]> git.karo-electronics.de Git - mv-sheeva.git/blob - kernel/perf_event.c
671f6c8c8a32364cdc1c010aeac76a98126e9bc6
[mv-sheeva.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 atomic_t perf_task_events __read_mostly;
39 static atomic_t nr_mmap_events __read_mostly;
40 static atomic_t nr_comm_events __read_mostly;
41 static atomic_t nr_task_events __read_mostly;
42
43 static LIST_HEAD(pmus);
44 static DEFINE_MUTEX(pmus_lock);
45 static struct srcu_struct pmus_srcu;
46
47 /*
48  * perf event paranoia level:
49  *  -1 - not paranoid at all
50  *   0 - disallow raw tracepoint access for unpriv
51  *   1 - disallow cpu events for unpriv
52  *   2 - disallow kernel profiling for unpriv
53  */
54 int sysctl_perf_event_paranoid __read_mostly = 1;
55
56 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
57
58 /*
59  * max perf event sample rate
60  */
61 int sysctl_perf_event_sample_rate __read_mostly = 100000;
62
63 static atomic64_t perf_event_id;
64
65 void __weak perf_event_print_debug(void)        { }
66
67 extern __weak const char *perf_pmu_name(void)
68 {
69         return "pmu";
70 }
71
72 void perf_pmu_disable(struct pmu *pmu)
73 {
74         int *count = this_cpu_ptr(pmu->pmu_disable_count);
75         if (!(*count)++)
76                 pmu->pmu_disable(pmu);
77 }
78
79 void perf_pmu_enable(struct pmu *pmu)
80 {
81         int *count = this_cpu_ptr(pmu->pmu_disable_count);
82         if (!--(*count))
83                 pmu->pmu_enable(pmu);
84 }
85
86 static DEFINE_PER_CPU(struct list_head, rotation_list);
87
88 /*
89  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
90  * because they're strictly cpu affine and rotate_start is called with IRQs
91  * disabled, while rotate_context is called from IRQ context.
92  */
93 static void perf_pmu_rotate_start(struct pmu *pmu)
94 {
95         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
96         struct list_head *head = &__get_cpu_var(rotation_list);
97
98         WARN_ON(!irqs_disabled());
99
100         if (list_empty(&cpuctx->rotation_list))
101                 list_add(&cpuctx->rotation_list, head);
102 }
103
104 static void get_ctx(struct perf_event_context *ctx)
105 {
106         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
107 }
108
109 static void free_ctx(struct rcu_head *head)
110 {
111         struct perf_event_context *ctx;
112
113         ctx = container_of(head, struct perf_event_context, rcu_head);
114         kfree(ctx);
115 }
116
117 static void put_ctx(struct perf_event_context *ctx)
118 {
119         if (atomic_dec_and_test(&ctx->refcount)) {
120                 if (ctx->parent_ctx)
121                         put_ctx(ctx->parent_ctx);
122                 if (ctx->task)
123                         put_task_struct(ctx->task);
124                 call_rcu(&ctx->rcu_head, free_ctx);
125         }
126 }
127
128 static void unclone_ctx(struct perf_event_context *ctx)
129 {
130         if (ctx->parent_ctx) {
131                 put_ctx(ctx->parent_ctx);
132                 ctx->parent_ctx = NULL;
133         }
134 }
135
136 /*
137  * If we inherit events we want to return the parent event id
138  * to userspace.
139  */
140 static u64 primary_event_id(struct perf_event *event)
141 {
142         u64 id = event->id;
143
144         if (event->parent)
145                 id = event->parent->id;
146
147         return id;
148 }
149
150 /*
151  * Get the perf_event_context for a task and lock it.
152  * This has to cope with with the fact that until it is locked,
153  * the context could get moved to another task.
154  */
155 static struct perf_event_context *
156 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
157 {
158         struct perf_event_context *ctx;
159
160         rcu_read_lock();
161 retry:
162         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
163         if (ctx) {
164                 /*
165                  * If this context is a clone of another, it might
166                  * get swapped for another underneath us by
167                  * perf_event_task_sched_out, though the
168                  * rcu_read_lock() protects us from any context
169                  * getting freed.  Lock the context and check if it
170                  * got swapped before we could get the lock, and retry
171                  * if so.  If we locked the right context, then it
172                  * can't get swapped on us any more.
173                  */
174                 raw_spin_lock_irqsave(&ctx->lock, *flags);
175                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
176                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177                         goto retry;
178                 }
179
180                 if (!atomic_inc_not_zero(&ctx->refcount)) {
181                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
182                         ctx = NULL;
183                 }
184         }
185         rcu_read_unlock();
186         return ctx;
187 }
188
189 /*
190  * Get the context for a task and increment its pin_count so it
191  * can't get swapped to another task.  This also increments its
192  * reference count so that the context can't get freed.
193  */
194 static struct perf_event_context *
195 perf_pin_task_context(struct task_struct *task, int ctxn)
196 {
197         struct perf_event_context *ctx;
198         unsigned long flags;
199
200         ctx = perf_lock_task_context(task, ctxn, &flags);
201         if (ctx) {
202                 ++ctx->pin_count;
203                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
204         }
205         return ctx;
206 }
207
208 static void perf_unpin_context(struct perf_event_context *ctx)
209 {
210         unsigned long flags;
211
212         raw_spin_lock_irqsave(&ctx->lock, flags);
213         --ctx->pin_count;
214         raw_spin_unlock_irqrestore(&ctx->lock, flags);
215         put_ctx(ctx);
216 }
217
218 static inline u64 perf_clock(void)
219 {
220         return local_clock();
221 }
222
223 /*
224  * Update the record of the current time in a context.
225  */
226 static void update_context_time(struct perf_event_context *ctx)
227 {
228         u64 now = perf_clock();
229
230         ctx->time += now - ctx->timestamp;
231         ctx->timestamp = now;
232 }
233
234 /*
235  * Update the total_time_enabled and total_time_running fields for a event.
236  */
237 static void update_event_times(struct perf_event *event)
238 {
239         struct perf_event_context *ctx = event->ctx;
240         u64 run_end;
241
242         if (event->state < PERF_EVENT_STATE_INACTIVE ||
243             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
244                 return;
245
246         if (ctx->is_active)
247                 run_end = ctx->time;
248         else
249                 run_end = event->tstamp_stopped;
250
251         event->total_time_enabled = run_end - event->tstamp_enabled;
252
253         if (event->state == PERF_EVENT_STATE_INACTIVE)
254                 run_end = event->tstamp_stopped;
255         else
256                 run_end = ctx->time;
257
258         event->total_time_running = run_end - event->tstamp_running;
259 }
260
261 /*
262  * Update total_time_enabled and total_time_running for all events in a group.
263  */
264 static void update_group_times(struct perf_event *leader)
265 {
266         struct perf_event *event;
267
268         update_event_times(leader);
269         list_for_each_entry(event, &leader->sibling_list, group_entry)
270                 update_event_times(event);
271 }
272
273 static struct list_head *
274 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
275 {
276         if (event->attr.pinned)
277                 return &ctx->pinned_groups;
278         else
279                 return &ctx->flexible_groups;
280 }
281
282 /*
283  * Add a event from the lists for its context.
284  * Must be called with ctx->mutex and ctx->lock held.
285  */
286 static void
287 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
288 {
289         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
290         event->attach_state |= PERF_ATTACH_CONTEXT;
291
292         /*
293          * If we're a stand alone event or group leader, we go to the context
294          * list, group events are kept attached to the group so that
295          * perf_group_detach can, at all times, locate all siblings.
296          */
297         if (event->group_leader == event) {
298                 struct list_head *list;
299
300                 if (is_software_event(event))
301                         event->group_flags |= PERF_GROUP_SOFTWARE;
302
303                 list = ctx_group_list(event, ctx);
304                 list_add_tail(&event->group_entry, list);
305         }
306
307         list_add_rcu(&event->event_entry, &ctx->event_list);
308         if (!ctx->nr_events)
309                 perf_pmu_rotate_start(ctx->pmu);
310         ctx->nr_events++;
311         if (event->attr.inherit_stat)
312                 ctx->nr_stat++;
313 }
314
315 static void perf_group_attach(struct perf_event *event)
316 {
317         struct perf_event *group_leader = event->group_leader;
318
319         /*
320          * We can have double attach due to group movement in perf_event_open.
321          */
322         if (event->attach_state & PERF_ATTACH_GROUP)
323                 return;
324
325         event->attach_state |= PERF_ATTACH_GROUP;
326
327         if (group_leader == event)
328                 return;
329
330         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
331                         !is_software_event(event))
332                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
333
334         list_add_tail(&event->group_entry, &group_leader->sibling_list);
335         group_leader->nr_siblings++;
336 }
337
338 /*
339  * Remove a event from the lists for its context.
340  * Must be called with ctx->mutex and ctx->lock held.
341  */
342 static void
343 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
344 {
345         /*
346          * We can have double detach due to exit/hot-unplug + close.
347          */
348         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
349                 return;
350
351         event->attach_state &= ~PERF_ATTACH_CONTEXT;
352
353         ctx->nr_events--;
354         if (event->attr.inherit_stat)
355                 ctx->nr_stat--;
356
357         list_del_rcu(&event->event_entry);
358
359         if (event->group_leader == event)
360                 list_del_init(&event->group_entry);
361
362         update_group_times(event);
363
364         /*
365          * If event was in error state, then keep it
366          * that way, otherwise bogus counts will be
367          * returned on read(). The only way to get out
368          * of error state is by explicit re-enabling
369          * of the event
370          */
371         if (event->state > PERF_EVENT_STATE_OFF)
372                 event->state = PERF_EVENT_STATE_OFF;
373 }
374
375 static void perf_group_detach(struct perf_event *event)
376 {
377         struct perf_event *sibling, *tmp;
378         struct list_head *list = NULL;
379
380         /*
381          * We can have double detach due to exit/hot-unplug + close.
382          */
383         if (!(event->attach_state & PERF_ATTACH_GROUP))
384                 return;
385
386         event->attach_state &= ~PERF_ATTACH_GROUP;
387
388         /*
389          * If this is a sibling, remove it from its group.
390          */
391         if (event->group_leader != event) {
392                 list_del_init(&event->group_entry);
393                 event->group_leader->nr_siblings--;
394                 return;
395         }
396
397         if (!list_empty(&event->group_entry))
398                 list = &event->group_entry;
399
400         /*
401          * If this was a group event with sibling events then
402          * upgrade the siblings to singleton events by adding them
403          * to whatever list we are on.
404          */
405         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
406                 if (list)
407                         list_move_tail(&sibling->group_entry, list);
408                 sibling->group_leader = sibling;
409
410                 /* Inherit group flags from the previous leader */
411                 sibling->group_flags = event->group_flags;
412         }
413 }
414
415 static inline int
416 event_filter_match(struct perf_event *event)
417 {
418         return event->cpu == -1 || event->cpu == smp_processor_id();
419 }
420
421 static void
422 event_sched_out(struct perf_event *event,
423                   struct perf_cpu_context *cpuctx,
424                   struct perf_event_context *ctx)
425 {
426         u64 delta;
427         /*
428          * An event which could not be activated because of
429          * filter mismatch still needs to have its timings
430          * maintained, otherwise bogus information is return
431          * via read() for time_enabled, time_running:
432          */
433         if (event->state == PERF_EVENT_STATE_INACTIVE
434             && !event_filter_match(event)) {
435                 delta = ctx->time - event->tstamp_stopped;
436                 event->tstamp_running += delta;
437                 event->tstamp_stopped = ctx->time;
438         }
439
440         if (event->state != PERF_EVENT_STATE_ACTIVE)
441                 return;
442
443         event->state = PERF_EVENT_STATE_INACTIVE;
444         if (event->pending_disable) {
445                 event->pending_disable = 0;
446                 event->state = PERF_EVENT_STATE_OFF;
447         }
448         event->tstamp_stopped = ctx->time;
449         event->pmu->del(event, 0);
450         event->oncpu = -1;
451
452         if (!is_software_event(event))
453                 cpuctx->active_oncpu--;
454         ctx->nr_active--;
455         if (event->attr.exclusive || !cpuctx->active_oncpu)
456                 cpuctx->exclusive = 0;
457 }
458
459 static void
460 group_sched_out(struct perf_event *group_event,
461                 struct perf_cpu_context *cpuctx,
462                 struct perf_event_context *ctx)
463 {
464         struct perf_event *event;
465         int state = group_event->state;
466
467         event_sched_out(group_event, cpuctx, ctx);
468
469         /*
470          * Schedule out siblings (if any):
471          */
472         list_for_each_entry(event, &group_event->sibling_list, group_entry)
473                 event_sched_out(event, cpuctx, ctx);
474
475         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
476                 cpuctx->exclusive = 0;
477 }
478
479 static inline struct perf_cpu_context *
480 __get_cpu_context(struct perf_event_context *ctx)
481 {
482         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
483 }
484
485 /*
486  * Cross CPU call to remove a performance event
487  *
488  * We disable the event on the hardware level first. After that we
489  * remove it from the context list.
490  */
491 static void __perf_event_remove_from_context(void *info)
492 {
493         struct perf_event *event = info;
494         struct perf_event_context *ctx = event->ctx;
495         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
496
497         /*
498          * If this is a task context, we need to check whether it is
499          * the current task context of this cpu. If not it has been
500          * scheduled out before the smp call arrived.
501          */
502         if (ctx->task && cpuctx->task_ctx != ctx)
503                 return;
504
505         raw_spin_lock(&ctx->lock);
506
507         event_sched_out(event, cpuctx, ctx);
508
509         list_del_event(event, ctx);
510
511         raw_spin_unlock(&ctx->lock);
512 }
513
514
515 /*
516  * Remove the event from a task's (or a CPU's) list of events.
517  *
518  * Must be called with ctx->mutex held.
519  *
520  * CPU events are removed with a smp call. For task events we only
521  * call when the task is on a CPU.
522  *
523  * If event->ctx is a cloned context, callers must make sure that
524  * every task struct that event->ctx->task could possibly point to
525  * remains valid.  This is OK when called from perf_release since
526  * that only calls us on the top-level context, which can't be a clone.
527  * When called from perf_event_exit_task, it's OK because the
528  * context has been detached from its task.
529  */
530 static void perf_event_remove_from_context(struct perf_event *event)
531 {
532         struct perf_event_context *ctx = event->ctx;
533         struct task_struct *task = ctx->task;
534
535         if (!task) {
536                 /*
537                  * Per cpu events are removed via an smp call and
538                  * the removal is always successful.
539                  */
540                 smp_call_function_single(event->cpu,
541                                          __perf_event_remove_from_context,
542                                          event, 1);
543                 return;
544         }
545
546 retry:
547         task_oncpu_function_call(task, __perf_event_remove_from_context,
548                                  event);
549
550         raw_spin_lock_irq(&ctx->lock);
551         /*
552          * If the context is active we need to retry the smp call.
553          */
554         if (ctx->nr_active && !list_empty(&event->group_entry)) {
555                 raw_spin_unlock_irq(&ctx->lock);
556                 goto retry;
557         }
558
559         /*
560          * The lock prevents that this context is scheduled in so we
561          * can remove the event safely, if the call above did not
562          * succeed.
563          */
564         if (!list_empty(&event->group_entry))
565                 list_del_event(event, ctx);
566         raw_spin_unlock_irq(&ctx->lock);
567 }
568
569 /*
570  * Cross CPU call to disable a performance event
571  */
572 static void __perf_event_disable(void *info)
573 {
574         struct perf_event *event = info;
575         struct perf_event_context *ctx = event->ctx;
576         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
577
578         /*
579          * If this is a per-task event, need to check whether this
580          * event's task is the current task on this cpu.
581          */
582         if (ctx->task && cpuctx->task_ctx != ctx)
583                 return;
584
585         raw_spin_lock(&ctx->lock);
586
587         /*
588          * If the event is on, turn it off.
589          * If it is in error state, leave it in error state.
590          */
591         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
592                 update_context_time(ctx);
593                 update_group_times(event);
594                 if (event == event->group_leader)
595                         group_sched_out(event, cpuctx, ctx);
596                 else
597                         event_sched_out(event, cpuctx, ctx);
598                 event->state = PERF_EVENT_STATE_OFF;
599         }
600
601         raw_spin_unlock(&ctx->lock);
602 }
603
604 /*
605  * Disable a event.
606  *
607  * If event->ctx is a cloned context, callers must make sure that
608  * every task struct that event->ctx->task could possibly point to
609  * remains valid.  This condition is satisifed when called through
610  * perf_event_for_each_child or perf_event_for_each because they
611  * hold the top-level event's child_mutex, so any descendant that
612  * goes to exit will block in sync_child_event.
613  * When called from perf_pending_event it's OK because event->ctx
614  * is the current context on this CPU and preemption is disabled,
615  * hence we can't get into perf_event_task_sched_out for this context.
616  */
617 void perf_event_disable(struct perf_event *event)
618 {
619         struct perf_event_context *ctx = event->ctx;
620         struct task_struct *task = ctx->task;
621
622         if (!task) {
623                 /*
624                  * Disable the event on the cpu that it's on
625                  */
626                 smp_call_function_single(event->cpu, __perf_event_disable,
627                                          event, 1);
628                 return;
629         }
630
631 retry:
632         task_oncpu_function_call(task, __perf_event_disable, event);
633
634         raw_spin_lock_irq(&ctx->lock);
635         /*
636          * If the event is still active, we need to retry the cross-call.
637          */
638         if (event->state == PERF_EVENT_STATE_ACTIVE) {
639                 raw_spin_unlock_irq(&ctx->lock);
640                 goto retry;
641         }
642
643         /*
644          * Since we have the lock this context can't be scheduled
645          * in, so we can change the state safely.
646          */
647         if (event->state == PERF_EVENT_STATE_INACTIVE) {
648                 update_group_times(event);
649                 event->state = PERF_EVENT_STATE_OFF;
650         }
651
652         raw_spin_unlock_irq(&ctx->lock);
653 }
654
655 static int
656 event_sched_in(struct perf_event *event,
657                  struct perf_cpu_context *cpuctx,
658                  struct perf_event_context *ctx)
659 {
660         if (event->state <= PERF_EVENT_STATE_OFF)
661                 return 0;
662
663         event->state = PERF_EVENT_STATE_ACTIVE;
664         event->oncpu = smp_processor_id();
665         /*
666          * The new state must be visible before we turn it on in the hardware:
667          */
668         smp_wmb();
669
670         if (event->pmu->add(event, PERF_EF_START)) {
671                 event->state = PERF_EVENT_STATE_INACTIVE;
672                 event->oncpu = -1;
673                 return -EAGAIN;
674         }
675
676         event->tstamp_running += ctx->time - event->tstamp_stopped;
677
678         event->shadow_ctx_time = ctx->time - ctx->timestamp;
679
680         if (!is_software_event(event))
681                 cpuctx->active_oncpu++;
682         ctx->nr_active++;
683
684         if (event->attr.exclusive)
685                 cpuctx->exclusive = 1;
686
687         return 0;
688 }
689
690 static int
691 group_sched_in(struct perf_event *group_event,
692                struct perf_cpu_context *cpuctx,
693                struct perf_event_context *ctx)
694 {
695         struct perf_event *event, *partial_group = NULL;
696         struct pmu *pmu = group_event->pmu;
697         u64 now = ctx->time;
698         bool simulate = false;
699
700         if (group_event->state == PERF_EVENT_STATE_OFF)
701                 return 0;
702
703         pmu->start_txn(pmu);
704
705         if (event_sched_in(group_event, cpuctx, ctx)) {
706                 pmu->cancel_txn(pmu);
707                 return -EAGAIN;
708         }
709
710         /*
711          * Schedule in siblings as one group (if any):
712          */
713         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
714                 if (event_sched_in(event, cpuctx, ctx)) {
715                         partial_group = event;
716                         goto group_error;
717                 }
718         }
719
720         if (!pmu->commit_txn(pmu))
721                 return 0;
722
723 group_error:
724         /*
725          * Groups can be scheduled in as one unit only, so undo any
726          * partial group before returning:
727          * The events up to the failed event are scheduled out normally,
728          * tstamp_stopped will be updated.
729          *
730          * The failed events and the remaining siblings need to have
731          * their timings updated as if they had gone thru event_sched_in()
732          * and event_sched_out(). This is required to get consistent timings
733          * across the group. This also takes care of the case where the group
734          * could never be scheduled by ensuring tstamp_stopped is set to mark
735          * the time the event was actually stopped, such that time delta
736          * calculation in update_event_times() is correct.
737          */
738         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
739                 if (event == partial_group)
740                         simulate = true;
741
742                 if (simulate) {
743                         event->tstamp_running += now - event->tstamp_stopped;
744                         event->tstamp_stopped = now;
745                 } else {
746                         event_sched_out(event, cpuctx, ctx);
747                 }
748         }
749         event_sched_out(group_event, cpuctx, ctx);
750
751         pmu->cancel_txn(pmu);
752
753         return -EAGAIN;
754 }
755
756 /*
757  * Work out whether we can put this event group on the CPU now.
758  */
759 static int group_can_go_on(struct perf_event *event,
760                            struct perf_cpu_context *cpuctx,
761                            int can_add_hw)
762 {
763         /*
764          * Groups consisting entirely of software events can always go on.
765          */
766         if (event->group_flags & PERF_GROUP_SOFTWARE)
767                 return 1;
768         /*
769          * If an exclusive group is already on, no other hardware
770          * events can go on.
771          */
772         if (cpuctx->exclusive)
773                 return 0;
774         /*
775          * If this group is exclusive and there are already
776          * events on the CPU, it can't go on.
777          */
778         if (event->attr.exclusive && cpuctx->active_oncpu)
779                 return 0;
780         /*
781          * Otherwise, try to add it if all previous groups were able
782          * to go on.
783          */
784         return can_add_hw;
785 }
786
787 static void add_event_to_ctx(struct perf_event *event,
788                                struct perf_event_context *ctx)
789 {
790         list_add_event(event, ctx);
791         perf_group_attach(event);
792         event->tstamp_enabled = ctx->time;
793         event->tstamp_running = ctx->time;
794         event->tstamp_stopped = ctx->time;
795 }
796
797 /*
798  * Cross CPU call to install and enable a performance event
799  *
800  * Must be called with ctx->mutex held
801  */
802 static void __perf_install_in_context(void *info)
803 {
804         struct perf_event *event = info;
805         struct perf_event_context *ctx = event->ctx;
806         struct perf_event *leader = event->group_leader;
807         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
808         int err;
809
810         /*
811          * If this is a task context, we need to check whether it is
812          * the current task context of this cpu. If not it has been
813          * scheduled out before the smp call arrived.
814          * Or possibly this is the right context but it isn't
815          * on this cpu because it had no events.
816          */
817         if (ctx->task && cpuctx->task_ctx != ctx) {
818                 if (cpuctx->task_ctx || ctx->task != current)
819                         return;
820                 cpuctx->task_ctx = ctx;
821         }
822
823         raw_spin_lock(&ctx->lock);
824         ctx->is_active = 1;
825         update_context_time(ctx);
826
827         add_event_to_ctx(event, ctx);
828
829         if (event->cpu != -1 && event->cpu != smp_processor_id())
830                 goto unlock;
831
832         /*
833          * Don't put the event on if it is disabled or if
834          * it is in a group and the group isn't on.
