]> git.karo-electronics.de Git - mv-sheeva.git/blob - kernel/perf_event.c
irq_work: Add generic hardirq context callbacks
[mv-sheeva.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 static atomic_t nr_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47  * perf event paranoia level:
48  *  -1 - not paranoid at all
49  *   0 - disallow raw tracepoint access for unpriv
50  *   1 - disallow cpu events for unpriv
51  *   2 - disallow kernel profiling for unpriv
52  */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58  * max perf event sample rate
59  */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void)        { }
65
66 extern __weak const char *perf_pmu_name(void)
67 {
68         return "pmu";
69 }
70
71 void perf_pmu_disable(struct pmu *pmu)
72 {
73         int *count = this_cpu_ptr(pmu->pmu_disable_count);
74         if (!(*count)++)
75                 pmu->pmu_disable(pmu);
76 }
77
78 void perf_pmu_enable(struct pmu *pmu)
79 {
80         int *count = this_cpu_ptr(pmu->pmu_disable_count);
81         if (!--(*count))
82                 pmu->pmu_enable(pmu);
83 }
84
85 static DEFINE_PER_CPU(struct list_head, rotation_list);
86
87 /*
88  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
89  * because they're strictly cpu affine and rotate_start is called with IRQs
90  * disabled, while rotate_context is called from IRQ context.
91  */
92 static void perf_pmu_rotate_start(struct pmu *pmu)
93 {
94         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95         struct list_head *head = &__get_cpu_var(rotation_list);
96
97         WARN_ON(!irqs_disabled());
98
99         if (list_empty(&cpuctx->rotation_list))
100                 list_add(&cpuctx->rotation_list, head);
101 }
102
103 static void get_ctx(struct perf_event_context *ctx)
104 {
105         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110         struct perf_event_context *ctx;
111
112         ctx = container_of(head, struct perf_event_context, rcu_head);
113         kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_event_context *ctx)
117 {
118         if (atomic_dec_and_test(&ctx->refcount)) {
119                 if (ctx->parent_ctx)
120                         put_ctx(ctx->parent_ctx);
121                 if (ctx->task)
122                         put_task_struct(ctx->task);
123                 call_rcu(&ctx->rcu_head, free_ctx);
124         }
125 }
126
127 static void unclone_ctx(struct perf_event_context *ctx)
128 {
129         if (ctx->parent_ctx) {
130                 put_ctx(ctx->parent_ctx);
131                 ctx->parent_ctx = NULL;
132         }
133 }
134
135 /*
136  * If we inherit events we want to return the parent event id
137  * to userspace.
138  */
139 static u64 primary_event_id(struct perf_event *event)
140 {
141         u64 id = event->id;
142
143         if (event->parent)
144                 id = event->parent->id;
145
146         return id;
147 }
148
149 /*
150  * Get the perf_event_context for a task and lock it.
151  * This has to cope with with the fact that until it is locked,
152  * the context could get moved to another task.
153  */
154 static struct perf_event_context *
155 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
156 {
157         struct perf_event_context *ctx;
158
159         rcu_read_lock();
160 retry:
161         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
162         if (ctx) {
163                 /*
164                  * If this context is a clone of another, it might
165                  * get swapped for another underneath us by
166                  * perf_event_task_sched_out, though the
167                  * rcu_read_lock() protects us from any context
168                  * getting freed.  Lock the context and check if it
169                  * got swapped before we could get the lock, and retry
170                  * if so.  If we locked the right context, then it
171                  * can't get swapped on us any more.
172                  */
173                 raw_spin_lock_irqsave(&ctx->lock, *flags);
174                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
176                         goto retry;
177                 }
178
179                 if (!atomic_inc_not_zero(&ctx->refcount)) {
180                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181                         ctx = NULL;
182                 }
183         }
184         rcu_read_unlock();
185         return ctx;
186 }
187
188 /*
189  * Get the context for a task and increment its pin_count so it
190  * can't get swapped to another task.  This also increments its
191  * reference count so that the context can't get freed.
192  */
193 static struct perf_event_context *
194 perf_pin_task_context(struct task_struct *task, int ctxn)
195 {
196         struct perf_event_context *ctx;
197         unsigned long flags;
198
199         ctx = perf_lock_task_context(task, ctxn, &flags);
200         if (ctx) {
201                 ++ctx->pin_count;
202                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
203         }
204         return ctx;
205 }
206
207 static void perf_unpin_context(struct perf_event_context *ctx)
208 {
209         unsigned long flags;
210
211         raw_spin_lock_irqsave(&ctx->lock, flags);
212         --ctx->pin_count;
213         raw_spin_unlock_irqrestore(&ctx->lock, flags);
214         put_ctx(ctx);
215 }
216
217 static inline u64 perf_clock(void)
218 {
219         return local_clock();
220 }
221
222 /*
223  * Update the record of the current time in a context.
224  */
225 static void update_context_time(struct perf_event_context *ctx)
226 {
227         u64 now = perf_clock();
228
229         ctx->time += now - ctx->timestamp;
230         ctx->timestamp = now;
231 }
232
233 /*
234  * Update the total_time_enabled and total_time_running fields for a event.
235  */
236 static void update_event_times(struct perf_event *event)
237 {
238         struct perf_event_context *ctx = event->ctx;
239         u64 run_end;
240
241         if (event->state < PERF_EVENT_STATE_INACTIVE ||
242             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
243                 return;
244
245         if (ctx->is_active)
246                 run_end = ctx->time;
247         else
248                 run_end = event->tstamp_stopped;
249
250         event->total_time_enabled = run_end - event->tstamp_enabled;
251
252         if (event->state == PERF_EVENT_STATE_INACTIVE)
253                 run_end = event->tstamp_stopped;
254         else
255                 run_end = ctx->time;
256
257         event->total_time_running = run_end - event->tstamp_running;
258 }
259
260 /*
261  * Update total_time_enabled and total_time_running for all events in a group.
262  */
263 static void update_group_times(struct perf_event *leader)
264 {
265         struct perf_event *event;
266
267         update_event_times(leader);
268         list_for_each_entry(event, &leader->sibling_list, group_entry)
269                 update_event_times(event);
270 }
271
272 static struct list_head *
273 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
274 {
275         if (event->attr.pinned)
276                 return &ctx->pinned_groups;
277         else
278                 return &ctx->flexible_groups;
279 }
280
281 /*
282  * Add a event from the lists for its context.
283  * Must be called with ctx->mutex and ctx->lock held.
284  */
285 static void
286 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
287 {
288         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
289         event->attach_state |= PERF_ATTACH_CONTEXT;
290
291         /*
292          * If we're a stand alone event or group leader, we go to the context
293          * list, group events are kept attached to the group so that
294          * perf_group_detach can, at all times, locate all siblings.
295          */
296         if (event->group_leader == event) {
297                 struct list_head *list;
298
299                 if (is_software_event(event))
300                         event->group_flags |= PERF_GROUP_SOFTWARE;
301
302                 list = ctx_group_list(event, ctx);
303                 list_add_tail(&event->group_entry, list);
304         }
305
306         list_add_rcu(&event->event_entry, &ctx->event_list);
307         if (!ctx->nr_events)
308                 perf_pmu_rotate_start(ctx->pmu);
309         ctx->nr_events++;
310         if (event->attr.inherit_stat)
311                 ctx->nr_stat++;
312 }
313
314 static void perf_group_attach(struct perf_event *event)
315 {
316         struct perf_event *group_leader = event->group_leader;
317
318         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
319         event->attach_state |= PERF_ATTACH_GROUP;
320
321         if (group_leader == event)
322                 return;
323
324         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
325                         !is_software_event(event))
326                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
327
328         list_add_tail(&event->group_entry, &group_leader->sibling_list);
329         group_leader->nr_siblings++;
330 }
331
332 /*
333  * Remove a event from the lists for its context.
334  * Must be called with ctx->mutex and ctx->lock held.
335  */
336 static void
337 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
338 {
339         /*
340          * We can have double detach due to exit/hot-unplug + close.
341          */
342         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
343                 return;
344
345         event->attach_state &= ~PERF_ATTACH_CONTEXT;
346
347         ctx->nr_events--;
348         if (event->attr.inherit_stat)
349                 ctx->nr_stat--;
350
351         list_del_rcu(&event->event_entry);
352
353         if (event->group_leader == event)
354                 list_del_init(&event->group_entry);
355
356         update_group_times(event);
357
358         /*
359          * If event was in error state, then keep it
360          * that way, otherwise bogus counts will be
361          * returned on read(). The only way to get out
362          * of error state is by explicit re-enabling
363          * of the event
364          */
365         if (event->state > PERF_EVENT_STATE_OFF)
366                 event->state = PERF_EVENT_STATE_OFF;
367 }
368
369 static void perf_group_detach(struct perf_event *event)
370 {
371         struct perf_event *sibling, *tmp;
372         struct list_head *list = NULL;
373
374         /*
375          * We can have double detach due to exit/hot-unplug + close.
376          */
377         if (!(event->attach_state & PERF_ATTACH_GROUP))
378                 return;
379
380         event->attach_state &= ~PERF_ATTACH_GROUP;
381
382         /*
383          * If this is a sibling, remove it from its group.
384          */
385         if (event->group_leader != event) {
386                 list_del_init(&event->group_entry);
387                 event->group_leader->nr_siblings--;
388                 return;
389         }
390
391         if (!list_empty(&event->group_entry))
392                 list = &event->group_entry;
393
394         /*
395          * If this was a group event with sibling events then
396          * upgrade the siblings to singleton events by adding them
397          * to whatever list we are on.
398          */
399         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
400                 if (list)
401                         list_move_tail(&sibling->group_entry, list);
402                 sibling->group_leader = sibling;
403
404                 /* Inherit group flags from the previous leader */
405                 sibling->group_flags = event->group_flags;
406         }
407 }
408
409 static inline int
410 event_filter_match(struct perf_event *event)
411 {
412         return event->cpu == -1 || event->cpu == smp_processor_id();
413 }
414
415 static int
416 __event_sched_out(struct perf_event *event,
417                   struct perf_cpu_context *cpuctx,
418                   struct perf_event_context *ctx)
419 {
420         u64 delta;
421         /*
422          * An event which could not be activated because of
423          * filter mismatch still needs to have its timings
424          * maintained, otherwise bogus information is return
425          * via read() for time_enabled, time_running:
426          */
427         if (event->state == PERF_EVENT_STATE_INACTIVE
428             && !event_filter_match(event)) {
429                 delta = ctx->time - event->tstamp_stopped;
430                 event->tstamp_running += delta;
431                 event->tstamp_stopped = ctx->time;
432         }
433
434         if (event->state != PERF_EVENT_STATE_ACTIVE)
435                 return 0;
436
437         event->state = PERF_EVENT_STATE_INACTIVE;
438         if (event->pending_disable) {
439                 event->pending_disable = 0;
440                 event->state = PERF_EVENT_STATE_OFF;
441         }
442         event->pmu->del(event, 0);
443         event->oncpu = -1;
444
445         if (!is_software_event(event))
446                 cpuctx->active_oncpu--;
447         ctx->nr_active--;
448         if (event->attr.exclusive || !cpuctx->active_oncpu)
449                 cpuctx->exclusive = 0;
450         return 1;
451 }
452
453 static void
454 event_sched_out(struct perf_event *event,
455                   struct perf_cpu_context *cpuctx,
456                   struct perf_event_context *ctx)
457 {
458         int ret;
459
460         ret = __event_sched_out(event, cpuctx, ctx);
461         if (ret)
462                 event->tstamp_stopped = ctx->time;
463 }
464
465 static void
466 group_sched_out(struct perf_event *group_event,
467                 struct perf_cpu_context *cpuctx,
468                 struct perf_event_context *ctx)
469 {
470         struct perf_event *event;
471         int state = group_event->state;
472
473         event_sched_out(group_event, cpuctx, ctx);
474
475         /*
476          * Schedule out siblings (if any):
477          */
478         list_for_each_entry(event, &group_event->sibling_list, group_entry)
479                 event_sched_out(event, cpuctx, ctx);
480
481         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
482                 cpuctx->exclusive = 0;
483 }
484
485 static inline struct perf_cpu_context *
486 __get_cpu_context(struct perf_event_context *ctx)
487 {
488         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
489 }
490
491 /*
492  * Cross CPU call to remove a performance event
493  *
494  * We disable the event on the hardware level first. After that we
495  * remove it from the context list.
496  */
497 static void __perf_event_remove_from_context(void *info)
498 {
499         struct perf_event *event = info;
500         struct perf_event_context *ctx = event->ctx;
501         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
502
503         /*
504          * If this is a task context, we need to check whether it is
505          * the current task context of this cpu. If not it has been
506          * scheduled out before the smp call arrived.
