i_mutex);
2797
2798         if (retval < 0)
2799                 return retval;
2800
2801         return 0;
2802 }
2803
2804 static const struct file_operations perf_fops = {
2805         .llseek                 = no_llseek,
2806         .release                = perf_release,
2807         .read                   = perf_read,
2808         .poll                   = perf_poll,
2809         .unlocked_ioctl         = perf_ioctl,
2810         .compat_ioctl           = perf_ioctl,
2811         .mmap                   = perf_mmap,
2812         .fasync                 = perf_fasync,
2813 };
2814
2815 /*
2816  * Perf event wakeup
2817  *
2818  * If there's data, ensure we set the poll() state and publish everything
2819  * to user-space before waking everybody up.
2820  */
2821
2822 void perf_event_wakeup(struct perf_event *event)
2823 {
2824         wake_up_all(&event->waitq);
2825
2826         if (event->pending_kill) {
2827                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2828                 event->pending_kill = 0;
2829         }
2830 }
2831
2832 /*
2833  * Pending wakeups
2834  *
2835  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2836  *
2837  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2838  * single linked list and use cmpxchg() to add entries lockless.
2839  */
2840
2841 static void perf_pending_event(struct perf_pending_entry *entry)
2842 {
2843         struct perf_event *event = container_of(entry,
2844                         struct perf_event, pending);
2845
2846         if (event->pending_disable) {
2847                 event->pending_disable = 0;
2848                 __perf_event_disable(event);
2849         }
2850
2851         if (event->pending_wakeup) {
2852                 event->pending_wakeup = 0;
2853                 perf_event_wakeup(event);
2854         }
2855 }
2856
2857 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2858
2859 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2860         PENDING_TAIL,
2861 };
2862
2863 static void perf_pending_queue(struct perf_pending_entry *entry,
2864                                void (*func)(struct perf_pending_entry *))
2865 {
2866         struct perf_pending_entry **head;
2867
2868         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2869                 return;
2870
2871         entry->func = func;
2872
2873         head = &get_cpu_var(perf_pending_head);
2874
2875         do {
2876                 entry->next = *head;
2877         } while (cmpxchg(head, entry->next, entry) != entry->next);
2878
2879         set_perf_event_pending();
2880
2881         put_cpu_var(perf_pending_head);
2882 }
2883
2884 static int __perf_pending_run(void)
2885 {
2886         struct perf_pending_entry *list;
2887         int nr = 0;
2888
2889         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2890         while (list != PENDING_TAIL) {
2891                 void (*func)(struct perf_pending_entry *);
2892                 struct perf_pending_entry *entry = list;
2893
2894                 list = list->next;
2895
2896                 func = entry->func;
2897                 entry->next = NULL;
2898                 /*
2899                  * Ensure we observe the unqueue before we issue the wakeup,
2900                  * so that we won't be waiting forever.
2901                  * -- see perf_not_pending().
2902                  */
2903                 smp_wmb();
2904
2905                 func(entry);
2906                 nr++;
2907         }
2908
2909         return nr;
2910 }
2911
2912 static inline int perf_not_pending(struct perf_event *event)
2913 {
2914         /*
2915          * If we flush on whatever cpu we run, there is a chance we don't
2916          * need to wait.
2917          */
2918         get_cpu();
2919         __perf_pending_run();
2920         put_cpu();
2921
2922         /*
2923          * Ensure we see the proper queue state before going to sleep
2924          * so that we do not miss the wakeup. -- see perf_pending_handle()
2925          */
2926         smp_rmb();
2927         return event->pending.next == NULL;
2928 }
2929
2930 static void perf_pending_sync(struct perf_event *event)
2931 {
2932         wait_event(event->waitq, perf_not_pending(event));
2933 }
2934
2935 void perf_event_do_pending(void)
2936 {
2937         __perf_pending_run();
2938 }
2939
2940 DEFINE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
2941
2942 /*
2943  * Callchain support -- arch specific
2944  */
2945
2946 __weak struct perf_callchain_entry *perf_callchain_buffer(void)
2947 {
2948         return &__get_cpu_var(perf_callchain_entry);
2949 }
2950
2951 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2952                                   struct pt_regs *regs)
2953 {
2954 }
2955
2956 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
2957                                 struct pt_regs *regs)
2958 {
2959 }
2960
2961 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2962 {
2963         struct perf_callchain_entry *entry;
2964
2965         entry = perf_callchain_buffer();
2966         if (!entry)
2967                 return NULL;
2968
2969         entry->nr = 0;
2970
2971         if (!user_mode(regs)) {
2972                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2973                 perf_callchain_kernel(entry, regs);
2974                 if (current->mm)
2975                         regs = task_pt_regs(current);
2976                 else
2977                         regs = NULL;
2978         }
2979
2980         if (regs) {
2981                 perf_callchain_store(entry, PERF_CONTEXT_USER);
2982                 perf_callchain_user(entry, regs);
2983         }
2984
2985         return entry;
2986 }
2987
2988
2989 /*
2990  * We assume there is only KVM supporting the callbacks.
2991  * Later on, we might change it to a list if there is
2992  * another virtualization implementation supporting the callbacks.
2993  */
2994 struct perf_guest_info_callbacks *perf_guest_cbs;
2995
2996 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2997 {
2998         perf_guest_cbs = cbs;
2999         return 0;
3000 }
3001 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3002
3003 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3004 {
3005         perf_guest_cbs = NULL;
3006         return 0;
3007 }
3008 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3009
3010 /*
3011  * Output
3012  */
3013 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3014                               unsigned long offset, unsigned long head)
3015 {
3016         unsigned long mask;
3017
3018         if (!buffer->writable)
3019                 return true;
3020
3021         mask = perf_data_size(buffer) - 1;
3022
3023         offset = (offset - tail) & mask;
3024         head   = (head   - tail) & mask;
3025
3026         if ((int)(head - offset) < 0)
3027                 return false;
3028
3029         return true;
3030 }
3031
3032 static void perf_output_wakeup(struct perf_output_handle *handle)
3033 {
3034         atomic_set(&handle->buffer->poll, POLL_IN);
3035
3036         if (handle->nmi) {
3037                 handle->event->pending_wakeup = 1;
3038                 perf_pending_queue(&handle->event->pending,
3039                                    perf_pending_event);
3040         } else
3041                 perf_event_wakeup(handle->event);
3042 }
3043
3044 /*
3045  * We need to ensure a later event_id doesn't publish a head when a former
3046  * event isn't done writing. However since we need to deal with NMIs we
3047  * cannot fully serialize things.
3048  *
3049  * We only publish the head (and generate a wakeup) when the outer-most
3050  * event completes.
3051  */
3052 static void perf_output_get_handle(struct perf_output_handle *handle)
3053 {
3054         struct perf_buffer *buffer = handle->buffer;
3055
3056         preempt_disable();
3057         local_inc(&buffer->nest);
3058         handle->wakeup = local_read(&buffer->wakeup);
3059 }
3060
3061 static void perf_output_put_handle(struct perf_output_handle *handle)
3062 {
3063         struct perf_buffer *buffer = handle->buffer;
3064         unsigned long head;
3065
3066 again:
3067         head = local_read(&buffer->head);
3068
3069         /*
3070          * IRQ/NMI can happen here, which means we can miss a head update.
3071          */
3072
3073         if (!local_dec_and_test(&buffer->nest))
3074                 goto out;
3075
3076         /*
3077          * Publish the known good head. Rely on the full barrier implied
3078          * by atomic_dec_and_test() order the buffer->head read and this
3079          * write.
3080          */
3081         buffer->user_page->data_head = head;
3082
3083         /*
3084          * Now check if we missed an update, rely on the (compiler)
3085          * barrier in atomic_dec_and_test() to re-read buffer->head.
3086          */
3087         if (unlikely(head != local_read(&buffer->head))) {
3088                 local_inc(&buffer->nest);
3089                 goto again;
3090         }
3091
3092         if (handle->wakeup != local_read(&buffer->wakeup))
3093                 perf_output_wakeup(handle);
3094
3095  out:
3096         preempt_enable();
3097 }
3098
3099 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3100                       const void *buf, unsigned int len)
3101 {
3102         do {
3103                 unsigned long size = min_t(unsigned long, handle->size, len);
3104
3105                 memcpy(handle->addr, buf, size);
3106
3107                 len -= size;
3108                 handle->addr += size;
3109                 buf += size;
3110                 handle->size -= size;
3111                 if (!handle->size) {
3112                         struct perf_buffer *buffer = handle->buffer;
3113
3114                         handle->page++;
3115                         handle->page &= buffer->nr_pages - 1;
3116                         handle->addr = buffer->data_pages[handle->page];
3117                         handle->size = PAGE_SIZE << page_order(buffer);
3118                 }
3119         } while (len);
3120 }
3121
3122 int perf_output_begin(struct perf_output_handle *handle,
3123                       struct perf_event *event, unsigned int size,
3124                       int nmi, int sample)
3125 {
3126         struct perf_buffer *buffer;
3127         unsigned long tail, offset, head;
3128         int have_lost;
3129         struct {
3130                 struct perf_event_header header;
3131                 u64                      id;
3132                 u64                      lost;
3133         } lost_event;
3134
3135         rcu_read_lock();
3136         /*
3137          * For inherited events we send all the output towards the parent.
3138          */
3139         if (event->parent)
3140                 event = event->parent;
3141
3142         buffer = rcu_dereference(event->buffer);
3143         if (!buffer)
3144                 goto out;
3145
3146         handle->buffer  = buffer;
3147         handle->event   = event;
3148         handle->nmi     = nmi;
3149         handle->sample  = sample;
3150
3151         if (!buffer->nr_pages)
3152                 goto out;
3153
3154         have_lost = local_read(&buffer->lost);
3155         if (have_lost)
3156                 size += sizeof(lost_event);
3157
3158         perf_output_get_handle(handle);
3159
3160         do {
3161                 /*
3162                  * Userspace could choose to issue a mb() before updating the
3163                  * tail pointer. So that all reads will be completed before the
3164                  * write is issued.