835          */
836         if (event->state != PERF_EVENT_STATE_INACTIVE ||
837             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
838                 goto unlock;
839
840         /*
841          * An exclusive event can't go on if there are already active
842          * hardware events, and no hardware event can go on if there
843          * is already an exclusive event on.
844          */
845         if (!group_can_go_on(event, cpuctx, 1))
846                 err = -EEXIST;
847         else
848                 err = event_sched_in(event, cpuctx, ctx);
849
850         if (err) {
851                 /*
852                  * This event couldn't go on.  If it is in a group
853                  * then we have to pull the whole group off.
854                  * If the event group is pinned then put it in error state.
855                  */
856                 if (leader != event)
857                         group_sched_out(leader, cpuctx, ctx);
858                 if (leader->attr.pinned) {
859                         update_group_times(leader);
860                         leader->state = PERF_EVENT_STATE_ERROR;
861                 }
862         }
863
864 unlock:
865         raw_spin_unlock(&ctx->lock);
866 }
867
868 /*
869  * Attach a performance event to a context
870  *
871  * First we add the event to the list with the hardware enable bit
872  * in event->hw_config cleared.
873  *
874  * If the event is attached to a task which is on a CPU we use a smp
875  * call to enable it in the task context. The task might have been
876  * scheduled away, but we check this in the smp call again.
877  *
878  * Must be called with ctx->mutex held.
879  */
880 static void
881 perf_install_in_context(struct perf_event_context *ctx,
882                         struct perf_event *event,
883                         int cpu)
884 {
885         struct task_struct *task = ctx->task;
886
887         event->ctx = ctx;
888
889         if (!task) {
890                 /*
891                  * Per cpu events are installed via an smp call and
892                  * the install is always successful.
893                  */
894                 smp_call_function_single(cpu, __perf_install_in_context,
895                                          event, 1);
896                 return;
897         }
898
899 retry:
900         task_oncpu_function_call(task, __perf_install_in_context,
901                                  event);
902
903         raw_spin_lock_irq(&ctx->lock);
904         /*
905          * we need to retry the smp call.
906          */
907         if (ctx->is_active && list_empty(&event->group_entry)) {
908                 raw_spin_unlock_irq(&ctx->lock);
909                 goto retry;
910         }
911
912         /*
913          * The lock prevents that this context is scheduled in so we
914          * can add the event safely, if it the call above did not
915          * succeed.
916          */
917         if (list_empty(&event->group_entry))
918                 add_event_to_ctx(event, ctx);
919         raw_spin_unlock_irq(&ctx->lock);
920 }
921
922 /*
923  * Put a event into inactive state and update time fields.
924  * Enabling the leader of a group effectively enables all
925  * the group members that aren't explicitly disabled, so we
926  * have to update their ->tstamp_enabled also.
927  * Note: this works for group members as well as group leaders
928  * since the non-leader members' sibling_lists will be empty.
929  */
930 static void __perf_event_mark_enabled(struct perf_event *event,
931                                         struct perf_event_context *ctx)
932 {
933         struct perf_event *sub;
934
935         event->state = PERF_EVENT_STATE_INACTIVE;
936         event->tstamp_enabled = ctx->time - event->total_time_enabled;
937         list_for_each_entry(sub, &event->sibling_list, group_entry) {
938                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
939                         sub->tstamp_enabled =
940                                 ctx->time - sub->total_time_enabled;
941                 }
942         }
943 }
944
945 /*
946  * Cross CPU call to enable a performance event
947  */
948 static void __perf_event_enable(void *info)
949 {
950         struct perf_event *event = info;
951         struct perf_event_context *ctx = event->ctx;
952         struct perf_event *leader = event->group_leader;
953         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
954         int err;
955
956         /*
957          * If this is a per-task event, need to check whether this
958          * event's task is the current task on this cpu.
959          */
960         if (ctx->task && cpuctx->task_ctx != ctx) {
961                 if (cpuctx->task_ctx || ctx->task != current)
962                         return;
963                 cpuctx->task_ctx = ctx;
964         }
965
966         raw_spin_lock(&ctx->lock);
967         ctx->is_active = 1;
968         update_context_time(ctx);
969
970         if (event->state >= PERF_EVENT_STATE_INACTIVE)
971                 goto unlock;
972         __perf_event_mark_enabled(event, ctx);
973
974         if (event->cpu != -1 && event->cpu != smp_processor_id())
975                 goto unlock;
976
977         /*
978          * If the event is in a group and isn't the group leader,
979          * then don't put it on unless the group is on.
980          */
981         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
982                 goto unlock;
983
984         if (!group_can_go_on(event, cpuctx, 1)) {
985                 err = -EEXIST;
986         } else {
987                 if (event == leader)
988                         err = group_sched_in(event, cpuctx, ctx);
989                 else
990                         err = event_sched_in(event, cpuctx, ctx);
991         }
992
993         if (err) {
994                 /*
995                  * If this event can't go on and it's part of a
996                  * group, then the whole group has to come off.
997                  */
998                 if (leader != event)
999                         group_sched_out(leader, cpuctx, ctx);
1000                 if (leader->attr.pinned) {
1001                         update_group_times(leader);
1002                         leader->state = PERF_EVENT_STATE_ERROR;
1003                 }
1004         }
1005
1006 unlock:
1007         raw_spin_unlock(&ctx->lock);
1008 }
1009
1010 /*
1011  * Enable a event.
1012  *
1013  * If event->ctx is a cloned context, callers must make sure that
1014  * every task struct that event->ctx->task could possibly point to
1015  * remains valid.  This condition is satisfied when called through
1016  * perf_event_for_each_child or perf_event_for_each as described
1017  * for perf_event_disable.
1018  */
1019 void perf_event_enable(struct perf_event *event)
1020 {
1021         struct perf_event_context *ctx = event->ctx;
1022         struct task_struct *task = ctx->task;
1023
1024         if (!task) {
1025                 /*
1026                  * Enable the event on the cpu that it's on
1027                  */
1028                 smp_call_function_single(event->cpu, __perf_event_enable,
1029                                          event, 1);
1030                 return;
1031         }
1032
1033         raw_spin_lock_irq(&ctx->lock);
1034         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1035                 goto out;
1036
1037         /*
1038          * If the event is in error state, clear that first.
1039          * That way, if we see the event in error state below, we
1040          * know that it has gone back into error state, as distinct
1041          * from the task having been scheduled away before the
1042          * cross-call arrived.
1043          */
1044         if (event->state == PERF_EVENT_STATE_ERROR)
1045                 event->state = PERF_EVENT_STATE_OFF;
1046
1047 retry:
1048         raw_spin_unlock_irq(&ctx->lock);
1049         task_oncpu_function_call(task, __perf_event_enable, event);
1050
1051         raw_spin_lock_irq(&ctx->lock);
1052
1053         /*
1054          * If the context is active and the event is still off,
1055          * we need to retry the cross-call.
1056          */
1057         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1058                 goto retry;
1059
1060         /*
1061          * Since we have the lock this context can't be scheduled
1062          * in, so we can change the state safely.
1063          */
1064         if (event->state == PERF_EVENT_STATE_OFF)
1065                 __perf_event_mark_enabled(event, ctx);
1066
1067 out:
1068         raw_spin_unlock_irq(&ctx->lock);
1069 }
1070
1071 static int perf_event_refresh(struct perf_event *event, int refresh)
1072 {
1073         /*
1074          * not supported on inherited events
1075          */
1076         if (event->attr.inherit)
1077                 return -EINVAL;
1078
1079         atomic_add(refresh, &event->event_limit);
1080         perf_event_enable(event);
1081
1082         return 0;
1083 }
1084
1085 enum event_type_t {
1086         EVENT_FLEXIBLE = 0x1,
1087         EVENT_PINNED = 0x2,
1088         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1089 };
1090
1091 static void ctx_sched_out(struct perf_event_context *ctx,
1092                           struct perf_cpu_context *cpuctx,
1093                           enum event_type_t event_type)
1094 {
1095         struct perf_event *event;
1096
1097         raw_spin_lock(&ctx->lock);
1098         perf_pmu_disable(ctx->pmu);
1099         ctx->is_active = 0;
1100         if (likely(!ctx->nr_events))
1101                 goto out;
1102         update_context_time(ctx);
1103
1104         if (!ctx->nr_active)
1105                 goto out;
1106
1107         if (event_type & EVENT_PINNED) {
1108                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1109                         group_sched_out(event, cpuctx, ctx);
1110         }
1111
1112         if (event_type & EVENT_FLEXIBLE) {
1113                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1114                         group_sched_out(event, cpuctx, ctx);
1115         }
1116 out:
1117         perf_pmu_enable(ctx->pmu);
1118         raw_spin_unlock(&ctx->lock);
1119 }
1120
1121 /*
1122  * Test whether two contexts are equivalent, i.e. whether they
1123  * have both been cloned from the same version of the same context
1124  * and they both have the same number of enabled events.
1125  * If the number of enabled events is the same, then the set
1126  * of enabled events should be the same, because these are both
1127  * inherited contexts, therefore we can't access individual events
1128  * in them directly with an fd; we can only enable/disable all
1129  * events via prctl, or enable/disable all events in a family
1130  * via ioctl, which will have the same effect on both contexts.
1131  */
1132 static int context_equiv(struct perf_event_context *ctx1,
1133                          struct perf_event_context *ctx2)
1134 {
1135         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1136                 && ctx1->parent_gen == ctx2->parent_gen
1137                 && !ctx1->pin_count && !ctx2->pin_count;
1138 }
1139
1140 static void __perf_event_sync_stat(struct perf_event *event,
1141                                      struct perf_event *next_event)
1142 {
1143         u64 value;
1144
1145         if (!event->attr.inherit_stat)
1146                 return;
1147
1148         /*
1149          * Update the event value, we cannot use perf_event_read()
1150          * because we're in the middle of a context switch and have IRQs
1151          * disabled, which upsets smp_call_function_single(), however
1152          * we know the event must be on the current CPU, therefore we
1153          * don't need to use it.
1154          */
1155         switch (event->state) {
1156         case PERF_EVENT_STATE_ACTIVE:
1157                 event->pmu->read(event);
1158                 /* fall-through */
1159
1160         case PERF_EVENT_STATE_INACTIVE:
1161                 update_event_times(event);
1162                 break;
1163
1164         default:
1165                 break;
1166         }
1167
1168         /*
1169          * In order to keep per-task stats reliable we need to flip the event
1170          * values when we flip the contexts.
1171          */
1172         value = local64_read(&next_event->count);
1173         value = local64_xchg(&event->count, value);
1174         local64_set(&next_event->count, value);
1175
1176         swap(event->total_time_enabled, next_event->total_time_enabled);
1177         swap(event->total_time_running, next_event->total_time_running);
1178
1179         /*
1180          * Since we swizzled the values, update the user visible data too.
1181          */
1182         perf_event_update_userpage(event);
1183         perf_event_update_userpage(next_event);
1184 }
1185
1186 #define list_next_entry(pos, member) \
1187         list_entry(pos->member.next, typeof(*pos), member)
1188
1189 static void perf_event_sync_stat(struct perf_event_context *ctx,
1190                                    struct perf_event_context *next_ctx)
1191 {
1192         struct perf_event *event, *next_event;
1193
1194         if (!ctx->nr_stat)
1195                 return;
1196
1197         update_context_time(ctx);
1198
1199         event = list_first_entry(&ctx->event_list,
1200                                    struct perf_event, event_entry);
1201
1202         next_event = list_first_entry(&next_ctx->event_list,
1203                                         struct perf_event, event_entry);
1204
1205         while (&event->event_entry != &ctx->event_list &&
1206                &next_event->event_entry != &next_ctx->event_list) {
1207
1208                 __perf_event_sync_stat(event, next_event);
1209
1210                 event = list_next_entry(event, event_entry);
1211                 next_event = list_next_entry(next_event, event_entry);
1212         }
1213 }
1214
1215 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1216                                   struct task_struct *next)
1217 {
1218         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1219         struct perf_event_context *next_ctx;
1220         struct perf_event_context *parent;
1221         struct perf_cpu_context *cpuctx;
1222         int do_switch = 1;
1223
1224         if (likely(!ctx))
1225                 return;
1226
1227         cpuctx = __get_cpu_context(ctx);
1228         if (!cpuctx->task_ctx)
1229                 return;
1230
1231         rcu_read_lock();
1232         parent = rcu_dereference(ctx->parent_ctx);
1233         next_ctx = next->perf_event_ctxp[ctxn];
1234         if (parent && next_ctx &&
1235             rcu_dereference(next_ctx->parent_ctx) == parent) {
1236                 /*
1237                  * Looks like the two contexts are clones, so we might be
1238                  * able to optimize the context switch.  We lock both
1239                  * contexts and check that they are clones under the
1240                  * lock (including re-checking that neither has been
1241                  * uncloned in the meantime).  It doesn't matter which
1242                  * order we take the locks because no other cpu could
1243                  * be trying to lock both of these tasks.
1244                  */
1245                 raw_spin_lock(&ctx->lock);
1246                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1247                 if (context_equiv(ctx, next_ctx)) {
1248                         /*
1249                          * XXX do we need a memory barrier of sorts
1250                          * wrt to rcu_dereference() of perf_event_ctxp
1251                          */
1252                         task->perf_event_ctxp[ctxn] = next_ctx;
1253                         next->perf_event_ctxp[ctxn] = ctx;
1254                         ctx->task = next;
1255                         next_ctx->task = task;
1256                         do_switch = 0;
1257
1258                         perf_event_sync_stat(ctx, next_ctx);
1259                 }
1260                 raw_spin_unlock(&next_ctx->lock);
1261                 raw_spin_unlock(&ctx->lock);
1262         }
1263         rcu_read_unlock();
1264
1265         if (do_switch) {
1266                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1267                 cpuctx->task_ctx = NULL;
1268         }
1269 }
1270
1271 #define for_each_task_context_nr(ctxn)                                  \
1272         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1273
1274 /*
1275  * Called from scheduler to remove the events of the current task,
1276  * with interrupts disabled.
1277  *
1278  * We stop each event and update the event value in event->count.
1279  *
1280  * This does not protect us against NMI, but disable()
1281  * sets the disabled bit in the control field of event _before_
1282  * accessing the event control register. If a NMI hits, then it will
1283  * not restart the event.
1284  */
1285 void __perf_event_task_sched_out(struct task_struct *task,
1286                                  struct task_struct *next)
1287 {
1288         int ctxn;
1289
1290         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1291
1292         for_each_task_context_nr(ctxn)
1293                 perf_event_context_sched_out(task, ctxn, next);
1294 }
1295
1296 static void task_ctx_sched_out(struct perf_event_context *ctx,
1297                                enum event_type_t event_type)
1298 {
1299         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1300
1301         if (!cpuctx->task_ctx)
1302                 return;
1303
1304         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1305                 return;
1306
1307         ctx_sched_out(ctx, cpuctx, event_type);
1308         cpuctx->task_ctx = NULL;
1309 }
1310
1311 /*
1312  * Called with IRQs disabled
1313  */
1314 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1315                               enum event_type_t event_type)
1316 {
1317         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1318 }
1319
1320 static void
1321 ctx_pinned_sched_in(struct perf_event_context *ctx,
1322                     struct perf_cpu_context *cpuctx)
1323 {
1324         struct perf_event *event;
1325
1326         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1327                 if (event->state <= PERF_EVENT_STATE_OFF)
1328                         continue;
1329                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1330                         continue;
1331
1332                 if (group_can_go_on(event, cpuctx, 1))
1333                         group_sched_in(event, cpuctx, ctx);
1334
1335                 /*
1336                  * If this pinned group hasn't been scheduled,
1337                  * put it in error state.
1338                  */
1339                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1340                         update_group_times(event);
1341                         event->state = PERF_EVENT_STATE_ERROR;
1342                 }
1343         }
1344 }
1345
1346 static void
1347 ctx_flexible_sched_in(struct perf_event_context *ctx,
1348                       struct perf_cpu_context *cpuctx)
1349 {
1350         struct perf_event *event;
1351         int can_add_hw = 1;
1352
1353         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1354                 /* Ignore events in OFF or ERROR state */
1355                 if (event->state <= PERF_EVENT_STATE_OFF)
1356                         continue;
1357                 /*
1358                  * Listen to the 'cpu' scheduling filter constraint
1359                  * of events:
1360                  */
1361                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1362                         continue;
1363
1364                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1365                         if (group_sched_in(event, cpuctx, ctx))
1366                                 can_add_hw = 0;
1367                 }
1368         }
1369 }
1370
1371 static void
1372 ctx_sched_in(struct perf_event_context *ctx,
1373              struct perf_cpu_context *cpuctx,
1374              enum event_type_t event_type)
1375 {
1376         raw_spin_lock(&ctx->lock);
1377         ctx->is_active = 1;
1378         if (likely(!ctx->nr_events))
1379                 goto out;
1380
1381         ctx->timestamp = perf_clock();
1382
1383         /*
1384          * First go through the list and put on any pinned groups
1385          * in order to give them the best chance of going on.
1386          */
1387         if (event_type & EVENT_PINNED)
1388                 ctx_pinned_sched_in(ctx, cpuctx);
1389
1390         /* Then walk through the lower prio flexible groups */
1391         if (event_type & EVENT_FLEXIBLE)
1392                 ctx_flexible_sched_in(ctx, cpuctx);
1393
1394 out:
1395         raw_spin_unlock(&ctx->lock);
1396 }
1397
1398 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1399                              enum event_type_t event_type)
1400 {
1401         struct perf_event_context *ctx = &cpuctx->ctx;
1402
1403         ctx_sched_in(ctx, cpuctx, event_type);
1404 }
1405
1406 static void task_ctx_sched_in(struct perf_event_context *ctx,
1407                               enum event_type_t event_type)
1408 {
1409         struct perf_cpu_context *cpuctx;
1410
1411         cpuctx = __get_cpu_context(ctx);
1412         if (cpuctx->task_ctx == ctx)
1413                 return;
1414
1415         ctx_sched_in(ctx, cpuctx, event_type);
1416         cpuctx->task_ctx = ctx;
1417 }
1418
1419 void perf_event_context_sched_in(struct perf_event_context *ctx)
1420 {
1421         struct perf_cpu_context *cpuctx;
1422
1423         cpuctx = __get_cpu_context(ctx);
1424         if (cpuctx->task_ctx == ctx)
1425                 return;
1426
1427         perf_pmu_disable(ctx->pmu);
1428         /*
1429          * We want to keep the following priority order:
1430          * cpu pinned (that don't need to move), task pinned,
1431          * cpu flexible, task flexible.
1432          */
1433         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1434
1435         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1436         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1437         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1438
1439         cpuctx->task_ctx = ctx;
1440
1441         /*
1442          * Since these rotations are per-cpu, we need to ensure the
1443          * cpu-context we got scheduled on is actually rotating.
1444          */
1445         perf_pmu_rotate_start(ctx->pmu);
1446         perf_pmu_enable(ctx->pmu);
1447 }
1448
1449 /*
1450  * Called from scheduler to add the events of the current task
1451  * with interrupts disabled.
1452  *
1453  * We restore the event value and then enable it.
1454  *
1455  * This does not protect us against NMI, but enable()
1456  * sets the enabled bit in the control field of event _before_
1457  * accessing the event control register. If a NMI hits, then it will
1458  * keep the event running.
1459  */
1460 void __perf_event_task_sched_in(struct task_struct *task)
1461 {
1462         struct perf_event_context *ctx;
1463         int ctxn;
1464
1465         for_each_task_context_nr(ctxn) {
1466                 ctx = task->perf_event_ctxp[ctxn];
1467                 if (likely(!ctx))
1468                         continue;
1469
1470                 perf_event_context_sched_in(ctx);
1471         }
1472 }
1473
1474 #define MAX_INTERRUPTS (~0ULL)
1475
1476 static void perf_log_throttle(struct perf_event *event, int enable);
1477
1478 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1479 {
1480         u64 frequency = event->attr.sample_freq;
1481         u64 sec = NSEC_PER_SEC;
1482         u64 divisor, dividend;
1483
1484         int count_fls, nsec_fls, frequency_fls, sec_fls;
1485
1486         count_fls = fls64(count);
1487         nsec_fls = fls64(nsec);
1488         frequency_fls = fls64(frequency);
1489         sec_fls = 30;
1490
1491         /*
1492          * We got @count in @nsec, with a target of sample_freq HZ
1493          * the target period becomes:
1494          *
1495          *             @count * 10^9
1496          * period = -------------------
1497          *          @nsec * sample_freq
1498          *
1499          */
1500
1501         /*
1502          * Reduce accuracy by one bit such that @a and @b converge
1503          * to a similar magnitude.
1504          */
1505 #define REDUCE_FLS(a, b)                \
1506 do {                                    \
1507         if (a##_fls > b##_fls) {        \
1508                 a >>= 1;                \
1509                 a##_fls--;              \
1510         } else {                        \
1511                 b >>= 1;                \
1512                 b##_fls--;              \
1513         }                               \
1514 } while (0)
1515
1516         /*
1517          * Reduce accuracy until either term fits in a u64, then proceed with
1518          * the other, so that finally we can do a u64/u64 division.
1519          */
1520         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1521                 REDUCE_FLS(nsec, frequency);
1522                 REDUCE_FLS(sec, count);
1523         }
1524
1525         if (count_fls + sec_fls > 64) {
1526                 divisor = nsec * frequency;
1527
1528                 while (count_fls + sec_fls > 64) {
1529                         REDUCE_FLS(count, sec);
1530                         divisor >>= 1;
1531                 }
1532
1533                 dividend = count * sec;
1534         } else {
1535                 dividend = count * sec;
1536
1537                 while (nsec_fls + frequency_fls > 64) {
1538                         REDUCE_FLS(nsec, frequency);
1539                         dividend >>= 1;
1540                 }
1541
1542                 divisor = nsec * frequency;
1543         }
1544
1545         if (!divisor)
1546                 return dividend;
1547
1548         return div64_u64(dividend, divisor);
1549 }
1550
1551 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1552 {
1553         struct hw_perf_event *hwc = &event->hw;
1554         s64 period, sample_period;
1555         s64 delta;
1556
1557         period = perf_calculate_period(event, nsec, count);
1558
1559         delta = (s64)(period - hwc->sample_period);
1560         delta = (delta + 7) / 8; /* low pass filter */
1561
1562         sample_period = hwc->sample_period + delta;
1563
1564         if (!sample_period)
1565                 sample_period = 1;
1566
1567         hwc->sample_period = sample_period;
1568
1569         if (local64_read(&hwc->period_left) > 8*sample_period) {
1570                 event->pmu->stop(event, PERF_EF_UPDATE);
1571                 local64_set(&hwc->period_left, 0);
1572                 event->pmu->start(event, PERF_EF_RELOAD);
1573         }
1574 }
1575
1576 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1577 {
1578         struct perf_event *event;
1579         struct hw_perf_event *hwc;
1580         u64 interrupts, now;
1581         s64 delta;
1582
1583         raw_spin_lock(&ctx->lock);
1584         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1585                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1586                         continue;
1587
1588                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1589                         continue;
1590
1591                 hwc = &event->hw;
1592
1593                 interrupts = hwc->interrupts;
1594                 hwc->interrupts = 0;
1595
1596                 /*
1597                  * unthrottle events on the tick
1598                  */
1599                 if (interrupts == MAX_INTERRUPTS) {
1600                         perf_log_throttle(event, 1);
1601                         event->pmu->start(event, 0);
1602                 }
1603
1604                 if (!event->attr.freq || !event->attr.sample_freq)
1605                         continue;
1606
1607                 event->pmu->read(event);
1608                 now = local64_read(&event->count);
1609                 delta = now - hwc->freq_count_stamp;
1610                 hwc->freq_count_stamp = now;
1611
1612                 if (delta > 0)
1613                         perf_adjust_period(event, period, delta);
1614         }
1615         raw_spin_unlock(&ctx->lock);
1616 }
1617
1618 /*
1619  * Round-robin a context's events:
1620  */
1621 static void rotate_ctx(struct perf_event_context *ctx)
1622 {
1623         raw_spin_lock(&ctx->lock);
1624
1625         /* Rotate the first entry last of non-pinned groups */
1626         list_rotate_left(&ctx->flexible_groups);
1627
1628         raw_spin_unlock(&ctx->lock);
1629 }
1630
1631 /*
1632  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1633  * because they're strictly cpu affine and rotate_start is called with IRQs
1634  * disabled, while rotate_context is called from IRQ context.