507          */
508         if (ctx->task && cpuctx->task_ctx != ctx)
509                 return;
510
511         raw_spin_lock(&ctx->lock);
512
513         event_sched_out(event, cpuctx, ctx);
514
515         list_del_event(event, ctx);
516
517         raw_spin_unlock(&ctx->lock);
518 }
519
520
521 /*
522  * Remove the event from a task's (or a CPU's) list of events.
523  *
524  * Must be called with ctx->mutex held.
525  *
526  * CPU events are removed with a smp call. For task events we only
527  * call when the task is on a CPU.
528  *
529  * If event->ctx is a cloned context, callers must make sure that
530  * every task struct that event->ctx->task could possibly point to
531  * remains valid.  This is OK when called from perf_release since
532  * that only calls us on the top-level context, which can't be a clone.
533  * When called from perf_event_exit_task, it's OK because the
534  * context has been detached from its task.
535  */
536 static void perf_event_remove_from_context(struct perf_event *event)
537 {
538         struct perf_event_context *ctx = event->ctx;
539         struct task_struct *task = ctx->task;
540
541         if (!task) {
542                 /*
543                  * Per cpu events are removed via an smp call and
544                  * the removal is always successful.
545                  */
546                 smp_call_function_single(event->cpu,
547                                          __perf_event_remove_from_context,
548                                          event, 1);
549                 return;
550         }
551
552 retry:
553         task_oncpu_function_call(task, __perf_event_remove_from_context,
554                                  event);
555
556         raw_spin_lock_irq(&ctx->lock);
557         /*
558          * If the context is active we need to retry the smp call.
559          */
560         if (ctx->nr_active && !list_empty(&event->group_entry)) {
561                 raw_spin_unlock_irq(&ctx->lock);
562                 goto retry;
563         }
564
565         /*
566          * The lock prevents that this context is scheduled in so we
567          * can remove the event safely, if the call above did not
568          * succeed.
569          */
570         if (!list_empty(&event->group_entry))
571                 list_del_event(event, ctx);
572         raw_spin_unlock_irq(&ctx->lock);
573 }
574
575 /*
576  * Cross CPU call to disable a performance event
577  */
578 static void __perf_event_disable(void *info)
579 {
580         struct perf_event *event = info;
581         struct perf_event_context *ctx = event->ctx;
582         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
583
584         /*
585          * If this is a per-task event, need to check whether this
586          * event's task is the current task on this cpu.
587          */
588         if (ctx->task && cpuctx->task_ctx != ctx)
589                 return;
590
591         raw_spin_lock(&ctx->lock);
592
593         /*
594          * If the event is on, turn it off.
595          * If it is in error state, leave it in error state.
596          */
597         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
598                 update_context_time(ctx);
599                 update_group_times(event);
600                 if (event == event->group_leader)
601                         group_sched_out(event, cpuctx, ctx);
602                 else
603                         event_sched_out(event, cpuctx, ctx);
604                 event->state = PERF_EVENT_STATE_OFF;
605         }
606
607         raw_spin_unlock(&ctx->lock);
608 }
609
610 /*
611  * Disable a event.
612  *
613  * If event->ctx is a cloned context, callers must make sure that
614  * every task struct that event->ctx->task could possibly point to
615  * remains valid.  This condition is satisifed when called through
616  * perf_event_for_each_child or perf_event_for_each because they
617  * hold the top-level event's child_mutex, so any descendant that
618  * goes to exit will block in sync_child_event.
619  * When called from perf_pending_event it's OK because event->ctx
620  * is the current context on this CPU and preemption is disabled,
621  * hence we can't get into perf_event_task_sched_out for this context.
622  */
623 void perf_event_disable(struct perf_event *event)
624 {
625         struct perf_event_context *ctx = event->ctx;
626         struct task_struct *task = ctx->task;
627
628         if (!task) {
629                 /*
630                  * Disable the event on the cpu that it's on
631                  */
632                 smp_call_function_single(event->cpu, __perf_event_disable,
633                                          event, 1);
634                 return;
635         }
636
637 retry:
638         task_oncpu_function_call(task, __perf_event_disable, event);
639
640         raw_spin_lock_irq(&ctx->lock);
641         /*
642          * If the event is still active, we need to retry the cross-call.
643          */
644         if (event->state == PERF_EVENT_STATE_ACTIVE) {
645                 raw_spin_unlock_irq(&ctx->lock);
646                 goto retry;
647         }
648
649         /*
650          * Since we have the lock this context can't be scheduled
651          * in, so we can change the state safely.
652          */
653         if (event->state == PERF_EVENT_STATE_INACTIVE) {
654                 update_group_times(event);
655                 event->state = PERF_EVENT_STATE_OFF;
656         }
657
658         raw_spin_unlock_irq(&ctx->lock);
659 }
660
661 static int
662 __event_sched_in(struct perf_event *event,
663                  struct perf_cpu_context *cpuctx,
664                  struct perf_event_context *ctx)
665 {
666         if (event->state <= PERF_EVENT_STATE_OFF)
667                 return 0;
668
669         event->state = PERF_EVENT_STATE_ACTIVE;
670         event->oncpu = smp_processor_id();
671         /*
672          * The new state must be visible before we turn it on in the hardware:
673          */
674         smp_wmb();
675
676         if (event->pmu->add(event, PERF_EF_START)) {
677                 event->state = PERF_EVENT_STATE_INACTIVE;
678                 event->oncpu = -1;
679                 return -EAGAIN;
680         }
681
682         if (!is_software_event(event))
683                 cpuctx->active_oncpu++;
684         ctx->nr_active++;
685
686         if (event->attr.exclusive)
687                 cpuctx->exclusive = 1;
688
689         return 0;
690 }
691
692 static inline int
693 event_sched_in(struct perf_event *event,
694                  struct perf_cpu_context *cpuctx,
695                  struct perf_event_context *ctx)
696 {
697         int ret = __event_sched_in(event, cpuctx, ctx);
698         if (ret)
699                 return ret;
700         event->tstamp_running += ctx->time - event->tstamp_stopped;
701         return 0;
702 }
703
704 static void
705 group_commit_event_sched_in(struct perf_event *group_event,
706                struct perf_cpu_context *cpuctx,
707                struct perf_event_context *ctx)
708 {
709         struct perf_event *event;
710         u64 now = ctx->time;
711
712         group_event->tstamp_running += now - group_event->tstamp_stopped;
713         /*
714          * Schedule in siblings as one group (if any):
715          */
716         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
717                 event->tstamp_running += now - event->tstamp_stopped;
718         }
719 }
720
721 static int
722 group_sched_in(struct perf_event *group_event,
723                struct perf_cpu_context *cpuctx,
724                struct perf_event_context *ctx)
725 {
726         struct perf_event *event, *partial_group = NULL;
727         struct pmu *pmu = group_event->pmu;
728
729         if (group_event->state == PERF_EVENT_STATE_OFF)
730                 return 0;
731
732         pmu->start_txn(pmu);
733
734         /*
735          * use __event_sched_in() to delay updating tstamp_running
736          * until the transaction is committed. In case of failure
737          * we will keep an unmodified tstamp_running which is a
738          * requirement to get correct timing information
739          */
740         if (__event_sched_in(group_event, cpuctx, ctx)) {
741                 pmu->cancel_txn(pmu);
742                 return -EAGAIN;
743         }
744
745         /*
746          * Schedule in siblings as one group (if any):
747          */
748         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
749                 if (__event_sched_in(event, cpuctx, ctx)) {
750                         partial_group = event;
751                         goto group_error;
752                 }
753         }
754
755         if (!pmu->commit_txn(pmu)) {
756                 /* commit tstamp_running */
757                 group_commit_event_sched_in(group_event, cpuctx, ctx);
758                 return 0;
759         }
760 group_error:
761         /*
762          * Groups can be scheduled in as one unit only, so undo any
763          * partial group before returning:
764          *
765          * use __event_sched_out() to avoid updating tstamp_stopped
766          * because the event never actually ran
767          */
768         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
769                 if (event == partial_group)
770                         break;
771                 __event_sched_out(event, cpuctx, ctx);
772         }
773         __event_sched_out(group_event, cpuctx, ctx);
774
775         pmu->cancel_txn(pmu);
776
777         return -EAGAIN;
778 }
779
780 /*
781  * Work out whether we can put this event group on the CPU now.
782  */
783 static int group_can_go_on(struct perf_event *event,
784                            struct perf_cpu_context *cpuctx,
785                            int can_add_hw)
786 {
787         /*
788          * Groups consisting entirely of software events can always go on.
789          */
790         if (event->group_flags & PERF_GROUP_SOFTWARE)
791                 return 1;
792         /*
793          * If an exclusive group is already on, no other hardware
794          * events can go on.
795          */
796         if (cpuctx->exclusive)
797                 return 0;
798         /*
799          * If this group is exclusive and there are already
800          * events on the CPU, it can't go on.
801          */
802         if (event->attr.exclusive && cpuctx->active_oncpu)
803                 return 0;
804         /*
805          * Otherwise, try to add it if all previous groups were able
806          * to go on.
807          */
808         return can_add_hw;
809 }
810
811 static void add_event_to_ctx(struct perf_event *event,
812                                struct perf_event_context *ctx)
813 {
814         list_add_event(event, ctx);
815         perf_group_attach(event);
816         event->tstamp_enabled = ctx->time;
817         event->tstamp_running = ctx->time;
818         event->tstamp_stopped = ctx->time;
819 }
820
821 /*
822  * Cross CPU call to install and enable a performance event
823  *
824  * Must be called with ctx->mutex held
825  */
826 static void __perf_install_in_context(void *info)
827 {
828         struct perf_event *event = info;
829         struct perf_event_context *ctx = event->ctx;
830         struct perf_event *leader = event->group_leader;
831         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
832         int err;
833
834         /*
835          * If this is a task context, we need to check whether it is
836          * the current task context of this cpu. If not it has been
837          * scheduled out before the smp call arrived.
838          * Or possibly this is the right context but it isn't
839          * on this cpu because it had no events.
840          */
841         if (ctx->task && cpuctx->task_ctx != ctx) {
842                 if (cpuctx->task_ctx || ctx->task != current)
843                         return;
844                 cpuctx->task_ctx = ctx;
845         }
846
847         raw_spin_lock(&ctx->lock);
848         ctx->is_active = 1;
849         update_context_time(ctx);
850
851         add_event_to_ctx(event, ctx);
852
853         if (event->cpu != -1 && event->cpu != smp_processor_id())
854                 goto unlock;
855
856         /*
857          * Don't put the event on if it is disabled or if
858          * it is in a group and the group isn't on.
859          */
860         if (event->state != PERF_EVENT_STATE_INACTIVE ||
861             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
862                 goto unlock;
863
864         /*
865          * An exclusive event can't go on if there are already active
866          * hardware events, and no hardware event can go on if there
867          * is already an exclusive event on.
868          */
869         if (!group_can_go_on(event, cpuctx, 1))
870                 err = -EEXIST;
871         else
872                 err = event_sched_in(event, cpuctx, ctx);
873
874         if (err) {
875                 /*
876                  * This event couldn't go on.  If it is in a group
877                  * then we have to pull the whole group off.
878                  * If the event group is pinned then put it in error state.
879                  */
880                 if (leader != event)
881                         group_sched_out(leader, cpuctx, ctx);
882                 if (leader->attr.pinned) {
883                         update_group_times(leader);
884                         leader->state = PERF_EVENT_STATE_ERROR;
885                 }
886         }
887
888 unlock:
889         raw_spin_unlock(&ctx->lock);
890 }
891
892 /*
893  * Attach a performance event to a context
894  *
895  * First we add the event to the list with the hardware enable bit
896  * in event->hw_config cleared.
897  *
898  * If the event is attached to a task which is on a CPU we use a smp
899  * call to enable it in the task context. The task might have been
900  * scheduled away, but we check this in the smp call again.
901  *
902  * Must be called with ctx->mutex held.
903  */
904 static void
905 perf_install_in_context(struct perf_event_context *ctx,
906                         struct perf_event *event,
907                         int cpu)
908 {
909         struct task_struct *task = ctx->task;
910
911         event->ctx = ctx;
912
913         if (!task) {
914                 /*
915                  * Per cpu events are installed via an smp call and
916                  * the install is always successful.
917                  */
918                 smp_call_function_single(cpu, __perf_install_in_context,
919                                          event, 1);
920                 return;
921         }
922
923 retry:
924         task_oncpu_function_call(task, __perf_install_in_context,
925                                  event);
926
927         raw_spin_lock_irq(&ctx->lock);
928         /*
929          * we need to retry the smp call.
930          */
931         if (ctx->is_active && list_empty(&event->group_entry)) {
932                 raw_spin_unlock_irq(&ctx->lock);
933                 goto retry;
934         }
935
936         /*
937          * The lock prevents that this context is scheduled in so we
938          * can add the event safely, if it the call above did not
939          * succeed.
940          */
941         if (list_empty(&event->group_entry))
942                 add_event_to_ctx(event, ctx);
943         raw_spin_unlock_irq(&ctx->lock);
944 }
945
946 /*
947  * Put a event into inactive state and update time fields.