3165                  */
3166                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3167                 smp_rmb();
3168                 offset = head = local_read(&buffer->head);
3169                 head += size;
3170                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3171                         goto fail;
3172         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3173
3174         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3175                 local_add(buffer->watermark, &buffer->wakeup);
3176
3177         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3178         handle->page &= buffer->nr_pages - 1;
3179         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3180         handle->addr = buffer->data_pages[handle->page];
3181         handle->addr += handle->size;
3182         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3183
3184         if (have_lost) {
3185                 lost_event.header.type = PERF_RECORD_LOST;
3186                 lost_event.header.misc = 0;
3187                 lost_event.header.size = sizeof(lost_event);
3188                 lost_event.id          = event->id;
3189                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3190
3191                 perf_output_put(handle, lost_event);
3192         }
3193
3194         return 0;
3195
3196 fail:
3197         local_inc(&buffer->lost);
3198         perf_output_put_handle(handle);
3199 out:
3200         rcu_read_unlock();
3201
3202         return -ENOSPC;
3203 }
3204
3205 void perf_output_end(struct perf_output_handle *handle)
3206 {
3207         struct perf_event *event = handle->event;
3208         struct perf_buffer *buffer = handle->buffer;
3209
3210         int wakeup_events = event->attr.wakeup_events;
3211
3212         if (handle->sample && wakeup_events) {
3213                 int events = local_inc_return(&buffer->events);
3214                 if (events >= wakeup_events) {
3215                         local_sub(wakeup_events, &buffer->events);
3216                         local_inc(&buffer->wakeup);
3217                 }
3218         }
3219
3220         perf_output_put_handle(handle);
3221         rcu_read_unlock();
3222 }
3223
3224 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3225 {
3226         /*
3227          * only top level events have the pid namespace they were created in
3228          */
3229         if (event->parent)
3230                 event = event->parent;
3231
3232         return task_tgid_nr_ns(p, event->ns);
3233 }
3234
3235 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3236 {
3237         /*
3238          * only top level events have the pid namespace they were created in
3239          */
3240         if (event->parent)
3241                 event = event->parent;
3242
3243         return task_pid_nr_ns(p, event->ns);
3244 }
3245
3246 static void perf_output_read_one(struct perf_output_handle *handle,
3247                                  struct perf_event *event)
3248 {
3249         u64 read_format = event->attr.read_format;
3250         u64 values[4];
3251         int n = 0;
3252
3253         values[n++] = perf_event_count(event);
3254         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3255                 values[n++] = event->total_time_enabled +
3256                         atomic64_read(&event->child_total_time_enabled);
3257         }
3258         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3259                 values[n++] = event->total_time_running +
3260                         atomic64_read(&event->child_total_time_running);
3261         }
3262         if (read_format & PERF_FORMAT_ID)
3263                 values[n++] = primary_event_id(event);
3264
3265         perf_output_copy(handle, values, n * sizeof(u64));
3266 }
3267
3268 /*
3269  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3270  */
3271 static void perf_output_read_group(struct perf_output_handle *handle,
3272                             struct perf_event *event)
3273 {
3274         struct perf_event *leader = event->group_leader, *sub;
3275         u64 read_format = event->attr.read_format;
3276         u64 values[5];
3277         int n = 0;
3278
3279         values[n++] = 1 + leader->nr_siblings;
3280
3281         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3282                 values[n++] = leader->total_time_enabled;
3283
3284         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3285                 values[n++] = leader->total_time_running;
3286
3287         if (leader != event)
3288                 leader->pmu->read(leader);
3289
3290         values[n++] = perf_event_count(leader);
3291         if (read_format & PERF_FORMAT_ID)
3292                 values[n++] = primary_event_id(leader);
3293
3294         perf_output_copy(handle, values, n * sizeof(u64));
3295
3296         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3297                 n = 0;
3298
3299                 if (sub != event)
3300                         sub->pmu->read(sub);
3301
3302                 values[n++] = perf_event_count(sub);
3303                 if (read_format & PERF_FORMAT_ID)
3304                         values[n++] = primary_event_id(sub);
3305
3306                 perf_output_copy(handle, values, n * sizeof(u64));
3307         }
3308 }
3309
3310 static void perf_output_read(struct perf_output_handle *handle,
3311                              struct perf_event *event)
3312 {
3313         if (event->attr.read_format & PERF_FORMAT_GROUP)
3314                 perf_output_read_group(handle, event);
3315         else
3316                 perf_output_read_one(handle, event);
3317 }
3318
3319 void perf_output_sample(struct perf_output_handle *handle,
3320                         struct perf_event_header *header,
3321                         struct perf_sample_data *data,
3322                         struct perf_event *event)
3323 {
3324         u64 sample_type = data->type;
3325
3326         perf_output_put(handle, *header);
3327
3328         if (sample_type & PERF_SAMPLE_IP)
3329                 perf_output_put(handle, data->ip);
3330
3331         if (sample_type & PERF_SAMPLE_TID)
3332                 perf_output_put(handle, data->tid_entry);
3333
3334         if (sample_type & PERF_SAMPLE_TIME)
3335                 perf_output_put(handle, data->time);
3336
3337         if (sample_type & PERF_SAMPLE_ADDR)
3338                 perf_output_put(handle, data->addr);
3339
3340         if (sample_type & PERF_SAMPLE_ID)
3341                 perf_output_put(handle, data->id);
3342
3343         if (sample_type & PERF_SAMPLE_STREAM_ID)
3344                 perf_output_put(handle, data->stream_id);
3345
3346         if (sample_type & PERF_SAMPLE_CPU)
3347                 perf_output_put(handle, data->cpu_entry);
3348
3349         if (sample_type & PERF_SAMPLE_PERIOD)
3350                 perf_output_put(handle, data->period);
3351
3352         if (sample_type & PERF_SAMPLE_READ)
3353                 perf_output_read(handle, event);
3354
3355         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3356                 if (data->callchain) {
3357                         int size = 1;
3358
3359                         if (data->callchain)
3360                                 size += data->callchain->nr;
3361
3362                         size *= sizeof(u64);
3363
3364                         perf_output_copy(handle, data->callchain, size);
3365                 } else {
3366                         u64 nr = 0;
3367                         perf_output_put(handle, nr);
3368                 }
3369         }
3370
3371         if (sample_type & PERF_SAMPLE_RAW) {
3372                 if (data->raw) {
3373                         perf_output_put(handle, data->raw->size);
3374                         perf_output_copy(handle, data->raw->data,
3375                                          data->raw->size);
3376                 } else {
3377                         struct {
3378                                 u32     size;
3379                                 u32     data;
3380                         } raw = {
3381                                 .size = sizeof(u32),
3382                                 .data = 0,
3383                         };
3384                         perf_output_put(handle, raw);
3385                 }
3386         }
3387 }
3388
3389 void perf_prepare_sample(struct perf_event_header *header,
3390                          struct perf_sample_data *data,
3391                          struct perf_event *event,
3392                          struct pt_regs *regs)
3393 {
3394         u64 sample_type = event->attr.sample_type;
3395
3396         data->type = sample_type;
3397
3398         header->type = PERF_RECORD_SAMPLE;
3399         header->size = sizeof(*header);
3400
3401         header->misc = 0;
3402         header->misc |= perf_misc_flags(regs);
3403
3404         if (sample_type & PERF_SAMPLE_IP) {
3405                 data->ip = perf_instruction_pointer(regs);
3406
3407                 header->size += sizeof(data->ip);
3408         }
3409
3410         if (sample_type & PERF_SAMPLE_TID) {
3411                 /* namespace issues */
3412                 data->tid_entry.pid = perf_event_pid(event, current);
3413                 data->tid_entry.tid = perf_event_tid(event, current);
3414
3415                 header->size += sizeof(data->tid_entry);
3416         }
3417
3418         if (sample_type & PERF_SAMPLE_TIME) {
3419                 data->time = perf_clock();
3420
3421                 header->size += sizeof(data->time);
3422         }
3423
3424         if (sample_type & PERF_SAMPLE_ADDR)
3425                 header->size += sizeof(data->addr);
3426
3427         if (sample_type & PERF_SAMPLE_ID) {
3428                 data->id = primary_event_id(event);
3429
3430                 header->size += sizeof(data->id);
3431         }
3432
3433         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3434                 data->stream_id = event->id;
3435
3436                 header->size += sizeof(data->stream_id);
3437         }
3438
3439         if (sample_type & PERF_SAMPLE_CPU) {
3440                 data->cpu_entry.cpu             = raw_smp_processor_id();
3441                 data->cpu_entry.reserved        = 0;
3442
3443                 header->size += sizeof(data->cpu_entry);
3444         }
3445
3446         if (sample_type & PERF_SAMPLE_PERIOD)
3447                 header->size += sizeof(data->period);
3448
3449         if (sample_type & PERF_SAMPLE_READ)
3450                 header->size += perf_event_read_size(event);
3451
3452         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3453                 int size = 1;
3454
3455                 data->callchain = perf_callchain(regs);
3456
3457                 if (data->callchain)
3458                         size += data->callchain->nr;
3459
3460                 header->size += size * sizeof(u64);
3461         }
3462
3463         if (sample_type & PERF_SAMPLE_RAW) {
3464                 int size = sizeof(u32);
3465
3466                 if (data->raw)
3467                         size += data->raw->size;
3468                 else
3469                         size += sizeof(u32);
3470
3471                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3472                 header->size += size;
3473         }
3474 }
3475
3476 static void perf_event_output(struct perf_event *event, int nmi,
3477                                 struct perf_sample_data *data,
3478                                 struct pt_regs *regs)
3479 {
3480         struct perf_output_handle handle;
3481         struct perf_event_header header;
3482
3483         perf_prepare_sample(&header, data, event, regs);
3484
3485         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3486                 return;
3487
3488         perf_output_sample(&handle, &header, data, event);
3489
3490         perf_output_end(&handle);
3491 }
3492
3493 /*
3494  * read event_id
3495  */
3496
3497 struct perf_read_event {
3498         struct perf_event_header        header;
3499
3500         u32                             pid;
3501         u32                             tid;
3502 };
3503
3504 static void
3505 perf_event_read_event(struct perf_event *event,
3506                         struct task_struct *task)
3507 {
3508         struct perf_output_handle handle;
3509         struct perf_read_event read_event = {
3510                 .header = {
3511                         .type = PERF_RECORD_READ,
3512                         .misc = 0,
3513                         .size = sizeof(read_event) + perf_event_read_size(event),
3514                 },
3515                 .pid = perf_event_pid(event, task),
3516                 .tid = perf_event_tid(event, task),
3517         };
3518         int ret;
3519
3520         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3521         if (ret)
3522                 return;
3523
3524         perf_output_put(&handle, read_event);
3525         perf_output_read(&handle, event);
3526
3527         perf_output_end(&handle);
3528 }
3529
3530 /*
3531  * task tracking -- fork/exit
3532  *
3533  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3534  */
3535
3536 struct perf_task_event {
3537         struct task_struct              *task;
3538         struct perf_event_context       *task_ctx;
3539
3540         struct {
3541                 struct perf_event_header        header;
3542
3543                 u32                             pid;
3544                 u32                             ppid;
3545                 u32                             tid;
3546                 u32                             ptid;
3547                 u64                             time;
3548         } event_id;
3549 };
3550
3551 static void perf_event_task_output(struct perf_event *event,
3552                                      struct perf_task_event *task_event)
3553 {
3554         struct perf_output_handle handle;
3555         struct task_struct *task = task_event->task;
3556         int size, ret;
3557
3558         size  = task_event->event_id.header.size;
3559         ret = perf_output_begin(&handle, event, size, 0, 0);
3560
3561         if (ret)
3562                 return;
3563
3564         task_event->event_id.pid = perf_event_pid(event, task);
3565         task_event->event_id.ppid = perf_event_pid(event, current);
3566
3567         task_event->event_id.tid = perf_event_tid(event, task);
3568         task_event->event_id.ptid = perf_event_tid(event, current);