1635  */
1636 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1637 {
1638         u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1639         struct perf_event_context *ctx = NULL;
1640         int rotate = 0, remove = 1;
1641
1642         if (cpuctx->ctx.nr_events) {
1643                 remove = 0;
1644                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1645                         rotate = 1;
1646         }
1647
1648         ctx = cpuctx->task_ctx;
1649         if (ctx && ctx->nr_events) {
1650                 remove = 0;
1651                 if (ctx->nr_events != ctx->nr_active)
1652                         rotate = 1;
1653         }
1654
1655         perf_pmu_disable(cpuctx->ctx.pmu);
1656         perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1657         if (ctx)
1658                 perf_ctx_adjust_freq(ctx, interval);
1659
1660         if (!rotate)
1661                 goto done;
1662
1663         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1664         if (ctx)
1665                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1666
1667         rotate_ctx(&cpuctx->ctx);
1668         if (ctx)
1669                 rotate_ctx(ctx);
1670
1671         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1672         if (ctx)
1673                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1674
1675 done:
1676         if (remove)
1677                 list_del_init(&cpuctx->rotation_list);
1678
1679         perf_pmu_enable(cpuctx->ctx.pmu);
1680 }
1681
1682 void perf_event_task_tick(void)
1683 {
1684         struct list_head *head = &__get_cpu_var(rotation_list);
1685         struct perf_cpu_context *cpuctx, *tmp;
1686
1687         WARN_ON(!irqs_disabled());
1688
1689         list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1690                 if (cpuctx->jiffies_interval == 1 ||
1691                                 !(jiffies % cpuctx->jiffies_interval))
1692                         perf_rotate_context(cpuctx);
1693         }
1694 }
1695
1696 static int event_enable_on_exec(struct perf_event *event,
1697                                 struct perf_event_context *ctx)
1698 {
1699         if (!event->attr.enable_on_exec)
1700                 return 0;
1701
1702         event->attr.enable_on_exec = 0;
1703         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1704                 return 0;
1705
1706         __perf_event_mark_enabled(event, ctx);
1707
1708         return 1;
1709 }
1710
1711 /*
1712  * Enable all of a task's events that have been marked enable-on-exec.
1713  * This expects task == current.
1714  */
1715 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1716 {
1717         struct perf_event *event;
1718         unsigned long flags;
1719         int enabled = 0;
1720         int ret;
1721
1722         local_irq_save(flags);
1723         if (!ctx || !ctx->nr_events)
1724                 goto out;
1725
1726         task_ctx_sched_out(ctx, EVENT_ALL);
1727
1728         raw_spin_lock(&ctx->lock);
1729
1730         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1731                 ret = event_enable_on_exec(event, ctx);
1732                 if (ret)
1733                         enabled = 1;
1734         }
1735
1736         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1737                 ret = event_enable_on_exec(event, ctx);
1738                 if (ret)
1739                         enabled = 1;
1740         }
1741
1742         /*
1743          * Unclone this context if we enabled any event.
1744          */
1745         if (enabled)
1746                 unclone_ctx(ctx);
1747
1748         raw_spin_unlock(&ctx->lock);
1749
1750         perf_event_context_sched_in(ctx);
1751 out:
1752         local_irq_restore(flags);
1753 }
1754
1755 /*
1756  * Cross CPU call to read the hardware event
1757  */
1758 static void __perf_event_read(void *info)
1759 {
1760         struct perf_event *event = info;
1761         struct perf_event_context *ctx = event->ctx;
1762         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1763
1764         /*
1765          * If this is a task context, we need to check whether it is
1766          * the current task context of this cpu.  If not it has been
1767          * scheduled out before the smp call arrived.  In that case
1768          * event->count would have been updated to a recent sample
1769          * when the event was scheduled out.
1770          */
1771         if (ctx->task && cpuctx->task_ctx != ctx)
1772                 return;
1773
1774         raw_spin_lock(&ctx->lock);
1775         update_context_time(ctx);
1776         update_event_times(event);
1777         raw_spin_unlock(&ctx->lock);
1778
1779         event->pmu->read(event);
1780 }
1781
1782 static inline u64 perf_event_count(struct perf_event *event)
1783 {
1784         return local64_read(&event->count) + atomic64_read(&event->child_count);
1785 }
1786
1787 static u64 perf_event_read(struct perf_event *event)
1788 {
1789         /*
1790          * If event is enabled and currently active on a CPU, update the
1791          * value in the event structure:
1792          */
1793         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1794                 smp_call_function_single(event->oncpu,
1795                                          __perf_event_read, event, 1);
1796         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1797                 struct perf_event_context *ctx = event->ctx;
1798                 unsigned long flags;
1799
1800                 raw_spin_lock_irqsave(&ctx->lock, flags);
1801                 /*
1802                  * may read while context is not active
1803                  * (e.g., thread is blocked), in that case
1804                  * we cannot update context time
1805                  */
1806                 if (ctx->is_active)
1807                         update_context_time(ctx);
1808                 update_event_times(event);
1809                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1810         }
1811
1812         return perf_event_count(event);
1813 }
1814
1815 /*
1816  * Callchain support
1817  */
1818
1819 struct callchain_cpus_entries {
1820         struct rcu_head                 rcu_head;
1821         struct perf_callchain_entry     *cpu_entries[0];
1822 };
1823
1824 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1825 static atomic_t nr_callchain_events;
1826 static DEFINE_MUTEX(callchain_mutex);
1827 struct callchain_cpus_entries *callchain_cpus_entries;
1828
1829
1830 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1831                                   struct pt_regs *regs)
1832 {
1833 }
1834
1835 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1836                                 struct pt_regs *regs)
1837 {
1838 }
1839
1840 static void release_callchain_buffers_rcu(struct rcu_head *head)
1841 {
1842         struct callchain_cpus_entries *entries;
1843         int cpu;
1844
1845         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1846
1847         for_each_possible_cpu(cpu)
1848                 kfree(entries->cpu_entries[cpu]);
1849
1850         kfree(entries);
1851 }
1852
1853 static void release_callchain_buffers(void)
1854 {
1855         struct callchain_cpus_entries *entries;
1856
1857         entries = callchain_cpus_entries;
1858         rcu_assign_pointer(callchain_cpus_entries, NULL);
1859         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1860 }
1861
1862 static int alloc_callchain_buffers(void)
1863 {
1864         int cpu;
1865         int size;
1866         struct callchain_cpus_entries *entries;
1867
1868         /*
1869          * We can't use the percpu allocation API for data that can be
1870          * accessed from NMI. Use a temporary manual per cpu allocation
1871          * until that gets sorted out.
1872          */
1873         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1874                 num_possible_cpus();
1875
1876         entries = kzalloc(size, GFP_KERNEL);
1877         if (!entries)
1878                 return -ENOMEM;
1879
1880         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1881
1882         for_each_possible_cpu(cpu) {
1883                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1884                                                          cpu_to_node(cpu));
1885                 if (!entries->cpu_entries[cpu])
1886                         goto fail;
1887         }
1888
1889         rcu_assign_pointer(callchain_cpus_entries, entries);
1890
1891         return 0;
1892
1893 fail:
1894         for_each_possible_cpu(cpu)
1895                 kfree(entries->cpu_entries[cpu]);
1896         kfree(entries);
1897
1898         return -ENOMEM;
1899 }
1900
1901 static int get_callchain_buffers(void)
1902 {
1903         int err = 0;
1904         int count;
1905
1906         mutex_lock(&callchain_mutex);
1907
1908         count = atomic_inc_return(&nr_callchain_events);
1909         if (WARN_ON_ONCE(count < 1)) {
1910                 err = -EINVAL;
1911                 goto exit;
1912         }
1913
1914         if (count > 1) {
1915                 /* If the allocation failed, give up */
1916                 if (!callchain_cpus_entries)
1917                         err = -ENOMEM;
1918                 goto exit;
1919         }
1920
1921         err = alloc_callchain_buffers();
1922         if (err)
1923                 release_callchain_buffers();
1924 exit:
1925         mutex_unlock(&callchain_mutex);
1926
1927         return err;
1928 }
1929
1930 static void put_callchain_buffers(void)
1931 {
1932         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1933                 release_callchain_buffers();
1934                 mutex_unlock(&callchain_mutex);
1935         }
1936 }
1937
1938 static int get_recursion_context(int *recursion)
1939 {
1940         int rctx;
1941
1942         if (in_nmi())
1943                 rctx = 3;
1944         else if (in_irq())
1945                 rctx = 2;
1946         else if (in_softirq())
1947                 rctx = 1;
1948         else
1949                 rctx = 0;
1950
1951         if (recursion[rctx])
1952                 return -1;
1953
1954         recursion[rctx]++;
1955         barrier();
1956
1957         return rctx;
1958 }
1959
1960 static inline void put_recursion_context(int *recursion, int rctx)
1961 {
1962         barrier();
1963         recursion[rctx]--;
1964 }
1965
1966 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1967 {
1968         int cpu;
1969         struct callchain_cpus_entries *entries;
1970
1971         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1972         if (*rctx == -1)
1973                 return NULL;
1974
1975         entries = rcu_dereference(callchain_cpus_entries);
1976         if (!entries)
1977                 return NULL;
1978
1979         cpu = smp_processor_id();
1980
1981         return &entries->cpu_entries[cpu][*rctx];
1982 }
1983
1984 static void
1985 put_callchain_entry(int rctx)
1986 {
1987         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1988 }
1989
1990 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1991 {
1992         int rctx;
1993         struct perf_callchain_entry *entry;
1994
1995
1996         entry = get_callchain_entry(&rctx);
1997         if (rctx == -1)
1998                 return NULL;
1999
2000         if (!entry)
2001                 goto exit_put;
2002
2003         entry->nr = 0;
2004
2005         if (!user_mode(regs)) {
2006                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2007                 perf_callchain_kernel(entry, regs);
2008                 if (current->mm)
2009                         regs = task_pt_regs(current);
2010                 else
2011                         regs = NULL;
2012         }
2013
2014         if (regs) {
2015                 perf_callchain_store(entry, PERF_CONTEXT_USER);
2016                 perf_callchain_user(entry, regs);
2017         }
2018
2019 exit_put:
2020         put_callchain_entry(rctx);
2021
2022         return entry;
2023 }
2024
2025 /*
2026  * Initialize the perf_event context in a task_struct:
2027  */
2028 static void __perf_event_init_context(struct perf_event_context *ctx)
2029 {
2030         raw_spin_lock_init(&ctx->lock);
2031         mutex_init(&ctx->mutex);
2032         INIT_LIST_HEAD(&ctx->pinned_groups);
2033         INIT_LIST_HEAD(&ctx->flexible_groups);
2034         INIT_LIST_HEAD(&ctx->event_list);
2035         atomic_set(&ctx->refcount, 1);
2036 }
2037
2038 static struct perf_event_context *
2039 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2040 {
2041         struct perf_event_context *ctx;
2042
2043         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2044         if (!ctx)
2045                 return NULL;
2046
2047         __perf_event_init_context(ctx);
2048         if (task) {
2049                 ctx->task = task;
2050                 get_task_struct(task);
2051         }
2052         ctx->pmu = pmu;
2053
2054         return ctx;
2055 }
2056
2057 static struct task_struct *
2058 find_lively_task_by_vpid(pid_t vpid)
2059 {
2060         struct task_struct *task;
2061         int err;
2062
2063         rcu_read_lock();
2064         if (!vpid)
2065                 task = current;
2066         else
2067                 task = find_task_by_vpid(vpid);
2068         if (task)
2069                 get_task_struct(task);
2070         rcu_read_unlock();
2071
2072         if (!task)
2073                 return ERR_PTR(-ESRCH);
2074
2075         /*
2076          * Can't attach events to a dying task.
2077          */
2078         err = -ESRCH;
2079         if (task->flags & PF_EXITING)
2080                 goto errout;
2081
2082         /* Reuse ptrace permission checks for now. */
2083         err = -EACCES;
2084         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2085                 goto errout;
2086
2087         return task;
2088 errout:
2089         put_task_struct(task);
2090         return ERR_PTR(err);
2091
2092 }
2093
2094 static struct perf_event_context *
2095 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2096 {
2097         struct perf_event_context *ctx;
2098         struct perf_cpu_context *cpuctx;
2099         unsigned long flags;
2100         int ctxn, err;
2101
2102         if (!task && cpu != -1) {
2103                 /* Must be root to operate on a CPU event: */
2104                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2105                         return ERR_PTR(-EACCES);
2106
2107                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2108                         return ERR_PTR(-EINVAL);
2109
2110                 /*
2111                  * We could be clever and allow to attach a event to an
2112                  * offline CPU and activate it when the CPU comes up, but
2113                  * that's for later.
2114                  */
2115                 if (!cpu_online(cpu))
2116                         return ERR_PTR(-ENODEV);
2117
2118                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2119                 ctx = &cpuctx->ctx;
2120                 get_ctx(ctx);
2121
2122                 return ctx;
2123         }
2124
2125         err = -EINVAL;
2126         ctxn = pmu->task_ctx_nr;
2127         if (ctxn < 0)
2128                 goto errout;
2129
2130 retry:
2131         ctx = perf_lock_task_context(task, ctxn, &flags);
2132         if (ctx) {
2133                 unclone_ctx(ctx);
2134                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2135         }
2136
2137         if (!ctx) {
2138                 ctx = alloc_perf_context(pmu, task);
2139                 err = -ENOMEM;
2140                 if (!ctx)
2141                         goto errout;
2142
2143                 get_ctx(ctx);
2144
2145                 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2146                         /*
2147                          * We raced with some other task; use
2148                          * the context they set.
2149                          */
2150                         put_task_struct(task);
2151                         kfree(ctx);
2152                         goto retry;
2153                 }
2154         }
2155
2156         return ctx;
2157
2158 errout:
2159         return ERR_PTR(err);
2160 }
2161
2162 static void perf_event_free_filter(struct perf_event *event);
2163
2164 static void free_event_rcu(struct rcu_head *head)
2165 {
2166         struct perf_event *event;
2167
2168         event = container_of(head, struct perf_event, rcu_head);
2169         if (event->ns)
2170                 put_pid_ns(event->ns);
2171         perf_event_free_filter(event);
2172         kfree(event);
2173 }
2174
2175 static void perf_buffer_put(struct perf_buffer *buffer);
2176
2177 static void free_event(struct perf_event *event)
2178 {
2179         irq_work_sync(&event->pending);
2180
2181         if (!event->parent) {
2182                 if (event->attach_state & PERF_ATTACH_TASK)
2183                         jump_label_dec(&perf_task_events);
2184                 if (event->attr.mmap || event->attr.mmap_data)
2185                         atomic_dec(&nr_mmap_events);
2186                 if (event->attr.comm)
2187                         atomic_dec(&nr_comm_events);
2188                 if (event->attr.task)
2189                         atomic_dec(&nr_task_events);
2190                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2191                         put_callchain_buffers();
2192         }
2193
2194         if (event->buffer) {
2195                 perf_buffer_put(event->buffer);
2196                 event->buffer = NULL;
2197         }
2198
2199         if (event->destroy)
2200                 event->destroy(event);
2201
2202         if (event->ctx)
2203                 put_ctx(event->ctx);
2204
2205         call_rcu(&event->rcu_head, free_event_rcu);
2206 }
2207
2208 int perf_event_release_kernel(struct perf_event *event)
2209 {
2210         struct perf_event_context *ctx = event->ctx;
2211
2212         /*
2213          * Remove from the PMU, can't get re-enabled since we got
2214          * here because the last ref went.
2215          */
2216         perf_event_disable(event);
2217
2218         WARN_ON_ONCE(ctx->parent_ctx);
2219         /*
2220          * There are two ways this annotation is useful:
2221          *
2222          *  1) there is a lock recursion from perf_event_exit_task
2223          *     see the comment there.
2224          *
2225          *  2) there is a lock-inversion with mmap_sem through
2226          *     perf_event_read_group(), which takes faults while
2227          *     holding ctx->mutex, however this is called after
2228          *     the last filedesc died, so there is no possibility
2229          *     to trigger the AB-BA case.
2230          */
2231         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2232         raw_spin_lock_irq(&ctx->lock);
2233         perf_group_detach(event);
2234         list_del_event(event, ctx);
2235         raw_spin_unlock_irq(&ctx->lock);
2236         mutex_unlock(&ctx->mutex);
2237
2238         free_event(event);
2239
2240         return 0;
2241 }
2242 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2243
2244 /*
2245  * Called when the last reference to the file is gone.
2246  */
2247 static int perf_release(struct inode *inode, struct file *file)
2248 {
2249         struct perf_event *event = file->private_data;
2250         struct task_struct *owner;
2251
2252         file->private_data = NULL;
2253
2254         rcu_read_lock();
2255         owner = ACCESS_ONCE(event->owner);
2256         /*
2257          * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2258          * !owner it means the list deletion is complete and we can indeed
2259          * free this event, otherwise we need to serialize on
2260          * owner->perf_event_mutex.
2261          */
2262         smp_read_barrier_depends();
2263         if (owner) {
2264                 /*
2265                  * Since delayed_put_task_struct() also drops the last
2266                  * task reference we can safely take a new reference
2267                  * while holding the rcu_read_lock().
2268                  */
2269                 get_task_struct(owner);
2270         }
2271         rcu_read_unlock();
2272
2273         if (owner) {
2274                 mutex_lock(&owner->perf_event_mutex);
2275                 /*
2276                  * We have to re-check the event->owner field, if it is cleared
2277                  * we raced with perf_event_exit_task(), acquiring the mutex
2278                  * ensured they're done, and we can proceed with freeing the
2279                  * event.
2280                  */
2281                 if (event->owner)
2282                         list_del_init(&event->owner_entry);
2283                 mutex_unlock(&owner->perf_event_mutex);
2284                 put_task_struct(owner);
2285         }
2286
2287         return perf_event_release_kernel(event);
2288 }
2289
2290 static int perf_event_read_size(struct perf_event *event)
2291 {
2292         int entry = sizeof(u64); /* value */
2293         int size = 0;
2294         int nr = 1;
2295
2296         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2297                 size += sizeof(u64);
2298
2299         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2300                 size += sizeof(u64);
2301
2302         if (event->attr.read_format & PERF_FORMAT_ID)
2303                 entry += sizeof(u64);
2304
2305         if (event->attr.read_format & PERF_FORMAT_GROUP) {
2306                 nr += event->group_leader->nr_siblings;
2307                 size += sizeof(u64);
2308         }
2309
2310         size += entry * nr;
2311
2312         return size;
2313 }
2314
2315 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2316 {
2317         struct perf_event *child;
2318         u64 total = 0;
2319
2320         *enabled = 0;
2321         *running = 0;
2322
2323         mutex_lock(&event->child_mutex);
2324         total += perf_event_read(event);
2325         *enabled += event->total_time_enabled +
2326                         atomic64_read(&event->child_total_time_enabled);
2327         *running += event->total_time_running +
2328                         atomic64_read(&event->child_total_time_running);
2329
2330         list_for_each_entry(child, &event->child_list, child_list) {
2331                 total += perf_event_read(child);
2332                 *enabled += child->total_time_enabled;
2333                 *running += child->total_time_running;
2334         }
2335         mutex_unlock(&event->child_mutex);
2336
2337         return total;
2338 }
2339 EXPORT_SYMBOL_GPL(perf_event_read_value);
2340
2341 static int perf_event_read_group(struct perf_event *event,
2342                                    u64 read_format, char __user *buf)
2343 {
2344         struct perf_event *leader = event->group_leader, *sub;
2345         int n = 0, size = 0, ret = -EFAULT;
2346         struct perf_event_context *ctx = leader->ctx;
2347         u64 values[5];
2348         u64 count, enabled, running;
2349
2350         mutex_lock(&ctx->mutex);
2351         count = perf_event_read_value(leader, &enabled, &running);
2352
2353         values[n++] = 1 + leader->nr_siblings;
2354         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2355                 values[n++] = enabled;
2356         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2357                 values[n++] = running;
2358         values[n++] = count;
2359         if (read_format & PERF_FORMAT_ID)
2360                 values[n++] = primary_event_id(leader);
2361
2362         size = n * sizeof(u64);
2363
2364         if (copy_to_user(buf, values, size))
2365                 goto unlock;
2366
2367         ret = size;
2368
2369         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2370                 n = 0;
2371
2372                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2373                 if (read_format & PERF_FORMAT_ID)
2374                         values[n++] = primary_event_id(sub);
2375
2376                 size = n * sizeof(u64);
2377
2378                 if (copy_to_user(buf + ret, values, size)) {
2379                         ret = -EFAULT;
2380                         goto unlock;
2381                 }
2382
2383                 ret += size;
2384         }
2385 unlock:
2386         mutex_unlock(&ctx->mutex);
2387
2388         return ret;
2389 }
2390
2391 static int perf_event_read_one(struct perf_event *event,
2392                                  u64 read_format, char __user *buf)
2393 {
2394         u64 enabled, running;
2395         u64 values[4];
2396         int n = 0;
2397
2398         values[n++] = perf_event_read_value(event, &enabled, &running);
2399         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2400                 values[n++] = enabled;
2401         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2402                 values[n++] = running;
2403         if (read_format & PERF_FORMAT_ID)
2404                 values[n++] = primary_event_id(event);
2405
2406         if (copy_to_user(buf, values, n * sizeof(u64)))
2407                 return -EFAULT;
2408
2409         return n * sizeof(u64);
2410 }
2411
2412 /*
2413  * Read the performance event - simple non blocking version for now
2414  */
2415 static ssize_t
2416 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2417 {
2418         u64 read_format = event->attr.read_format;
2419         int ret;
2420
2421         /*
2422          * Return end-of-file for a read on a event that is in
2423          * error state (i.e. because it was pinned but it couldn't be
2424          * scheduled on to the CPU at some point).