948  * Enabling the leader of a group effectively enables all
949  * the group members that aren't explicitly disabled, so we
950  * have to update their ->tstamp_enabled also.
951  * Note: this works for group members as well as group leaders
952  * since the non-leader members' sibling_lists will be empty.
953  */
954 static void __perf_event_mark_enabled(struct perf_event *event,
955                                         struct perf_event_context *ctx)
956 {
957         struct perf_event *sub;
958
959         event->state = PERF_EVENT_STATE_INACTIVE;
960         event->tstamp_enabled = ctx->time - event->total_time_enabled;
961         list_for_each_entry(sub, &event->sibling_list, group_entry) {
962                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
963                         sub->tstamp_enabled =
964                                 ctx->time - sub->total_time_enabled;
965                 }
966         }
967 }
968
969 /*
970  * Cross CPU call to enable a performance event
971  */
972 static void __perf_event_enable(void *info)
973 {
974         struct perf_event *event = info;
975         struct perf_event_context *ctx = event->ctx;
976         struct perf_event *leader = event->group_leader;
977         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
978         int err;
979
980         /*
981          * If this is a per-task event, need to check whether this
982          * event's task is the current task on this cpu.
983          */
984         if (ctx->task && cpuctx->task_ctx != ctx) {
985                 if (cpuctx->task_ctx || ctx->task != current)
986                         return;
987                 cpuctx->task_ctx = ctx;
988         }
989
990         raw_spin_lock(&ctx->lock);
991         ctx->is_active = 1;
992         update_context_time(ctx);
993
994         if (event->state >= PERF_EVENT_STATE_INACTIVE)
995                 goto unlock;
996         __perf_event_mark_enabled(event, ctx);
997
998         if (event->cpu != -1 && event->cpu != smp_processor_id())
999                 goto unlock;
1000
1001         /*
1002          * If the event is in a group and isn't the group leader,
1003          * then don't put it on unless the group is on.
1004          */
1005         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1006                 goto unlock;
1007
1008         if (!group_can_go_on(event, cpuctx, 1)) {
1009                 err = -EEXIST;
1010         } else {
1011                 if (event == leader)
1012                         err = group_sched_in(event, cpuctx, ctx);
1013                 else
1014                         err = event_sched_in(event, cpuctx, ctx);
1015         }
1016
1017         if (err) {
1018                 /*
1019                  * If this event can't go on and it's part of a
1020                  * group, then the whole group has to come off.
1021                  */
1022                 if (leader != event)
1023                         group_sched_out(leader, cpuctx, ctx);
1024                 if (leader->attr.pinned) {
1025                         update_group_times(leader);
1026                         leader->state = PERF_EVENT_STATE_ERROR;
1027                 }
1028         }
1029
1030 unlock:
1031         raw_spin_unlock(&ctx->lock);
1032 }
1033
1034 /*
1035  * Enable a event.
1036  *
1037  * If event->ctx is a cloned context, callers must make sure that
1038  * every task struct that event->ctx->task could possibly point to
1039  * remains valid.  This condition is satisfied when called through
1040  * perf_event_for_each_child or perf_event_for_each as described
1041  * for perf_event_disable.
1042  */
1043 void perf_event_enable(struct perf_event *event)
1044 {
1045         struct perf_event_context *ctx = event->ctx;
1046         struct task_struct *task = ctx->task;
1047
1048         if (!task) {
1049                 /*
1050                  * Enable the event on the cpu that it's on
1051                  */
1052                 smp_call_function_single(event->cpu, __perf_event_enable,
1053                                          event, 1);
1054                 return;
1055         }
1056
1057         raw_spin_lock_irq(&ctx->lock);
1058         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1059                 goto out;
1060
1061         /*
1062          * If the event is in error state, clear that first.
1063          * That way, if we see the event in error state below, we
1064          * know that it has gone back into error state, as distinct
1065          * from the task having been scheduled away before the
1066          * cross-call arrived.
1067          */
1068         if (event->state == PERF_EVENT_STATE_ERROR)
1069                 event->state = PERF_EVENT_STATE_OFF;
1070
1071 retry:
1072         raw_spin_unlock_irq(&ctx->lock);
1073         task_oncpu_function_call(task, __perf_event_enable, event);
1074
1075         raw_spin_lock_irq(&ctx->lock);
1076
1077         /*
1078          * If the context is active and the event is still off,
1079          * we need to retry the cross-call.
1080          */
1081         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1082                 goto retry;
1083
1084         /*
1085          * Since we have the lock this context can't be scheduled
1086          * in, so we can change the state safely.
1087          */
1088         if (event->state == PERF_EVENT_STATE_OFF)
1089                 __perf_event_mark_enabled(event, ctx);
1090
1091 out:
1092         raw_spin_unlock_irq(&ctx->lock);
1093 }
1094
1095 static int perf_event_refresh(struct perf_event *event, int refresh)
1096 {
1097         /*
1098          * not supported on inherited events
1099          */
1100         if (event->attr.inherit)
1101                 return -EINVAL;
1102
1103         atomic_add(refresh, &event->event_limit);
1104         perf_event_enable(event);
1105
1106         return 0;
1107 }
1108
1109 enum event_type_t {
1110         EVENT_FLEXIBLE = 0x1,
1111         EVENT_PINNED = 0x2,
1112         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1113 };
1114
1115 static void ctx_sched_out(struct perf_event_context *ctx,
1116                           struct perf_cpu_context *cpuctx,
1117                           enum event_type_t event_type)
1118 {
1119         struct perf_event *event;
1120
1121         raw_spin_lock(&ctx->lock);
1122         perf_pmu_disable(ctx->pmu);
1123         ctx->is_active = 0;
1124         if (likely(!ctx->nr_events))
1125                 goto out;
1126         update_context_time(ctx);
1127
1128         if (!ctx->nr_active)
1129                 goto out;
1130
1131         if (event_type & EVENT_PINNED) {
1132                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1133                         group_sched_out(event, cpuctx, ctx);
1134         }
1135
1136         if (event_type & EVENT_FLEXIBLE) {
1137                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1138                         group_sched_out(event, cpuctx, ctx);
1139         }
1140 out:
1141         perf_pmu_enable(ctx->pmu);
1142         raw_spin_unlock(&ctx->lock);
1143 }
1144
1145 /*
1146  * Test whether two contexts are equivalent, i.e. whether they
1147  * have both been cloned from the same version of the same context
1148  * and they both have the same number of enabled events.
1149  * If the number of enabled events is the same, then the set
1150  * of enabled events should be the same, because these are both
1151  * inherited contexts, therefore we can't access individual events
1152  * in them directly with an fd; we can only enable/disable all
1153  * events via prctl, or enable/disable all events in a family
1154  * via ioctl, which will have the same effect on both contexts.
1155  */
1156 static int context_equiv(struct perf_event_context *ctx1,
1157                          struct perf_event_context *ctx2)
1158 {
1159         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1160                 && ctx1->parent_gen == ctx2->parent_gen
1161                 && !ctx1->pin_count && !ctx2->pin_count;
1162 }
1163
1164 static void __perf_event_sync_stat(struct perf_event *event,
1165                                      struct perf_event *next_event)
1166 {
1167         u64 value;
1168
1169         if (!event->attr.inherit_stat)
1170                 return;
1171
1172         /*
1173          * Update the event value, we cannot use perf_event_read()
1174          * because we're in the middle of a context switch and have IRQs
1175          * disabled, which upsets smp_call_function_single(), however
1176          * we know the event must be on the current CPU, therefore we
1177          * don't need to use it.
1178          */
1179         switch (event->state) {
1180         case PERF_EVENT_STATE_ACTIVE:
1181                 event->pmu->read(event);
1182                 /* fall-through */
1183
1184         case PERF_EVENT_STATE_INACTIVE:
1185                 update_event_times(event);
1186                 break;
1187
1188         default:
1189                 break;
1190         }
1191
1192         /*
1193          * In order to keep per-task stats reliable we need to flip the event
1194          * values when we flip the contexts.
1195          */
1196         value = local64_read(&next_event->count);
1197         value = local64_xchg(&event->count, value);
1198         local64_set(&next_event->count, value);
1199
1200         swap(event->total_time_enabled, next_event->total_time_enabled);
1201         swap(event->total_time_running, next_event->total_time_running);
1202
1203         /*
1204          * Since we swizzled the values, update the user visible data too.
1205          */
1206         perf_event_update_userpage(event);
1207         perf_event_update_userpage(next_event);
1208 }
1209
1210 #define list_next_entry(pos, member) \
1211         list_entry(pos->member.next, typeof(*pos), member)
1212
1213 static void perf_event_sync_stat(struct perf_event_context *ctx,
1214                                    struct perf_event_context *next_ctx)
1215 {
1216         struct perf_event *event, *next_event;
1217
1218         if (!ctx->nr_stat)
1219                 return;
1220
1221         update_context_time(ctx);
1222
1223         event = list_first_entry(&ctx->event_list,
1224                                    struct perf_event, event_entry);
1225
1226         next_event = list_first_entry(&next_ctx->event_list,
1227                                         struct perf_event, event_entry);
1228
1229         while (&event->event_entry != &ctx->event_list &&
1230                &next_event->event_entry != &next_ctx->event_list) {
1231
1232                 __perf_event_sync_stat(event, next_event);
1233
1234                 event = list_next_entry(event, event_entry);
1235                 next_event = list_next_entry(next_event, event_entry);
1236         }
1237 }
1238
1239 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1240                                   struct task_struct *next)
1241 {
1242         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1243         struct perf_event_context *next_ctx;
1244         struct perf_event_context *parent;
1245         struct perf_cpu_context *cpuctx;
1246         int do_switch = 1;
1247
1248         if (likely(!ctx))
1249                 return;
1250
1251         cpuctx = __get_cpu_context(ctx);
1252         if (!cpuctx->task_ctx)
1253                 return;
1254
1255         rcu_read_lock();
1256         parent = rcu_dereference(ctx->parent_ctx);
1257         next_ctx = next->perf_event_ctxp[ctxn];
1258         if (parent && next_ctx &&
1259             rcu_dereference(next_ctx->parent_ctx) == parent) {
1260                 /*
1261                  * Looks like the two contexts are clones, so we might be
1262                  * able to optimize the context switch.  We lock both
1263                  * contexts and check that they are clones under the
1264                  * lock (including re-checking that neither has been
1265                  * uncloned in the meantime).  It doesn't matter which
1266                  * order we take the locks because no other cpu could
1267                  * be trying to lock both of these tasks.
1268                  */
1269                 raw_spin_lock(&ctx->lock);
1270                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1271                 if (context_equiv(ctx, next_ctx)) {
1272                         /*
1273                          * XXX do we need a memory barrier of sorts
1274                          * wrt to rcu_dereference() of perf_event_ctxp
1275                          */
1276                         task->perf_event_ctxp[ctxn] = next_ctx;
1277                         next->perf_event_ctxp[ctxn] = ctx;
1278                         ctx->task = next;
1279                         next_ctx->task = task;
1280                         do_switch = 0;
1281
1282                         perf_event_sync_stat(ctx, next_ctx);
1283                 }
1284                 raw_spin_unlock(&next_ctx->lock);
1285                 raw_spin_unlock(&ctx->lock);
1286         }
1287         rcu_read_unlock();
1288
1289         if (do_switch) {
1290                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1291                 cpuctx->task_ctx = NULL;
1292         }
1293 }
1294
1295 #define for_each_task_context_nr(ctxn)                                  \
1296         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1297
1298 /*
1299  * Called from scheduler to remove the events of the current task,
1300  * with interrupts disabled.
1301  *
1302  * We stop each event and update the event value in event->count.
1303  *
1304  * This does not protect us against NMI, but disable()
1305  * sets the disabled bit in the control field of event _before_
1306  * accessing the event control register. If a NMI hits, then it will
1307  * not restart the event.
1308  */
1309 void perf_event_task_sched_out(struct task_struct *task,
1310                                struct task_struct *next)
1311 {
1312         int ctxn;
1313
1314         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1315
1316         for_each_task_context_nr(ctxn)
1317                 perf_event_context_sched_out(task, ctxn, next);
1318 }
1319
1320 static void task_ctx_sched_out(struct perf_event_context *ctx,
1321                                enum event_type_t event_type)
1322 {
1323         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1324
1325         if (!cpuctx->task_ctx)
1326                 return;
1327
1328         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1329                 return;
1330
1331         ctx_sched_out(ctx, cpuctx, event_type);
1332         cpuctx->task_ctx = NULL;
1333 }
1334
1335 /*
1336  * Called with IRQs disabled
1337  */
1338 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1339 {
1340         task_ctx_sched_out(ctx, EVENT_ALL);
1341 }
1342
1343 /*
1344  * Called with IRQs disabled
1345  */
1346 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1347                               enum event_type_t event_type)
1348 {
1349         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1350 }
1351
1352 static void
1353 ctx_pinned_sched_in(struct perf_event_context *ctx,
1354                     struct perf_cpu_context *cpuctx)
1355 {
1356         struct perf_event *event;
1357
1358         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1359                 if (event->state <= PERF_EVENT_STATE_OFF)
1360                         continue;
1361                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1362                         continue;
1363
1364                 if (group_can_go_on(event, cpuctx, 1))
1365                         group_sched_in(event, cpuctx, ctx);
1366
1367                 /*
1368                  * If this pinned group hasn't been scheduled,
1369                  * put it in error state.