3569
3570         perf_output_put(&handle, task_event->event_id);
3571
3572         perf_output_end(&handle);
3573 }
3574
3575 static int perf_event_task_match(struct perf_event *event)
3576 {
3577         if (event->state < PERF_EVENT_STATE_INACTIVE)
3578                 return 0;
3579
3580         if (event->cpu != -1 && event->cpu != smp_processor_id())
3581                 return 0;
3582
3583         if (event->attr.comm || event->attr.mmap ||
3584             event->attr.mmap_data || event->attr.task)
3585                 return 1;
3586
3587         return 0;
3588 }
3589
3590 static void perf_event_task_ctx(struct perf_event_context *ctx,
3591                                   struct perf_task_event *task_event)
3592 {
3593         struct perf_event *event;
3594
3595         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3596                 if (perf_event_task_match(event))
3597                         perf_event_task_output(event, task_event);
3598         }
3599 }
3600
3601 static void perf_event_task_event(struct perf_task_event *task_event)
3602 {
3603         struct perf_cpu_context *cpuctx;
3604         struct perf_event_context *ctx = task_event->task_ctx;
3605
3606         rcu_read_lock();
3607         cpuctx = &get_cpu_var(perf_cpu_context);
3608         perf_event_task_ctx(&cpuctx->ctx, task_event);
3609         if (!ctx)
3610                 ctx = rcu_dereference(current->perf_event_ctxp);
3611         if (ctx)
3612                 perf_event_task_ctx(ctx, task_event);
3613         put_cpu_var(perf_cpu_context);
3614         rcu_read_unlock();
3615 }
3616
3617 static void perf_event_task(struct task_struct *task,
3618                               struct perf_event_context *task_ctx,
3619                               int new)
3620 {
3621         struct perf_task_event task_event;
3622
3623         if (!atomic_read(&nr_comm_events) &&
3624             !atomic_read(&nr_mmap_events) &&
3625             !atomic_read(&nr_task_events))
3626                 return;
3627
3628         task_event = (struct perf_task_event){
3629                 .task     = task,
3630                 .task_ctx = task_ctx,
3631                 .event_id    = {
3632                         .header = {
3633                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3634                                 .misc = 0,
3635                                 .size = sizeof(task_event.event_id),
3636                         },
3637                         /* .pid  */
3638                         /* .ppid */
3639                         /* .tid  */
3640                         /* .ptid */
3641                         .time = perf_clock(),
3642                 },
3643         };
3644
3645         perf_event_task_event(&task_event);
3646 }
3647
3648 void perf_event_fork(struct task_struct *task)
3649 {
3650         perf_event_task(task, NULL, 1);
3651 }
3652
3653 /*
3654  * comm tracking
3655  */
3656
3657 struct perf_comm_event {
3658         struct task_struct      *task;
3659         char                    *comm;
3660         int                     comm_size;
3661
3662         struct {
3663                 struct perf_event_header        header;
3664
3665                 u32                             pid;
3666                 u32                             tid;
3667         } event_id;
3668 };
3669
3670 static void perf_event_comm_output(struct perf_event *event,
3671                                      struct perf_comm_event *comm_event)
3672 {
3673         struct perf_output_handle handle;
3674         int size = comm_event->event_id.header.size;
3675         int ret = perf_output_begin(&handle, event, size, 0, 0);
3676
3677         if (ret)
3678                 return;
3679
3680         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3681         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3682
3683         perf_output_put(&handle, comm_event->event_id);
3684         perf_output_copy(&handle, comm_event->comm,
3685                                    comm_event->comm_size);
3686         perf_output_end(&handle);
3687 }
3688
3689 static int perf_event_comm_match(struct perf_event *event)
3690 {
3691         if (event->state < PERF_EVENT_STATE_INACTIVE)
3692                 return 0;
3693
3694         if (event->cpu != -1 && event->cpu != smp_processor_id())
3695                 return 0;
3696
3697         if (event->attr.comm)
3698                 return 1;
3699
3700         return 0;
3701 }
3702
3703 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3704                                   struct perf_comm_event *comm_event)
3705 {
3706         struct perf_event *event;
3707
3708         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3709                 if (perf_event_comm_match(event))
3710                         perf_event_comm_output(event, comm_event);
3711         }
3712 }
3713
3714 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3715 {
3716         struct perf_cpu_context *cpuctx;
3717         struct perf_event_context *ctx;
3718         unsigned int size;
3719         char comm[TASK_COMM_LEN];
3720
3721         memset(comm, 0, sizeof(comm));
3722         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3723         size = ALIGN(strlen(comm)+1, sizeof(u64));
3724
3725         comm_event->comm = comm;
3726         comm_event->comm_size = size;
3727
3728         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3729
3730         rcu_read_lock();
3731         cpuctx = &get_cpu_var(perf_cpu_context);
3732         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3733         ctx = rcu_dereference(current->perf_event_ctxp);
3734         if (ctx)
3735                 perf_event_comm_ctx(ctx, comm_event);
3736         put_cpu_var(perf_cpu_context);
3737         rcu_read_unlock();
3738 }
3739
3740 void perf_event_comm(struct task_struct *task)
3741 {
3742         struct perf_comm_event comm_event;
3743
3744         if (task->perf_event_ctxp)
3745                 perf_event_enable_on_exec(task);
3746
3747         if (!atomic_read(&nr_comm_events))
3748                 return;
3749
3750         comm_event = (struct perf_comm_event){
3751                 .task   = task,
3752                 /* .comm      */
3753                 /* .comm_size */
3754                 .event_id  = {
3755                         .header = {
3756                                 .type = PERF_RECORD_COMM,
3757                                 .misc = 0,
3758                                 /* .size */
3759                         },
3760                         /* .pid */
3761                         /* .tid */
3762                 },
3763         };
3764
3765         perf_event_comm_event(&comm_event);
3766 }
3767
3768 /*
3769  * mmap tracking
3770  */
3771
3772 struct perf_mmap_event {
3773         struct vm_area_struct   *vma;
3774
3775         const char              *file_name;
3776         int                     file_size;
3777
3778         struct {
3779                 struct perf_event_header        header;
3780
3781                 u32                             pid;
3782                 u32                             tid;
3783                 u64                             start;
3784                 u64                             len;
3785                 u64                             pgoff;
3786         } event_id;
3787 };
3788
3789 static void perf_event_mmap_output(struct perf_event *event,
3790                                      struct perf_mmap_event *mmap_event)
3791 {
3792         struct perf_output_handle handle;
3793         int size = mmap_event->event_id.header.size;
3794         int ret = perf_output_begin(&handle, event, size, 0, 0);
3795
3796         if (ret)
3797                 return;
3798
3799         mmap_event->event_id.pid = perf_event_pid(event, current);
3800         mmap_event->event_id.tid = perf_event_tid(event, current);
3801
3802         perf_output_put(&handle, mmap_event->event_id);
3803         perf_output_copy(&handle, mmap_event->file_name,
3804                                    mmap_event->file_size);
3805         perf_output_end(&handle);
3806 }
3807
3808 static int perf_event_mmap_match(struct perf_event *event,
3809                                    struct perf_mmap_event *mmap_event,
3810                                    int executable)
3811 {
3812         if (event->state < PERF_EVENT_STATE_INACTIVE)
3813                 return 0;
3814
3815         if (event->cpu != -1 && event->cpu != smp_processor_id())
3816                 return 0;
3817
3818         if ((!executable && event->attr.mmap_data) ||
3819             (executable && event->attr.mmap))
3820                 return 1;
3821
3822         return 0;
3823 }
3824
3825 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3826                                   struct perf_mmap_event *mmap_event,
3827                                   int executable)
3828 {
3829         struct perf_event *event;
3830
3831         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3832                 if (perf_event_mmap_match(event, mmap_event, executable))
3833                         perf_event_mmap_output(event, mmap_event);
3834         }
3835 }
3836
3837 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3838 {
3839         struct perf_cpu_context *cpuctx;
3840         struct perf_event_context *ctx;
3841         struct vm_area_struct *vma = mmap_event->vma;
3842         struct file *file = vma->vm_file;
3843         unsigned int size;
3844         char tmp[16];
3845         char *buf = NULL;
3846         const char *name;
3847
3848         memset(tmp, 0, sizeof(tmp));
3849
3850         if (file) {
3851                 /*
3852                  * d_path works from the end of the buffer backwards, so we
3853                  * need to add enough zero bytes after the string to handle
3854                  * the 64bit alignment we do later.
3855                  */
3856                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3857                 if (!buf) {
3858                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3859                         goto got_name;
3860                 }
3861                 name = d_path(&file->f_path, buf, PATH_MAX);
3862                 if (IS_ERR(name)) {
3863                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3864                         goto got_name;
3865                 }
3866         } else {
3867                 if (arch_vma_name(mmap_event->vma)) {
3868                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3869                                        sizeof(tmp));
3870                         goto got_name;
3871                 }
3872
3873                 if (!vma->vm_mm) {
3874                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3875                         goto got_name;
3876                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
3877                                 vma->vm_end >= vma->vm_mm->brk) {
3878                         name = strncpy(tmp, "[heap]", sizeof(tmp));
3879                         goto got_name;
3880                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
3881                                 vma->vm_end >= vma->vm_mm->start_stack) {
3882                         name = strncpy(tmp, "[stack]", sizeof(tmp));
3883                         goto got_name;
3884                 }
3885
3886                 name = strncpy(tmp, "//anon", sizeof(tmp));
3887                 goto got_name;
3888         }
3889
3890 got_name:
3891         size = ALIGN(strlen(name)+1, sizeof(u64));
3892
3893         mmap_event->file_name = name;
3894         mmap_event->file_size = size;
3895
3896         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3897
3898         rcu_read_lock();
3899         cpuctx = &get_cpu_var(perf_cpu_context);
3900         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
3901         ctx = rcu_dereference(current->perf_event_ctxp);
3902         if (ctx)
3903                 perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
3904         put_cpu_var(perf_cpu_context);
3905         rcu_read_unlock();
3906
3907         kfree(buf);
3908 }
3909
3910 void perf_event_mmap(struct vm_area_struct *vma)
3911 {
3912         struct perf_mmap_event mmap_event;
3913
3914         if (!atomic_read(&nr_mmap_events))
3915                 return;
3916
3917         mmap_event = (struct perf_mmap_event){
3918                 .vma    = vma,
3919                 /* .file_name */
3920                 /* .file_size */
3921                 .event_id  = {
3922                         .header = {
3923                                 .type = PERF_RECORD_MMAP,
3924                                 .misc = PERF_RECORD_MISC_USER,
3925                                 /* .size */
3926                         },
3927                         /* .pid */
3928                         /* .tid */
3929                         .start  = vma->vm_start,
3930                         .len    = vma->vm_end - vma->vm_start,
3931                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3932                 },
3933         };
3934
3935         perf_event_mmap_event(&mmap_event);
3936 }
3937
3938 /*
3939  * IRQ throttle logging
3940  */
3941
3942 static void perf_log_throttle(struct perf_event *event, int enable)
3943 {
3944         struct perf_output_handle handle;
3945         int ret;
3946
3947         struct {
3948                 struct perf_event_header        header;
3949                 u64                             time;
3950                 u64                             id;
3951                 u64                             stream_id;
3952         } throttle_event = {
3953                 .header = {
3954                         .type = PERF_RECORD_THROTTLE,
3955                         .misc = 0,
3956                         .size = sizeof(throttle_event),
3957                 },
3958                 .time           = perf_clock(),
3959                 .id             = primary_event_id(event),
3960                 .stream_id      = event->id,
3961         };
3962
3963         if (enable)
3964                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3965
3966         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3967         if (ret)
3968                 return;
3969
3970         perf_output_put(&handle, throttle_event);
3971         perf_output_end(&handle);
3972 }
3973
3974 /*
3975  * Generic event overflow handling, sampling.