2425          */
2426         if (event->state == PERF_EVENT_STATE_ERROR)
2427                 return 0;
2428
2429         if (count < perf_event_read_size(event))
2430                 return -ENOSPC;
2431
2432         WARN_ON_ONCE(event->ctx->parent_ctx);
2433         if (read_format & PERF_FORMAT_GROUP)
2434                 ret = perf_event_read_group(event, read_format, buf);
2435         else
2436                 ret = perf_event_read_one(event, read_format, buf);
2437
2438         return ret;
2439 }
2440
2441 static ssize_t
2442 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2443 {
2444         struct perf_event *event = file->private_data;
2445
2446         return perf_read_hw(event, buf, count);
2447 }
2448
2449 static unsigned int perf_poll(struct file *file, poll_table *wait)
2450 {
2451         struct perf_event *event = file->private_data;
2452         struct perf_buffer *buffer;
2453         unsigned int events = POLL_HUP;
2454
2455         rcu_read_lock();
2456         buffer = rcu_dereference(event->buffer);
2457         if (buffer)
2458                 events = atomic_xchg(&buffer->poll, 0);
2459         rcu_read_unlock();
2460
2461         poll_wait(file, &event->waitq, wait);
2462
2463         return events;
2464 }
2465
2466 static void perf_event_reset(struct perf_event *event)
2467 {
2468         (void)perf_event_read(event);
2469         local64_set(&event->count, 0);
2470         perf_event_update_userpage(event);
2471 }
2472
2473 /*
2474  * Holding the top-level event's child_mutex means that any
2475  * descendant process that has inherited this event will block
2476  * in sync_child_event if it goes to exit, thus satisfying the
2477  * task existence requirements of perf_event_enable/disable.
2478  */
2479 static void perf_event_for_each_child(struct perf_event *event,
2480                                         void (*func)(struct perf_event *))
2481 {
2482         struct perf_event *child;
2483
2484         WARN_ON_ONCE(event->ctx->parent_ctx);
2485         mutex_lock(&event->child_mutex);
2486         func(event);
2487         list_for_each_entry(child, &event->child_list, child_list)
2488                 func(child);
2489         mutex_unlock(&event->child_mutex);
2490 }
2491
2492 static void perf_event_for_each(struct perf_event *event,
2493                                   void (*func)(struct perf_event *))
2494 {
2495         struct perf_event_context *ctx = event->ctx;
2496         struct perf_event *sibling;
2497
2498         WARN_ON_ONCE(ctx->parent_ctx);
2499         mutex_lock(&ctx->mutex);
2500         event = event->group_leader;
2501
2502         perf_event_for_each_child(event, func);
2503         func(event);
2504         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2505                 perf_event_for_each_child(event, func);
2506         mutex_unlock(&ctx->mutex);
2507 }
2508
2509 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2510 {
2511         struct perf_event_context *ctx = event->ctx;
2512         int ret = 0;
2513         u64 value;
2514
2515         if (!event->attr.sample_period)
2516                 return -EINVAL;
2517
2518         if (copy_from_user(&value, arg, sizeof(value)))
2519                 return -EFAULT;
2520
2521         if (!value)
2522                 return -EINVAL;
2523
2524         raw_spin_lock_irq(&ctx->lock);
2525         if (event->attr.freq) {
2526                 if (value > sysctl_perf_event_sample_rate) {
2527                         ret = -EINVAL;
2528                         goto unlock;
2529                 }
2530
2531                 event->attr.sample_freq = value;
2532         } else {
2533                 event->attr.sample_period = value;
2534                 event->hw.sample_period = value;
2535         }
2536 unlock:
2537         raw_spin_unlock_irq(&ctx->lock);
2538
2539         return ret;
2540 }
2541
2542 static const struct file_operations perf_fops;
2543
2544 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2545 {
2546         struct file *file;
2547
2548         file = fget_light(fd, fput_needed);
2549         if (!file)
2550                 return ERR_PTR(-EBADF);
2551
2552         if (file->f_op != &perf_fops) {
2553                 fput_light(file, *fput_needed);
2554                 *fput_needed = 0;
2555                 return ERR_PTR(-EBADF);
2556         }
2557
2558         return file->private_data;
2559 }
2560
2561 static int perf_event_set_output(struct perf_event *event,
2562                                  struct perf_event *output_event);
2563 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2564
2565 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2566 {
2567         struct perf_event *event = file->private_data;
2568         void (*func)(struct perf_event *);
2569         u32 flags = arg;
2570
2571         switch (cmd) {
2572         case PERF_EVENT_IOC_ENABLE:
2573                 func = perf_event_enable;
2574                 break;
2575         case PERF_EVENT_IOC_DISABLE:
2576                 func = perf_event_disable;
2577                 break;
2578         case PERF_EVENT_IOC_RESET:
2579                 func = perf_event_reset;
2580                 break;
2581
2582         case PERF_EVENT_IOC_REFRESH:
2583                 return perf_event_refresh(event, arg);
2584
2585         case PERF_EVENT_IOC_PERIOD:
2586                 return perf_event_period(event, (u64 __user *)arg);
2587
2588         case PERF_EVENT_IOC_SET_OUTPUT:
2589         {
2590                 struct perf_event *output_event = NULL;
2591                 int fput_needed = 0;
2592                 int ret;
2593
2594                 if (arg != -1) {
2595                         output_event = perf_fget_light(arg, &fput_needed);
2596                         if (IS_ERR(output_event))
2597                                 return PTR_ERR(output_event);
2598                 }
2599
2600                 ret = perf_event_set_output(event, output_event);
2601                 if (output_event)
2602                         fput_light(output_event->filp, fput_needed);
2603
2604                 return ret;
2605         }
2606
2607         case PERF_EVENT_IOC_SET_FILTER:
2608                 return perf_event_set_filter(event, (void __user *)arg);
2609
2610         default:
2611                 return -ENOTTY;
2612         }
2613
2614         if (flags & PERF_IOC_FLAG_GROUP)
2615                 perf_event_for_each(event, func);
2616         else
2617                 perf_event_for_each_child(event, func);
2618
2619         return 0;
2620 }
2621
2622 int perf_event_task_enable(void)
2623 {
2624         struct perf_event *event;
2625
2626         mutex_lock(&current->perf_event_mutex);
2627         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2628                 perf_event_for_each_child(event, perf_event_enable);
2629         mutex_unlock(&current->perf_event_mutex);
2630
2631         return 0;
2632 }
2633
2634 int perf_event_task_disable(void)
2635 {
2636         struct perf_event *event;
2637
2638         mutex_lock(&current->perf_event_mutex);
2639         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2640                 perf_event_for_each_child(event, perf_event_disable);
2641         mutex_unlock(&current->perf_event_mutex);
2642
2643         return 0;
2644 }
2645
2646 #ifndef PERF_EVENT_INDEX_OFFSET
2647 # define PERF_EVENT_INDEX_OFFSET 0
2648 #endif
2649
2650 static int perf_event_index(struct perf_event *event)
2651 {
2652         if (event->hw.state & PERF_HES_STOPPED)
2653                 return 0;
2654
2655         if (event->state != PERF_EVENT_STATE_ACTIVE)
2656                 return 0;
2657
2658         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2659 }
2660
2661 /*
2662  * Callers need to ensure there can be no nesting of this function, otherwise
2663  * the seqlock logic goes bad. We can not serialize this because the arch
2664  * code calls this from NMI context.
2665  */
2666 void perf_event_update_userpage(struct perf_event *event)
2667 {
2668         struct perf_event_mmap_page *userpg;
2669         struct perf_buffer *buffer;
2670
2671         rcu_read_lock();
2672         buffer = rcu_dereference(event->buffer);
2673         if (!buffer)
2674                 goto unlock;
2675
2676         userpg = buffer->user_page;
2677
2678         /*
2679          * Disable preemption so as to not let the corresponding user-space
2680          * spin too long if we get preempted.
2681          */
2682         preempt_disable();
2683         ++userpg->lock;
2684         barrier();
2685         userpg->index = perf_event_index(event);
2686         userpg->offset = perf_event_count(event);
2687         if (event->state == PERF_EVENT_STATE_ACTIVE)
2688                 userpg->offset -= local64_read(&event->hw.prev_count);
2689
2690         userpg->time_enabled = event->total_time_enabled +
2691                         atomic64_read(&event->child_total_time_enabled);
2692
2693         userpg->time_running = event->total_time_running +
2694                         atomic64_read(&event->child_total_time_running);
2695
2696         barrier();
2697         ++userpg->lock;
2698         preempt_enable();
2699 unlock:
2700         rcu_read_unlock();
2701 }
2702
2703 static unsigned long perf_data_size(struct perf_buffer *buffer);
2704
2705 static void
2706 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2707 {
2708         long max_size = perf_data_size(buffer);
2709
2710         if (watermark)
2711                 buffer->watermark = min(max_size, watermark);
2712
2713         if (!buffer->watermark)
2714                 buffer->watermark = max_size / 2;
2715
2716         if (flags & PERF_BUFFER_WRITABLE)
2717                 buffer->writable = 1;
2718
2719         atomic_set(&buffer->refcount, 1);
2720 }
2721
2722 #ifndef CONFIG_PERF_USE_VMALLOC
2723
2724 /*
2725  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2726  */
2727
2728 static struct page *
2729 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2730 {
2731         if (pgoff > buffer->nr_pages)
2732                 return NULL;
2733
2734         if (pgoff == 0)
2735                 return virt_to_page(buffer->user_page);
2736
2737         return virt_to_page(buffer->data_pages[pgoff - 1]);
2738 }
2739
2740 static void *perf_mmap_alloc_page(int cpu)
2741 {
2742         struct page *page;
2743         int node;
2744
2745         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2746         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2747         if (!page)
2748                 return NULL;
2749
2750         return page_address(page);
2751 }
2752
2753 static struct perf_buffer *
2754 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2755 {
2756         struct perf_buffer *buffer;
2757         unsigned long size;
2758         int i;
2759
2760         size = sizeof(struct perf_buffer);
2761         size += nr_pages * sizeof(void *);
2762
2763         buffer = kzalloc(size, GFP_KERNEL);
2764         if (!buffer)
2765                 goto fail;
2766
2767         buffer->user_page = perf_mmap_alloc_page(cpu);
2768         if (!buffer->user_page)
2769                 goto fail_user_page;
2770
2771         for (i = 0; i < nr_pages; i++) {
2772                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2773                 if (!buffer->data_pages[i])
2774                         goto fail_data_pages;
2775         }
2776
2777         buffer->nr_pages = nr_pages;
2778
2779         perf_buffer_init(buffer, watermark, flags);
2780
2781         return buffer;
2782
2783 fail_data_pages:
2784         for (i--; i >= 0; i--)
2785                 free_page((unsigned long)buffer->data_pages[i]);
2786
2787         free_page((unsigned long)buffer->user_page);
2788
2789 fail_user_page:
2790         kfree(buffer);
2791
2792 fail:
2793         return NULL;
2794 }
2795
2796 static void perf_mmap_free_page(unsigned long addr)
2797 {
2798         struct page *page = virt_to_page((void *)addr);
2799
2800         page->mapping = NULL;
2801         __free_page(page);
2802 }
2803
2804 static void perf_buffer_free(struct perf_buffer *buffer)
2805 {
2806         int i;
2807
2808         perf_mmap_free_page((unsigned long)buffer->user_page);
2809         for (i = 0; i < buffer->nr_pages; i++)
2810                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2811         kfree(buffer);
2812 }
2813
2814 static inline int page_order(struct perf_buffer *buffer)
2815 {
2816         return 0;
2817 }
2818
2819 #else
2820
2821 /*
2822  * Back perf_mmap() with vmalloc memory.
2823  *
2824  * Required for architectures that have d-cache aliasing issues.
2825  */
2826
2827 static inline int page_order(struct perf_buffer *buffer)
2828 {
2829         return buffer->page_order;
2830 }
2831
2832 static struct page *
2833 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2834 {
2835         if (pgoff > (1UL << page_order(buffer)))
2836                 return NULL;
2837
2838         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2839 }
2840
2841 static void perf_mmap_unmark_page(void *addr)
2842 {
2843         struct page *page = vmalloc_to_page(addr);
2844
2845         page->mapping = NULL;
2846 }
2847
2848 static void perf_buffer_free_work(struct work_struct *work)
2849 {
2850         struct perf_buffer *buffer;
2851         void *base;
2852         int i, nr;
2853
2854         buffer = container_of(work, struct perf_buffer, work);
2855         nr = 1 << page_order(buffer);
2856
2857         base = buffer->user_page;
2858         for (i = 0; i < nr + 1; i++)
2859                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2860
2861         vfree(base);
2862         kfree(buffer);
2863 }
2864
2865 static void perf_buffer_free(struct perf_buffer *buffer)
2866 {
2867         schedule_work(&buffer->work);
2868 }
2869
2870 static struct perf_buffer *
2871 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2872 {
2873         struct perf_buffer *buffer;
2874         unsigned long size;
2875         void *all_buf;
2876
2877         size = sizeof(struct perf_buffer);
2878         size += sizeof(void *);
2879
2880         buffer = kzalloc(size, GFP_KERNEL);
2881         if (!buffer)
2882                 goto fail;
2883
2884         INIT_WORK(&buffer->work, perf_buffer_free_work);
2885
2886         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2887         if (!all_buf)
2888                 goto fail_all_buf;
2889
2890         buffer->user_page = all_buf;
2891         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2892         buffer->page_order = ilog2(nr_pages);
2893         buffer->nr_pages = 1;
2894
2895         perf_buffer_init(buffer, watermark, flags);
2896
2897         return buffer;
2898
2899 fail_all_buf:
2900         kfree(buffer);
2901
2902 fail:
2903         return NULL;
2904 }
2905
2906 #endif
2907
2908 static unsigned long perf_data_size(struct perf_buffer *buffer)
2909 {
2910         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2911 }
2912
2913 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2914 {
2915         struct perf_event *event = vma->vm_file->private_data;
2916         struct perf_buffer *buffer;
2917         int ret = VM_FAULT_SIGBUS;
2918
2919         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2920                 if (vmf->pgoff == 0)
2921                         ret = 0;
2922                 return ret;
2923         }
2924
2925         rcu_read_lock();
2926         buffer = rcu_dereference(event->buffer);
2927         if (!buffer)
2928                 goto unlock;
2929
2930         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2931                 goto unlock;
2932
2933         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2934         if (!vmf->page)
2935                 goto unlock;
2936
2937         get_page(vmf->page);
2938         vmf->page->mapping = vma->vm_file->f_mapping;
2939         vmf->page->index   = vmf->pgoff;
2940
2941         ret = 0;
2942 unlock:
2943         rcu_read_unlock();
2944
2945         return ret;
2946 }
2947
2948 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2949 {
2950         struct perf_buffer *buffer;
2951
2952         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2953         perf_buffer_free(buffer);
2954 }
2955
2956 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2957 {
2958         struct perf_buffer *buffer;
2959
2960         rcu_read_lock();
2961         buffer = rcu_dereference(event->buffer);
2962         if (buffer) {
2963                 if (!atomic_inc_not_zero(&buffer->refcount))
2964                         buffer = NULL;
2965         }
2966         rcu_read_unlock();
2967
2968         return buffer;
2969 }
2970
2971 static void perf_buffer_put(struct perf_buffer *buffer)
2972 {
2973         if (!atomic_dec_and_test(&buffer->refcount))
2974                 return;
2975
2976         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2977 }
2978
2979 static void perf_mmap_open(struct vm_area_struct *vma)
2980 {
2981         struct perf_event *event = vma->vm_file->private_data;
2982
2983         atomic_inc(&event->mmap_count);
2984 }
2985
2986 static void perf_mmap_close(struct vm_area_struct *vma)
2987 {
2988         struct perf_event *event = vma->vm_file->private_data;
2989
2990         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2991                 unsigned long size = perf_data_size(event->buffer);
2992                 struct user_struct *user = event->mmap_user;
2993                 struct perf_buffer *buffer = event->buffer;
2994
2995                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2996                 vma->vm_mm->locked_vm -= event->mmap_locked;
2997                 rcu_assign_pointer(event->buffer, NULL);
2998                 mutex_unlock(&event->mmap_mutex);
2999
3000                 perf_buffer_put(buffer);
3001                 free_uid(user);
3002         }
3003 }
3004
3005 static const struct vm_operations_struct perf_mmap_vmops = {
3006         .open           = perf_mmap_open,
3007         .close          = perf_mmap_close,
3008         .fault          = perf_mmap_fault,
3009         .page_mkwrite   = perf_mmap_fault,
3010 };
3011
3012 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3013 {
3014         struct perf_event *event = file->private_data;
3015         unsigned long user_locked, user_lock_limit;
3016         struct user_struct *user = current_user();
3017         unsigned long locked, lock_limit;
3018         struct perf_buffer *buffer;
3019         unsigned long vma_size;
3020         unsigned long nr_pages;
3021         long user_extra, extra;
3022         int ret = 0, flags = 0;
3023
3024         /*
3025          * Don't allow mmap() of inherited per-task counters. This would
3026          * create a performance issue due to all children writing to the
3027          * same buffer.
3028          */
3029         if (event->cpu == -1 && event->attr.inherit)
3030                 return -EINVAL;
3031
3032         if (!(vma->vm_flags & VM_SHARED))
3033                 return -EINVAL;
3034
3035         vma_size = vma->vm_end - vma->vm_start;
3036         nr_pages = (vma_size / PAGE_SIZE) - 1;
3037
3038         /*
3039          * If we have buffer pages ensure they're a power-of-two number, so we
3040          * can do bitmasks instead of modulo.
3041          */
3042         if (nr_pages != 0 && !is_power_of_2(nr_pages))
3043                 return -EINVAL;
3044
3045         if (vma_size != PAGE_SIZE * (1 + nr_pages))
3046                 return -EINVAL;
3047
3048         if (vma->vm_pgoff != 0)
3049                 return -EINVAL;
3050
3051         WARN_ON_ONCE(event->ctx->parent_ctx);
3052         mutex_lock(&event->mmap_mutex);
3053         if (event->buffer) {
3054                 if (event->buffer->nr_pages == nr_pages)
3055                         atomic_inc(&event->buffer->refcount);
3056                 else
3057                         ret = -EINVAL;
3058                 goto unlock;
3059         }
3060
3061         user_extra = nr_pages + 1;
3062         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3063
3064         /*
3065          * Increase the limit linearly with more CPUs:
3066          */
3067         user_lock_limit *= num_online_cpus();
3068
3069         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3070
3071         extra = 0;
3072         if (user_locked > user_lock_limit)
3073                 extra = user_locked - user_lock_limit;
3074
3075         lock_limit = rlimit(RLIMIT_MEMLOCK);
3076         lock_limit >>= PAGE_SHIFT;
3077         locked = vma->vm_mm->locked_vm + extra;
3078
3079         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3080                 !capable(CAP_IPC_LOCK)) {
3081                 ret = -EPERM;
3082                 goto unlock;
3083         }
3084
3085         WARN_ON(event->buffer);
3086
3087         if (vma->vm_flags & VM_WRITE)
3088                 flags |= PERF_BUFFER_WRITABLE;
3089
3090         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3091                                    event->cpu, flags);
3092         if (!buffer) {
3093                 ret = -ENOMEM;
3094                 goto unlock;
3095         }
3096         rcu_assign_pointer(event->buffer, buffer);
3097
3098         atomic_long_add(user_extra, &user->locked_vm);
3099         event->mmap_locked = extra;
3100         event->mmap_user = get_current_user();
3101         vma->vm_mm->locked_vm += event->mmap_locked;
3102
3103 unlock:
3104         if (!ret)
3105                 atomic_inc(&event->mmap_count);
3106         mutex_unlock(&event->mmap_mutex);
3107
3108         vma->vm_flags |= VM_RESERVED;
3109         vma->vm_ops = &perf_mmap_vmops;
3110
3111         return ret;
3112 }
3113
3114 static int perf_fasync(int fd, struct file *filp, int on)
3115 {
3116         struct inode *inode = filp->f_path.dentry->d_inode;
3117         struct perf_event *event = filp->private_data;
3118         int retval;
3119
3120         mutex_lock(&inode->i_mutex);
3121         retval = fasync_helper(fd, filp, on, &event->fasync);
3122         mutex_unlock(&inode->i_mutex);
3123
3124         if (retval < 0)
3125                 return retval;
3126
3127         return 0;
3128 }
3129
3130 static const struct file_operations perf_fops = {
3131         .llseek                 = no_llseek,
3132         .release                = perf_release,
3133         .read                   = perf_read,
3134         .poll                   = perf_poll,
3135         .unlocked_ioctl         = perf_ioctl,
3136         .compat_ioctl           = perf_ioctl,
3137         .mmap                   = perf_mmap,
3138         .fasync                 = perf_fasync,
3139 };
3140
3141 /*
3142  * Perf event wakeup
3143  *
3144  * If there's data, ensure we set the poll() state and publish everything
3145  * to user-space before waking everybody up.
3146  */
3147
3148 void perf_event_wakeup(struct perf_event *event)
3149 {
3150         wake_up_all(&event->waitq);
3151
3152         if (event->pending_kill) {
3153                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3154                 event->pending_kill = 0;
3155         }
3156 }
3157
3158 static void perf_pending_event(struct irq_work *entry)
3159 {
3160         struct perf_event *event = container_of(entry,
3161                         struct perf_event, pending);
3162
3163         if (event->pending_disable) {
3164                 event->pending_disable = 0;
3165                 __perf_event_disable(event);
3166         }
3167
3168         if (event->pending_wakeup) {
3169                 event->pending_wakeup = 0;
3170                 perf_event_wakeup(event);
3171         }
3172 }
3173
3174 /*
3175  * We assume there is only KVM supporting the callbacks.
3176  * Later on, we might change it to a list if there is
3177  * another virtualization implementation supporting the callbacks.
3178  */
3179 struct perf_guest_info_callbacks *perf_guest_cbs;
3180
3181 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3182 {
3183         perf_guest_cbs = cbs;
3184         return 0;
3185 }
3186 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3187
3188 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3189 {
3190         perf_guest_cbs = NULL;
3191         return 0;
3192 }
3193 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3194
3195 /*
3196  * Output
3197  */
3198 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3199                               unsigned long offset, unsigned long head)
3200 {
3201         unsigned long mask;
3202
3203         if (!buffer->writable)
3204                 return true;
3205
3206         mask = perf_data_size(buffer) - 1;
3207
3208         offset = (offset - tail) & mask;
3209         head   = (head   - tail) & mask;
3210
3211         if ((int)(head - offset) < 0)
3212                 return false;
3213
3214         return true;
3215 }
3216
3217 static void perf_output_wakeup(struct perf_output_handle *handle)
3218 {
3219         atomic_set(&handle->buffer->poll, POLL_IN);
3220
3221         if (handle->nmi) {
3222                 handle->event->pending_wakeup = 1;
3223                 irq_work_queue(&handle->event->pending);
3224         } else
3225                 perf_event_wakeup(handle->event);
3226 }
3227
3228 /*
3229  * We need to ensure a later event_id doesn't publish a head when a former
3230  * event isn't done writing. However since we need to deal with NMIs we
3231  * cannot fully serialize things.