1370                  */
1371                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1372                         update_group_times(event);
1373                         event->state = PERF_EVENT_STATE_ERROR;
1374                 }
1375         }
1376 }
1377
1378 static void
1379 ctx_flexible_sched_in(struct perf_event_context *ctx,
1380                       struct perf_cpu_context *cpuctx)
1381 {
1382         struct perf_event *event;
1383         int can_add_hw = 1;
1384
1385         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1386                 /* Ignore events in OFF or ERROR state */
1387                 if (event->state <= PERF_EVENT_STATE_OFF)
1388                         continue;
1389                 /*
1390                  * Listen to the 'cpu' scheduling filter constraint
1391                  * of events:
1392                  */
1393                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1394                         continue;
1395
1396                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1397                         if (group_sched_in(event, cpuctx, ctx))
1398                                 can_add_hw = 0;
1399                 }
1400         }
1401 }
1402
1403 static void
1404 ctx_sched_in(struct perf_event_context *ctx,
1405              struct perf_cpu_context *cpuctx,
1406              enum event_type_t event_type)
1407 {
1408         raw_spin_lock(&ctx->lock);
1409         ctx->is_active = 1;
1410         if (likely(!ctx->nr_events))
1411                 goto out;
1412
1413         ctx->timestamp = perf_clock();
1414
1415         /*
1416          * First go through the list and put on any pinned groups
1417          * in order to give them the best chance of going on.
1418          */
1419         if (event_type & EVENT_PINNED)
1420                 ctx_pinned_sched_in(ctx, cpuctx);
1421
1422         /* Then walk through the lower prio flexible groups */
1423         if (event_type & EVENT_FLEXIBLE)
1424                 ctx_flexible_sched_in(ctx, cpuctx);
1425
1426 out:
1427         raw_spin_unlock(&ctx->lock);
1428 }
1429
1430 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1431                              enum event_type_t event_type)
1432 {
1433         struct perf_event_context *ctx = &cpuctx->ctx;
1434
1435         ctx_sched_in(ctx, cpuctx, event_type);
1436 }
1437
1438 static void task_ctx_sched_in(struct perf_event_context *ctx,
1439                               enum event_type_t event_type)
1440 {
1441         struct perf_cpu_context *cpuctx;
1442
1443         cpuctx = __get_cpu_context(ctx);
1444         if (cpuctx->task_ctx == ctx)
1445                 return;
1446
1447         ctx_sched_in(ctx, cpuctx, event_type);
1448         cpuctx->task_ctx = ctx;
1449 }
1450
1451 void perf_event_context_sched_in(struct perf_event_context *ctx)
1452 {
1453         struct perf_cpu_context *cpuctx;
1454
1455         cpuctx = __get_cpu_context(ctx);
1456         if (cpuctx->task_ctx == ctx)
1457                 return;
1458
1459         perf_pmu_disable(ctx->pmu);
1460         /*
1461          * We want to keep the following priority order:
1462          * cpu pinned (that don't need to move), task pinned,
1463          * cpu flexible, task flexible.
1464          */
1465         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1466
1467         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1468         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1469         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1470
1471         cpuctx->task_ctx = ctx;
1472
1473         /*
1474          * Since these rotations are per-cpu, we need to ensure the
1475          * cpu-context we got scheduled on is actually rotating.
1476          */
1477         perf_pmu_rotate_start(ctx->pmu);
1478         perf_pmu_enable(ctx->pmu);
1479 }
1480
1481 /*
1482  * Called from scheduler to add the events of the current task
1483  * with interrupts disabled.
1484  *
1485  * We restore the event value and then enable it.
1486  *
1487  * This does not protect us against NMI, but enable()
1488  * sets the enabled bit in the control field of event _before_
1489  * accessing the event control register. If a NMI hits, then it will
1490  * keep the event running.
1491  */
1492 void perf_event_task_sched_in(struct task_struct *task)
1493 {
1494         struct perf_event_context *ctx;
1495         int ctxn;
1496
1497         for_each_task_context_nr(ctxn) {
1498                 ctx = task->perf_event_ctxp[ctxn];
1499                 if (likely(!ctx))
1500                         continue;
1501
1502                 perf_event_context_sched_in(ctx);
1503         }
1504 }
1505
1506 #define MAX_INTERRUPTS (~0ULL)
1507
1508 static void perf_log_throttle(struct perf_event *event, int enable);
1509
1510 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1511 {
1512         u64 frequency = event->attr.sample_freq;
1513         u64 sec = NSEC_PER_SEC;
1514         u64 divisor, dividend;
1515
1516         int count_fls, nsec_fls, frequency_fls, sec_fls;
1517
1518         count_fls = fls64(count);
1519         nsec_fls = fls64(nsec);
1520         frequency_fls = fls64(frequency);
1521         sec_fls = 30;
1522
1523         /*
1524          * We got @count in @nsec, with a target of sample_freq HZ
1525          * the target period becomes:
1526          *
1527          *             @count * 10^9
1528          * period = -------------------
1529          *          @nsec * sample_freq
1530          *
1531          */
1532
1533         /*
1534          * Reduce accuracy by one bit such that @a and @b converge
1535          * to a similar magnitude.
1536          */
1537 #define REDUCE_FLS(a, b)                \
1538 do {                                    \
1539         if (a##_fls > b##_fls) {        \
1540                 a >>= 1;                \
1541                 a##_fls--;              \
1542         } else {                        \
1543                 b >>= 1;                \
1544                 b##_fls--;              \
1545         }                               \
1546 } while (0)
1547
1548         /*
1549          * Reduce accuracy until either term fits in a u64, then proceed with
1550          * the other, so that finally we can do a u64/u64 division.
1551          */
1552         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1553                 REDUCE_FLS(nsec, frequency);
1554                 REDUCE_FLS(sec, count);
1555         }
1556
1557         if (count_fls + sec_fls > 64) {
1558                 divisor = nsec * frequency;
1559
1560                 while (count_fls + sec_fls > 64) {
1561                         REDUCE_FLS(count, sec);
1562                         divisor >>= 1;
1563                 }
1564
1565                 dividend = count * sec;
1566         } else {
1567                 dividend = count * sec;
1568
1569                 while (nsec_fls + frequency_fls > 64) {
1570                         REDUCE_FLS(nsec, frequency);
1571                         dividend >>= 1;
1572                 }
1573
1574                 divisor = nsec * frequency;
1575         }
1576
1577         if (!divisor)
1578                 return dividend;
1579
1580         return div64_u64(dividend, divisor);
1581 }
1582
1583 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1584 {
1585         struct hw_perf_event *hwc = &event->hw;
1586         s64 period, sample_period;
1587         s64 delta;
1588
1589         period = perf_calculate_period(event, nsec, count);
1590
1591         delta = (s64)(period - hwc->sample_period);
1592         delta = (delta + 7) / 8; /* low pass filter */
1593
1594         sample_period = hwc->sample_period + delta;
1595
1596         if (!sample_period)
1597                 sample_period = 1;
1598
1599         hwc->sample_period = sample_period;
1600
1601         if (local64_read(&hwc->period_left) > 8*sample_period) {
1602                 event->pmu->stop(event, PERF_EF_UPDATE);
1603                 local64_set(&hwc->period_left, 0);
1604                 event->pmu->start(event, PERF_EF_RELOAD);
1605         }
1606 }
1607
1608 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1609 {
1610         struct perf_event *event;
1611         struct hw_perf_event *hwc;
1612         u64 interrupts, now;
1613         s64 delta;
1614
1615         raw_spin_lock(&ctx->lock);
1616         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1617                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1618                         continue;
1619
1620                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1621                         continue;
1622
1623                 hwc = &event->hw;
1624
1625                 interrupts = hwc->interrupts;
1626                 hwc->interrupts = 0;
1627
1628                 /*
1629                  * unthrottle events on the tick
1630                  */
1631                 if (interrupts == MAX_INTERRUPTS) {
1632                         perf_log_throttle(event, 1);
1633                         event->pmu->start(event, 0);
1634                 }
1635
1636                 if (!event->attr.freq || !event->attr.sample_freq)
1637                         continue;
1638
1639                 event->pmu->read(event);
1640                 now = local64_read(&event->count);
1641                 delta = now - hwc->freq_count_stamp;
1642                 hwc->freq_count_stamp = now;
1643
1644                 if (delta > 0)
1645                         perf_adjust_period(event, period, delta);
1646         }
1647         raw_spin_unlock(&ctx->lock);
1648 }
1649
1650 /*
1651  * Round-robin a context's events:
1652  */
1653 static void rotate_ctx(struct perf_event_context *ctx)
1654 {
1655         raw_spin_lock(&ctx->lock);
1656
1657         /* Rotate the first entry last of non-pinned groups */
1658         list_rotate_left(&ctx->flexible_groups);
1659
1660         raw_spin_unlock(&ctx->lock);
1661 }
1662
1663 /*
1664  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1665  * because they're strictly cpu affine and rotate_start is called with IRQs
1666  * disabled, while rotate_context is called from IRQ context.
1667  */
1668 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1669 {
1670         u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1671         struct perf_event_context *ctx = NULL;
1672         int rotate = 0, remove = 1;
1673
1674         if (cpuctx->ctx.nr_events) {
1675                 remove = 0;
1676                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1677                         rotate = 1;
1678         }
1679
1680         ctx = cpuctx->task_ctx;
1681         if (ctx && ctx->nr_events) {
1682                 remove = 0;
1683                 if (ctx->nr_events != ctx->nr_active)
1684                         rotate = 1;
1685         }
1686
1687         perf_pmu_disable(cpuctx->ctx.pmu);
1688         perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1689         if (ctx)
1690                 perf_ctx_adjust_freq(ctx, interval);
1691
1692         if (!rotate)
1693                 goto done;
1694
1695         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1696         if (ctx)
1697                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1698
1699         rotate_ctx(&cpuctx->ctx);
1700         if (ctx)
1701                 rotate_ctx(ctx);
1702
1703         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1704         if (ctx)
1705                 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1706
1707 done:
1708         if (remove)
1709                 list_del_init(&cpuctx->rotation_list);
1710
1711         perf_pmu_enable(cpuctx->ctx.pmu);
1712 }
1713
1714 void perf_event_task_tick(void)
1715 {
1716         struct list_head *head = &__get_cpu_var(rotation_list);
1717         struct perf_cpu_context *cpuctx, *tmp;
1718
1719         WARN_ON(!irqs_disabled());
1720
1721         list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1722                 if (cpuctx->jiffies_interval == 1 ||
1723                                 !(jiffies % cpuctx->jiffies_interval))
1724                         perf_rotate_context(cpuctx);
1725         }
1726 }
1727
1728 static int event_enable_on_exec(struct perf_event *event,
1729                                 struct perf_event_context *ctx)
1730 {
1731         if (!event->attr.enable_on_exec)
1732                 return 0;
1733
1734         event->attr.enable_on_exec = 0;
1735         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1736                 return 0;
1737
1738         __perf_event_mark_enabled(event, ctx);
1739
1740         return 1;
1741 }
1742
1743 /*
1744  * Enable all of a task's events that have been marked enable-on-exec.
1745  * This expects task == current.
1746  */
1747 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1748 {
1749         struct perf_event *event;
1750         unsigned long flags;
1751         int enabled = 0;
1752         int ret;
1753
1754         local_irq_save(flags);
1755         if (!ctx || !ctx->nr_events)
1756                 goto out;
1757
1758         task_ctx_sched_out(ctx, EVENT_ALL);
1759
1760         raw_spin_lock(&ctx->lock);
1761
1762         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1763                 ret = event_enable_on_exec(event, ctx);
1764                 if (ret)
1765                         enabled = 1;
1766         }
1767
1768         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1769                 ret = event_enable_on_exec(event, ctx);
1770                 if (ret)
1771                         enabled = 1;
1772         }
1773
1774         /*
1775          * Unclone this context if we enabled any event.
1776          */
1777         if (enabled)
1778                 unclone_ctx(ctx);
1779
1780         raw_spin_unlock(&ctx->lock);
1781
1782         perf_event_context_sched_in(ctx);
1783 out:
1784         local_irq_restore(flags);
1785 }
1786
1787 /*
1788  * Cross CPU call to read the hardware event
1789  */
1790 static void __perf_event_read(void *info)
1791 {
1792         struct perf_event *event = info;
1793         struct perf_event_context *ctx = event->ctx;
1794         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1795
1796         /*
1797          * If this is a task context, we need to check whether it is
1798          * the current task context of this cpu.  If not it has been
1799          * scheduled out before the smp call arrived.  In that case
1800          * event->count would have been updated to a recent sample
1801          * when the event was scheduled out.