3976  */
3977
3978 static int __perf_event_overflow(struct perf_event *event, int nmi,
3979                                    int throttle, struct perf_sample_data *data,
3980                                    struct pt_regs *regs)
3981 {
3982         int events = atomic_read(&event->event_limit);
3983         struct hw_perf_event *hwc = &event->hw;
3984         int ret = 0;
3985
3986         throttle = (throttle && event->pmu->unthrottle != NULL);
3987
3988         if (!throttle) {
3989                 hwc->interrupts++;
3990         } else {
3991                 if (hwc->interrupts != MAX_INTERRUPTS) {
3992                         hwc->interrupts++;
3993                         if (HZ * hwc->interrupts >
3994                                         (u64)sysctl_perf_event_sample_rate) {
3995                                 hwc->interrupts = MAX_INTERRUPTS;
3996                                 perf_log_throttle(event, 0);
3997                                 ret = 1;
3998                         }
3999                 } else {
4000                         /*
4001                          * Keep re-disabling events even though on the previous
4002                          * pass we disabled it - just in case we raced with a
4003                          * sched-in and the event got enabled again:
4004                          */
4005                         ret = 1;
4006                 }
4007         }
4008
4009         if (event->attr.freq) {
4010                 u64 now = perf_clock();
4011                 s64 delta = now - hwc->freq_time_stamp;
4012
4013                 hwc->freq_time_stamp = now;
4014
4015                 if (delta > 0 && delta < 2*TICK_NSEC)
4016                         perf_adjust_period(event, delta, hwc->last_period);
4017         }
4018
4019         /*
4020          * XXX event_limit might not quite work as expected on inherited
4021          * events
4022          */
4023
4024         event->pending_kill = POLL_IN;
4025         if (events && atomic_dec_and_test(&event->event_limit)) {
4026                 ret = 1;
4027                 event->pending_kill = POLL_HUP;
4028                 if (nmi) {
4029                         event->pending_disable = 1;
4030                         perf_pending_queue(&event->pending,
4031                                            perf_pending_event);
4032                 } else
4033                         perf_event_disable(event);
4034         }
4035
4036         if (event->overflow_handler)
4037                 event->overflow_handler(event, nmi, data, regs);
4038         else
4039                 perf_event_output(event, nmi, data, regs);
4040
4041         return ret;
4042 }
4043
4044 int perf_event_overflow(struct perf_event *event, int nmi,
4045                           struct perf_sample_data *data,
4046                           struct pt_regs *regs)
4047 {
4048         return __perf_event_overflow(event, nmi, 1, data, regs);
4049 }
4050
4051 /*
4052  * Generic software event infrastructure
4053  */
4054
4055 /*
4056  * We directly increment event->count and keep a second value in
4057  * event->hw.period_left to count intervals. This period event
4058  * is kept in the range [-sample_period, 0] so that we can use the
4059  * sign as trigger.
4060  */
4061
4062 static u64 perf_swevent_set_period(struct perf_event *event)
4063 {
4064         struct hw_perf_event *hwc = &event->hw;
4065         u64 period = hwc->last_period;
4066         u64 nr, offset;
4067         s64 old, val;
4068
4069         hwc->last_period = hwc->sample_period;
4070
4071 again:
4072         old = val = local64_read(&hwc->period_left);
4073         if (val < 0)
4074                 return 0;
4075
4076         nr = div64_u64(period + val, period);
4077         offset = nr * period;
4078         val -= offset;
4079         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4080                 goto again;
4081
4082         return nr;
4083 }
4084
4085 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4086                                     int nmi, struct perf_sample_data *data,
4087                                     struct pt_regs *regs)
4088 {
4089         struct hw_perf_event *hwc = &event->hw;
4090         int throttle = 0;
4091
4092         data->period = event->hw.last_period;
4093         if (!overflow)
4094                 overflow = perf_swevent_set_period(event);
4095
4096         if (hwc->interrupts == MAX_INTERRUPTS)
4097                 return;
4098
4099         for (; overflow; overflow--) {
4100                 if (__perf_event_overflow(event, nmi, throttle,
4101                                             data, regs)) {
4102                         /*
4103                          * We inhibit the overflow from happening when
4104                          * hwc->interrupts == MAX_INTERRUPTS.
4105                          */
4106                         break;
4107                 }
4108                 throttle = 1;
4109         }
4110 }
4111
4112 static void perf_swevent_add(struct perf_event *event, u64 nr,
4113                                int nmi, struct perf_sample_data *data,
4114                                struct pt_regs *regs)
4115 {
4116         struct hw_perf_event *hwc = &event->hw;
4117
4118         local64_add(nr, &event->count);
4119
4120         if (!regs)
4121                 return;
4122
4123         if (!hwc->sample_period)
4124                 return;
4125
4126         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4127                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4128
4129         if (local64_add_negative(nr, &hwc->period_left))
4130                 return;
4131
4132         perf_swevent_overflow(event, 0, nmi, data, regs);
4133 }
4134
4135 static int perf_exclude_event(struct perf_event *event,
4136                               struct pt_regs *regs)
4137 {
4138         if (regs) {
4139                 if (event->attr.exclude_user && user_mode(regs))
4140                         return 1;
4141
4142                 if (event->attr.exclude_kernel && !user_mode(regs))
4143                         return 1;
4144         }
4145
4146         return 0;
4147 }
4148
4149 static int perf_swevent_match(struct perf_event *event,
4150                                 enum perf_type_id type,
4151                                 u32 event_id,
4152                                 struct perf_sample_data *data,
4153                                 struct pt_regs *regs)
4154 {
4155         if (event->attr.type != type)
4156                 return 0;
4157
4158         if (event->attr.config != event_id)
4159                 return 0;
4160
4161         if (perf_exclude_event(event, regs))
4162                 return 0;
4163
4164         return 1;
4165 }
4166
4167 static inline u64 swevent_hash(u64 type, u32 event_id)
4168 {
4169         u64 val = event_id | (type << 32);
4170
4171         return hash_64(val, SWEVENT_HLIST_BITS);
4172 }
4173
4174 static inline struct hlist_head *
4175 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4176 {
4177         u64 hash = swevent_hash(type, event_id);
4178
4179         return &hlist->heads[hash];
4180 }
4181
4182 /* For the read side: events when they trigger */
4183 static inline struct hlist_head *
4184 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4185 {
4186         struct swevent_hlist *hlist;
4187
4188         hlist = rcu_dereference(ctx->swevent_hlist);
4189         if (!hlist)
4190                 return NULL;
4191
4192         return __find_swevent_head(hlist, type, event_id);
4193 }
4194
4195 /* For the event head insertion and removal in the hlist */
4196 static inline struct hlist_head *
4197 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4198 {
4199         struct swevent_hlist *hlist;
4200         u32 event_id = event->attr.config;
4201         u64 type = event->attr.type;
4202
4203         /*
4204          * Event scheduling is always serialized against hlist allocation
4205          * and release. Which makes the protected version suitable here.
4206          * The context lock guarantees that.
4207          */
4208         hlist = rcu_dereference_protected(ctx->swevent_hlist,
4209                                           lockdep_is_held(&event->ctx->lock));
4210         if (!hlist)
4211                 return NULL;
4212
4213         return __find_swevent_head(hlist, type, event_id);
4214 }
4215
4216 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4217                                     u64 nr, int nmi,
4218                                     struct perf_sample_data *data,
4219                                     struct pt_regs *regs)
4220 {
4221         struct perf_cpu_context *cpuctx;
4222         struct perf_event *event;
4223         struct hlist_node *node;
4224         struct hlist_head *head;
4225
4226         cpuctx = &__get_cpu_var(perf_cpu_context);
4227
4228         rcu_read_lock();
4229
4230         head = find_swevent_head_rcu(cpuctx, type, event_id);
4231
4232         if (!head)
4233                 goto end;
4234
4235         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4236                 if (perf_swevent_match(event, type, event_id, data, regs))
4237                         perf_swevent_add(event, nr, nmi, data, regs);
4238         }
4239 end:
4240         rcu_read_unlock();
4241 }
4242
4243 int perf_swevent_get_recursion_context(void)
4244 {
4245         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4246         int rctx;
4247
4248         if (in_nmi())
4249                 rctx = 3;
4250         else if (in_irq())
4251                 rctx = 2;
4252         else if (in_softirq())
4253                 rctx = 1;
4254         else
4255                 rctx = 0;
4256
4257         if (cpuctx->recursion[rctx])
4258                 return -1;
4259
4260         cpuctx->recursion[rctx]++;
4261         barrier();
4262
4263         return rctx;
4264 }
4265 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4266
4267 void inline perf_swevent_put_recursion_context(int rctx)
4268 {
4269         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4270         barrier();
4271         cpuctx->recursion[rctx]--;
4272 }
4273
4274 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4275                             struct pt_regs *regs, u64 addr)
4276 {
4277         struct perf_sample_data data;
4278         int rctx;
4279
4280         preempt_disable_notrace();
4281         rctx = perf_swevent_get_recursion_context();
4282         if (rctx < 0)
4283                 return;
4284
4285         perf_sample_data_init(&data, addr);
4286
4287         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4288
4289         perf_swevent_put_recursion_context(rctx);
4290         preempt_enable_notrace();
4291 }
4292
4293 static void perf_swevent_read(struct perf_event *event)
4294 {
4295 }
4296
4297 static int perf_swevent_enable(struct perf_event *event)
4298 {
4299         struct hw_perf_event *hwc = &event->hw;
4300         struct perf_cpu_context *cpuctx;
4301         struct hlist_head *head;
4302
4303         cpuctx = &__get_cpu_var(perf_cpu_context);
4304
4305         if (hwc->sample_period) {
4306                 hwc->last_period = hwc->sample_period;
4307                 perf_swevent_set_period(event);
4308         }
4309
4310         head = find_swevent_head(cpuctx, event);
4311         if (WARN_ON_ONCE(!head))
4312                 return -EINVAL;
4313
4314         hlist_add_head_rcu(&event->hlist_entry, head);
4315
4316         return 0;
4317 }
4318
4319 static void perf_swevent_disable(struct perf_event *event)
4320 {
4321         hlist_del_rcu(&event->hlist_entry);
4322 }
4323
4324 static void perf_swevent_void(struct perf_event *event)
4325 {
4326 }
4327
4328 static int perf_swevent_int(struct perf_event *event)
4329 {
4330         return 0;
4331 }
4332
4333 static const struct pmu perf_ops_generic = {
4334         .enable         = perf_swevent_enable,
4335         .disable        = perf_swevent_disable,
4336         .start          = perf_swevent_int,
4337         .stop           = perf_swevent_void,
4338         .read           = perf_swevent_read,
4339         .unthrottle     = perf_swevent_void, /* hwc->interrupts already reset */
4340 };
4341
4342 /*
4343  * hrtimer based swevent callback
4344  */
4345
4346 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4347 {
4348         enum hrtimer_restart ret = HRTIMER_RESTART;
4349         struct perf_sample_data data;
4350         struct pt_regs *regs;
4351         struct perf_event *event;
4352         u64 period;
4353
4354         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4355         event->pmu->read(event);
4356
4357         perf_sample_data_init(&data, 0);
4358         data.period = event->hw.last_period;
4359         regs = get_irq_regs();
4360
4361         if (regs && !perf_exclude_event(event, regs)) {
4362                 if (!(event->attr.exclude_idle && current->pid == 0))
4363                         if (perf_event_overflow(event, 0, &data, regs))
4364                                 ret = HRTIMER_NORESTART;
4365         }
4366
4367         period = max_t(u64, 10000, event->hw.sample_period);