3232  *
3233  * We only publish the head (and generate a wakeup) when the outer-most
3234  * event completes.
3235  */
3236 static void perf_output_get_handle(struct perf_output_handle *handle)
3237 {
3238         struct perf_buffer *buffer = handle->buffer;
3239
3240         preempt_disable();
3241         local_inc(&buffer->nest);
3242         handle->wakeup = local_read(&buffer->wakeup);
3243 }
3244
3245 static void perf_output_put_handle(struct perf_output_handle *handle)
3246 {
3247         struct perf_buffer *buffer = handle->buffer;
3248         unsigned long head;
3249
3250 again:
3251         head = local_read(&buffer->head);
3252
3253         /*
3254          * IRQ/NMI can happen here, which means we can miss a head update.
3255          */
3256
3257         if (!local_dec_and_test(&buffer->nest))
3258                 goto out;
3259
3260         /*
3261          * Publish the known good head. Rely on the full barrier implied
3262          * by atomic_dec_and_test() order the buffer->head read and this
3263          * write.
3264          */
3265         buffer->user_page->data_head = head;
3266
3267         /*
3268          * Now check if we missed an update, rely on the (compiler)
3269          * barrier in atomic_dec_and_test() to re-read buffer->head.
3270          */
3271         if (unlikely(head != local_read(&buffer->head))) {
3272                 local_inc(&buffer->nest);
3273                 goto again;
3274         }
3275
3276         if (handle->wakeup != local_read(&buffer->wakeup))
3277                 perf_output_wakeup(handle);
3278
3279 out:
3280         preempt_enable();
3281 }
3282
3283 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3284                       const void *buf, unsigned int len)
3285 {
3286         do {
3287                 unsigned long size = min_t(unsigned long, handle->size, len);
3288
3289                 memcpy(handle->addr, buf, size);
3290
3291                 len -= size;
3292                 handle->addr += size;
3293                 buf += size;
3294                 handle->size -= size;
3295                 if (!handle->size) {
3296                         struct perf_buffer *buffer = handle->buffer;
3297
3298                         handle->page++;
3299                         handle->page &= buffer->nr_pages - 1;
3300                         handle->addr = buffer->data_pages[handle->page];
3301                         handle->size = PAGE_SIZE << page_order(buffer);
3302                 }
3303         } while (len);
3304 }
3305
3306 int perf_output_begin(struct perf_output_handle *handle,
3307                       struct perf_event *event, unsigned int size,
3308                       int nmi, int sample)
3309 {
3310         struct perf_buffer *buffer;
3311         unsigned long tail, offset, head;
3312         int have_lost;
3313         struct {
3314                 struct perf_event_header header;
3315                 u64                      id;
3316                 u64                      lost;
3317         } lost_event;
3318
3319         rcu_read_lock();
3320         /*
3321          * For inherited events we send all the output towards the parent.
3322          */
3323         if (event->parent)
3324                 event = event->parent;
3325
3326         buffer = rcu_dereference(event->buffer);
3327         if (!buffer)
3328                 goto out;
3329
3330         handle->buffer  = buffer;
3331         handle->event   = event;
3332         handle->nmi     = nmi;
3333         handle->sample  = sample;
3334
3335         if (!buffer->nr_pages)
3336                 goto out;
3337
3338         have_lost = local_read(&buffer->lost);
3339         if (have_lost)
3340                 size += sizeof(lost_event);
3341
3342         perf_output_get_handle(handle);
3343
3344         do {
3345                 /*
3346                  * Userspace could choose to issue a mb() before updating the
3347                  * tail pointer. So that all reads will be completed before the
3348                  * write is issued.
3349                  */
3350                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3351                 smp_rmb();
3352                 offset = head = local_read(&buffer->head);
3353                 head += size;
3354                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3355                         goto fail;
3356         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3357
3358         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3359                 local_add(buffer->watermark, &buffer->wakeup);
3360
3361         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3362         handle->page &= buffer->nr_pages - 1;
3363         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3364         handle->addr = buffer->data_pages[handle->page];
3365         handle->addr += handle->size;
3366         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3367
3368         if (have_lost) {
3369                 lost_event.header.type = PERF_RECORD_LOST;
3370                 lost_event.header.misc = 0;
3371                 lost_event.header.size = sizeof(lost_event);
3372                 lost_event.id          = event->id;
3373                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3374
3375                 perf_output_put(handle, lost_event);
3376         }
3377
3378         return 0;
3379
3380 fail:
3381         local_inc(&buffer->lost);
3382         perf_output_put_handle(handle);
3383 out:
3384         rcu_read_unlock();
3385
3386         return -ENOSPC;
3387 }
3388
3389 void perf_output_end(struct perf_output_handle *handle)
3390 {
3391         struct perf_event *event = handle->event;
3392         struct perf_buffer *buffer = handle->buffer;
3393
3394         int wakeup_events = event->attr.wakeup_events;
3395
3396         if (handle->sample && wakeup_events) {
3397                 int events = local_inc_return(&buffer->events);
3398                 if (events >= wakeup_events) {
3399                         local_sub(wakeup_events, &buffer->events);
3400                         local_inc(&buffer->wakeup);
3401                 }
3402         }
3403
3404         perf_output_put_handle(handle);
3405         rcu_read_unlock();
3406 }
3407
3408 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3409 {
3410         /*
3411          * only top level events have the pid namespace they were created in
3412          */
3413         if (event->parent)
3414                 event = event->parent;
3415
3416         return task_tgid_nr_ns(p, event->ns);
3417 }
3418
3419 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3420 {
3421         /*
3422          * only top level events have the pid namespace they were created in
3423          */
3424         if (event->parent)
3425                 event = event->parent;
3426
3427         return task_pid_nr_ns(p, event->ns);
3428 }
3429
3430 static void perf_output_read_one(struct perf_output_handle *handle,
3431                                  struct perf_event *event,
3432                                  u64 enabled, u64 running)
3433 {
3434         u64 read_format = event->attr.read_format;
3435         u64 values[4];
3436         int n = 0;
3437
3438         values[n++] = perf_event_count(event);
3439         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3440                 values[n++] = enabled +
3441                         atomic64_read(&event->child_total_time_enabled);
3442         }
3443         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3444                 values[n++] = running +
3445                         atomic64_read(&event->child_total_time_running);
3446         }
3447         if (read_format & PERF_FORMAT_ID)
3448                 values[n++] = primary_event_id(event);
3449
3450         perf_output_copy(handle, values, n * sizeof(u64));
3451 }
3452
3453 /*
3454  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3455  */
3456 static void perf_output_read_group(struct perf_output_handle *handle,
3457                             struct perf_event *event,
3458                             u64 enabled, u64 running)
3459 {
3460         struct perf_event *leader = event->group_leader, *sub;
3461         u64 read_format = event->attr.read_format;
3462         u64 values[5];
3463         int n = 0;
3464
3465         values[n++] = 1 + leader->nr_siblings;
3466
3467         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3468                 values[n++] = enabled;
3469
3470         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3471                 values[n++] = running;
3472
3473         if (leader != event)
3474                 leader->pmu->read(leader);
3475
3476         values[n++] = perf_event_count(leader);
3477         if (read_format & PERF_FORMAT_ID)
3478                 values[n++] = primary_event_id(leader);
3479
3480         perf_output_copy(handle, values, n * sizeof(u64));
3481
3482         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3483                 n = 0;
3484
3485                 if (sub != event)
3486                         sub->pmu->read(sub);
3487
3488                 values[n++] = perf_event_count(sub);
3489                 if (read_format & PERF_FORMAT_ID)
3490                         values[n++] = primary_event_id(sub);
3491
3492                 perf_output_copy(handle, values, n * sizeof(u64));
3493         }
3494 }
3495
3496 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3497                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
3498
3499 static void perf_output_read(struct perf_output_handle *handle,
3500                              struct perf_event *event)
3501 {
3502         u64 enabled = 0, running = 0, now, ctx_time;
3503         u64 read_format = event->attr.read_format;
3504
3505         /*
3506          * compute total_time_enabled, total_time_running
3507          * based on snapshot values taken when the event
3508          * was last scheduled in.
3509          *
3510          * we cannot simply called update_context_time()
3511          * because of locking issue as we are called in
3512          * NMI context
3513          */
3514         if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3515                 now = perf_clock();
3516                 ctx_time = event->shadow_ctx_time + now;
3517                 enabled = ctx_time - event->tstamp_enabled;
3518                 running = ctx_time - event->tstamp_running;
3519         }
3520
3521         if (event->attr.read_format & PERF_FORMAT_GROUP)
3522                 perf_output_read_group(handle, event, enabled, running);
3523         else
3524                 perf_output_read_one(handle, event, enabled, running);
3525 }
3526
3527 void perf_output_sample(struct perf_output_handle *handle,
3528                         struct perf_event_header *header,
3529                         struct perf_sample_data *data,
3530                         struct perf_event *event)
3531 {
3532         u64 sample_type = data->type;
3533
3534         perf_output_put(handle, *header);
3535
3536         if (sample_type & PERF_SAMPLE_IP)
3537                 perf_output_put(handle, data->ip);
3538
3539         if (sample_type & PERF_SAMPLE_TID)
3540                 perf_output_put(handle, data->tid_entry);
3541
3542         if (sample_type & PERF_SAMPLE_TIME)
3543                 perf_output_put(handle, data->time);
3544
3545         if (sample_type & PERF_SAMPLE_ADDR)
3546                 perf_output_put(handle, data->addr);
3547
3548         if (sample_type & PERF_SAMPLE_ID)
3549                 perf_output_put(handle, data->id);
3550
3551         if (sample_type & PERF_SAMPLE_STREAM_ID)
3552                 perf_output_put(handle, data->stream_id);
3553
3554         if (sample_type & PERF_SAMPLE_CPU)
3555                 perf_output_put(handle, data->cpu_entry);
3556
3557         if (sample_type & PERF_SAMPLE_PERIOD)
3558                 perf_output_put(handle, data->period);
3559
3560         if (sample_type & PERF_SAMPLE_READ)
3561                 perf_output_read(handle, event);
3562
3563         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3564                 if (data->callchain) {
3565                         int size = 1;
3566
3567                         if (data->callchain)
3568                                 size += data->callchain->nr;
3569
3570                         size *= sizeof(u64);
3571
3572                         perf_output_copy(handle, data->callchain, size);
3573                 } else {
3574                         u64 nr = 0;
3575                         perf_output_put(handle, nr);
3576                 }
3577         }
3578
3579         if (sample_type & PERF_SAMPLE_RAW) {
3580                 if (data->raw) {
3581                         perf_output_put(handle, data->raw->size);
3582                         perf_output_copy(handle, data->raw->data,
3583                                          data->raw->size);
3584                 } else {
3585                         struct {
3586                                 u32     size;
3587                                 u32     data;
3588                         } raw = {
3589                                 .size = sizeof(u32),
3590                                 .data = 0,
3591                         };
3592                         perf_output_put(handle, raw);
3593                 }
3594         }
3595 }
3596
3597 void perf_prepare_sample(struct perf_event_header *header,
3598                          struct perf_sample_data *data,
3599                          struct perf_event *event,
3600                          struct pt_regs *regs)
3601 {
3602         u64 sample_type = event->attr.sample_type;
3603
3604         data->type = sample_type;
3605
3606         header->type = PERF_RECORD_SAMPLE;
3607         header->size = sizeof(*header);
3608
3609         header->misc = 0;
3610         header->misc |= perf_misc_flags(regs);
3611
3612         if (sample_type & PERF_SAMPLE_IP) {
3613                 data->ip = perf_instruction_pointer(regs);
3614
3615                 header->size += sizeof(data->ip);
3616         }
3617
3618         if (sample_type & PERF_SAMPLE_TID) {
3619                 /* namespace issues */
3620                 data->tid_entry.pid = perf_event_pid(event, current);
3621                 data->tid_entry.tid = perf_event_tid(event, current);
3622
3623                 header->size += sizeof(data->tid_entry);
3624         }
3625
3626         if (sample_type & PERF_SAMPLE_TIME) {
3627                 data->time = perf_clock();
3628
3629                 header->size += sizeof(data->time);
3630         }
3631
3632         if (sample_type & PERF_SAMPLE_ADDR)
3633                 header->size += sizeof(data->addr);
3634
3635         if (sample_type & PERF_SAMPLE_ID) {
3636                 data->id = primary_event_id(event);
3637
3638                 header->size += sizeof(data->id);
3639         }
3640
3641         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3642                 data->stream_id = event->id;
3643
3644                 header->size += sizeof(data->stream_id);
3645         }
3646
3647         if (sample_type & PERF_SAMPLE_CPU) {
3648                 data->cpu_entry.cpu             = raw_smp_processor_id();
3649                 data->cpu_entry.reserved        = 0;
3650
3651                 header->size += sizeof(data->cpu_entry);
3652         }
3653
3654         if (sample_type & PERF_SAMPLE_PERIOD)
3655                 header->size += sizeof(data->period);
3656
3657         if (sample_type & PERF_SAMPLE_READ)
3658                 header->size += perf_event_read_size(event);
3659
3660         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3661                 int size = 1;
3662
3663                 data->callchain = perf_callchain(regs);
3664
3665                 if (data->callchain)
3666                         size += data->callchain->nr;
3667
3668                 header->size += size * sizeof(u64);
3669         }
3670
3671         if (sample_type & PERF_SAMPLE_RAW) {
3672                 int size = sizeof(u32);
3673
3674                 if (data->raw)
3675                         size += data->raw->size;
3676                 else
3677                         size += sizeof(u32);
3678
3679                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3680                 header->size += size;
3681         }
3682 }
3683
3684 static void perf_event_output(struct perf_event *event, int nmi,
3685                                 struct perf_sample_data *data,
3686                                 struct pt_regs *regs)
3687 {
3688         struct perf_output_handle handle;
3689         struct perf_event_header header;
3690
3691         /* protect the callchain buffers */
3692         rcu_read_lock();
3693
3694         perf_prepare_sample(&header, data, event, regs);
3695
3696         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3697                 goto exit;
3698
3699         perf_output_sample(&handle, &header, data, event);
3700
3701         perf_output_end(&handle);
3702
3703 exit:
3704         rcu_read_unlock();
3705 }
3706
3707 /*
3708  * read event_id
3709  */
3710
3711 struct perf_read_event {
3712         struct perf_event_header        header;
3713
3714         u32                             pid;
3715         u32                             tid;
3716 };
3717
3718 static void
3719 perf_event_read_event(struct perf_event *event,
3720                         struct task_struct *task)
3721 {
3722         struct perf_output_handle handle;
3723         struct perf_read_event read_event = {
3724                 .header = {
3725                         .type = PERF_RECORD_READ,
3726                         .misc = 0,
3727                         .size = sizeof(read_event) + perf_event_read_size(event),
3728                 },
3729                 .pid = perf_event_pid(event, task),
3730                 .tid = perf_event_tid(event, task),
3731         };
3732         int ret;
3733
3734         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3735         if (ret)
3736                 return;
3737
3738         perf_output_put(&handle, read_event);
3739         perf_output_read(&handle, event);
3740
3741         perf_output_end(&handle);
3742 }
3743
3744 /*
3745  * task tracking -- fork/exit
3746  *
3747  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3748  */
3749
3750 struct perf_task_event {
3751         struct task_struct              *task;
3752         struct perf_event_context       *task_ctx;
3753
3754         struct {
3755                 struct perf_event_header        header;
3756
3757                 u32                             pid;
3758                 u32                             ppid;
3759                 u32                             tid;
3760                 u32                             ptid;
3761                 u64                             time;
3762         } event_id;
3763 };
3764
3765 static void perf_event_task_output(struct perf_event *event,
3766                                      struct perf_task_event *task_event)
3767 {
3768         struct perf_output_handle handle;
3769         struct task_struct *task = task_event->task;
3770         int size, ret;
3771
3772         size  = task_event->event_id.header.size;
3773         ret = perf_output_begin(&handle, event, size, 0, 0);
3774
3775         if (ret)
3776                 return;
3777
3778         task_event->event_id.pid = perf_event_pid(event, task);
3779         task_event->event_id.ppid = perf_event_pid(event, current);
3780
3781         task_event->event_id.tid = perf_event_tid(event, task);
3782         task_event->event_id.ptid = perf_event_tid(event, current);
3783
3784         perf_output_put(&handle, task_event->event_id);
3785
3786         perf_output_end(&handle);
3787 }
3788
3789 static int perf_event_task_match(struct perf_event *event)
3790 {
3791         if (event->state < PERF_EVENT_STATE_INACTIVE)
3792                 return 0;
3793
3794         if (event->cpu != -1 && event->cpu != smp_processor_id())
3795                 return 0;
3796
3797         if (event->attr.comm || event->attr.mmap ||
3798             event->attr.mmap_data || event->attr.task)
3799                 return 1;
3800
3801         return 0;
3802 }
3803
3804 static void perf_event_task_ctx(struct perf_event_context *ctx,
3805                                   struct perf_task_event *task_event)
3806 {
3807         struct perf_event *event;
3808
3809         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3810                 if (perf_event_task_match(event))
3811                         perf_event_task_output(event, task_event);
3812         }
3813 }
3814
3815 static void perf_event_task_event(struct perf_task_event *task_event)
3816 {
3817         struct perf_cpu_context *cpuctx;
3818         struct perf_event_context *ctx;
3819         struct pmu *pmu;
3820         int ctxn;
3821
3822         rcu_read_lock();
3823         list_for_each_entry_rcu(pmu, &pmus, entry) {
3824                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3825                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3826
3827                 ctx = task_event->task_ctx;
3828                 if (!ctx) {
3829                         ctxn = pmu->task_ctx_nr;
3830                         if (ctxn < 0)
3831                                 goto next;
3832                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3833                 }
3834                 if (ctx)
3835                         perf_event_task_ctx(ctx, task_event);
3836 next:
3837                 put_cpu_ptr(pmu->pmu_cpu_context);
3838         }
3839         rcu_read_unlock();
3840 }
3841
3842 static void perf_event_task(struct task_struct *task,
3843                               struct perf_event_context *task_ctx,
3844                               int new)
3845 {
3846         struct perf_task_event task_event;
3847
3848         if (!atomic_read(&nr_comm_events) &&
3849             !atomic_read(&nr_mmap_events) &&
3850             !atomic_read(&nr_task_events))
3851                 return;
3852
3853         task_event = (struct perf_task_event){
3854                 .task     = task,
3855                 .task_ctx = task_ctx,
3856                 .event_id    = {
3857                         .header = {
3858                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3859                                 .misc = 0,
3860                                 .size = sizeof(task_event.event_id),
3861                         },
3862                         /* .pid  */
3863                         /* .ppid */
3864                         /* .tid  */
3865                         /* .ptid */
3866                         .time = perf_clock(),
3867                 },
3868         };
3869
3870         perf_event_task_event(&task_event);
3871 }
3872
3873 void perf_event_fork(struct task_struct *task)
3874 {
3875         perf_event_task(task, NULL, 1);
3876 }
3877
3878 /*
3879  * comm tracking
3880  */
3881
3882 struct perf_comm_event {
3883         struct task_struct      *task;
3884         char                    *comm;
3885         int                     comm_size;
3886
3887         struct {
3888                 struct perf_event_header        header;
3889
3890                 u32                             pid;
3891                 u32                             tid;
3892         } event_id;
3893 };
3894
3895 static void perf_event_comm_output(struct perf_event *event,
3896                                      struct perf_comm_event *comm_event)
3897 {
3898         struct perf_output_handle handle;
3899         int size = comm_event->event_id.header.size;
3900         int ret = perf_output_begin(&handle, event, size, 0, 0);
3901
3902         if (ret)
3903                 return;
3904
3905         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3906         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3907
3908         perf_output_put(&handle, comm_event->event_id);
3909         perf_output_copy(&handle, comm_event->comm,
3910                                    comm_event->comm_size);
3911         perf_output_end(&handle);
3912 }
3913
3914 static int perf_event_comm_match(struct perf_event *event)
3915 {
3916         if (event->state < PERF_EVENT_STATE_INACTIVE)
3917                 return 0;
3918
3919         if (event->cpu != -1 && event->cpu != smp_processor_id())
3920                 return 0;
3921
3922         if (event->attr.comm)
3923                 return 1;
3924
3925         return 0;
3926 }
3927
3928 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3929                                   struct perf_comm_event *comm_event)
3930 {
3931         struct perf_event *event;
3932
3933         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3934                 if (perf_event_comm_match(event))
3935                         perf_event_comm_output(event, comm_event);
3936         }
3937 }
3938
3939 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3940 {
3941         struct perf_cpu_context *cpuctx;
3942         struct perf_event_context *ctx;
3943         char comm[TASK_COMM_LEN];
3944         unsigned int size;
3945         struct pmu *pmu;
3946         int ctxn;
3947
3948         memset(comm, 0, sizeof(comm));
3949         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3950         size = ALIGN(strlen(comm)+1, sizeof(u64));
3951
3952         comm_event->comm = comm;
3953         comm_event->comm_size = size;
3954
3955         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3956
3957         rcu_read_lock();
3958         list_for_each_entry_rcu(pmu, &pmus, entry) {
3959                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3960                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3961
3962                 ctxn = pmu->task_ctx_nr;
3963                 if (ctxn < 0)
3964                         goto next;
3965
3966                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3967                 if (ctx)
3968                         perf_event_comm_ctx(ctx, comm_event);
3969 next:
3970                 put_cpu_ptr(pmu->pmu_cpu_context);
3971         }
3972         rcu_read_unlock();
3973 }
3974
3975 void perf_event_comm(struct task_struct *task)
3976 {
3977         struct perf_comm_event comm_event;
3978         struct perf_event_context *ctx;
3979         int ctxn;
3980
3981         for_each_task_context_nr(ctxn) {
3982                 ctx = task->perf_event_ctxp[ctxn];
3983                 if (!ctx)
3984                         continue;
3985
3986                 perf_event_enable_on_exec(ctx);
3987         }
3988
3989         if (!atomic_read(&nr_comm_events))
3990                 return;
3991
3992         comm_event = (struct perf_comm_event){
3993                 .task   = task,
3994                 /* .comm      */
3995                 /* .comm_size */
3996                 .event_id  = {
3997                         .header = {
3998                                 .type = PERF_RECORD_COMM,
3999                                 .misc = 0,
4000                                 /* .size */
4001                         },
4002                         /* .pid */
4003                         /* .tid */
4004                 },
4005         };
4006
4007         perf_event_comm_event(&comm_event);
4008 }
4009
4010 /*
4011  * mmap tracking
4012  */
4013
4014 struct perf_mmap_event {
4015         struct vm_area_struct   *vma;
4016
4017         const char              *file_name;
4018         int                     file_size;
4019
4020         struct {
4021                 struct perf_event_header        header;
4022
4023                 u32                             pid;
4024                 u32                             tid;
4025                 u64                             start;
4026                 u64                             len;
4027                 u64                             pgoff;
4028         } event_id;
4029 };
4030
4031 static void perf_event_mmap_output(struct perf_event *event,
4032                                      struct perf_mmap_event *mmap_event)
4033 {
4034         struct perf_output_handle handle;
4035         int size = mmap_event->event_id.header.size;
4036         int ret = perf_output_begin(&handle, event, size, 0, 0);
4037
4038         if (ret)
4039                 return;
4040
4041         mmap_event->event_id.pid = perf_event_pid(event, current);
4042         mmap_event->event_id.tid = perf_event_tid(event, current);
4043
4044         perf_output_put(&handle, mmap_event->event_id);
4045         perf_output_copy(&handle, mmap_event->file_name,
4046                                    mmap_event->file_size);
4047         perf_output_end(&handle);
4048 }
4049
4050 static int perf_event_mmap_match(struct perf_event *event,
4051                                    struct perf_mmap_event *mmap_event,
4052                                    int executable)
4053 {
4054         if (event->state < PERF_EVENT_STATE_INACTIVE)
4055                 return 0;
4056
4057         if (event->cpu != -1 && event->cpu != smp_processor_id())
4058                 return 0;
4059
4060         if ((!executable && event->attr.mmap_data) ||
4061             (executable && event->attr.mmap))
4062                 return 1;
4063
4064         return 0;
4065 }
4066
4067 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4068                                   struct perf_mmap_event *mmap_event,
4069                                   int executable)
4070 {
4071         struct perf_event *event;
4072
4073         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4074                 if (perf_event_mmap_match(event, mmap_event, executable))
4075                         perf_event_mmap_output(event, mmap_event);
4076         }
4077 }
4078
4079 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4080 {
4081         struct perf_cpu_context *cpuctx;
4082         struct perf_event_context *ctx;
4083         struct vm_area_struct *vma = mmap_event->vma;
4084         struct file *file = vma->vm_file;
4085         unsigned int size;
4086         char tmp[16];
4087         char *buf = NULL;
4088         const char *name;
4089         struct pmu *pmu;
4090         int ctxn;
4091
4092         memset(tmp, 0, sizeof(tmp));
4093
4094         if (file) {
4095                 /*
4096                  * d_path works from the end of the buffer backwards, so we
4097                  * need to add enough zero bytes after the string to handle
4098                  * the 64bit alignment we do later.