1802          */
1803         if (ctx->task && cpuctx->task_ctx != ctx)
1804                 return;
1805
1806         raw_spin_lock(&ctx->lock);
1807         update_context_time(ctx);
1808         update_event_times(event);
1809         raw_spin_unlock(&ctx->lock);
1810
1811         event->pmu->read(event);
1812 }
1813
1814 static inline u64 perf_event_count(struct perf_event *event)
1815 {
1816         return local64_read(&event->count) + atomic64_read(&event->child_count);
1817 }
1818
1819 static u64 perf_event_read(struct perf_event *event)
1820 {
1821         /*
1822          * If event is enabled and currently active on a CPU, update the
1823          * value in the event structure:
1824          */
1825         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1826                 smp_call_function_single(event->oncpu,
1827                                          __perf_event_read, event, 1);
1828         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1829                 struct perf_event_context *ctx = event->ctx;
1830                 unsigned long flags;
1831
1832                 raw_spin_lock_irqsave(&ctx->lock, flags);
1833                 /*
1834                  * may read while context is not active
1835                  * (e.g., thread is blocked), in that case
1836                  * we cannot update context time
1837                  */
1838                 if (ctx->is_active)
1839                         update_context_time(ctx);
1840                 update_event_times(event);
1841                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1842         }
1843
1844         return perf_event_count(event);
1845 }
1846
1847 /*
1848  * Callchain support
1849  */
1850
1851 struct callchain_cpus_entries {
1852         struct rcu_head                 rcu_head;
1853         struct perf_callchain_entry     *cpu_entries[0];
1854 };
1855
1856 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1857 static atomic_t nr_callchain_events;
1858 static DEFINE_MUTEX(callchain_mutex);
1859 struct callchain_cpus_entries *callchain_cpus_entries;
1860
1861
1862 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1863                                   struct pt_regs *regs)
1864 {
1865 }
1866
1867 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1868                                 struct pt_regs *regs)
1869 {
1870 }
1871
1872 static void release_callchain_buffers_rcu(struct rcu_head *head)
1873 {
1874         struct callchain_cpus_entries *entries;
1875         int cpu;
1876
1877         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1878
1879         for_each_possible_cpu(cpu)
1880                 kfree(entries->cpu_entries[cpu]);
1881
1882         kfree(entries);
1883 }
1884
1885 static void release_callchain_buffers(void)
1886 {
1887         struct callchain_cpus_entries *entries;
1888
1889         entries = callchain_cpus_entries;
1890         rcu_assign_pointer(callchain_cpus_entries, NULL);
1891         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1892 }
1893
1894 static int alloc_callchain_buffers(void)
1895 {
1896         int cpu;
1897         int size;
1898         struct callchain_cpus_entries *entries;
1899
1900         /*
1901          * We can't use the percpu allocation API for data that can be
1902          * accessed from NMI. Use a temporary manual per cpu allocation
1903          * until that gets sorted out.
1904          */
1905         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1906                 num_possible_cpus();
1907
1908         entries = kzalloc(size, GFP_KERNEL);
1909         if (!entries)
1910                 return -ENOMEM;
1911
1912         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1913
1914         for_each_possible_cpu(cpu) {
1915                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1916                                                          cpu_to_node(cpu));
1917                 if (!entries->cpu_entries[cpu])
1918                         goto fail;
1919         }
1920
1921         rcu_assign_pointer(callchain_cpus_entries, entries);
1922
1923         return 0;
1924
1925 fail:
1926         for_each_possible_cpu(cpu)
1927                 kfree(entries->cpu_entries[cpu]);
1928         kfree(entries);
1929
1930         return -ENOMEM;
1931 }
1932
1933 static int get_callchain_buffers(void)
1934 {
1935         int err = 0;
1936         int count;
1937
1938         mutex_lock(&callchain_mutex);
1939
1940         count = atomic_inc_return(&nr_callchain_events);
1941         if (WARN_ON_ONCE(count < 1)) {
1942                 err = -EINVAL;
1943                 goto exit;
1944         }
1945
1946         if (count > 1) {
1947                 /* If the allocation failed, give up */
1948                 if (!callchain_cpus_entries)
1949                         err = -ENOMEM;
1950                 goto exit;
1951         }
1952
1953         err = alloc_callchain_buffers();
1954         if (err)
1955                 release_callchain_buffers();
1956 exit:
1957         mutex_unlock(&callchain_mutex);
1958
1959         return err;
1960 }
1961
1962 static void put_callchain_buffers(void)
1963 {
1964         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1965                 release_callchain_buffers();
1966                 mutex_unlock(&callchain_mutex);
1967         }
1968 }
1969
1970 static int get_recursion_context(int *recursion)
1971 {
1972         int rctx;
1973
1974         if (in_nmi())
1975                 rctx = 3;
1976         else if (in_irq())
1977                 rctx = 2;
1978         else if (in_softirq())
1979                 rctx = 1;
1980         else
1981                 rctx = 0;
1982
1983         if (recursion[rctx])
1984                 return -1;
1985
1986         recursion[rctx]++;
1987         barrier();
1988
1989         return rctx;
1990 }
1991
1992 static inline void put_recursion_context(int *recursion, int rctx)
1993 {
1994         barrier();
1995         recursion[rctx]--;
1996 }
1997
1998 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1999 {
2000         int cpu;
2001         struct callchain_cpus_entries *entries;
2002
2003         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2004         if (*rctx == -1)
2005                 return NULL;
2006
2007         entries = rcu_dereference(callchain_cpus_entries);
2008         if (!entries)
2009                 return NULL;
2010
2011         cpu = smp_processor_id();
2012
2013         return &entries->cpu_entries[cpu][*rctx];
2014 }
2015
2016 static void
2017 put_callchain_entry(int rctx)
2018 {
2019         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2020 }
2021
2022 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2023 {
2024         int rctx;
2025         struct perf_callchain_entry *entry;
2026
2027
2028         entry = get_callchain_entry(&rctx);
2029         if (rctx == -1)
2030                 return NULL;
2031
2032         if (!entry)
2033                 goto exit_put;
2034
2035         entry->nr = 0;
2036
2037         if (!user_mode(regs)) {
2038                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2039                 perf_callchain_kernel(entry, regs);
2040                 if (current->mm)
2041                         regs = task_pt_regs(current);
2042                 else
2043                         regs = NULL;
2044         }
2045
2046         if (regs) {
2047                 perf_callchain_store(entry, PERF_CONTEXT_USER);
2048                 perf_callchain_user(entry, regs);
2049         }
2050
2051 exit_put:
2052         put_callchain_entry(rctx);
2053
2054         return entry;
2055 }
2056
2057 /*
2058  * Initialize the perf_event context in a task_struct:
2059  */
2060 static void __perf_event_init_context(struct perf_event_context *ctx)
2061 {
2062         raw_spin_lock_init(&ctx->lock);
2063         mutex_init(&ctx->mutex);
2064         INIT_LIST_HEAD(&ctx->pinned_groups);
2065         INIT_LIST_HEAD(&ctx->flexible_groups);
2066         INIT_LIST_HEAD(&ctx->event_list);
2067         atomic_set(&ctx->refcount, 1);
2068 }
2069
2070 static struct perf_event_context *
2071 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2072 {
2073         struct perf_event_context *ctx;
2074
2075         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2076         if (!ctx)
2077                 return NULL;
2078
2079         __perf_event_init_context(ctx);
2080         if (task) {
2081                 ctx->task = task;
2082                 get_task_struct(task);
2083         }
2084         ctx->pmu = pmu;
2085
2086         return ctx;
2087 }
2088
2089 static struct task_struct *
2090 find_lively_task_by_vpid(pid_t vpid)
2091 {
2092         struct task_struct *task;
2093         int err;
2094
2095         rcu_read_lock();
2096         if (!vpid)
2097                 task = current;
2098         else
2099                 task = find_task_by_vpid(vpid);
2100         if (task)
2101                 get_task_struct(task);
2102         rcu_read_unlock();
2103
2104         if (!task)
2105                 return ERR_PTR(-ESRCH);
2106
2107         /*
2108          * Can't attach events to a dying task.
2109          */
2110         err = -ESRCH;
2111         if (task->flags & PF_EXITING)
2112                 goto errout;
2113
2114         /* Reuse ptrace permission checks for now. */
2115         err = -EACCES;
2116         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2117                 goto errout;
2118
2119         return task;
2120 errout:
2121         put_task_struct(task);
2122         return ERR_PTR(err);
2123
2124 }
2125
2126 static struct perf_event_context *
2127 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2128 {
2129         struct perf_event_context *ctx;
2130         struct perf_cpu_context *cpuctx;
2131         unsigned long flags;
2132         int ctxn, err;
2133
2134         if (!task && cpu != -1) {
2135                 /* Must be root to operate on a CPU event: */
2136                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2137                         return ERR_PTR(-EACCES);
2138
2139                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2140                         return ERR_PTR(-EINVAL);
2141
2142                 /*
2143                  * We could be clever and allow to attach a event to an
2144                  * offline CPU and activate it when the CPU comes up, but
2145                  * that's for later.
2146                  */
2147                 if (!cpu_online(cpu))
2148                         return ERR_PTR(-ENODEV);
2149
2150                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2151                 ctx = &cpuctx->ctx;
2152                 get_ctx(ctx);
2153
2154                 return ctx;
2155         }
2156
2157         err = -EINVAL;
2158         ctxn = pmu->task_ctx_nr;
2159         if (ctxn < 0)
2160                 goto errout;
2161
2162 retry:
2163         ctx = perf_lock_task_context(task, ctxn, &flags);
2164         if (ctx) {
2165                 unclone_ctx(ctx);
2166                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2167         }
2168
2169         if (!ctx) {
2170                 ctx = alloc_perf_context(pmu, task);
2171                 err = -ENOMEM;
2172                 if (!ctx)
2173                         goto errout;
2174
2175                 get_ctx(ctx);
2176
2177                 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2178                         /*
2179                          * We raced with some other task; use
2180                          * the context they set.
2181                          */
2182                         put_task_struct(task);
2183                         kfree(ctx);
2184                         goto retry;
2185                 }
2186         }
2187
2188         put_task_struct(task);
2189         return ctx;
2190
2191 errout:
2192         put_task_struct(task);
2193         return ERR_PTR(err);
2194 }
2195
2196 static void perf_event_free_filter(struct perf_event *event);
2197
2198 static void free_event_rcu(struct rcu_head *head)
2199 {
2200         struct perf_event *event;
2201
2202         event = container_of(head, struct perf_event, rcu_head);
2203         if (event->ns)
2204                 put_pid_ns(event->ns);
2205         perf_event_free_filter(event);
2206         kfree(event);
2207 }
2208
2209 static void perf_buffer_put(struct perf_buffer *buffer);
2210
2211 static void free_event(struct perf_event *event)
2212 {
2213         irq_work_sync(&event->pending);
2214
2215         if (!event->parent) {
2216                 atomic_dec(&nr_events);
2217                 if (event->attr.mmap || event->attr.mmap_data)
2218                         atomic_dec(&nr_mmap_events);
2219                 if (event->attr.comm)
2220                         atomic_dec(&nr_comm_events);
2221                 if (event->attr.task)
2222                         atomic_dec(&nr_task_events);
2223                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2224                         put_callchain_buffers();
2225         }
2226
2227         if (event->buffer) {
2228                 perf_buffer_put(event->buffer);
2229                 event->buffer = NULL;
2230         }
2231
2232         if (event->destroy)
2233                 event->destroy(event);
2234
2235         if (event->ctx)
2236                 put_ctx(event->ctx);
2237
2238         call_rcu(&event->rcu_head, free_event_rcu);
2239 }
2240
2241 int perf_event_release_kernel(struct perf_event *event)
2242 {
2243         struct perf_event_context *ctx = event->ctx;
2244
2245         /*
2246          * Remove from the PMU, can't get re-enabled since we got
2247          * here because the last ref went.
2248          */
2249         perf_event_disable(event);
2250
2251         WARN_ON_ONCE(ctx->parent_ctx);
2252         /*
2253          * There are two ways this annotation is useful:
2254          *
2255          *  1) there is a lock recursion from perf_event_exit_task
2256          *     see the comment there.
2257          *
2258          *  2) there is a lock-inversion with mmap_sem through
2259          *     perf_event_read_group(), which takes faults while
2260          *     holding ctx->mutex, however this is called after
2261          *     the last filedesc died, so there is no possibility
2262          *     to trigger the AB-BA case.