4368         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4369
4370         return ret;
4371 }
4372
4373 static void perf_swevent_start_hrtimer(struct perf_event *event)
4374 {
4375         struct hw_perf_event *hwc = &event->hw;
4376
4377         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4378         hwc->hrtimer.function = perf_swevent_hrtimer;
4379         if (hwc->sample_period) {
4380                 u64 period;
4381
4382                 if (hwc->remaining) {
4383                         if (hwc->remaining < 0)
4384                                 period = 10000;
4385                         else
4386                                 period = hwc->remaining;
4387                         hwc->remaining = 0;
4388                 } else {
4389                         period = max_t(u64, 10000, hwc->sample_period);
4390                 }
4391                 __hrtimer_start_range_ns(&hwc->hrtimer,
4392                                 ns_to_ktime(period), 0,
4393                                 HRTIMER_MODE_REL, 0);
4394         }
4395 }
4396
4397 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4398 {
4399         struct hw_perf_event *hwc = &event->hw;
4400
4401         if (hwc->sample_period) {
4402                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4403                 hwc->remaining = ktime_to_ns(remaining);
4404
4405                 hrtimer_cancel(&hwc->hrtimer);
4406         }
4407 }
4408
4409 /*
4410  * Software event: cpu wall time clock
4411  */
4412
4413 static void cpu_clock_perf_event_update(struct perf_event *event)
4414 {
4415         int cpu = raw_smp_processor_id();
4416         s64 prev;
4417         u64 now;
4418
4419         now = cpu_clock(cpu);
4420         prev = local64_xchg(&event->hw.prev_count, now);
4421         local64_add(now - prev, &event->count);
4422 }
4423
4424 static int cpu_clock_perf_event_enable(struct perf_event *event)
4425 {
4426         struct hw_perf_event *hwc = &event->hw;
4427         int cpu = raw_smp_processor_id();
4428
4429         local64_set(&hwc->prev_count, cpu_clock(cpu));
4430         perf_swevent_start_hrtimer(event);
4431
4432         return 0;
4433 }
4434
4435 static void cpu_clock_perf_event_disable(struct perf_event *event)
4436 {
4437         perf_swevent_cancel_hrtimer(event);
4438         cpu_clock_perf_event_update(event);
4439 }
4440
4441 static void cpu_clock_perf_event_read(struct perf_event *event)
4442 {
4443         cpu_clock_perf_event_update(event);
4444 }
4445
4446 static const struct pmu perf_ops_cpu_clock = {
4447         .enable         = cpu_clock_perf_event_enable,
4448         .disable        = cpu_clock_perf_event_disable,
4449         .read           = cpu_clock_perf_event_read,
4450 };
4451
4452 /*
4453  * Software event: task time clock
4454  */
4455
4456 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4457 {
4458         u64 prev;
4459         s64 delta;
4460
4461         prev = local64_xchg(&event->hw.prev_count, now);
4462         delta = now - prev;
4463         local64_add(delta, &event->count);
4464 }
4465
4466 static int task_clock_perf_event_enable(struct perf_event *event)
4467 {
4468         struct hw_perf_event *hwc = &event->hw;
4469         u64 now;
4470
4471         now = event->ctx->time;
4472
4473         local64_set(&hwc->prev_count, now);
4474
4475         perf_swevent_start_hrtimer(event);
4476
4477         return 0;
4478 }
4479
4480 static void task_clock_perf_event_disable(struct perf_event *event)
4481 {
4482         perf_swevent_cancel_hrtimer(event);
4483         task_clock_perf_event_update(event, event->ctx->time);
4484
4485 }
4486
4487 static void task_clock_perf_event_read(struct perf_event *event)
4488 {
4489         u64 time;
4490
4491         if (!in_nmi()) {
4492                 update_context_time(event->ctx);
4493                 time = event->ctx->time;
4494         } else {
4495                 u64 now = perf_clock();
4496                 u64 delta = now - event->ctx->timestamp;
4497                 time = event->ctx->time + delta;
4498         }
4499
4500         task_clock_perf_event_update(event, time);
4501 }
4502
4503 static const struct pmu perf_ops_task_clock = {
4504         .enable         = task_clock_perf_event_enable,
4505         .disable        = task_clock_perf_event_disable,
4506         .read           = task_clock_perf_event_read,
4507 };
4508
4509 /* Deref the hlist from the update side */
4510 static inline struct swevent_hlist *
4511 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4512 {
4513         return rcu_dereference_protected(cpuctx->swevent_hlist,
4514                                          lockdep_is_held(&cpuctx->hlist_mutex));
4515 }
4516
4517 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4518 {
4519         struct swevent_hlist *hlist;
4520
4521         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4522         kfree(hlist);
4523 }
4524
4525 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4526 {
4527         struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4528
4529         if (!hlist)
4530                 return;
4531
4532         rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4533         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4534 }
4535
4536 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4537 {
4538         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4539
4540         mutex_lock(&cpuctx->hlist_mutex);
4541
4542         if (!--cpuctx->hlist_refcount)
4543                 swevent_hlist_release(cpuctx);
4544
4545         mutex_unlock(&cpuctx->hlist_mutex);
4546 }
4547
4548 static void swevent_hlist_put(struct perf_event *event)
4549 {
4550         int cpu;
4551
4552         if (event->cpu != -1) {
4553                 swevent_hlist_put_cpu(event, event->cpu);
4554                 return;
4555         }
4556
4557         for_each_possible_cpu(cpu)
4558                 swevent_hlist_put_cpu(event, cpu);
4559 }
4560
4561 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4562 {
4563         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4564         int err = 0;
4565
4566         mutex_lock(&cpuctx->hlist_mutex);
4567
4568         if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4569                 struct swevent_hlist *hlist;
4570
4571                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4572                 if (!hlist) {
4573                         err = -ENOMEM;
4574                         goto exit;
4575                 }
4576                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4577         }
4578         cpuctx->hlist_refcount++;
4579  exit:
4580         mutex_unlock(&cpuctx->hlist_mutex);
4581
4582         return err;
4583 }
4584
4585 static int swevent_hlist_get(struct perf_event *event)
4586 {
4587         int err;
4588         int cpu, failed_cpu;
4589
4590         if (event->cpu != -1)
4591                 return swevent_hlist_get_cpu(event, event->cpu);
4592
4593         get_online_cpus();
4594         for_each_possible_cpu(cpu) {
4595                 err = swevent_hlist_get_cpu(event, cpu);
4596                 if (err) {
4597                         failed_cpu = cpu;
4598                         goto fail;
4599                 }
4600         }
4601         put_online_cpus();
4602
4603         return 0;
4604  fail:
4605         for_each_possible_cpu(cpu) {
4606                 if (cpu == failed_cpu)
4607                         break;
4608                 swevent_hlist_put_cpu(event, cpu);
4609         }
4610
4611         put_online_cpus();
4612         return err;
4613 }
4614
4615 #ifdef CONFIG_EVENT_TRACING
4616
4617 static const struct pmu perf_ops_tracepoint = {
4618         .enable         = perf_trace_enable,
4619         .disable        = perf_trace_disable,
4620         .start          = perf_swevent_int,
4621         .stop           = perf_swevent_void,
4622         .read           = perf_swevent_read,
4623         .unthrottle     = perf_swevent_void,
4624 };
4625
4626 static int perf_tp_filter_match(struct perf_event *event,
4627                                 struct perf_sample_data *data)
4628 {
4629         void *record = data->raw->data;
4630
4631         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4632                 return 1;
4633         return 0;
4634 }
4635
4636 static int perf_tp_event_match(struct perf_event *event,
4637                                 struct perf_sample_data *data,
4638                                 struct pt_regs *regs)
4639 {
4640         /*
4641          * All tracepoints are from kernel-space.
4642          */
4643         if (event->attr.exclude_kernel)
4644                 return 0;
4645
4646         if (!perf_tp_filter_match(event, data))
4647                 return 0;
4648
4649         return 1;
4650 }
4651
4652 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4653                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4654 {
4655         struct perf_sample_data data;
4656         struct perf_event *event;
4657         struct hlist_node *node;
4658
4659         struct perf_raw_record raw = {
4660                 .size = entry_size,
4661                 .data = record,
4662         };
4663
4664         perf_sample_data_init(&data, addr);
4665         data.raw = &raw;
4666
4667         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4668                 if (perf_tp_event_match(event, &data, regs))
4669                         perf_swevent_add(event, count, 1, &data, regs);
4670         }
4671
4672         perf_swevent_put_recursion_context(rctx);
4673 }
4674 EXPORT_SYMBOL_GPL(perf_tp_event);
4675
4676 static void tp_perf_event_destroy(struct perf_event *event)
4677 {
4678         perf_trace_destroy(event);
4679 }
4680
4681 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4682 {
4683         int err;
4684
4685         /*
4686          * Raw tracepoint data is a severe data leak, only allow root to
4687          * have these.
4688          */
4689         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4690                         perf_paranoid_tracepoint_raw() &&
4691                         !capable(CAP_SYS_ADMIN))
4692                 return ERR_PTR(-EPERM);
4693
4694         err = perf_trace_init(event);
4695         if (err)
4696                 return NULL;
4697
4698         event->destroy = tp_perf_event_destroy;
4699
4700         return &perf_ops_tracepoint;
4701 }
4702
4703 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4704 {
4705         char *filter_str;
4706         int ret;
4707
4708         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4709                 return -EINVAL;
4710
4711         filter_str = strndup_user(arg, PAGE_SIZE);
4712         if (IS_ERR(filter_str))
4713                 return PTR_ERR(filter_str);
4714
4715         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4716
4717         kfree(filter_str);
4718         return ret;
4719 }
4720
4721 static void perf_event_free_filter(struct perf_event *event)
4722 {
4723         ftrace_profile_free_filter(event);
4724 }
4725
4726 #else
4727
4728 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4729 {
4730         return NULL;
4731 }
4732
4733 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4734 {
4735         return -ENOENT;
4736 }
4737
4738 static void perf_event_free_filter(struct perf_event *event)
4739 {
4740 }
4741
4742 #endif /* CONFIG_EVENT_TRACING */
4743
4744 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4745 static void bp_perf_event_destroy(struct perf_event *event)
4746 {
4747         release_bp_slot(event);
4748 }
4749
4750 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4751 {
4752         int err;
4753
4754         err = register_perf_hw_breakpoint(bp);
4755         if (err)
4756                 return ERR_PTR(err);
4757
4758         bp->destroy = bp_perf_event_destroy;
4759
4760         return &perf_ops_bp;
4761 }
4762
4763 void perf_bp_event(struct perf_event *bp, void *data)
4764 {
4765         struct perf_sample_data sample;
4766         struct pt_regs *regs = data;
4767
4768         perf_sample_data_init(&sample, bp->attr.bp_addr);
4769
4770         if (!perf_exclude_event(bp, regs))
4771                 perf_swevent_add(bp, 1, 1, &sample, regs);
4772 }
4773 #else
4774 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4775 {
4776         return NULL;
4777 }
4778
4779 void perf_bp_event(struct perf_event *bp, void *regs)
4780 {
4781 }
4782 #endif
4783
4784 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4785
4786 static void sw_perf_event_destroy(struct perf_event *event)
4787 {
4788         u64 event_id = event->attr.config;
4789
4790         WARN_ON(event->parent);
4791
4792         atomic_dec(&perf_swevent_enabled[event_id]);
4793         swevent_hlist_put(event);
4794 }
4795
4796 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4797 {
4798         const struct pmu *pmu = NULL;
4799         u64 event_id = event->attr.config;
4800
4801         /*
4802          * Software events (currently) can't in general distinguish
4803          * between user, kernel and hypervisor events.