4099                  */
4100                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4101                 if (!buf) {
4102                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4103                         goto got_name;
4104                 }
4105                 name = d_path(&file->f_path, buf, PATH_MAX);
4106                 if (IS_ERR(name)) {
4107                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4108                         goto got_name;
4109                 }
4110         } else {
4111                 if (arch_vma_name(mmap_event->vma)) {
4112                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4113                                        sizeof(tmp));
4114                         goto got_name;
4115                 }
4116
4117                 if (!vma->vm_mm) {
4118                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4119                         goto got_name;
4120                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4121                                 vma->vm_end >= vma->vm_mm->brk) {
4122                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4123                         goto got_name;
4124                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4125                                 vma->vm_end >= vma->vm_mm->start_stack) {
4126                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4127                         goto got_name;
4128                 }
4129
4130                 name = strncpy(tmp, "//anon", sizeof(tmp));
4131                 goto got_name;
4132         }
4133
4134 got_name:
4135         size = ALIGN(strlen(name)+1, sizeof(u64));
4136
4137         mmap_event->file_name = name;
4138         mmap_event->file_size = size;
4139
4140         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4141
4142         rcu_read_lock();
4143         list_for_each_entry_rcu(pmu, &pmus, entry) {
4144                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4145                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4146                                         vma->vm_flags & VM_EXEC);
4147
4148                 ctxn = pmu->task_ctx_nr;
4149                 if (ctxn < 0)
4150                         goto next;
4151
4152                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4153                 if (ctx) {
4154                         perf_event_mmap_ctx(ctx, mmap_event,
4155                                         vma->vm_flags & VM_EXEC);
4156                 }
4157 next:
4158                 put_cpu_ptr(pmu->pmu_cpu_context);
4159         }
4160         rcu_read_unlock();
4161
4162         kfree(buf);
4163 }
4164
4165 void perf_event_mmap(struct vm_area_struct *vma)
4166 {
4167         struct perf_mmap_event mmap_event;
4168
4169         if (!atomic_read(&nr_mmap_events))
4170                 return;
4171
4172         mmap_event = (struct perf_mmap_event){
4173                 .vma    = vma,
4174                 /* .file_name */
4175                 /* .file_size */
4176                 .event_id  = {
4177                         .header = {
4178                                 .type = PERF_RECORD_MMAP,
4179                                 .misc = PERF_RECORD_MISC_USER,
4180                                 /* .size */
4181                         },
4182                         /* .pid */
4183                         /* .tid */
4184                         .start  = vma->vm_start,
4185                         .len    = vma->vm_end - vma->vm_start,
4186                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4187                 },
4188         };
4189
4190         perf_event_mmap_event(&mmap_event);
4191 }
4192
4193 /*
4194  * IRQ throttle logging
4195  */
4196
4197 static void perf_log_throttle(struct perf_event *event, int enable)
4198 {
4199         struct perf_output_handle handle;
4200         int ret;
4201
4202         struct {
4203                 struct perf_event_header        header;
4204                 u64                             time;
4205                 u64                             id;
4206                 u64                             stream_id;
4207         } throttle_event = {
4208                 .header = {
4209                         .type = PERF_RECORD_THROTTLE,
4210                         .misc = 0,
4211                         .size = sizeof(throttle_event),
4212                 },
4213                 .time           = perf_clock(),
4214                 .id             = primary_event_id(event),
4215                 .stream_id      = event->id,
4216         };
4217
4218         if (enable)
4219                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4220
4221         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4222         if (ret)
4223                 return;
4224
4225         perf_output_put(&handle, throttle_event);
4226         perf_output_end(&handle);
4227 }
4228
4229 /*
4230  * Generic event overflow handling, sampling.
4231  */
4232
4233 static int __perf_event_overflow(struct perf_event *event, int nmi,
4234                                    int throttle, struct perf_sample_data *data,
4235                                    struct pt_regs *regs)
4236 {
4237         int events = atomic_read(&event->event_limit);
4238         struct hw_perf_event *hwc = &event->hw;
4239         int ret = 0;
4240
4241         if (!throttle) {
4242                 hwc->interrupts++;
4243         } else {
4244                 if (hwc->interrupts != MAX_INTERRUPTS) {
4245                         hwc->interrupts++;
4246                         if (HZ * hwc->interrupts >
4247                                         (u64)sysctl_perf_event_sample_rate) {
4248                                 hwc->interrupts = MAX_INTERRUPTS;
4249                                 perf_log_throttle(event, 0);
4250                                 ret = 1;
4251                         }
4252                 } else {
4253                         /*
4254                          * Keep re-disabling events even though on the previous
4255                          * pass we disabled it - just in case we raced with a
4256                          * sched-in and the event got enabled again:
4257                          */
4258                         ret = 1;
4259                 }
4260         }
4261
4262         if (event->attr.freq) {
4263                 u64 now = perf_clock();
4264                 s64 delta = now - hwc->freq_time_stamp;
4265
4266                 hwc->freq_time_stamp = now;
4267
4268                 if (delta > 0 && delta < 2*TICK_NSEC)
4269                         perf_adjust_period(event, delta, hwc->last_period);
4270         }
4271
4272         /*
4273          * XXX event_limit might not quite work as expected on inherited
4274          * events
4275          */
4276
4277         event->pending_kill = POLL_IN;
4278         if (events && atomic_dec_and_test(&event->event_limit)) {
4279                 ret = 1;
4280                 event->pending_kill = POLL_HUP;
4281                 if (nmi) {
4282                         event->pending_disable = 1;
4283                         irq_work_queue(&event->pending);
4284                 } else
4285                         perf_event_disable(event);
4286         }
4287
4288         if (event->overflow_handler)
4289                 event->overflow_handler(event, nmi, data, regs);
4290         else
4291                 perf_event_output(event, nmi, data, regs);
4292
4293         return ret;
4294 }
4295
4296 int perf_event_overflow(struct perf_event *event, int nmi,
4297                           struct perf_sample_data *data,
4298                           struct pt_regs *regs)
4299 {
4300         return __perf_event_overflow(event, nmi, 1, data, regs);
4301 }
4302
4303 /*
4304  * Generic software event infrastructure
4305  */
4306
4307 struct swevent_htable {
4308         struct swevent_hlist            *swevent_hlist;
4309         struct mutex                    hlist_mutex;
4310         int                             hlist_refcount;
4311
4312         /* Recursion avoidance in each contexts */
4313         int                             recursion[PERF_NR_CONTEXTS];
4314 };
4315
4316 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4317
4318 /*
4319  * We directly increment event->count and keep a second value in
4320  * event->hw.period_left to count intervals. This period event
4321  * is kept in the range [-sample_period, 0] so that we can use the
4322  * sign as trigger.
4323  */
4324
4325 static u64 perf_swevent_set_period(struct perf_event *event)
4326 {
4327         struct hw_perf_event *hwc = &event->hw;
4328         u64 period = hwc->last_period;
4329         u64 nr, offset;
4330         s64 old, val;
4331
4332         hwc->last_period = hwc->sample_period;
4333
4334 again:
4335         old = val = local64_read(&hwc->period_left);
4336         if (val < 0)
4337                 return 0;
4338
4339         nr = div64_u64(period + val, period);
4340         offset = nr * period;
4341         val -= offset;
4342         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4343                 goto again;
4344
4345         return nr;
4346 }
4347
4348 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4349                                     int nmi, struct perf_sample_data *data,
4350                                     struct pt_regs *regs)
4351 {
4352         struct hw_perf_event *hwc = &event->hw;
4353         int throttle = 0;
4354
4355         data->period = event->hw.last_period;
4356         if (!overflow)
4357                 overflow = perf_swevent_set_period(event);
4358
4359         if (hwc->interrupts == MAX_INTERRUPTS)
4360                 return;
4361
4362         for (; overflow; overflow--) {
4363                 if (__perf_event_overflow(event, nmi, throttle,
4364                                             data, regs)) {
4365                         /*
4366                          * We inhibit the overflow from happening when
4367                          * hwc->interrupts == MAX_INTERRUPTS.
4368                          */
4369                         break;
4370                 }
4371                 throttle = 1;
4372         }
4373 }
4374
4375 static void perf_swevent_event(struct perf_event *event, u64 nr,
4376                                int nmi, struct perf_sample_data *data,
4377                                struct pt_regs *regs)
4378 {
4379         struct hw_perf_event *hwc = &event->hw;
4380
4381         local64_add(nr, &event->count);
4382
4383         if (!regs)
4384                 return;
4385
4386         if (!hwc->sample_period)
4387                 return;
4388
4389         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4390                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4391
4392         if (local64_add_negative(nr, &hwc->period_left))
4393                 return;
4394
4395         perf_swevent_overflow(event, 0, nmi, data, regs);
4396 }
4397
4398 static int perf_exclude_event(struct perf_event *event,
4399                               struct pt_regs *regs)
4400 {
4401         if (event->hw.state & PERF_HES_STOPPED)
4402                 return 0;
4403
4404         if (regs) {
4405                 if (event->attr.exclude_user && user_mode(regs))
4406                         return 1;
4407
4408                 if (event->attr.exclude_kernel && !user_mode(regs))
4409                         return 1;
4410         }
4411
4412         return 0;
4413 }
4414
4415 static int perf_swevent_match(struct perf_event *event,
4416                                 enum perf_type_id type,
4417                                 u32 event_id,
4418                                 struct perf_sample_data *data,
4419                                 struct pt_regs *regs)
4420 {
4421         if (event->attr.type != type)
4422                 return 0;
4423
4424         if (event->attr.config != event_id)
4425                 return 0;
4426
4427         if (perf_exclude_event(event, regs))
4428                 return 0;
4429
4430         return 1;
4431 }
4432
4433 static inline u64 swevent_hash(u64 type, u32 event_id)
4434 {
4435         u64 val = event_id | (type << 32);
4436
4437         return hash_64(val, SWEVENT_HLIST_BITS);
4438 }
4439
4440 static inline struct hlist_head *
4441 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4442 {
4443         u64 hash = swevent_hash(type, event_id);
4444
4445         return &hlist->heads[hash];
4446 }
4447
4448 /* For the read side: events when they trigger */
4449 static inline struct hlist_head *
4450 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4451 {
4452         struct swevent_hlist *hlist;
4453
4454         hlist = rcu_dereference(swhash->swevent_hlist);
4455         if (!hlist)
4456                 return NULL;
4457
4458         return __find_swevent_head(hlist, type, event_id);
4459 }
4460
4461 /* For the event head insertion and removal in the hlist */
4462 static inline struct hlist_head *
4463 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4464 {
4465         struct swevent_hlist *hlist;
4466         u32 event_id = event->attr.config;
4467         u64 type = event->attr.type;
4468
4469         /*
4470          * Event scheduling is always serialized against hlist allocation
4471          * and release. Which makes the protected version suitable here.
4472          * The context lock guarantees that.
4473          */
4474         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4475                                           lockdep_is_held(&event->ctx->lock));
4476         if (!hlist)
4477                 return NULL;
4478
4479         return __find_swevent_head(hlist, type, event_id);
4480 }
4481
4482 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4483                                     u64 nr, int nmi,
4484                                     struct perf_sample_data *data,
4485                                     struct pt_regs *regs)
4486 {
4487         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4488         struct perf_event *event;
4489         struct hlist_node *node;
4490         struct hlist_head *head;
4491
4492         rcu_read_lock();
4493         head = find_swevent_head_rcu(swhash, type, event_id);
4494         if (!head)
4495                 goto end;
4496
4497         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4498                 if (perf_swevent_match(event, type, event_id, data, regs))
4499                         perf_swevent_event(event, nr, nmi, data, regs);
4500         }
4501 end:
4502         rcu_read_unlock();
4503 }
4504
4505 int perf_swevent_get_recursion_context(void)
4506 {
4507         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4508
4509         return get_recursion_context(swhash->recursion);
4510 }
4511 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4512
4513 void inline perf_swevent_put_recursion_context(int rctx)
4514 {
4515         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4516
4517         put_recursion_context(swhash->recursion, rctx);
4518 }
4519
4520 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4521                             struct pt_regs *regs, u64 addr)
4522 {
4523         struct perf_sample_data data;
4524         int rctx;
4525
4526         preempt_disable_notrace();
4527         rctx = perf_swevent_get_recursion_context();
4528         if (rctx < 0)
4529                 return;
4530
4531         perf_sample_data_init(&data, addr);
4532
4533         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4534
4535         perf_swevent_put_recursion_context(rctx);
4536         preempt_enable_notrace();
4537 }
4538
4539 static void perf_swevent_read(struct perf_event *event)
4540 {
4541 }
4542
4543 static int perf_swevent_add(struct perf_event *event, int flags)
4544 {
4545         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4546         struct hw_perf_event *hwc = &event->hw;
4547         struct hlist_head *head;
4548
4549         if (hwc->sample_period) {
4550                 hwc->last_period = hwc->sample_period;
4551                 perf_swevent_set_period(event);
4552         }
4553
4554         hwc->state = !(flags & PERF_EF_START);
4555
4556         head = find_swevent_head(swhash, event);
4557         if (WARN_ON_ONCE(!head))
4558                 return -EINVAL;
4559
4560         hlist_add_head_rcu(&event->hlist_entry, head);
4561
4562         return 0;
4563 }
4564
4565 static void perf_swevent_del(struct perf_event *event, int flags)
4566 {
4567         hlist_del_rcu(&event->hlist_entry);
4568 }
4569
4570 static void perf_swevent_start(struct perf_event *event, int flags)
4571 {
4572         event->hw.state = 0;
4573 }
4574
4575 static void perf_swevent_stop(struct perf_event *event, int flags)
4576 {
4577         event->hw.state = PERF_HES_STOPPED;
4578 }
4579
4580 /* Deref the hlist from the update side */
4581 static inline struct swevent_hlist *
4582 swevent_hlist_deref(struct swevent_htable *swhash)
4583 {
4584         return rcu_dereference_protected(swhash->swevent_hlist,
4585                                          lockdep_is_held(&swhash->hlist_mutex));
4586 }
4587
4588 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4589 {
4590         struct swevent_hlist *hlist;
4591
4592         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4593         kfree(hlist);
4594 }
4595
4596 static void swevent_hlist_release(struct swevent_htable *swhash)
4597 {
4598         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4599
4600         if (!hlist)
4601                 return;
4602
4603         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4604         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4605 }
4606
4607 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4608 {
4609         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4610
4611         mutex_lock(&swhash->hlist_mutex);
4612
4613         if (!--swhash->hlist_refcount)
4614                 swevent_hlist_release(swhash);
4615
4616         mutex_unlock(&swhash->hlist_mutex);
4617 }
4618
4619 static void swevent_hlist_put(struct perf_event *event)
4620 {
4621         int cpu;
4622
4623         if (event->cpu != -1) {
4624                 swevent_hlist_put_cpu(event, event->cpu);
4625                 return;
4626         }
4627
4628         for_each_possible_cpu(cpu)
4629                 swevent_hlist_put_cpu(event, cpu);
4630 }
4631
4632 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4633 {
4634         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4635         int err = 0;
4636
4637         mutex_lock(&swhash->hlist_mutex);
4638
4639         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4640                 struct swevent_hlist *hlist;
4641
4642                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4643                 if (!hlist) {
4644                         err = -ENOMEM;
4645                         goto exit;
4646                 }
4647                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4648         }
4649         swhash->hlist_refcount++;
4650 exit:
4651         mutex_unlock(&swhash->hlist_mutex);
4652
4653         return err;
4654 }
4655
4656 static int swevent_hlist_get(struct perf_event *event)
4657 {
4658         int err;
4659         int cpu, failed_cpu;
4660
4661         if (event->cpu != -1)
4662                 return swevent_hlist_get_cpu(event, event->cpu);
4663
4664         get_online_cpus();
4665         for_each_possible_cpu(cpu) {
4666                 err = swevent_hlist_get_cpu(event, cpu);
4667                 if (err) {
4668                         failed_cpu = cpu;
4669                         goto fail;
4670                 }
4671         }
4672         put_online_cpus();
4673
4674         return 0;
4675 fail:
4676         for_each_possible_cpu(cpu) {
4677                 if (cpu == failed_cpu)
4678                         break;
4679                 swevent_hlist_put_cpu(event, cpu);
4680         }
4681
4682         put_online_cpus();
4683         return err;
4684 }
4685
4686 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4687
4688 static void sw_perf_event_destroy(struct perf_event *event)
4689 {
4690         u64 event_id = event->attr.config;
4691
4692         WARN_ON(event->parent);
4693
4694         jump_label_dec(&perf_swevent_enabled[event_id]);
4695         swevent_hlist_put(event);
4696 }
4697
4698 static int perf_swevent_init(struct perf_event *event)
4699 {
4700         int event_id = event->attr.config;
4701
4702         if (event->attr.type != PERF_TYPE_SOFTWARE)
4703                 return -ENOENT;
4704
4705         switch (event_id) {
4706         case PERF_COUNT_SW_CPU_CLOCK:
4707         case PERF_COUNT_SW_TASK_CLOCK:
4708                 return -ENOENT;
4709
4710         default:
4711                 break;
4712         }
4713
4714         if (event_id > PERF_COUNT_SW_MAX)
4715                 return -ENOENT;
4716
4717         if (!event->parent) {
4718                 int err;
4719
4720                 err = swevent_hlist_get(event);
4721                 if (err)
4722                         return err;
4723
4724                 jump_label_inc(&perf_swevent_enabled[event_id]);
4725                 event->destroy = sw_perf_event_destroy;
4726         }
4727
4728         return 0;
4729 }
4730
4731 static struct pmu perf_swevent = {
4732         .task_ctx_nr    = perf_sw_context,
4733
4734         .event_init     = perf_swevent_init,
4735         .add            = perf_swevent_add,
4736         .del            = perf_swevent_del,
4737         .start          = perf_swevent_start,
4738         .stop           = perf_swevent_stop,
4739         .read           = perf_swevent_read,
4740 };
4741
4742 #ifdef CONFIG_EVENT_TRACING
4743
4744 static int perf_tp_filter_match(struct perf_event *event,
4745                                 struct perf_sample_data *data)
4746 {
4747         void *record = data->raw->data;
4748
4749         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4750                 return 1;
4751         return 0;
4752 }
4753
4754 static int perf_tp_event_match(struct perf_event *event,
4755                                 struct perf_sample_data *data,
4756                                 struct pt_regs *regs)
4757 {
4758         /*
4759          * All tracepoints are from kernel-space.
4760          */
4761         if (event->attr.exclude_kernel)
4762                 return 0;
4763
4764         if (!perf_tp_filter_match(event, data))
4765                 return 0;
4766
4767         return 1;
4768 }
4769
4770 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4771                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4772 {
4773         struct perf_sample_data data;
4774         struct perf_event *event;
4775         struct hlist_node *node;
4776
4777         struct perf_raw_record raw = {
4778                 .size = entry_size,
4779                 .data = record,
4780         };
4781
4782         perf_sample_data_init(&data, addr);
4783         data.raw = &raw;
4784
4785         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4786                 if (perf_tp_event_match(event, &data, regs))
4787                         perf_swevent_event(event, count, 1, &data, regs);
4788         }
4789
4790         perf_swevent_put_recursion_context(rctx);
4791 }
4792 EXPORT_SYMBOL_GPL(perf_tp_event);
4793
4794 static void tp_perf_event_destroy(struct perf_event *event)
4795 {
4796         perf_trace_destroy(event);
4797 }
4798
4799 static int perf_tp_event_init(struct perf_event *event)
4800 {
4801         int err;
4802
4803         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4804                 return -ENOENT;
4805
4806         /*
4807          * Raw tracepoint data is a severe data leak, only allow root to
4808          * have these.