2263          */
2264         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2265         raw_spin_lock_irq(&ctx->lock);
2266         perf_group_detach(event);
2267         list_del_event(event, ctx);
2268         raw_spin_unlock_irq(&ctx->lock);
2269         mutex_unlock(&ctx->mutex);
2270
2271         mutex_lock(&event->owner->perf_event_mutex);
2272         list_del_init(&event->owner_entry);
2273         mutex_unlock(&event->owner->perf_event_mutex);
2274         put_task_struct(event->owner);
2275
2276         free_event(event);
2277
2278         return 0;
2279 }
2280 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2281
2282 /*
2283  * Called when the last reference to the file is gone.
2284  */
2285 static int perf_release(struct inode *inode, struct file *file)
2286 {
2287         struct perf_event *event = file->private_data;
2288
2289         file->private_data = NULL;
2290
2291         return perf_event_release_kernel(event);
2292 }
2293
2294 static int perf_event_read_size(struct perf_event *event)
2295 {
2296         int entry = sizeof(u64); /* value */
2297         int size = 0;
2298         int nr = 1;
2299
2300         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2301                 size += sizeof(u64);
2302
2303         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2304                 size += sizeof(u64);
2305
2306         if (event->attr.read_format & PERF_FORMAT_ID)
2307                 entry += sizeof(u64);
2308
2309         if (event->attr.read_format & PERF_FORMAT_GROUP) {
2310                 nr += event->group_leader->nr_siblings;
2311                 size += sizeof(u64);
2312         }
2313
2314         size += entry * nr;
2315
2316         return size;
2317 }
2318
2319 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2320 {
2321         struct perf_event *child;
2322         u64 total = 0;
2323
2324         *enabled = 0;
2325         *running = 0;
2326
2327         mutex_lock(&event->child_mutex);
2328         total += perf_event_read(event);
2329         *enabled += event->total_time_enabled +
2330                         atomic64_read(&event->child_total_time_enabled);
2331         *running += event->total_time_running +
2332                         atomic64_read(&event->child_total_time_running);
2333
2334         list_for_each_entry(child, &event->child_list, child_list) {
2335                 total += perf_event_read(child);
2336                 *enabled += child->total_time_enabled;
2337                 *running += child->total_time_running;
2338         }
2339         mutex_unlock(&event->child_mutex);
2340
2341         return total;
2342 }
2343 EXPORT_SYMBOL_GPL(perf_event_read_value);
2344
2345 static int perf_event_read_group(struct perf_event *event,
2346                                    u64 read_format, char __user *buf)
2347 {
2348         struct perf_event *leader = event->group_leader, *sub;
2349         int n = 0, size = 0, ret = -EFAULT;
2350         struct perf_event_context *ctx = leader->ctx;
2351         u64 values[5];
2352         u64 count, enabled, running;
2353
2354         mutex_lock(&ctx->mutex);
2355         count = perf_event_read_value(leader, &enabled, &running);
2356
2357         values[n++] = 1 + leader->nr_siblings;
2358         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2359                 values[n++] = enabled;
2360         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2361                 values[n++] = running;
2362         values[n++] = count;
2363         if (read_format & PERF_FORMAT_ID)
2364                 values[n++] = primary_event_id(leader);
2365
2366         size = n * sizeof(u64);
2367
2368         if (copy_to_user(buf, values, size))
2369                 goto unlock;
2370
2371         ret = size;
2372
2373         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2374                 n = 0;
2375
2376                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2377                 if (read_format & PERF_FORMAT_ID)
2378                         values[n++] = primary_event_id(sub);
2379
2380                 size = n * sizeof(u64);
2381
2382                 if (copy_to_user(buf + ret, values, size)) {
2383                         ret = -EFAULT;
2384                         goto unlock;
2385                 }
2386
2387                 ret += size;
2388         }
2389 unlock:
2390         mutex_unlock(&ctx->mutex);
2391
2392         return ret;
2393 }
2394
2395 static int perf_event_read_one(struct perf_event *event,
2396                                  u64 read_format, char __user *buf)
2397 {
2398         u64 enabled, running;
2399         u64 values[4];
2400         int n = 0;
2401
2402         values[n++] = perf_event_read_value(event, &enabled, &running);
2403         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2404                 values[n++] = enabled;
2405         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2406                 values[n++] = running;
2407         if (read_format & PERF_FORMAT_ID)
2408                 values[n++] = primary_event_id(event);
2409
2410         if (copy_to_user(buf, values, n * sizeof(u64)))
2411                 return -EFAULT;
2412
2413         return n * sizeof(u64);
2414 }
2415
2416 /*
2417  * Read the performance event - simple non blocking version for now
2418  */
2419 static ssize_t
2420 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2421 {
2422         u64 read_format = event->attr.read_format;
2423         int ret;
2424
2425         /*
2426          * Return end-of-file for a read on a event that is in
2427          * error state (i.e. because it was pinned but it couldn't be
2428          * scheduled on to the CPU at some point).
2429          */
2430         if (event->state == PERF_EVENT_STATE_ERROR)
2431                 return 0;
2432
2433         if (count < perf_event_read_size(event))
2434                 return -ENOSPC;
2435
2436         WARN_ON_ONCE(event->ctx->parent_ctx);
2437         if (read_format & PERF_FORMAT_GROUP)
2438                 ret = perf_event_read_group(event, read_format, buf);
2439         else
2440                 ret = perf_event_read_one(event, read_format, buf);
2441
2442         return ret;
2443 }
2444
2445 static ssize_t
2446 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2447 {
2448         struct perf_event *event = file->private_data;
2449
2450         return perf_read_hw(event, buf, count);
2451 }
2452
2453 static unsigned int perf_poll(struct file *file, poll_table *wait)
2454 {
2455         struct perf_event *event = file->private_data;
2456         struct perf_buffer *buffer;
2457         unsigned int events = POLL_HUP;
2458
2459         rcu_read_lock();
2460         buffer = rcu_dereference(event->buffer);
2461         if (buffer)
2462                 events = atomic_xchg(&buffer->poll, 0);
2463         rcu_read_unlock();
2464
2465         poll_wait(file, &event->waitq, wait);
2466
2467         return events;
2468 }
2469
2470 static void perf_event_reset(struct perf_event *event)
2471 {
2472         (void)perf_event_read(event);
2473         local64_set(&event->count, 0);
2474         perf_event_update_userpage(event);
2475 }
2476
2477 /*
2478  * Holding the top-level event's child_mutex means that any
2479  * descendant process that has inherited this event will block
2480  * in sync_child_event if it goes to exit, thus satisfying the
2481  * task existence requirements of perf_event_enable/disable.
2482  */
2483 static void perf_event_for_each_child(struct perf_event *event,
2484                                         void (*func)(struct perf_event *))
2485 {
2486         struct perf_event *child;
2487
2488         WARN_ON_ONCE(event->ctx->parent_ctx);
2489         mutex_lock(&event->child_mutex);
2490         func(event);
2491         list_for_each_entry(child, &event->child_list, child_list)
2492                 func(child);
2493         mutex_unlock(&event->child_mutex);
2494 }
2495
2496 static void perf_event_for_each(struct perf_event *event,
2497                                   void (*func)(struct perf_event *))
2498 {
2499         struct perf_event_context *ctx = event->ctx;
2500         struct perf_event *sibling;
2501
2502         WARN_ON_ONCE(ctx->parent_ctx);
2503         mutex_lock(&ctx->mutex);
2504         event = event->group_leader;
2505
2506         perf_event_for_each_child(event, func);
2507         func(event);
2508         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2509                 perf_event_for_each_child(event, func);
2510         mutex_unlock(&ctx->mutex);
2511 }
2512
2513 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2514 {
2515         struct perf_event_context *ctx = event->ctx;
2516         unsigned long size;
2517         int ret = 0;
2518         u64 value;
2519
2520         if (!event->attr.sample_period)
2521                 return -EINVAL;
2522
2523         size = copy_from_user(&value, arg, sizeof(value));
2524         if (size != sizeof(value))
2525                 return -EFAULT;
2526
2527         if (!value)
2528                 return -EINVAL;
2529
2530         raw_spin_lock_irq(&ctx->lock);
2531         if (event->attr.freq) {
2532                 if (value > sysctl_perf_event_sample_rate) {
2533                         ret = -EINVAL;
2534                         goto unlock;
2535                 }
2536
2537                 event->attr.sample_freq = value;
2538         } else {
2539                 event->attr.sample_period = value;
2540                 event->hw.sample_period = value;
2541         }
2542 unlock:
2543         raw_spin_unlock_irq(&ctx->lock);
2544
2545         return ret;
2546 }
2547
2548 static const struct file_operations perf_fops;
2549
2550 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2551 {
2552         struct file *file;
2553
2554         file = fget_light(fd, fput_needed);
2555         if (!file)
2556                 return ERR_PTR(-EBADF);
2557
2558         if (file->f_op != &perf_fops) {
2559                 fput_light(file, *fput_needed);
2560                 *fput_needed = 0;
2561                 return ERR_PTR(-EBADF);
2562         }
2563
2564         return file->private_data;
2565 }
2566
2567 static int perf_event_set_output(struct perf_event *event,
2568                                  struct perf_event *output_event);
2569 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2570
2571 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2572 {
2573         struct perf_event *event = file->private_data;
2574         void (*func)(struct perf_event *);
2575         u32 flags = arg;
2576
2577         switch (cmd) {
2578         case PERF_EVENT_IOC_ENABLE:
2579                 func = perf_event_enable;
2580                 break;
2581         case PERF_EVENT_IOC_DISABLE:
2582                 func = perf_event_disable;
2583                 break;
2584         case PERF_EVENT_IOC_RESET:
2585                 func = perf_event_reset;
2586                 break;
2587
2588         case PERF_EVENT_IOC_REFRESH:
2589                 return perf_event_refresh(event, arg);
2590
2591         case PERF_EVENT_IOC_PERIOD:
2592                 return perf_event_period(event, (u64 __user *)arg);
2593
2594         case PERF_EVENT_IOC_SET_OUTPUT:
2595         {
2596                 struct perf_event *output_event = NULL;
2597                 int fput_needed = 0;
2598                 int ret;
2599
2600                 if (arg != -1) {
2601                         output_event = perf_fget_light(arg, &fput_needed);
2602                         if (IS_ERR(output_event))
2603                                 return PTR_ERR(output_event);
2604                 }
2605
2606                 ret = perf_event_set_output(event, output_event);
2607                 if (output_event)
2608                         fput_light(output_event->filp, fput_needed);
2609
2610                 return ret;
2611         }
2612
2613         case PERF_EVENT_IOC_SET_FILTER:
2614                 return perf_event_set_filter(event, (void __user *)arg);
2615
2616         default:
2617                 return -ENOTTY;
2618         }
2619
2620         if (flags & PERF_IOC_FLAG_GROUP)
2621                 perf_event_for_each(event, func);
2622         else
2623                 perf_event_for_each_child(event, func);
2624
2625         return 0;
2626 }
2627
2628 int perf_event_task_enable(void)
2629 {
2630         struct perf_event *event;
2631
2632         mutex_lock(&current->perf_event_mutex);
2633         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2634                 perf_event_for_each_child(event, perf_event_enable);
2635         mutex_unlock(&current->perf_event_mutex);
2636
2637         return 0;
2638 }
2639
2640 int perf_event_task_disable(void)
2641 {
2642         struct perf_event *event;
2643
2644         mutex_lock(&current->perf_event_mutex);
2645         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2646                 perf_event_for_each_child(event, perf_event_disable);
2647         mutex_unlock(&current->perf_event_mutex);
2648
2649         return 0;
2650 }
2651
2652 #ifndef PERF_EVENT_INDEX_OFFSET
2653 # define PERF_EVENT_INDEX_OFFSET 0
2654 #endif
2655
2656 static int perf_event_index(struct perf_event *event)
2657 {
2658         if (event->hw.state & PERF_HES_STOPPED)
2659                 return 0;
2660
2661         if (event->state != PERF_EVENT_STATE_ACTIVE)
2662                 return 0;
2663
2664         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2665 }
2666
2667 /*
2668  * Callers need to ensure there can be no nesting of this function, otherwise
2669  * the seqlock logic goes bad. We can not serialize this because the arch
2670  * code calls this from NMI context.
2671  */
2672 void perf_event_update_userpage(struct perf_event *event)
2673 {
2674         struct perf_event_mmap_page *userpg;
2675         struct perf_buffer *buffer;
2676
2677         rcu_read_lock();
2678         buffer = rcu_dereference(event->buffer);
2679         if (!buffer)
2680                 goto unlock;
2681
2682         userpg = buffer->user_page;
2683
2684         /*
2685          * Disable preemption so as to not let the corresponding user-space
2686          * spin too long if we get preempted.