4804          * However, context switches and cpu migrations are considered
4805          * to be kernel events, and page faults are never hypervisor
4806          * events.
4807          */
4808         switch (event_id) {
4809         case PERF_COUNT_SW_CPU_CLOCK:
4810                 pmu = &perf_ops_cpu_clock;
4811
4812                 break;
4813         case PERF_COUNT_SW_TASK_CLOCK:
4814                 /*
4815                  * If the user instantiates this as a per-cpu event,
4816                  * use the cpu_clock event instead.
4817                  */
4818                 if (event->ctx->task)
4819                         pmu = &perf_ops_task_clock;
4820                 else
4821                         pmu = &perf_ops_cpu_clock;
4822
4823                 break;
4824         case PERF_COUNT_SW_PAGE_FAULTS:
4825         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4826         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4827         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4828         case PERF_COUNT_SW_CPU_MIGRATIONS:
4829         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4830         case PERF_COUNT_SW_EMULATION_FAULTS:
4831                 if (!event->parent) {
4832                         int err;
4833
4834                         err = swevent_hlist_get(event);
4835                         if (err)
4836                                 return ERR_PTR(err);
4837
4838                         atomic_inc(&perf_swevent_enabled[event_id]);
4839                         event->destroy = sw_perf_event_destroy;
4840                 }
4841                 pmu = &perf_ops_generic;
4842                 break;
4843         }
4844
4845         return pmu;
4846 }
4847
4848 /*
4849  * Allocate and initialize a event structure
4850  */
4851 static struct perf_event *
4852 perf_event_alloc(struct perf_event_attr *attr,
4853                    int cpu,
4854                    struct perf_event_context *ctx,
4855                    struct perf_event *group_leader,
4856                    struct perf_event *parent_event,
4857                    perf_overflow_handler_t overflow_handler,
4858                    gfp_t gfpflags)
4859 {
4860         const struct pmu *pmu;
4861         struct perf_event *event;
4862         struct hw_perf_event *hwc;
4863         long err;
4864
4865         event = kzalloc(sizeof(*event), gfpflags);
4866         if (!event)
4867                 return ERR_PTR(-ENOMEM);
4868
4869         /*
4870          * Single events are their own group leaders, with an
4871          * empty sibling list:
4872          */
4873         if (!group_leader)
4874                 group_leader = event;
4875
4876         mutex_init(&event->child_mutex);
4877         INIT_LIST_HEAD(&event->child_list);
4878
4879         INIT_LIST_HEAD(&event->group_entry);
4880         INIT_LIST_HEAD(&event->event_entry);
4881         INIT_LIST_HEAD(&event->sibling_list);
4882         init_waitqueue_head(&event->waitq);
4883
4884         mutex_init(&event->mmap_mutex);
4885
4886         event->cpu              = cpu;
4887         event->attr             = *attr;
4888         event->group_leader     = group_leader;
4889         event->pmu              = NULL;
4890         event->ctx              = ctx;
4891         event->oncpu            = -1;
4892
4893         event->parent           = parent_event;
4894
4895         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4896         event->id               = atomic64_inc_return(&perf_event_id);
4897
4898         event->state            = PERF_EVENT_STATE_INACTIVE;
4899
4900         if (!overflow_handler && parent_event)
4901                 overflow_handler = parent_event->overflow_handler;
4902         
4903         event->overflow_handler = overflow_handler;
4904
4905         if (attr->disabled)
4906                 event->state = PERF_EVENT_STATE_OFF;
4907
4908         pmu = NULL;
4909
4910         hwc = &event->hw;
4911         hwc->sample_period = attr->sample_period;
4912         if (attr->freq && attr->sample_freq)
4913                 hwc->sample_period = 1;
4914         hwc->last_period = hwc->sample_period;
4915
4916         local64_set(&hwc->period_left, hwc->sample_period);
4917
4918         /*
4919          * we currently do not support PERF_FORMAT_GROUP on inherited events
4920          */
4921         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4922                 goto done;
4923
4924         switch (attr->type) {
4925         case PERF_TYPE_RAW:
4926         case PERF_TYPE_HARDWARE:
4927         case PERF_TYPE_HW_CACHE:
4928                 pmu = hw_perf_event_init(event);
4929                 break;
4930
4931         case PERF_TYPE_SOFTWARE:
4932                 pmu = sw_perf_event_init(event);
4933                 break;
4934
4935         case PERF_TYPE_TRACEPOINT:
4936                 pmu = tp_perf_event_init(event);
4937                 break;
4938
4939         case PERF_TYPE_BREAKPOINT:
4940                 pmu = bp_perf_event_init(event);
4941                 break;
4942
4943
4944         default:
4945                 break;
4946         }
4947 done:
4948         err = 0;
4949         if (!pmu)
4950                 err = -EINVAL;
4951         else if (IS_ERR(pmu))
4952                 err = PTR_ERR(pmu);
4953
4954         if (err) {
4955                 if (event->ns)
4956                         put_pid_ns(event->ns);
4957                 kfree(event);
4958                 return ERR_PTR(err);
4959         }
4960
4961         event->pmu = pmu;
4962
4963         if (!event->parent) {
4964                 atomic_inc(&nr_events);
4965                 if (event->attr.mmap || event->attr.mmap_data)
4966                         atomic_inc(&nr_mmap_events);
4967                 if (event->attr.comm)
4968                         atomic_inc(&nr_comm_events);
4969                 if (event->attr.task)
4970                         atomic_inc(&nr_task_events);
4971         }
4972
4973         return event;
4974 }
4975
4976 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4977                           struct perf_event_attr *attr)
4978 {
4979         u32 size;
4980         int ret;
4981
4982         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4983                 return -EFAULT;
4984
4985         /*
4986          * zero the full structure, so that a short copy will be nice.
4987          */
4988         memset(attr, 0, sizeof(*attr));
4989
4990         ret = get_user(size, &uattr->size);
4991         if (ret)
4992                 return ret;
4993
4994         if (size > PAGE_SIZE)   /* silly large */
4995                 goto err_size;
4996
4997         if (!size)              /* abi compat */
4998                 size = PERF_ATTR_SIZE_VER0;
4999
5000         if (size < PERF_ATTR_SIZE_VER0)
5001                 goto err_size;
5002
5003         /*
5004          * If we're handed a bigger struct than we know of,
5005          * ensure all the unknown bits are 0 - i.e. new
5006          * user-space does not rely on any kernel feature
5007          * extensions we dont know about yet.
5008          */
5009         if (size > sizeof(*attr)) {
5010                 unsigned char __user *addr;
5011                 unsigned char __user *end;
5012                 unsigned char val;
5013
5014                 addr = (void __user *)uattr + sizeof(*attr);
5015                 end  = (void __user *)uattr + size;
5016
5017                 for (; addr < end; addr++) {
5018                         ret = get_user(val, addr);
5019                         if (ret)
5020                                 return ret;
5021                         if (val)
5022                                 goto err_size;
5023                 }
5024                 size = sizeof(*attr);
5025         }
5026
5027         ret = copy_from_user(attr, uattr, size);
5028         if (ret)
5029                 return -EFAULT;
5030
5031         /*
5032          * If the type exists, the corresponding creation will verify
5033          * the attr->config.
5034          */
5035         if (attr->type >= PERF_TYPE_MAX)
5036                 return -EINVAL;
5037
5038         if (attr->__reserved_1)
5039                 return -EINVAL;
5040
5041         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5042                 return -EINVAL;
5043
5044         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5045                 return -EINVAL;
5046
5047 out:
5048         return ret;
5049
5050 err_size:
5051         put_user(sizeof(*attr), &uattr->size);
5052         ret = -E2BIG;
5053         goto out;
5054 }
5055
5056 static int
5057 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5058 {
5059         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5060         int ret = -EINVAL;
5061
5062         if (!output_event)
5063                 goto set;
5064
5065         /* don't allow circular references */
5066         if (event == output_event)
5067                 goto out;
5068
5069         /*
5070          * Don't allow cross-cpu buffers
5071          */
5072         if (output_event->cpu != event->cpu)
5073                 goto out;
5074
5075         /*
5076          * If its not a per-cpu buffer, it must be the same task.
5077          */
5078         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5079                 goto out;
5080
5081 set:
5082         mutex_lock(&event->mmap_mutex);
5083         /* Can't redirect output if we've got an active mmap() */
5084         if (atomic_read(&event->mmap_count))
5085                 goto unlock;
5086
5087         if (output_event) {
5088                 /* get the buffer we want to redirect to */
5089                 buffer = perf_buffer_get(output_event);
5090                 if (!buffer)
5091                         goto unlock;
5092         }
5093
5094         old_buffer = event->buffer;
5095         rcu_assign_pointer(event->buffer, buffer);
5096         ret = 0;
5097 unlock:
5098         mutex_unlock(&event->mmap_mutex);
5099
5100         if (old_buffer)
5101                 perf_buffer_put(old_buffer);
5102 out:
5103         return ret;
5104 }
5105
5106 /**
5107  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5108  *
5109  * @attr_uptr:  event_id type attributes for monitoring/sampling
5110  * @pid:                target pid
5111  * @cpu:                target cpu
5112  * @group_fd:           group leader event fd
5113  */
5114 SYSCALL_DEFINE5(perf_event_open,
5115                 struct perf_event_attr __user *, attr_uptr,
5116                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5117 {
5118         struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5119         struct perf_event_attr attr;
5120         struct perf_event_context *ctx;
5121         struct file *event_file = NULL;
5122         struct file *group_file = NULL;
5123         int event_fd;
5124         int fput_needed = 0;
5125         int err;
5126
5127         /* for future expandability... */
5128         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5129                 return -EINVAL;
5130
5131         err = perf_copy_attr(attr_uptr, &attr);
5132         if (err)
5133                 return err;
5134
5135         if (!attr.exclude_kernel) {
5136                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5137                         return -EACCES;
5138         }
5139
5140         if (attr.freq) {
5141                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5142                         return -EINVAL;
5143         }
5144
5145         event_fd = get_unused_fd_flags(O_RDWR);
5146         if (event_fd < 0)
5147                 return event_fd;
5148
5149         /*
5150          * Get the target context (task or percpu):
5151          */
5152         ctx = find_get_context(pid, cpu);
5153         if (IS_ERR(ctx)) {
5154                 err = PTR_ERR(ctx);
5155                 goto err_fd;
5156         }
5157
5158         if (group_fd != -1) {
5159                 group_leader = perf_fget_light(group_fd, &fput_needed);
5160                 if (IS_ERR(group_leader)) {
5161                         err = PTR_ERR(group_leader);
5162                         goto err_put_context;
5163                 }
5164                 group_file = group_leader->filp;
5165                 if (flags & PERF_FLAG_FD_OUTPUT)
5166                         output_event = group_leader;
5167                 if (flags & PERF_FLAG_FD_NO_GROUP)
5168                         group_leader = NULL;
5169         }
5170
5171         /*
5172          * Look up the group leader (we will attach this event to it):
5173          */
5174         if (group_leader) {
5175                 err = -EINVAL;
5176
5177                 /*
5178                  * Do not allow a recursive hierarchy (this new sibling
5179                  * becoming part of another group-sibling):
5180                  */
5181                 if (group_leader->group_leader != group_leader)
5182                         goto err_put_context;
5183                 /*
5184                  * Do not allow to attach to a group in a different
5185                  * task or CPU context:
5186                  */
5187                 if (group_leader->ctx != ctx)
5188                         goto err_put_context;
5189                 /*
5190                  * Only a group leader can be exclusive or pinned
5191                  */
5192                 if (attr.exclusive || attr.pinned)
5193                         goto err_put_context;
5194         }
5195
5196         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5197                                      NULL, NULL, GFP_KERNEL);
5198         if (IS_ERR(event)) {
5199                 err = PTR_ERR(event);
5200                 goto err_put_context;
5201         }
5202
5203         if (output_event) {
5204                 err = perf_event_set_output(event, output_event);
5205                 if (err)
5206                         goto err_free_put_context;
5207         }
5208
5209         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5210         if (IS_ERR(event_file)) {
5211                 err = PTR_ERR(event_file);
5212                 goto err_free_put_context;
5213         }
5214
5215         event->filp = event_file;
5216         WARN_ON_ONCE(ctx->parent_ctx);
5217         mutex_lock(&ctx->mutex);
5218         perf_install_in_context(ctx, event, cpu);
5219         ++ctx->generation;
5220         mutex_unlock(&ctx->mutex);
5221
5222         event->owner = current;
5223         get_task_struct(current);
5224         mutex_lock(&current->perf_event_mutex);
5225         list_add_tail(&event->owner_entry, &current->perf_event_list);
5226         mutex_unlock(&current->perf_event_mutex);
5227
5228         /*
5229          * Drop the reference on the group_event after placing the
5230          * new event on the sibling_list. This ensures destruction
5231          * of the group leader will find the pointer to itself in
5232          * perf_group_detach().