4809          */
4810         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4811                         perf_paranoid_tracepoint_raw() &&
4812                         !capable(CAP_SYS_ADMIN))
4813                 return -EPERM;
4814
4815         err = perf_trace_init(event);
4816         if (err)
4817                 return err;
4818
4819         event->destroy = tp_perf_event_destroy;
4820
4821         return 0;
4822 }
4823
4824 static struct pmu perf_tracepoint = {
4825         .task_ctx_nr    = perf_sw_context,
4826
4827         .event_init     = perf_tp_event_init,
4828         .add            = perf_trace_add,
4829         .del            = perf_trace_del,
4830         .start          = perf_swevent_start,
4831         .stop           = perf_swevent_stop,
4832         .read           = perf_swevent_read,
4833 };
4834
4835 static inline void perf_tp_register(void)
4836 {
4837         perf_pmu_register(&perf_tracepoint);
4838 }
4839
4840 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4841 {
4842         char *filter_str;
4843         int ret;
4844
4845         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4846                 return -EINVAL;
4847
4848         filter_str = strndup_user(arg, PAGE_SIZE);
4849         if (IS_ERR(filter_str))
4850                 return PTR_ERR(filter_str);
4851
4852         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4853
4854         kfree(filter_str);
4855         return ret;
4856 }
4857
4858 static void perf_event_free_filter(struct perf_event *event)
4859 {
4860         ftrace_profile_free_filter(event);
4861 }
4862
4863 #else
4864
4865 static inline void perf_tp_register(void)
4866 {
4867 }
4868
4869 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4870 {
4871         return -ENOENT;
4872 }
4873
4874 static void perf_event_free_filter(struct perf_event *event)
4875 {
4876 }
4877
4878 #endif /* CONFIG_EVENT_TRACING */
4879
4880 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4881 void perf_bp_event(struct perf_event *bp, void *data)
4882 {
4883         struct perf_sample_data sample;
4884         struct pt_regs *regs = data;
4885
4886         perf_sample_data_init(&sample, bp->attr.bp_addr);
4887
4888         if (!bp->hw.state && !perf_exclude_event(bp, regs))
4889                 perf_swevent_event(bp, 1, 1, &sample, regs);
4890 }
4891 #endif
4892
4893 /*
4894  * hrtimer based swevent callback
4895  */
4896
4897 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4898 {
4899         enum hrtimer_restart ret = HRTIMER_RESTART;
4900         struct perf_sample_data data;
4901         struct pt_regs *regs;
4902         struct perf_event *event;
4903         u64 period;
4904
4905         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4906         event->pmu->read(event);
4907
4908         perf_sample_data_init(&data, 0);
4909         data.period = event->hw.last_period;
4910         regs = get_irq_regs();
4911
4912         if (regs && !perf_exclude_event(event, regs)) {
4913                 if (!(event->attr.exclude_idle && current->pid == 0))
4914                         if (perf_event_overflow(event, 0, &data, regs))
4915                                 ret = HRTIMER_NORESTART;
4916         }
4917
4918         period = max_t(u64, 10000, event->hw.sample_period);
4919         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4920
4921         return ret;
4922 }
4923
4924 static void perf_swevent_start_hrtimer(struct perf_event *event)
4925 {
4926         struct hw_perf_event *hwc = &event->hw;
4927
4928         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4929         hwc->hrtimer.function = perf_swevent_hrtimer;
4930         if (hwc->sample_period) {
4931                 s64 period = local64_read(&hwc->period_left);
4932
4933                 if (period) {
4934                         if (period < 0)
4935                                 period = 10000;
4936
4937                         local64_set(&hwc->period_left, 0);
4938                 } else {
4939                         period = max_t(u64, 10000, hwc->sample_period);
4940                 }
4941                 __hrtimer_start_range_ns(&hwc->hrtimer,
4942                                 ns_to_ktime(period), 0,
4943                                 HRTIMER_MODE_REL_PINNED, 0);
4944         }
4945 }
4946
4947 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4948 {
4949         struct hw_perf_event *hwc = &event->hw;
4950
4951         if (hwc->sample_period) {
4952                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4953                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4954
4955                 hrtimer_cancel(&hwc->hrtimer);
4956         }
4957 }
4958
4959 /*
4960  * Software event: cpu wall time clock
4961  */
4962
4963 static void cpu_clock_event_update(struct perf_event *event)
4964 {
4965         s64 prev;
4966         u64 now;
4967
4968         now = local_clock();
4969         prev = local64_xchg(&event->hw.prev_count, now);
4970         local64_add(now - prev, &event->count);
4971 }
4972
4973 static void cpu_clock_event_start(struct perf_event *event, int flags)
4974 {
4975         local64_set(&event->hw.prev_count, local_clock());
4976         perf_swevent_start_hrtimer(event);
4977 }
4978
4979 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4980 {
4981         perf_swevent_cancel_hrtimer(event);
4982         cpu_clock_event_update(event);
4983 }
4984
4985 static int cpu_clock_event_add(struct perf_event *event, int flags)
4986 {
4987         if (flags & PERF_EF_START)
4988                 cpu_clock_event_start(event, flags);
4989
4990         return 0;
4991 }
4992
4993 static void cpu_clock_event_del(struct perf_event *event, int flags)
4994 {
4995         cpu_clock_event_stop(event, flags);
4996 }
4997
4998 static void cpu_clock_event_read(struct perf_event *event)
4999 {
5000         cpu_clock_event_update(event);
5001 }
5002
5003 static int cpu_clock_event_init(struct perf_event *event)
5004 {
5005         if (event->attr.type != PERF_TYPE_SOFTWARE)
5006                 return -ENOENT;
5007
5008         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5009                 return -ENOENT;
5010
5011         return 0;
5012 }
5013
5014 static struct pmu perf_cpu_clock = {
5015         .task_ctx_nr    = perf_sw_context,
5016
5017         .event_init     = cpu_clock_event_init,
5018         .add            = cpu_clock_event_add,
5019         .del            = cpu_clock_event_del,
5020         .start          = cpu_clock_event_start,
5021         .stop           = cpu_clock_event_stop,
5022         .read           = cpu_clock_event_read,
5023 };
5024
5025 /*
5026  * Software event: task time clock
5027  */
5028
5029 static void task_clock_event_update(struct perf_event *event, u64 now)
5030 {
5031         u64 prev;
5032         s64 delta;
5033
5034         prev = local64_xchg(&event->hw.prev_count, now);
5035         delta = now - prev;
5036         local64_add(delta, &event->count);
5037 }
5038
5039 static void task_clock_event_start(struct perf_event *event, int flags)
5040 {
5041         local64_set(&event->hw.prev_count, event->ctx->time);
5042         perf_swevent_start_hrtimer(event);
5043 }
5044
5045 static void task_clock_event_stop(struct perf_event *event, int flags)
5046 {
5047         perf_swevent_cancel_hrtimer(event);
5048         task_clock_event_update(event, event->ctx->time);
5049 }
5050
5051 static int task_clock_event_add(struct perf_event *event, int flags)
5052 {
5053         if (flags & PERF_EF_START)
5054                 task_clock_event_start(event, flags);
5055
5056         return 0;
5057 }
5058
5059 static void task_clock_event_del(struct perf_event *event, int flags)
5060 {
5061         task_clock_event_stop(event, PERF_EF_UPDATE);
5062 }
5063
5064 static void task_clock_event_read(struct perf_event *event)
5065 {
5066         u64 time;
5067
5068         if (!in_nmi()) {
5069                 update_context_time(event->ctx);
5070                 time = event->ctx->time;
5071         } else {
5072                 u64 now = perf_clock();
5073                 u64 delta = now - event->ctx->timestamp;
5074                 time = event->ctx->time + delta;
5075         }
5076
5077         task_clock_event_update(event, time);
5078 }
5079
5080 static int task_clock_event_init(struct perf_event *event)
5081 {
5082         if (event->attr.type != PERF_TYPE_SOFTWARE)
5083                 return -ENOENT;
5084
5085         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5086                 return -ENOENT;
5087
5088         return 0;
5089 }
5090
5091 static struct pmu perf_task_clock = {
5092         .task_ctx_nr    = perf_sw_context,
5093
5094         .event_init     = task_clock_event_init,
5095         .add            = task_clock_event_add,
5096         .del            = task_clock_event_del,
5097         .start          = task_clock_event_start,
5098         .stop           = task_clock_event_stop,
5099         .read           = task_clock_event_read,
5100 };
5101
5102 static void perf_pmu_nop_void(struct pmu *pmu)
5103 {
5104 }
5105
5106 static int perf_pmu_nop_int(struct pmu *pmu)
5107 {
5108         return 0;
5109 }
5110
5111 static void perf_pmu_start_txn(struct pmu *pmu)
5112 {
5113         perf_pmu_disable(pmu);
5114 }
5115
5116 static int perf_pmu_commit_txn(struct pmu *pmu)
5117 {
5118         perf_pmu_enable(pmu);
5119         return 0;
5120 }
5121
5122 static void perf_pmu_cancel_txn(struct pmu *pmu)
5123 {
5124         perf_pmu_enable(pmu);
5125 }
5126
5127 /*
5128  * Ensures all contexts with the same task_ctx_nr have the same
5129  * pmu_cpu_context too.
5130  */
5131 static void *find_pmu_context(int ctxn)
5132 {
5133         struct pmu *pmu;
5134
5135         if (ctxn < 0)
5136                 return NULL;
5137
5138         list_for_each_entry(pmu, &pmus, entry) {
5139                 if (pmu->task_ctx_nr == ctxn)
5140                         return pmu->pmu_cpu_context;
5141         }
5142
5143         return NULL;
5144 }
5145
5146 static void free_pmu_context(void * __percpu cpu_context)
5147 {
5148         struct pmu *pmu;
5149
5150         mutex_lock(&pmus_lock);
5151         /*
5152          * Like a real lame refcount.
5153          */
5154         list_for_each_entry(pmu, &pmus, entry) {
5155                 if (pmu->pmu_cpu_context == cpu_context)
5156                         goto out;
5157         }
5158
5159         free_percpu(cpu_context);
5160 out:
5161         mutex_unlock(&pmus_lock);
5162 }
5163
5164 int perf_pmu_register(struct pmu *pmu)
5165 {
5166         int cpu, ret;
5167
5168         mutex_lock(&pmus_lock);
5169         ret = -ENOMEM;
5170         pmu->pmu_disable_count = alloc_percpu(int);
5171         if (!pmu->pmu_disable_count)
5172                 goto unlock;
5173
5174         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5175         if (pmu->pmu_cpu_context)
5176                 goto got_cpu_context;
5177
5178         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5179         if (!pmu->pmu_cpu_context)
5180                 goto free_pdc;
5181
5182         for_each_possible_cpu(cpu) {
5183                 struct perf_cpu_context *cpuctx;
5184
5185                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5186                 __perf_event_init_context(&cpuctx->ctx);
5187                 cpuctx->ctx.type = cpu_context;
5188                 cpuctx->ctx.pmu = pmu;
5189                 cpuctx->jiffies_interval = 1;
5190                 INIT_LIST_HEAD(&cpuctx->rotation_list);
5191         }
5192
5193 got_cpu_context:
5194         if (!pmu->start_txn) {
5195                 if (pmu->pmu_enable) {
5196                         /*
5197                          * If we have pmu_enable/pmu_disable calls, install
5198                          * transaction stubs that use that to try and batch
5199                          * hardware accesses.
5200                          */
5201                         pmu->start_txn  = perf_pmu_start_txn;
5202                         pmu->commit_txn = perf_pmu_commit_txn;
5203                         pmu->cancel_txn = perf_pmu_cancel_txn;
5204                 } else {
5205                         pmu->start_txn  = perf_pmu_nop_void;
5206                         pmu->commit_txn = perf_pmu_nop_int;
5207                         pmu->cancel_txn = perf_pmu_nop_void;
5208                 }
5209         }
5210
5211         if (!pmu->pmu_enable) {
5212                 pmu->pmu_enable  = perf_pmu_nop_void;
5213                 pmu->pmu_disable = perf_pmu_nop_void;
5214         }
5215
5216         list_add_rcu(&pmu->entry, &pmus);
5217         ret = 0;
5218 unlock:
5219         mutex_unlock(&pmus_lock);
5220
5221         return ret;
5222
5223 free_pdc:
5224         free_percpu(pmu->pmu_disable_count);
5225         goto unlock;
5226 }
5227
5228 void perf_pmu_unregister(struct pmu *pmu)
5229 {
5230         mutex_lock(&pmus_lock);
5231         list_del_rcu(&pmu->entry);
5232         mutex_unlock(&pmus_lock);
5233
5234         /*
5235          * We dereference the pmu list under both SRCU and regular RCU, so
5236          * synchronize against both of those.
5237          */
5238         synchronize_srcu(&pmus_srcu);
5239         synchronize_rcu();
5240
5241         free_percpu(pmu->pmu_disable_count);
5242         free_pmu_context(pmu->pmu_cpu_context);
5243 }
5244
5245 struct pmu *perf_init_event(struct perf_event *event)
5246 {
5247         struct pmu *pmu = NULL;
5248         int idx;
5249
5250         idx = srcu_read_lock(&pmus_srcu);
5251         list_for_each_entry_rcu(pmu, &pmus, entry) {
5252                 int ret = pmu->event_init(event);
5253                 if (!ret)
5254                         goto unlock;
5255
5256                 if (ret != -ENOENT) {
5257                         pmu = ERR_PTR(ret);
5258                         goto unlock;
5259                 }
5260         }
5261         pmu = ERR_PTR(-ENOENT);
5262 unlock:
5263         srcu_read_unlock(&pmus_srcu, idx);
5264
5265         return pmu;
5266 }
5267
5268 /*
5269  * Allocate and initialize a event structure
5270  */
5271 static struct perf_event *
5272 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5273                  struct task_struct *task,
5274                  struct perf_event *group_leader,
5275                  struct perf_event *parent_event,
5276                  perf_overflow_handler_t overflow_handler)
5277 {
5278         struct pmu *pmu;
5279         struct perf_event *event;
5280         struct hw_perf_event *hwc;
5281         long err;
5282
5283         event = kzalloc(sizeof(*event), GFP_KERNEL);
5284         if (!event)
5285                 return ERR_PTR(-ENOMEM);
5286
5287         /*
5288          * Single events are their own group leaders, with an
5289          * empty sibling list:
5290          */
5291         if (!group_leader)
5292                 group_leader = event;
5293
5294         mutex_init(&event->child_mutex);
5295         INIT_LIST_HEAD(&event->child_list);
5296
5297         INIT_LIST_HEAD(&event->group_entry);
5298         INIT_LIST_HEAD(&event->event_entry);
5299         INIT_LIST_HEAD(&event->sibling_list);
5300         init_waitqueue_head(&event->waitq);
5301         init_irq_work(&event->pending, perf_pending_event);
5302
5303         mutex_init(&event->mmap_mutex);
5304
5305         event->cpu              = cpu;
5306         event->attr             = *attr;
5307         event->group_leader     = group_leader;
5308         event->pmu              = NULL;
5309         event->oncpu            = -1;
5310
5311         event->parent           = parent_event;
5312
5313         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5314         event->id               = atomic64_inc_return(&perf_event_id);
5315
5316         event->state            = PERF_EVENT_STATE_INACTIVE;
5317
5318         if (task) {
5319                 event->attach_state = PERF_ATTACH_TASK;
5320 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5321                 /*
5322                  * hw_breakpoint is a bit difficult here..
5323                  */
5324                 if (attr->type == PERF_TYPE_BREAKPOINT)
5325                         event->hw.bp_target = task;
5326 #endif
5327         }
5328
5329         if (!overflow_handler && parent_event)
5330                 overflow_handler = parent_event->overflow_handler;
5331         
5332         event->overflow_handler = overflow_handler;
5333
5334         if (attr->disabled)
5335                 event->state = PERF_EVENT_STATE_OFF;
5336
5337         pmu = NULL;
5338
5339         hwc = &event->hw;
5340         hwc->sample_period = attr->sample_period;
5341         if (attr->freq && attr->sample_freq)
5342                 hwc->sample_period = 1;
5343         hwc->last_period = hwc->sample_period;
5344
5345         local64_set(&hwc->period_left, hwc->sample_period);
5346
5347         /*
5348          * we currently do not support PERF_FORMAT_GROUP on inherited events
5349          */
5350         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5351                 goto done;
5352
5353         pmu = perf_init_event(event);
5354
5355 done:
5356         err = 0;
5357         if (!pmu)
5358                 err = -EINVAL;
5359         else if (IS_ERR(pmu))
5360                 err = PTR_ERR(pmu);
5361
5362         if (err) {
5363                 if (event->ns)
5364                         put_pid_ns(event->ns);
5365                 kfree(event);
5366                 return ERR_PTR(err);
5367         }
5368
5369         event->pmu = pmu;
5370
5371         if (!event->parent) {
5372                 if (event->attach_state & PERF_ATTACH_TASK)
5373                         jump_label_inc(&perf_task_events);
5374                 if (event->attr.mmap || event->attr.mmap_data)
5375                         atomic_inc(&nr_mmap_events);
5376                 if (event->attr.comm)
5377                         atomic_inc(&nr_comm_events);
5378                 if (event->attr.task)
5379                         atomic_inc(&nr_task_events);
5380                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5381                         err = get_callchain_buffers();
5382                         if (err) {
5383                                 free_event(event);
5384                                 return ERR_PTR(err);
5385                         }
5386                 }
5387         }
5388
5389         return event;
5390 }
5391
5392 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5393                           struct perf_event_attr *attr)
5394 {
5395         u32 size;
5396         int ret;
5397
5398         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5399                 return -EFAULT;
5400
5401         /*
5402          * zero the full structure, so that a short copy will be nice.
5403          */
5404         memset(attr, 0, sizeof(*attr));
5405
5406         ret = get_user(size, &uattr->size);
5407         if (ret)
5408                 return ret;
5409
5410         if (size > PAGE_SIZE)   /* silly large */
5411                 goto err_size;
5412
5413         if (!size)              /* abi compat */
5414                 size = PERF_ATTR_SIZE_VER0;
5415
5416         if (size < PERF_ATTR_SIZE_VER0)
5417                 goto err_size;
5418
5419         /*
5420          * If we're handed a bigger struct than we know of,
5421          * ensure all the unknown bits are 0 - i.e. new
5422          * user-space does not rely on any kernel feature
5423          * extensions we dont know about yet.
5424          */
5425         if (size > sizeof(*attr)) {
5426                 unsigned char __user *addr;
5427                 unsigned char __user *end;
5428                 unsigned char val;
5429
5430                 addr = (void __user *)uattr + sizeof(*attr);
5431                 end  = (void __user *)uattr + size;
5432
5433                 for (; addr < end; addr++) {
5434                         ret = get_user(val, addr);
5435                         if (ret)
5436                                 return ret;
5437                         if (val)
5438                                 goto err_size;
5439                 }
5440                 size = sizeof(*attr);
5441         }
5442
5443         ret = copy_from_user(attr, uattr, size);
5444         if (ret)
5445                 return -EFAULT;
5446
5447         /*
5448          * If the type exists, the corresponding creation will verify
5449          * the attr->config.
5450          */
5451         if (attr->type >= PERF_TYPE_MAX)
5452                 return -EINVAL;
5453
5454         if (attr->__reserved_1)
5455                 return -EINVAL;
5456
5457         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5458                 return -EINVAL;
5459
5460         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5461                 return -EINVAL;
5462
5463 out:
5464         return ret;
5465
5466 err_size:
5467         put_user(sizeof(*attr), &uattr->size);
5468         ret = -E2BIG;
5469         goto out;
5470 }
5471
5472 static int
5473 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5474 {
5475         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5476         int ret = -EINVAL;
5477
5478         if (!output_event)
5479                 goto set;
5480
5481         /* don't allow circular references */
5482         if (event == output_event)
5483                 goto out;
5484
5485         /*
5486          * Don't allow cross-cpu buffers
5487          */
5488         if (output_event->cpu != event->cpu)
5489                 goto out;
5490
5491         /*
5492          * If its not a per-cpu buffer, it must be the same task.
5493          */
5494         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5495                 goto out;
5496
5497 set:
5498         mutex_lock(&event->mmap_mutex);
5499         /* Can't redirect output if we've got an active mmap() */
5500         if (atomic_read(&event->mmap_count))
5501                 goto unlock;
5502
5503         if (output_event) {
5504                 /* get the buffer we want to redirect to */
5505                 buffer = perf_buffer_get(output_event);
5506                 if (!buffer)
5507                         goto unlock;
5508         }
5509
5510         old_buffer = event->buffer;
5511         rcu_assign_pointer(event->buffer, buffer);
5512         ret = 0;
5513 unlock:
5514         mutex_unlock(&event->mmap_mutex);
5515
5516         if (old_buffer)
5517                 perf_buffer_put(old_buffer);
5518 out:
5519         return ret;
5520 }
5521
5522 /**
5523  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5524  *
5525  * @attr_uptr:  event_id type attributes for monitoring/sampling
5526  * @pid:                target pid
5527  * @cpu:                target cpu
5528  * @group_fd:           group leader event fd
5529  */
5530 SYSCALL_DEFINE5(perf_event_open,
5531                 struct perf_event_attr __user *, attr_uptr,
5532                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5533 {
5534         struct perf_event *group_leader = NULL, *output_event = NULL;
5535         struct perf_event *event, *sibling;
5536         struct perf_event_attr attr;
5537         struct perf_event_context *ctx;
5538         struct file *event_file = NULL;
5539         struct file *group_file = NULL;
5540         struct task_struct *task = NULL;
5541         struct pmu *pmu;
5542         int event_fd;
5543         int move_group = 0;
5544         int fput_needed = 0;
5545         int err;
5546
5547         /* for future expandability... */
5548         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5549                 return -EINVAL;
5550
5551         err = perf_copy_attr(attr_uptr, &attr);
5552         if (err)
5553                 return err;
5554
5555         if (!attr.exclude_kernel) {
5556                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5557                         return -EACCES;
5558         }
5559
5560         if (attr.freq) {
5561                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5562                         return -EINVAL;
5563         }
5564
5565         event_fd = get_unused_fd_flags(O_RDWR);
5566         if (event_fd < 0)
5567                 return event_fd;
5568
5569         if (group_fd != -1) {
5570                 group_leader = perf_fget_light(group_fd, &fput_needed);
5571                 if (IS_ERR(group_leader)) {
5572                         err = PTR_ERR(group_leader);
5573                         goto err_fd;
5574                 }
5575                 group_file = group_leader->filp;
5576                 if (flags & PERF_FLAG_FD_OUTPUT)
5577                         output_event = group_leader;
5578                 if (flags & PERF_FLAG_FD_NO_GROUP)
5579                         group_leader = NULL;
5580         }
5581
5582         if (pid != -1) {
5583                 task = find_lively_task_by_vpid(pid);
5584                 if (IS_ERR(task)) {
5585                         err = PTR_ERR(task);
5586                         goto err_group_fd;
5587                 }
5588         }
5589
5590         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5591         if (IS_ERR(event)) {
5592                 err = PTR_ERR(event);
5593                 goto err_task;
5594         }
5595
5596         /*
5597          * Special case software events and allow them to be part of
5598          * any hardware group.
5599          */
5600         pmu = event->pmu;
5601
5602         if (group_leader &&
5603             (is_software_event(event) != is_software_event(group_leader))) {
5604                 if (is_software_event(event)) {
5605                         /*
5606                          * If event and group_leader are not both a software
5607                          * event, and event is, then group leader is not.
5608                          *
5609                          * Allow the addition of software events to !software
5610                          * groups, this is safe because software events never
5611                          * fail to schedule.
5612                          */
5613                         pmu = group_leader->pmu;
5614                 } else if (is_software_event(group_leader) &&
5615                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5616                         /*
5617                          * In case the group is a pure software group, and we
5618                          * try to add a hardware event, move the whole group to
5619                          * the hardware context.