2687          */
2688         preempt_disable();
2689         ++userpg->lock;
2690         barrier();
2691         userpg->index = perf_event_index(event);
2692         userpg->offset = perf_event_count(event);
2693         if (event->state == PERF_EVENT_STATE_ACTIVE)
2694                 userpg->offset -= local64_read(&event->hw.prev_count);
2695
2696         userpg->time_enabled = event->total_time_enabled +
2697                         atomic64_read(&event->child_total_time_enabled);
2698
2699         userpg->time_running = event->total_time_running +
2700                         atomic64_read(&event->child_total_time_running);
2701
2702         barrier();
2703         ++userpg->lock;
2704         preempt_enable();
2705 unlock:
2706         rcu_read_unlock();
2707 }
2708
2709 static unsigned long perf_data_size(struct perf_buffer *buffer);
2710
2711 static void
2712 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2713 {
2714         long max_size = perf_data_size(buffer);
2715
2716         if (watermark)
2717                 buffer->watermark = min(max_size, watermark);
2718
2719         if (!buffer->watermark)
2720                 buffer->watermark = max_size / 2;
2721
2722         if (flags & PERF_BUFFER_WRITABLE)
2723                 buffer->writable = 1;
2724
2725         atomic_set(&buffer->refcount, 1);
2726 }
2727
2728 #ifndef CONFIG_PERF_USE_VMALLOC
2729
2730 /*
2731  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2732  */
2733
2734 static struct page *
2735 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2736 {
2737         if (pgoff > buffer->nr_pages)
2738                 return NULL;
2739
2740         if (pgoff == 0)
2741                 return virt_to_page(buffer->user_page);
2742
2743         return virt_to_page(buffer->data_pages[pgoff - 1]);
2744 }
2745
2746 static void *perf_mmap_alloc_page(int cpu)
2747 {
2748         struct page *page;
2749         int node;
2750
2751         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2752         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2753         if (!page)
2754                 return NULL;
2755
2756         return page_address(page);
2757 }
2758
2759 static struct perf_buffer *
2760 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2761 {
2762         struct perf_buffer *buffer;
2763         unsigned long size;
2764         int i;
2765
2766         size = sizeof(struct perf_buffer);
2767         size += nr_pages * sizeof(void *);
2768
2769         buffer = kzalloc(size, GFP_KERNEL);
2770         if (!buffer)
2771                 goto fail;
2772
2773         buffer->user_page = perf_mmap_alloc_page(cpu);
2774         if (!buffer->user_page)
2775                 goto fail_user_page;
2776
2777         for (i = 0; i < nr_pages; i++) {
2778                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2779                 if (!buffer->data_pages[i])
2780                         goto fail_data_pages;
2781         }
2782
2783         buffer->nr_pages = nr_pages;
2784
2785         perf_buffer_init(buffer, watermark, flags);
2786
2787         return buffer;
2788
2789 fail_data_pages:
2790         for (i--; i >= 0; i--)
2791                 free_page((unsigned long)buffer->data_pages[i]);
2792
2793         free_page((unsigned long)buffer->user_page);
2794
2795 fail_user_page:
2796         kfree(buffer);
2797
2798 fail:
2799         return NULL;
2800 }
2801
2802 static void perf_mmap_free_page(unsigned long addr)
2803 {
2804         struct page *page = virt_to_page((void *)addr);
2805
2806         page->mapping = NULL;
2807         __free_page(page);
2808 }
2809
2810 static void perf_buffer_free(struct perf_buffer *buffer)
2811 {
2812         int i;
2813
2814         perf_mmap_free_page((unsigned long)buffer->user_page);
2815         for (i = 0; i < buffer->nr_pages; i++)
2816                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2817         kfree(buffer);
2818 }
2819
2820 static inline int page_order(struct perf_buffer *buffer)
2821 {
2822         return 0;
2823 }
2824
2825 #else
2826
2827 /*
2828  * Back perf_mmap() with vmalloc memory.
2829  *
2830  * Required for architectures that have d-cache aliasing issues.
2831  */
2832
2833 static inline int page_order(struct perf_buffer *buffer)
2834 {
2835         return buffer->page_order;
2836 }
2837
2838 static struct page *
2839 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2840 {
2841         if (pgoff > (1UL << page_order(buffer)))
2842                 return NULL;
2843
2844         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2845 }
2846
2847 static void perf_mmap_unmark_page(void *addr)
2848 {
2849         struct page *page = vmalloc_to_page(addr);
2850
2851         page->mapping = NULL;
2852 }
2853
2854 static void perf_buffer_free_work(struct work_struct *work)
2855 {
2856         struct perf_buffer *buffer;
2857         void *base;
2858         int i, nr;
2859
2860         buffer = container_of(work, struct perf_buffer, work);
2861         nr = 1 << page_order(buffer);
2862
2863         base = buffer->user_page;
2864         for (i = 0; i < nr + 1; i++)
2865                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2866
2867         vfree(base);
2868         kfree(buffer);
2869 }
2870
2871 static void perf_buffer_free(struct perf_buffer *buffer)
2872 {
2873         schedule_work(&buffer->work);
2874 }
2875
2876 static struct perf_buffer *
2877 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2878 {
2879         struct perf_buffer *buffer;
2880         unsigned long size;
2881         void *all_buf;
2882
2883         size = sizeof(struct perf_buffer);
2884         size += sizeof(void *);
2885
2886         buffer = kzalloc(size, GFP_KERNEL);
2887         if (!buffer)
2888                 goto fail;
2889
2890         INIT_WORK(&buffer->work, perf_buffer_free_work);
2891
2892         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2893         if (!all_buf)
2894                 goto fail_all_buf;
2895
2896         buffer->user_page = all_buf;
2897         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2898         buffer->page_order = ilog2(nr_pages);
2899         buffer->nr_pages = 1;
2900
2901         perf_buffer_init(buffer, watermark, flags);
2902
2903         return buffer;
2904
2905 fail_all_buf:
2906         kfree(buffer);
2907
2908 fail:
2909         return NULL;
2910 }
2911
2912 #endif
2913
2914 static unsigned long perf_data_size(struct perf_buffer *buffer)
2915 {
2916         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2917 }
2918
2919 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2920 {
2921         struct perf_event *event = vma->vm_file->private_data;
2922         struct perf_buffer *buffer;
2923         int ret = VM_FAULT_SIGBUS;
2924
2925         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2926                 if (vmf->pgoff == 0)
2927                         ret = 0;
2928                 return ret;
2929         }
2930
2931         rcu_read_lock();
2932         buffer = rcu_dereference(event->buffer);
2933         if (!buffer)
2934                 goto unlock;
2935
2936         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2937                 goto unlock;
2938
2939         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2940         if (!vmf->page)
2941                 goto unlock;
2942
2943         get_page(vmf->page);
2944         vmf->page->mapping = vma->vm_file->f_mapping;
2945         vmf->page->index   = vmf->pgoff;
2946
2947         ret = 0;
2948 unlock:
2949         rcu_read_unlock();
2950
2951         return ret;
2952 }
2953
2954 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2955 {
2956         struct perf_buffer *buffer;
2957
2958         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2959         perf_buffer_free(buffer);
2960 }
2961
2962 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2963 {
2964         struct perf_buffer *buffer;
2965
2966         rcu_read_lock();
2967         buffer = rcu_dereference(event->buffer);
2968         if (buffer) {
2969                 if (!atomic_inc_not_zero(&buffer->refcount))
2970                         buffer = NULL;
2971         }
2972         rcu_read_unlock();
2973
2974         return buffer;
2975 }
2976
2977 static void perf_buffer_put(struct perf_buffer *buffer)
2978 {
2979         if (!atomic_dec_and_test(&buffer->refcount))
2980                 return;
2981
2982         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2983 }
2984
2985 static void perf_mmap_open(struct vm_area_struct *vma)
2986 {
2987         struct perf_event *event = vma->vm_file->private_data;
2988
2989         atomic_inc(&event->mmap_count);
2990 }
2991
2992 static void perf_mmap_close(struct vm_area_struct *vma)
2993 {
2994         struct perf_event *event = vma->vm_file->private_data;
2995
2996         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2997                 unsigned long size = perf_data_size(event->buffer);
2998                 struct user_struct *user = event->mmap_user;
2999                 struct perf_buffer *buffer = event->buffer;
3000
3001                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3002                 vma->vm_mm->locked_vm -= event->mmap_locked;
3003                 rcu_assign_pointer(event->buffer, NULL);
3004                 mutex_unlock(&event->mmap_mutex);
3005
3006                 perf_buffer_put(buffer);
3007                 free_uid(user);
3008         }
3009 }
3010
3011 static const struct vm_operations_struct perf_mmap_vmops = {
3012         .open           = perf_mmap_open,
3013         .close          = perf_mmap_close,
3014         .fault          = perf_mmap_fault,
3015         .page_mkwrite   = perf_mmap_fault,
3016 };
3017
3018 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3019 {
3020         struct perf_event *event = file->private_data;
3021         unsigned long user_locked, user_lock_limit;
3022         struct user_struct *user = current_user();
3023         unsigned long locked, lock_limit;
3024         struct perf_buffer *buffer;
3025         unsigned long vma_size;
3026         unsigned long nr_pages;
3027         long user_extra, extra;
3028         int ret = 0, flags = 0;
3029
3030         /*
3031          * Don't allow mmap() of inherited per-task counters. This would
3032          * create a performance issue due to all children writing to the
3033          * same buffer.
3034          */
3035         if (event->cpu == -1 && event->attr.inherit)
3036                 return -EINVAL;
3037
3038         if (!(vma->vm_flags & VM_SHARED))
3039                 return -EINVAL;
3040
3041         vma_size = vma->vm_end - vma->vm_start;
3042         nr_pages = (vma_size / PAGE_SIZE) - 1;
3043
3044         /*
3045          * If we have buffer pages ensure they're a power-of-two number, so we
3046          * can do bitmasks instead of modulo.
3047          */
3048         if (nr_pages != 0 && !is_power_of_2(nr_pages))
3049                 return -EINVAL;
3050
3051         if (vma_size != PAGE_SIZE * (1 + nr_pages))
3052                 return -EINVAL;
3053
3054         if (vma->vm_pgoff != 0)
3055                 return -EINVAL;
3056
3057         WARN_ON_ONCE(event->ctx->parent_ctx);
3058         mutex_lock(&event->mmap_mutex);
3059         if (event->buffer) {
3060                 if (event->buffer->nr_pages == nr_pages)
3061                         atomic_inc(&event->buffer->refcount);
3062                 else
3063                         ret = -EINVAL;
3064                 goto unlock;
3065         }
3066
3067         user_extra = nr_pages + 1;
3068         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3069
3070         /*
3071          * Increase the limit linearly with more CPUs:
3072          */
3073         user_lock_limit *= num_online_cpus();
3074
3075         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3076
3077         extra = 0;
3078         if (user_locked > user_lock_limit)
3079                 extra = user_locked - user_lock_limit;
3080
3081         lock_limit = rlimit(RLIMIT_MEMLOCK);
3082         lock_limit >>= PAGE_SHIFT;
3083         locked = vma->vm_mm->locked_vm + extra;
3084
3085         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3086                 !capable(CAP_IPC_LOCK)) {
3087                 ret = -EPERM;
3088                 goto unlock;
3089         }
3090
3091         WARN_ON(event->buffer);
3092
3093         if (vma->vm_flags & VM_WRITE)
3094                 flags |= PERF_BUFFER_WRITABLE;
3095
3096         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3097                                    event->cpu, flags);
3098         if (!buffer) {
3099                 ret = -ENOMEM;
3100                 goto unlock;
3101         }
3102         rcu_assign_pointer(event->buffer, buffer);
3103
3104         atomic_long_add(user_extra, &user->locked_vm);
3105         event->mmap_locked = extra;
3106         event->mmap_user = get_current_user();
3107         vma->vm_mm->locked_vm += event->mmap_locked;
3108
3109 unlock:
3110         if (!ret)
3111                 atomic_inc(&event->mmap_count);
3112         mutex_unlock(&event->mmap_mutex);
3113
3114         vma->vm_flags |= VM_RESERVED;
3115         vma->vm_ops = &perf_mmap_vmops;
3116
3117         return ret;
3118 }
3119
3120 static int perf_fasync(int fd, struct file *filp, int on)
3121 {
3122         struct inode *inode = filp->f_path.dentry->d_inode;
3123         struct perf_event *event = filp->private_data;
3124         int retval;
3125
3126         mutex_lock(&inode->i_mutex);
3127         retval = fasync_helper(fd, filp, on, &event->fasync);
3128         mutex_unlock(&inode->i_mutex);
3129
3130         if (retval < 0)
3131                 return retval;
3132
3133         return 0;
3134 }
3135
3136 static const struct file_operations perf_fops = {
3137         .llseek                 = no_llseek,
3138         .release                = perf_release,
3139         .read                   = perf_read,
3140         .poll                   = perf_poll,
3141         .unlocked_ioctl         = perf_ioctl,
3142         .compat_ioctl           = perf_ioctl,
3143         .mmap                   = perf_mmap,
3144         .fasync                 = perf_fasync,
3145 };
3146
3147 /*
3148  * Perf event wakeup
3149  *
3150  * If there's data, ensure we set the poll() state and publish everything
3151  * to user-space before waking everybody up.