5233          */
5234         fput_light(group_file, fput_needed);
5235         fd_install(event_fd, event_file);
5236         return event_fd;
5237
5238 err_free_put_context:
5239         free_event(event);
5240 err_put_context:
5241         fput_light(group_file, fput_needed);
5242         put_ctx(ctx);
5243 err_fd:
5244         put_unused_fd(event_fd);
5245         return err;
5246 }
5247
5248 /**
5249  * perf_event_create_kernel_counter
5250  *
5251  * @attr: attributes of the counter to create
5252  * @cpu: cpu in which the counter is bound
5253  * @pid: task to profile
5254  */
5255 struct perf_event *
5256 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5257                                  pid_t pid,
5258                                  perf_overflow_handler_t overflow_handler)
5259 {
5260         struct perf_event *event;
5261         struct perf_event_context *ctx;
5262         int err;
5263
5264         /*
5265          * Get the target context (task or percpu):
5266          */
5267
5268         ctx = find_get_context(pid, cpu);
5269         if (IS_ERR(ctx)) {
5270                 err = PTR_ERR(ctx);
5271                 goto err_exit;
5272         }
5273
5274         event = perf_event_alloc(attr, cpu, ctx, NULL,
5275                                  NULL, overflow_handler, GFP_KERNEL);
5276         if (IS_ERR(event)) {
5277                 err = PTR_ERR(event);
5278                 goto err_put_context;
5279         }
5280
5281         event->filp = NULL;
5282         WARN_ON_ONCE(ctx->parent_ctx);
5283         mutex_lock(&ctx->mutex);
5284         perf_install_in_context(ctx, event, cpu);
5285         ++ctx->generation;
5286         mutex_unlock(&ctx->mutex);
5287
5288         event->owner = current;
5289         get_task_struct(current);
5290         mutex_lock(&current->perf_event_mutex);
5291         list_add_tail(&event->owner_entry, &current->perf_event_list);
5292         mutex_unlock(&current->perf_event_mutex);
5293
5294         return event;
5295
5296  err_put_context:
5297         put_ctx(ctx);
5298  err_exit:
5299         return ERR_PTR(err);
5300 }
5301 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5302
5303 /*
5304  * inherit a event from parent task to child task:
5305  */
5306 static struct perf_event *
5307 inherit_event(struct perf_event *parent_event,
5308               struct task_struct *parent,
5309               struct perf_event_context *parent_ctx,
5310               struct task_struct *child,
5311               struct perf_event *group_leader,
5312               struct perf_event_context *child_ctx)
5313 {
5314         struct perf_event *child_event;
5315
5316         /*
5317          * Instead of creating recursive hierarchies of events,
5318          * we link inherited events back to the original parent,
5319          * which has a filp for sure, which we use as the reference
5320          * count:
5321          */
5322         if (parent_event->parent)
5323                 parent_event = parent_event->parent;
5324
5325         child_event = perf_event_alloc(&parent_event->attr,
5326                                            parent_event->cpu, child_ctx,
5327                                            group_leader, parent_event,
5328                                            NULL, GFP_KERNEL);
5329         if (IS_ERR(child_event))
5330                 return child_event;
5331         get_ctx(child_ctx);
5332
5333         /*
5334          * Make the child state follow the state of the parent event,
5335          * not its attr.disabled bit.  We hold the parent's mutex,
5336          * so we won't race with perf_event_{en, dis}able_family.
5337          */
5338         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5339                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5340         else
5341                 child_event->state = PERF_EVENT_STATE_OFF;
5342
5343         if (parent_event->attr.freq) {
5344                 u64 sample_period = parent_event->hw.sample_period;
5345                 struct hw_perf_event *hwc = &child_event->hw;
5346
5347                 hwc->sample_period = sample_period;
5348                 hwc->last_period   = sample_period;
5349
5350                 local64_set(&hwc->period_left, sample_period);
5351         }
5352
5353         child_event->overflow_handler = parent_event->overflow_handler;
5354
5355         /*
5356          * Link it up in the child's context:
5357          */
5358         add_event_to_ctx(child_event, child_ctx);
5359
5360         /*
5361          * Get a reference to the parent filp - we will fput it
5362          * when the child event exits. This is safe to do because
5363          * we are in the parent and we know that the filp still
5364          * exists and has a nonzero count:
5365          */
5366         atomic_long_inc(&parent_event->filp->f_count);
5367
5368         /*
5369          * Link this into the parent event's child list
5370          */
5371         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5372         mutex_lock(&parent_event->child_mutex);
5373         list_add_tail(&child_event->child_list, &parent_event->child_list);
5374         mutex_unlock(&parent_event->child_mutex);
5375
5376         return child_event;
5377 }
5378
5379 static int inherit_group(struct perf_event *parent_event,
5380               struct task_struct *parent,
5381               struct perf_event_context *parent_ctx,
5382               struct task_struct *child,
5383               struct perf_event_context *child_ctx)
5384 {
5385         struct perf_event *leader;
5386         struct perf_event *sub;
5387         struct perf_event *child_ctr;
5388
5389         leader = inherit_event(parent_event, parent, parent_ctx,
5390                                  child, NULL, child_ctx);
5391         if (IS_ERR(leader))
5392                 return PTR_ERR(leader);
5393         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5394                 child_ctr = inherit_event(sub, parent, parent_ctx,
5395                                             child, leader, child_ctx);
5396                 if (IS_ERR(child_ctr))
5397                         return PTR_ERR(child_ctr);
5398         }
5399         return 0;
5400 }
5401
5402 static void sync_child_event(struct perf_event *child_event,
5403                                struct task_struct *child)
5404 {
5405         struct perf_event *parent_event = child_event->parent;
5406         u64 child_val;
5407
5408         if (child_event->attr.inherit_stat)
5409                 perf_event_read_event(child_event, child);
5410
5411         child_val = perf_event_count(child_event);
5412
5413         /*
5414          * Add back the child's count to the parent's count:
5415          */
5416         atomic64_add(child_val, &parent_event->child_count);
5417         atomic64_add(child_event->total_time_enabled,
5418                      &parent_event->child_total_time_enabled);
5419         atomic64_add(child_event->total_time_running,
5420                      &parent_event->child_total_time_running);
5421
5422         /*
5423          * Remove this event from the parent's list
5424          */
5425         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5426         mutex_lock(&parent_event->child_mutex);
5427         list_del_init(&child_event->child_list);
5428         mutex_unlock(&parent_event->child_mutex);
5429
5430         /*
5431          * Release the parent event, if this was the last
5432          * reference to it.
5433          */
5434         fput(parent_event->filp);
5435 }
5436
5437 static void
5438 __perf_event_exit_task(struct perf_event *child_event,
5439                          struct perf_event_context *child_ctx,
5440                          struct task_struct *child)
5441 {
5442         struct perf_event *parent_event;
5443
5444         perf_event_remove_from_context(child_event);
5445
5446         parent_event = child_event->parent;
5447         /*
5448          * It can happen that parent exits first, and has events
5449          * that are still around due to the child reference. These
5450          * events need to be zapped - but otherwise linger.
5451          */
5452         if (parent_event) {
5453                 sync_child_event(child_event, child);
5454                 free_event(child_event);
5455         }
5456 }
5457
5458 /*
5459  * When a child task exits, feed back event values to parent events.
5460  */
5461 void perf_event_exit_task(struct task_struct *child)
5462 {
5463         struct perf_event *child_event, *tmp;
5464         struct perf_event_context *child_ctx;
5465         unsigned long flags;
5466
5467         if (likely(!child->perf_event_ctxp)) {
5468                 perf_event_task(child, NULL, 0);
5469                 return;
5470         }
5471
5472         local_irq_save(flags);
5473         /*
5474          * We can't reschedule here because interrupts are disabled,
5475          * and either child is current or it is a task that can't be
5476          * scheduled, so we are now safe from rescheduling changing
5477          * our context.
5478          */
5479         child_ctx = child->perf_event_ctxp;
5480         __perf_event_task_sched_out(child_ctx);
5481
5482         /*
5483          * Take the context lock here so that if find_get_context is
5484          * reading child->perf_event_ctxp, we wait until it has
5485          * incremented the context's refcount before we do put_ctx below.
5486          */
5487         raw_spin_lock(&child_ctx->lock);
5488         child->perf_event_ctxp = NULL;
5489         /*
5490          * If this context is a clone; unclone it so it can't get
5491          * swapped to another process while we're removing all
5492          * the events from it.
5493          */
5494         unclone_ctx(child_ctx);
5495         update_context_time(child_ctx);
5496         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5497
5498         /*
5499          * Report the task dead after unscheduling the events so that we
5500          * won't get any samples after PERF_RECORD_EXIT. We can however still
5501          * get a few PERF_RECORD_READ events.
5502          */
5503         perf_event_task(child, child_ctx, 0);
5504
5505         /*
5506          * We can recurse on the same lock type through:
5507          *
5508          *   __perf_event_exit_task()
5509          *     sync_child_event()
5510          *       fput(parent_event->filp)
5511          *         perf_release()
5512          *           mutex_lock(&ctx->mutex)
5513          *
5514          * But since its the parent context it won't be the same instance.
5515          */
5516         mutex_lock(&child_ctx->mutex);
5517
5518 again:
5519         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5520                                  group_entry)
5521                 __perf_event_exit_task(child_event, child_ctx, child);
5522
5523         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5524                                  group_entry)
5525                 __perf_event_exit_task(child_event, child_ctx, child);
5526
5527         /*
5528          * If the last event was a group event, it will have appended all
5529          * its siblings to the list, but we obtained 'tmp' before that which
5530          * will still point to the list head terminating the iteration.