5620                          */
5621                         move_group = 1;
5622                 }
5623         }
5624
5625         /*
5626          * Get the target context (task or percpu):
5627          */
5628         ctx = find_get_context(pmu, task, cpu);
5629         if (IS_ERR(ctx)) {
5630                 err = PTR_ERR(ctx);
5631                 goto err_alloc;
5632         }
5633
5634         /*
5635          * Look up the group leader (we will attach this event to it):
5636          */
5637         if (group_leader) {
5638                 err = -EINVAL;
5639
5640                 /*
5641                  * Do not allow a recursive hierarchy (this new sibling
5642                  * becoming part of another group-sibling):
5643                  */
5644                 if (group_leader->group_leader != group_leader)
5645                         goto err_context;
5646                 /*
5647                  * Do not allow to attach to a group in a different
5648                  * task or CPU context:
5649                  */
5650                 if (move_group) {
5651                         if (group_leader->ctx->type != ctx->type)
5652                                 goto err_context;
5653                 } else {
5654                         if (group_leader->ctx != ctx)
5655                                 goto err_context;
5656                 }
5657
5658                 /*
5659                  * Only a group leader can be exclusive or pinned
5660                  */
5661                 if (attr.exclusive || attr.pinned)
5662                         goto err_context;
5663         }
5664
5665         if (output_event) {
5666                 err = perf_event_set_output(event, output_event);
5667                 if (err)
5668                         goto err_context;
5669         }
5670
5671         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5672         if (IS_ERR(event_file)) {
5673                 err = PTR_ERR(event_file);
5674                 goto err_context;
5675         }
5676
5677         if (move_group) {
5678                 struct perf_event_context *gctx = group_leader->ctx;
5679
5680                 mutex_lock(&gctx->mutex);
5681                 perf_event_remove_from_context(group_leader);
5682                 list_for_each_entry(sibling, &group_leader->sibling_list,
5683                                     group_entry) {
5684                         perf_event_remove_from_context(sibling);
5685                         put_ctx(gctx);
5686                 }
5687                 mutex_unlock(&gctx->mutex);
5688                 put_ctx(gctx);
5689         }
5690
5691         event->filp = event_file;
5692         WARN_ON_ONCE(ctx->parent_ctx);
5693         mutex_lock(&ctx->mutex);
5694
5695         if (move_group) {
5696                 perf_install_in_context(ctx, group_leader, cpu);
5697                 get_ctx(ctx);
5698                 list_for_each_entry(sibling, &group_leader->sibling_list,
5699                                     group_entry) {
5700                         perf_install_in_context(ctx, sibling, cpu);
5701                         get_ctx(ctx);
5702                 }
5703         }
5704
5705         perf_install_in_context(ctx, event, cpu);
5706         ++ctx->generation;
5707         mutex_unlock(&ctx->mutex);
5708
5709         event->owner = current;
5710
5711         mutex_lock(&current->perf_event_mutex);
5712         list_add_tail(&event->owner_entry, &current->perf_event_list);
5713         mutex_unlock(&current->perf_event_mutex);
5714
5715         /*
5716          * Drop the reference on the group_event after placing the
5717          * new event on the sibling_list. This ensures destruction
5718          * of the group leader will find the pointer to itself in
5719          * perf_group_detach().
5720          */
5721         fput_light(group_file, fput_needed);
5722         fd_install(event_fd, event_file);
5723         return event_fd;
5724
5725 err_context:
5726         put_ctx(ctx);
5727 err_alloc:
5728         free_event(event);
5729 err_task:
5730         if (task)
5731                 put_task_struct(task);
5732 err_group_fd:
5733         fput_light(group_file, fput_needed);
5734 err_fd:
5735         put_unused_fd(event_fd);
5736         return err;
5737 }
5738
5739 /**
5740  * perf_event_create_kernel_counter
5741  *
5742  * @attr: attributes of the counter to create
5743  * @cpu: cpu in which the counter is bound
5744  * @task: task to profile (NULL for percpu)
5745  */
5746 struct perf_event *
5747 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5748                                  struct task_struct *task,
5749                                  perf_overflow_handler_t overflow_handler)
5750 {
5751         struct perf_event_context *ctx;
5752         struct perf_event *event;
5753         int err;
5754
5755         /*
5756          * Get the target context (task or percpu):
5757          */
5758
5759         event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5760         if (IS_ERR(event)) {
5761                 err = PTR_ERR(event);
5762                 goto err;
5763         }
5764
5765         ctx = find_get_context(event->pmu, task, cpu);
5766         if (IS_ERR(ctx)) {
5767                 err = PTR_ERR(ctx);
5768                 goto err_free;
5769         }
5770
5771         event->filp = NULL;
5772         WARN_ON_ONCE(ctx->parent_ctx);
5773         mutex_lock(&ctx->mutex);
5774         perf_install_in_context(ctx, event, cpu);
5775         ++ctx->generation;
5776         mutex_unlock(&ctx->mutex);
5777
5778         return event;
5779
5780 err_free:
5781         free_event(event);
5782 err:
5783         return ERR_PTR(err);
5784 }
5785 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5786
5787 static void sync_child_event(struct perf_event *child_event,
5788                                struct task_struct *child)
5789 {
5790         struct perf_event *parent_event = child_event->parent;
5791         u64 child_val;
5792
5793         if (child_event->attr.inherit_stat)
5794                 perf_event_read_event(child_event, child);
5795
5796         child_val = perf_event_count(child_event);
5797
5798         /*
5799          * Add back the child's count to the parent's count:
5800          */
5801         atomic64_add(child_val, &parent_event->child_count);
5802         atomic64_add(child_event->total_time_enabled,
5803                      &parent_event->child_total_time_enabled);
5804         atomic64_add(child_event->total_time_running,
5805                      &parent_event->child_total_time_running);
5806
5807         /*
5808          * Remove this event from the parent's list
5809          */
5810         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5811         mutex_lock(&parent_event->child_mutex);
5812         list_del_init(&child_event->child_list);
5813         mutex_unlock(&parent_event->child_mutex);
5814
5815         /*
5816          * Release the parent event, if this was the last
5817          * reference to it.
5818          */
5819         fput(parent_event->filp);
5820 }
5821
5822 static void
5823 __perf_event_exit_task(struct perf_event *child_event,
5824                          struct perf_event_context *child_ctx,
5825                          struct task_struct *child)
5826 {
5827         struct perf_event *parent_event;
5828
5829         perf_event_remove_from_context(child_event);
5830
5831         parent_event = child_event->parent;
5832         /*
5833          * It can happen that parent exits first, and has events
5834          * that are still around due to the child reference. These
5835          * events need to be zapped - but otherwise linger.
5836          */
5837         if (parent_event) {
5838                 sync_child_event(child_event, child);
5839                 free_event(child_event);
5840         }
5841 }
5842
5843 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5844 {
5845         struct perf_event *child_event, *tmp;
5846         struct perf_event_context *child_ctx;
5847         unsigned long flags;
5848
5849         if (likely(!child->perf_event_ctxp[ctxn])) {
5850                 perf_event_task(child, NULL, 0);
5851                 return;
5852         }
5853
5854         local_irq_save(flags);
5855         /*
5856          * We can't reschedule here because interrupts are disabled,
5857          * and either child is current or it is a task that can't be
5858          * scheduled, so we are now safe from rescheduling changing
5859          * our context.
5860          */
5861         child_ctx = child->perf_event_ctxp[ctxn];
5862         task_ctx_sched_out(child_ctx, EVENT_ALL);
5863
5864         /*
5865          * Take the context lock here so that if find_get_context is
5866          * reading child->perf_event_ctxp, we wait until it has
5867          * incremented the context's refcount before we do put_ctx below.
5868          */
5869         raw_spin_lock(&child_ctx->lock);
5870         child->perf_event_ctxp[ctxn] = NULL;
5871         /*
5872          * If this context is a clone; unclone it so it can't get
5873          * swapped to another process while we're removing all
5874          * the events from it.
5875          */
5876         unclone_ctx(child_ctx);
5877         update_context_time(child_ctx);
5878         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5879
5880         /*
5881          * Report the task dead after unscheduling the events so that we
5882          * won't get any samples after PERF_RECORD_EXIT. We can however still
5883          * get a few PERF_RECORD_READ events.
5884          */
5885         perf_event_task(child, child_ctx, 0);
5886
5887         /*
5888          * We can recurse on the same lock type through:
5889          *
5890          *   __perf_event_exit_task()
5891          *     sync_child_event()
5892          *       fput(parent_event->filp)
5893          *         perf_release()
5894          *           mutex_lock(&ctx->mutex)
5895          *
5896          * But since its the parent context it won't be the same instance.
5897          */
5898         mutex_lock(&child_ctx->mutex);
5899
5900 again:
5901         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5902                                  group_entry)
5903                 __perf_event_exit_task(child_event, child_ctx, child);
5904
5905         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5906                                  group_entry)
5907                 __perf_event_exit_task(child_event, child_ctx, child);
5908
5909         /*
5910          * If the last event was a group event, it will have appended all
5911          * its siblings to the list, but we obtained 'tmp' before that which
5912          * will still point to the list head terminating the iteration.
5913          */
5914         if (!list_empty(&child_ctx->pinned_groups) ||
5915             !list_empty(&child_ctx->flexible_groups))
5916                 goto again;
5917
5918         mutex_unlock(&child_ctx->mutex);
5919
5920         put_ctx(child_ctx);
5921 }
5922
5923 /*
5924  * When a child task exits, feed back event values to parent events.
5925  */
5926 void perf_event_exit_task(struct task_struct *child)
5927 {
5928         struct perf_event *event, *tmp;
5929         int ctxn;
5930
5931         mutex_lock(&child->perf_event_mutex);
5932         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
5933                                  owner_entry) {
5934                 list_del_init(&event->owner_entry);
5935
5936                 /*
5937                  * Ensure the list deletion is visible before we clear
5938                  * the owner, closes a race against perf_release() where
5939                  * we need to serialize on the owner->perf_event_mutex.
5940                  */
5941                 smp_wmb();
5942                 event->owner = NULL;
5943         }
5944         mutex_unlock(&child->perf_event_mutex);
5945
5946         for_each_task_context_nr(ctxn)
5947                 perf_event_exit_task_context(child, ctxn);
5948 }
5949
5950 static void perf_free_event(struct perf_event *event,
5951                             struct perf_event_context *ctx)
5952 {
5953         struct perf_event *parent = event->parent;
5954
5955         if (WARN_ON_ONCE(!parent))
5956                 return;
5957
5958         mutex_lock(&parent->child_mutex);
5959         list_del_init(&event->child_list);
5960         mutex_unlock(&parent->child_mutex);
5961
5962         fput(parent->filp);
5963
5964         perf_group_detach(event);
5965         list_del_event(event, ctx);
5966         free_event(event);
5967 }
5968
5969 /*
5970  * free an unexposed, unused context as created by inheritance by
5971  * perf_event_init_task below, used by fork() in case of fail.
5972  */
5973 void perf_event_free_task(struct task_struct *task)
5974 {
5975         struct perf_event_context *ctx;
5976         struct perf_event *event, *tmp;
5977         int ctxn;
5978
5979         for_each_task_context_nr(ctxn) {
5980                 ctx = task->perf_event_ctxp[ctxn];
5981                 if (!ctx)
5982                         continue;
5983
5984                 mutex_lock(&ctx->mutex);
5985 again:
5986                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5987                                 group_entry)
5988                         perf_free_event(event, ctx);
5989
5990                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5991                                 group_entry)
5992                         perf_free_event(event, ctx);
5993
5994                 if (!list_empty(&ctx->pinned_groups) ||
5995                                 !list_empty(&ctx->flexible_groups))
5996                         goto again;
5997
5998                 mutex_unlock(&ctx->mutex);
5999
6000                 put_ctx(ctx);
6001         }
6002 }
6003
6004 void perf_event_delayed_put(struct task_struct *task)
6005 {
6006         int ctxn;
6007
6008         for_each_task_context_nr(ctxn)
6009                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6010 }
6011
6012 /*
6013  * inherit a event from parent task to child task:
6014  */
6015 static struct perf_event *
6016 inherit_event(struct perf_event *parent_event,
6017               struct task_struct *parent,
6018               struct perf_event_context *parent_ctx,
6019               struct task_struct *child,
6020               struct perf_event *group_leader,
6021               struct perf_event_context *child_ctx)
6022 {
6023         struct perf_event *child_event;
6024         unsigned long flags;
6025
6026         /*
6027          * Instead of creating recursive hierarchies of events,
6028          * we link inherited events back to the original parent,
6029          * which has a filp for sure, which we use as the reference
6030          * count:
6031          */
6032         if (parent_event->parent)
6033                 parent_event = parent_event->parent;
6034
6035         child_event = perf_event_alloc(&parent_event->attr,
6036                                            parent_event->cpu,
6037                                            child,
6038                                            group_leader, parent_event,
6039                                            NULL);
6040         if (IS_ERR(child_event))
6041                 return child_event;
6042         get_ctx(child_ctx);
6043
6044         /*
6045          * Make the child state follow the state of the parent event,
6046          * not its attr.disabled bit.  We hold the parent's mutex,
6047          * so we won't race with perf_event_{en, dis}able_family.
6048          */
6049         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6050                 child_event->state = PERF_EVENT_STATE_INACTIVE;
6051         else
6052                 child_event->state = PERF_EVENT_STATE_OFF;
6053
6054         if (parent_event->attr.freq) {
6055                 u64 sample_period = parent_event->hw.sample_period;
6056                 struct hw_perf_event *hwc = &child_event->hw;
6057
6058                 hwc->sample_period = sample_period;
6059                 hwc->last_period   = sample_period;
6060
6061                 local64_set(&hwc->period_left, sample_period);
6062         }
6063
6064         child_event->ctx = child_ctx;
6065         child_event->overflow_handler = parent_event->overflow_handler;
6066
6067         /*
6068          * Link it up in the child's context:
6069          */
6070         raw_spin_lock_irqsave(&child_ctx->lock, flags);
6071         add_event_to_ctx(child_event, child_ctx);
6072         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6073
6074         /*
6075          * Get a reference to the parent filp - we will fput it
6076          * when the child event exits. This is safe to do because
6077          * we are in the parent and we know that the filp still
6078          * exists and has a nonzero count:
6079          */
6080         atomic_long_inc(&parent_event->filp->f_count);
6081
6082         /*
6083          * Link this into the parent event's child list
6084          */
6085         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6086         mutex_lock(&parent_event->child_mutex);
6087         list_add_tail(&child_event->child_list, &parent_event->child_list);
6088         mutex_unlock(&parent_event->child_mutex);
6089
6090         return child_event;
6091 }
6092
6093 static int inherit_group(struct perf_event *parent_event,
6094               struct task_struct *parent,
6095               struct perf_event_context *parent_ctx,
6096               struct task_struct *child,
6097               struct perf_event_context *child_ctx)
6098 {
6099         struct perf_event *leader;
6100         struct perf_event *sub;
6101         struct perf_event *child_ctr;
6102
6103         leader = inherit_event(parent_event, parent, parent_ctx,
6104                                  child, NULL, child_ctx);
6105         if (IS_ERR(leader))
6106                 return PTR_ERR(leader);
6107         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6108                 child_ctr = inherit_event(sub, parent, parent_ctx,
6109                                             child, leader, child_ctx);
6110                 if (IS_ERR(child_ctr))
6111                         return PTR_ERR(child_ctr);
6112         }
6113         return 0;
6114 }
6115
6116 static int
6117 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6118                    struct perf_event_context *parent_ctx,
6119                    struct task_struct *child, int ctxn,
6120                    int *inherited_all)
6121 {
6122         int ret;
6123         struct perf_event_context *child_ctx;
6124
6125         if (!event->attr.inherit) {
6126                 *inherited_all = 0;
6127                 return 0;
6128         }
6129
6130         child_ctx = child->perf_event_ctxp[ctxn];
6131         if (!child_ctx) {
6132                 /*
6133                  * This is executed from the parent task context, so
6134                  * inherit events that have been marked for cloning.
6135                  * First allocate and initialize a context for the
6136                  * child.
6137                  */
6138
6139                 child_ctx = alloc_perf_context(event->pmu, child);
6140                 if (!child_ctx)
6141                         return -ENOMEM;
6142
6143                 child->perf_event_ctxp[ctxn] = child_ctx;
6144         }
6145
6146         ret = inherit_group(event, parent, parent_ctx,
6147                             child, child_ctx);
6148
6149         if (ret)
6150                 *inherited_all = 0;
6151
6152         return ret;
6153 }
6154
6155 /*
6156  * Initialize the perf_event context in task_struct
6157  */
6158 int perf_event_init_context(struct task_struct *child, int ctxn)
6159 {
6160         struct perf_event_context *child_ctx, *parent_ctx;
6161         struct perf_event_context *cloned_ctx;
6162         struct perf_event *event;
6163         struct task_struct *parent = current;
6164         int inherited_all = 1;
6165         int ret = 0;
6166
6167         child->perf_event_ctxp[ctxn] = NULL;
6168
6169         mutex_init(&child->perf_event_mutex);
6170         INIT_LIST_HEAD(&child->perf_event_list);
6171
6172         if (likely(!parent->perf_event_ctxp[ctxn]))
6173                 return 0;
6174
6175         /*
6176          * If the parent's context is a clone, pin it so it won't get
6177          * swapped under us.
6178          */
6179         parent_ctx = perf_pin_task_context(parent, ctxn);
6180
6181         /*
6182          * No need to check if parent_ctx != NULL here; since we saw
6183          * it non-NULL earlier, the only reason for it to become NULL
6184          * is if we exit, and since we're currently in the middle of
6185          * a fork we can't be exiting at the same time.
6186          */
6187
6188         /*
6189          * Lock the parent list. No need to lock the child - not PID
6190          * hashed yet and not running, so nobody can access it.
6191          */
6192         mutex_lock(&parent_ctx->mutex);
6193
6194         /*
6195          * We dont have to disable NMIs - we are only looking at
6196          * the list, not manipulating it:
6197          */
6198         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6199                 ret = inherit_task_group(event, parent, parent_ctx,
6200                                          child, ctxn, &inherited_all);
6201                 if (ret)
6202                         break;
6203         }
6204
6205         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6206                 ret = inherit_task_group(event, parent, parent_ctx,
6207                                          child, ctxn, &inherited_all);
6208                 if (ret)
6209                         break;
6210         }
6211
6212         child_ctx = child->perf_event_ctxp[ctxn];
6213
6214         if (child_ctx && inherited_all) {
6215                 /*
6216                  * Mark the child context as a clone of the parent
6217                  * context, or of whatever the parent is a clone of.
6218                  * Note that if the parent is a clone, it could get
6219                  * uncloned at any point, but that doesn't matter
6220                  * because the list of events and the generation
6221                  * count can't have changed since we took the mutex.
6222                  */
6223                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6224                 if (cloned_ctx) {
6225                         child_ctx->parent_ctx = cloned_ctx;
6226                         child_ctx->parent_gen = parent_ctx->parent_gen;
6227                 } else {
6228                         child_ctx->parent_ctx = parent_ctx;
6229                         child_ctx->parent_gen = parent_ctx->generation;
6230                 }
6231                 get_ctx(child_ctx->parent_ctx);
6232         }
6233
6234         mutex_unlock(&parent_ctx->mutex);
6235
6236         perf_unpin_context(parent_ctx);
6237
6238         return ret;
6239 }
6240
6241 /*
6242  * Initialize the perf_event context in task_struct
6243  */
6244 int perf_event_init_task(struct task_struct *child)
6245 {
6246         int ctxn, ret;
6247
6248         for_each_task_context_nr(ctxn) {
6249                 ret = perf_event_init_context(child, ctxn);
6250                 if (ret)
6251                         return ret;
6252         }
6253
6254         return 0;
6255 }
6256
6257 static void __init perf_event_init_all_cpus(void)
6258 {
6259         struct swevent_htable *swhash;
6260         int cpu;
6261
6262         for_each_possible_cpu(cpu) {
6263                 swhash = &per_cpu(swevent_htable, cpu);
6264                 mutex_init(&swhash->hlist_mutex);
6265                 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6266         }
6267 }
6268
6269 static void __cpuinit perf_event_init_cpu(int cpu)
6270 {
6271         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6272
6273         mutex_lock(&swhash->hlist_mutex);
6274         if (swhash->hlist_refcount > 0) {
6275                 struct swevent_hlist *hlist;
6276
6277                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6278                 WARN_ON(!hlist);
6279                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6280         }
6281         mutex_unlock(&swhash->hlist_mutex);
6282 }
6283
6284 #ifdef CONFIG_HOTPLUG_CPU
6285 static void perf_pmu_rotate_stop(struct pmu *pmu)
6286 {
6287         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6288
6289         WARN_ON(!irqs_disabled());
6290
6291         list_del_init(&cpuctx->rotation_list);
6292 }
6293
6294 static void __perf_event_exit_context(void *__info)
6295 {
6296         struct perf_event_context *ctx = __info;
6297         struct perf_event *event, *tmp;
6298
6299         perf_pmu_rotate_stop(ctx->pmu);
6300
6301         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6302                 __perf_event_remove_from_context(event);
6303         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6304                 __perf_event_remove_from_context(event);
6305 }
6306
6307 static void perf_event_exit_cpu_context(int cpu)
6308 {
6309         struct perf_event_context *ctx;
6310         struct pmu *pmu;
6311         int idx;
6312
6313         idx = srcu_read_lock(&pmus_srcu);
6314         list_for_each_entry_rcu(pmu, &pmus, entry) {
6315                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6316
6317                 mutex_lock(&ctx->mutex);
6318                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6319                 mutex_unlock(&ctx->mutex);
6320         }
6321         srcu_read_unlock(&pmus_srcu, idx);
6322 }
6323
6324 static void perf_event_exit_cpu(int cpu)
6325 {
6326         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6327
6328         mutex_lock(&swhash->hlist_mutex);
6329         swevent_hlist_release(swhash);
6330         mutex_unlock(&swhash->hlist_mutex);
6331
6332         perf_event_exit_cpu_context(cpu);
6333 }
6334 #else
6335 static inline void perf_event_exit_cpu(int cpu) { }
6336 #endif
6337
6338 static int __cpuinit
6339 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6340 {
6341         unsigned int cpu = (long)hcpu;
6342
6343         switch (action & ~CPU_TASKS_FROZEN) {
6344
6345         case CPU_UP_PREPARE:
6346         case CPU_DOWN_FAILED:
6347                 perf_event_init_cpu(cpu);
6348                 break;
6349
6350         case CPU_UP_CANCELED:
6351         case CPU_DOWN_PREPARE:
6352                 perf_event_exit_cpu(cpu);
6353                 break;
6354
6355         default:
6356                 break;
6357         }
6358
6359         return NOTIFY_OK;
6360 }
6361
6362 void __init perf_event_init(void)
6363 {
6364         int ret;
6365
6366         perf_event_init_all_cpus();
6367         init_srcu_struct(&pmus_srcu);
6368         perf_pmu_register(&perf_swevent);
6369         perf_pmu_register(&perf_cpu_clock);
6370         perf_pmu_register(&perf_task_clock);
6371         perf_tp_register();
6372         perf_cpu_notifier(perf_cpu_notify);
6373
6374         ret = init_hw_breakpoint();
6375         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6376 }