5531          */
5532         if (!list_empty(&child_ctx->pinned_groups) ||
5533             !list_empty(&child_ctx->flexible_groups))
5534                 goto again;
5535
5536         mutex_unlock(&child_ctx->mutex);
5537
5538         put_ctx(child_ctx);
5539 }
5540
5541 static void perf_free_event(struct perf_event *event,
5542                             struct perf_event_context *ctx)
5543 {
5544         struct perf_event *parent = event->parent;
5545
5546         if (WARN_ON_ONCE(!parent))
5547                 return;
5548
5549         mutex_lock(&parent->child_mutex);
5550         list_del_init(&event->child_list);
5551         mutex_unlock(&parent->child_mutex);
5552
5553         fput(parent->filp);
5554
5555         perf_group_detach(event);
5556         list_del_event(event, ctx);
5557         free_event(event);
5558 }
5559
5560 /*
5561  * free an unexposed, unused context as created by inheritance by
5562  * init_task below, used by fork() in case of fail.
5563  */
5564 void perf_event_free_task(struct task_struct *task)
5565 {
5566         struct perf_event_context *ctx = task->perf_event_ctxp;
5567         struct perf_event *event, *tmp;
5568
5569         if (!ctx)
5570                 return;
5571
5572         mutex_lock(&ctx->mutex);
5573 again:
5574         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5575                 perf_free_event(event, ctx);
5576
5577         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5578                                  group_entry)
5579                 perf_free_event(event, ctx);
5580
5581         if (!list_empty(&ctx->pinned_groups) ||
5582             !list_empty(&ctx->flexible_groups))
5583                 goto again;
5584
5585         mutex_unlock(&ctx->mutex);
5586
5587         put_ctx(ctx);
5588 }
5589
5590 static int
5591 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5592                    struct perf_event_context *parent_ctx,
5593                    struct task_struct *child,
5594                    int *inherited_all)
5595 {
5596         int ret;
5597         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5598
5599         if (!event->attr.inherit) {
5600                 *inherited_all = 0;
5601                 return 0;
5602         }
5603
5604         if (!child_ctx) {
5605                 /*
5606                  * This is executed from the parent task context, so
5607                  * inherit events that have been marked for cloning.
5608                  * First allocate and initialize a context for the
5609                  * child.
5610                  */
5611
5612                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5613                                     GFP_KERNEL);
5614                 if (!child_ctx)
5615                         return -ENOMEM;
5616
5617                 __perf_event_init_context(child_ctx, child);
5618                 child->perf_event_ctxp = child_ctx;
5619                 get_task_struct(child);
5620         }
5621
5622         ret = inherit_group(event, parent, parent_ctx,
5623                             child, child_ctx);
5624
5625         if (ret)
5626                 *inherited_all = 0;
5627
5628         return ret;
5629 }
5630
5631
5632 /*
5633  * Initialize the perf_event context in task_struct
5634  */
5635 int perf_event_init_task(struct task_struct *child)
5636 {
5637         struct perf_event_context *child_ctx, *parent_ctx;
5638         struct perf_event_context *cloned_ctx;
5639         struct perf_event *event;
5640         struct task_struct *parent = current;
5641         int inherited_all = 1;
5642         int ret = 0;
5643
5644         child->perf_event_ctxp = NULL;
5645
5646         mutex_init(&child->perf_event_mutex);
5647         INIT_LIST_HEAD(&child->perf_event_list);
5648
5649         if (likely(!parent->perf_event_ctxp))
5650                 return 0;
5651
5652         /*
5653          * If the parent's context is a clone, pin it so it won't get
5654          * swapped under us.
5655          */
5656         parent_ctx = perf_pin_task_context(parent);
5657
5658         /*
5659          * No need to check if parent_ctx != NULL here; since we saw
5660          * it non-NULL earlier, the only reason for it to become NULL
5661          * is if we exit, and since we're currently in the middle of
5662          * a fork we can't be exiting at the same time.
5663          */
5664
5665         /*
5666          * Lock the parent list. No need to lock the child - not PID
5667          * hashed yet and not running, so nobody can access it.
5668          */
5669         mutex_lock(&parent_ctx->mutex);
5670
5671         /*
5672          * We dont have to disable NMIs - we are only looking at
5673          * the list, not manipulating it:
5674          */
5675         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5676                 ret = inherit_task_group(event, parent, parent_ctx, child,
5677                                          &inherited_all);
5678                 if (ret)
5679                         break;
5680         }
5681
5682         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5683                 ret = inherit_task_group(event, parent, parent_ctx, child,
5684                                          &inherited_all);
5685                 if (ret)
5686                         break;
5687         }
5688
5689         child_ctx = child->perf_event_ctxp;
5690
5691         if (child_ctx && inherited_all) {
5692                 /*
5693                  * Mark the child context as a clone of the parent
5694                  * context, or of whatever the parent is a clone of.
5695                  * Note that if the parent is a clone, it could get
5696                  * uncloned at any point, but that doesn't matter
5697                  * because the list of events and the generation
5698                  * count can't have changed since we took the mutex.
5699                  */
5700                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5701                 if (cloned_ctx) {
5702                         child_ctx->parent_ctx = cloned_ctx;
5703                         child_ctx->parent_gen = parent_ctx->parent_gen;
5704                 } else {
5705                         child_ctx->parent_ctx = parent_ctx;
5706                         child_ctx->parent_gen = parent_ctx->generation;
5707                 }
5708                 get_ctx(child_ctx->parent_ctx);
5709         }
5710
5711         mutex_unlock(&parent_ctx->mutex);
5712
5713         perf_unpin_context(parent_ctx);
5714
5715         return ret;
5716 }
5717
5718 static void __init perf_event_init_all_cpus(void)
5719 {
5720         int cpu;
5721         struct perf_cpu_context *cpuctx;
5722
5723         for_each_possible_cpu(cpu) {
5724                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5725                 mutex_init(&cpuctx->hlist_mutex);
5726                 __perf_event_init_context(&cpuctx->ctx, NULL);
5727         }
5728 }
5729
5730 static void __cpuinit perf_event_init_cpu(int cpu)
5731 {
5732         struct perf_cpu_context *cpuctx;
5733
5734         cpuctx = &per_cpu(perf_cpu_context, cpu);
5735
5736         spin_lock(&perf_resource_lock);
5737         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5738         spin_unlock(&perf_resource_lock);
5739
5740         mutex_lock(&cpuctx->hlist_mutex);
5741         if (cpuctx->hlist_refcount > 0) {
5742                 struct swevent_hlist *hlist;
5743
5744                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5745                 WARN_ON_ONCE(!hlist);
5746                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5747         }
5748         mutex_unlock(&cpuctx->hlist_mutex);
5749 }
5750
5751 #ifdef CONFIG_HOTPLUG_CPU
5752 static void __perf_event_exit_cpu(void *info)
5753 {
5754         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5755         struct perf_event_context *ctx = &cpuctx->ctx;
5756         struct perf_event *event, *tmp;
5757
5758         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5759                 __perf_event_remove_from_context(event);
5760         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5761                 __perf_event_remove_from_context(event);
5762 }
5763 static void perf_event_exit_cpu(int cpu)
5764 {
5765         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5766         struct perf_event_context *ctx = &cpuctx->ctx;
5767
5768         mutex_lock(&cpuctx->hlist_mutex);
5769         swevent_hlist_release(cpuctx);
5770         mutex_unlock(&cpuctx->hlist_mutex);
5771
5772         mutex_lock(&ctx->mutex);
5773         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5774         mutex_unlock(&ctx->mutex);
5775 }
5776 #else
5777 static inline void perf_event_exit_cpu(int cpu) { }
5778 #endif
5779
5780 static int __cpuinit
5781 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5782 {
5783         unsigned int cpu = (long)hcpu;
5784
5785         switch (action) {
5786
5787         case CPU_UP_PREPARE:
5788         case CPU_UP_PREPARE_FROZEN:
5789                 perf_event_init_cpu(cpu);
5790                 break;
5791
5792         case CPU_DOWN_PREPARE:
5793         case CPU_DOWN_PREPARE_FROZEN:
5794                 perf_event_exit_cpu(cpu);
5795                 break;
5796
5797         default:
5798                 break;
5799         }
5800
5801         return NOTIFY_OK;
5802 }
5803
5804 /*
5805  * This has to have a higher priority than migration_notifier in sched.c.
5806  */
5807 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5808         .notifier_call          = perf_cpu_notify,
5809         .priority               = 20,
5810 };
5811
5812 void __init perf_event_init(void)
5813 {
5814         perf_event_init_all_cpus();
5815         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5816                         (void *)(long)smp_processor_id());
5817         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5818                         (void *)(long)smp_processor_id());
5819         register_cpu_notifier(&perf_cpu_nb);
5820 }
5821
5822 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5823                                         struct sysdev_class_attribute *attr,
5824                                         char *buf)
5825 {
5826         return sprintf(buf, "%d\n", perf_reserved_percpu);
5827 }
5828
5829 static ssize_t
5830 perf_set_reserve_percpu(struct sysdev_class *class,
5831                         struct sysdev_class_attribute *attr,
5832                         const char *buf,
5833                         size_t count)
5834 {
5835         struct perf_cpu_context *cpuctx;
5836         unsigned long val;
5837         int err, cpu, mpt;
5838
5839         err = strict_strtoul(buf, 10, &val);
5840         if (err)
5841                 return err;
5842         if (val > perf_max_events)
5843                 return -EINVAL;
5844
5845         spin_lock(&perf_resource_lock);
5846         perf_reserved_percpu = val;
5847         for_each_online_cpu(cpu) {
5848                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5849                 raw_spin_lock_irq(&cpuctx->ctx.lock);
5850                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5851                           perf_max_events - perf_reserved_percpu);
5852                 cpuctx->max_pertask = mpt;
5853                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5854         }
5855         spin_unlock(&perf_resource_lock);
5856
5857         return count;
5858 }
5859
5860 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5861                                     struct sysdev_class_attribute *attr,
5862                                     char *buf)
5863 {
5864         return sprintf(buf, "%d\n", perf_overcommit);
5865 }
5866
5867 static ssize_t
5868 perf_set_overcommit(struct sysdev_class *class,
5869                     struct sysdev_class_attribute *attr,
5870                     const char *buf, size_t count)
5871 {
5872         unsigned long val;
5873         int err;
5874
5875         err = strict_strtoul(buf, 10, &val);
5876         if (err)
5877                 return err;
5878         if (val > 1)
5879                 return -EINVAL;
5880
5881         spin_lock(&perf_resource_lock);
5882         perf_overcommit = val;
5883         spin_unlock(&perf_resource_lock);
5884
5885         return count;
5886 }
5887
5888 static SYSDEV_CLASS_ATTR(
5889                                 reserve_percpu,
5890                                 0644,
5891                                 perf_show_reserve_percpu,
5892                                 perf_set_reserve_percpu
5893                         );
5894
5895 static SYSDEV_CLASS_ATTR(
5896                                 overcommit,
5897                                 0644,
5898                                 perf_show_overcommit,
5899                                 perf_set_overcommit
5900                         );
5901
5902 static struct attribute *perfclass_attrs[] = {
5903         &attr_reserve_percpu.attr,
5904         &attr_overcommit.attr,
5905         NULL
5906 };
5907
5908 static struct attribute_group perfclass_attr_group = {
5909         .attrs                  = perfclass_attrs,
5910         .name                   = "perf_events",
5911 };
5912
5913 static int __init perf_event_sysfs_init(void)
5914 {
5915         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5916                                   &perfclass_attr_group);
5917 }
5918 device_initcall(perf_event_sysfs_init);