3152  */
3153
3154 void perf_event_wakeup(struct perf_event *event)
3155 {
3156         wake_up_all(&event->waitq);
3157
3158         if (event->pending_kill) {
3159                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3160                 event->pending_kill = 0;
3161         }
3162 }
3163
3164 static void perf_pending_event(struct irq_work *entry)
3165 {
3166         struct perf_event *event = container_of(entry,
3167                         struct perf_event, pending);
3168
3169         if (event->pending_disable) {
3170                 event->pending_disable = 0;
3171                 __perf_event_disable(event);
3172         }
3173
3174         if (event->pending_wakeup) {
3175                 event->pending_wakeup = 0;
3176                 perf_event_wakeup(event);
3177         }
3178 }
3179
3180 /*
3181  * We assume there is only KVM supporting the callbacks.
3182  * Later on, we might change it to a list if there is
3183  * another virtualization implementation supporting the callbacks.
3184  */
3185 struct perf_guest_info_callbacks *perf_guest_cbs;
3186
3187 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3188 {
3189         perf_guest_cbs = cbs;
3190         return 0;
3191 }
3192 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3193
3194 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3195 {
3196         perf_guest_cbs = NULL;
3197         return 0;
3198 }
3199 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3200
3201 /*
3202  * Output
3203  */
3204 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3205                               unsigned long offset, unsigned long head)
3206 {
3207         unsigned long mask;
3208
3209         if (!buffer->writable)
3210                 return true;
3211
3212         mask = perf_data_size(buffer) - 1;
3213
3214         offset = (offset - tail) & mask;
3215         head   = (head   - tail) & mask;
3216
3217         if ((int)(head - offset) < 0)
3218                 return false;
3219
3220         return true;
3221 }
3222
3223 static void perf_output_wakeup(struct perf_output_handle *handle)
3224 {
3225         atomic_set(&handle->buffer->poll, POLL_IN);
3226
3227         if (handle->nmi) {
3228                 handle->event->pending_wakeup = 1;
3229                 irq_work_queue(&handle->event->pending);
3230         } else
3231                 perf_event_wakeup(handle->event);
3232 }
3233
3234 /*
3235  * We need to ensure a later event_id doesn't publish a head when a former
3236  * event isn't done writing. However since we need to deal with NMIs we
3237  * cannot fully serialize things.
3238  *
3239  * We only publish the head (and generate a wakeup) when the outer-most
3240  * event completes.
3241  */
3242 static void perf_output_get_handle(struct perf_output_handle *handle)
3243 {
3244         struct perf_buffer *buffer = handle->buffer;
3245
3246         preempt_disable();
3247         local_inc(&buffer->nest);
3248         handle->wakeup = local_read(&buffer->wakeup);
3249 }
3250
3251 static void perf_output_put_handle(struct perf_output_handle *handle)
3252 {
3253         struct perf_buffer *buffer = handle->buffer;
3254         unsigned long head;
3255
3256 again:
3257         head = local_read(&buffer->head);
3258
3259         /*
3260          * IRQ/NMI can happen here, which means we can miss a head update.
3261          */
3262
3263         if (!local_dec_and_test(&buffer->nest))
3264                 goto out;
3265
3266         /*
3267          * Publish the known good head. Rely on the full barrier implied
3268          * by atomic_dec_and_test() order the buffer->head read and this
3269          * write.
3270          */
3271         buffer->user_page->data_head = head;
3272
3273         /*
3274          * Now check if we missed an update, rely on the (compiler)
3275          * barrier in atomic_dec_and_test() to re-read buffer->head.
3276          */
3277         if (unlikely(head != local_read(&buffer->head))) {
3278                 local_inc(&buffer->nest);
3279                 goto again;
3280         }
3281
3282         if (handle->wakeup != local_read(&buffer->wakeup))
3283                 perf_output_wakeup(handle);
3284
3285 out:
3286         preempt_enable();
3287 }
3288
3289 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3290                       const void *buf, unsigned int len)
3291 {
3292         do {
3293                 unsigned long size = min_t(unsigned long, handle->size, len);
3294
3295                 memcpy(handle->addr, buf, size);
3296
3297                 len -= size;
3298                 handle->addr += size;
3299                 buf += size;
3300                 handle->size -= size;
3301                 if (!handle->size) {
3302                         struct perf_buffer *buffer = handle->buffer;
3303
3304                         handle->page++;
3305                         handle->page &= buffer->nr_pages - 1;
3306                         handle->addr = buffer->data_pages[handle->page];
3307                         handle->size = PAGE_SIZE << page_order(buffer);
3308                 }
3309         } while (len);
3310 }
3311
3312 int perf_output_begin(struct perf_output_handle *handle,
3313                       struct perf_event *event, unsigned int size,
3314                       int nmi, int sample)
3315 {
3316         struct perf_buffer *buffer;
3317         unsigned long tail, offset, head;
3318         int have_lost;
3319         struct {
3320                 struct perf_event_header header;
3321                 u64                      id;
3322                 u64                      lost;
3323         } lost_event;
3324
3325         rcu_read_lock();
3326         /*
3327          * For inherited events we send all the output towards the parent.
3328          */
3329         if (event->parent)
3330                 event = event->parent;
3331
3332         buffer = rcu_dereference(event->buffer);
3333         if (!buffer)
3334                 goto out;
3335
3336         handle->buffer  = buffer;
3337         handle->event   = event;
3338         handle->nmi     = nmi;
3339         handle->sample  = sample;
3340
3341         if (!buffer->nr_pages)
3342                 goto out;
3343
3344         have_lost = local_read(&buffer->lost);
3345         if (have_lost)
3346                 size += sizeof(lost_event);
3347
3348         perf_output_get_handle(handle);
3349
3350         do {
3351                 /*
3352                  * Userspace could choose to issue a mb() before updating the
3353                  * tail pointer. So that all reads will be completed before the
3354                  * write is issued.
3355                  */
3356                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3357                 smp_rmb();
3358                 offset = head = local_read(&buffer->head);
3359                 head += size;
3360                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3361                         goto fail;
3362         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3363
3364         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3365                 local_add(buffer->watermark, &buffer->wakeup);
3366
3367         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3368         handle->page &= buffer->nr_pages - 1;
3369         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3370         handle->addr = buffer->data_pages[handle->page];
3371         handle->addr += handle->size;
3372         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3373
3374         if (have_lost) {
3375                 lost_event.header.type = PERF_RECORD_LOST;
3376                 lost_event.header.misc = 0;
3377                 lost_event.header.size = sizeof(lost_event);
3378                 lost_event.id          = event->id;
3379                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3380
3381                 perf_output_put(handle, lost_event);
3382         }
3383
3384         return 0;
3385
3386 fail:
3387         local_inc(&buffer->lost);
3388         perf_output_put_handle(handle);
3389 out:
3390         rcu_read_unlock();
3391
3392         return -ENOSPC;
3393 }
3394
3395 void perf_output_end(struct perf_output_handle *handle)
3396 {
3397         struct perf_event *event = handle->event;
3398         struct perf_buffer *buffer = handle->buffer;
3399
3400         int wakeup_events = event->attr.wakeup_events;
3401
3402         if (handle->sample && wakeup_events) {
3403                 int events = local_inc_return(&buffer->events);
3404                 if (events >= wakeup_events) {
3405                         local_sub(wakeup_events, &buffer->events);
3406                         local_inc(&buffer->wakeup);
3407                 }
3408         }
3409
3410         perf_output_put_handle(handle);
3411         rcu_read_unlock();
3412 }
3413
3414 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3415 {
3416         /*
3417          * only top level events have the pid namespace they were created in
3418          */
3419         if (event->parent)
3420                 event = event->parent;
3421
3422         return task_tgid_nr_ns(p, event->ns);
3423 }
3424
3425 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3426 {
3427         /*
3428          * only top level events have the pid namespace they were created in
3429          */
3430         if (event->parent)
3431                 event = event->parent;
3432
3433         return task_pid_nr_ns(p, event->ns);
3434 }
3435
3436 static void perf_output_read_one(struct perf_output_handle *handle,
3437                                  struct perf_event *event)
3438 {
3439         u64 read_format = event->attr.read_format;
3440         u64 values[4];
3441         int n = 0;
3442
3443         values[n++] = perf_event_count(event);
3444         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3445                 values[n++] = event->total_time_enabled +
3446                         atomic64_read(&event->child_total_time_enabled);
3447         }
3448         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3449                 values[n++] = event->total_time_running +
3450                         atomic64_read(&event->child_total_time_running);
3451         }
3452         if (read_format & PERF_FORMAT_ID)
3453                 values[n++] = primary_event_id(event);
3454
3455         perf_output_copy(handle, values, n * sizeof(u64));
3456 }
3457
3458 /*
3459  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3460  */
3461 static void perf_output_read_group(struct perf_output_handle *handle,
3462                             struct perf_event *event)
3463 {
3464         struct perf_event *leader = event->group_leader, *sub;
3465         u64 read_format = event->attr.read_format;
3466         u64 values[5];
3467         int n = 0;
3468
3469         values[n++] = 1 + leader->nr_siblings;
3470
3471         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3472                 values[n++] = leader->total_time_enabled;
3473
3474         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3475                 values[n++] = leader->total_time_running;
3476
3477         if (leader != event)
3478                 leader->pmu->read(leader);
3479
3480         values[n++] = perf_event_count(leader);
3481         if (read_format & PERF_FORMAT_ID)
3482                 values[n++] = primary_event_id(leader);
3483
3484         perf_output_copy(handle, values, n * sizeof(u64));
3485
3486         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3487                 n = 0;
3488
3489                 if (sub != event)
3490                         sub->pmu->read(sub);
3491
3492                 values[n++] = perf_event_count(sub);
3493                 if (read_format & PERF_FORMAT_ID)
3494                         values[n++] = primary_event_id(sub);
3495
3496                 perf_output_copy(handle, values, n * sizeof(u64));
3497         }
3498 }
3499
3500 static void perf_output_read(struct perf_output_handle *handle,
3501                              struct perf_event *event)
3502 {
3503         if (event->attr.read_format & PERF_FORMAT_GROUP)
3504                 perf_output_read_group(handle, event);
3505         else
3506                 perf_output_read_one(handle, event);
3507 }
3508
3509 void perf_output_sample(struct perf_output_handle *handle,
3510                         struct perf_event_header *header,
3511                         struct perf_sample_data *data,
3512                         struct perf_event *event)
3513 {
3514         u64 sample_type = data->type;
3515
3516         perf_output_put(handle, *header);
3517
3518         if (sample_type & PERF_SAMPLE_IP)
3519                 perf_output_put(handle, data->ip);
3520
3521         if (sample_type & PERF_SAMPLE_TID)
3522                 perf_output_put(handle, data->tid_entry);
3523
3524         if (sample_type & PERF_SAMPLE_TIME)
3525                 perf_output_put(handle, data->time);
3526
3527         if (sample_type & PERF_SAMPLE_ADDR)
3528                 perf_output_put(handle, data->addr);
3529
3530         if (sample_type & PERF_SAMPLE_ID)
3531                 perf_output_put(handle, data->id);
3532
3533         if (sample_type & PERF_SAMPLE_STREAM_ID)
3534                 perf_output_put(handle, data->stream_id);
3535
3536         if (sample_type & PERF_SAMPLE_CPU)
3537                 perf_output_put(handle, data->cpu_entry);
3538
3539         if (sample_type & PERF_SAMPLE_PERIOD)
3540                 perf_output_put(handle, data->period);
3541
3542         if (sample_type & PERF_SAMPLE_READ)
3543                 perf_output_read(handle, event);
3544
3545         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3546                 if (data->callchain) {
3547                         int size = 1;
3548
3549                         if (data->callchain)
3550                                 size += data->callchain->nr;
3551
3552                         size *= sizeof(u64);
3553
3554                         perf_output_copy(handle, data->callchain, size);
3555                 } else {
3556                         u64 nr = 0;
3557                         perf_output_put(handle, nr);
3558                 }
3559         }
3560
3561         if (sample_type & PERF_SAMPLE_RAW) {
3562                 if (data->raw) {
3563                         perf_output_put(handle, data->raw->size);
3564                         perf_output_copy(handle, data->raw->data,
3565                                          data->raw->size);
3566                 } else {
3567                         struct {
3568                                 u32     size;
3569                                 u32     data;
3570                         } raw = {
3571                                 .size = sizeof(u32),
3572                                 .data = 0,
3573                         };
3574                         perf_output_put(handle, raw);
3575                 }
3576         }
3577 }
3578
3579 void perf_prepare_sample(struct perf_event_header *header,
3580                          struct perf_sample_data *data,
3581                          struct perf_event *event,
3582                          struct pt_regs *regs)
3583 {
3584         u64 sample_type = event->attr.sample_type;
3585
3586         data->type = sample_type;
3587
3588         header->type = PERF_RECORD_SAMPLE;
3589         header->size = sizeof(*header);
3590
3591         header->misc = 0;
3592         header->misc |= perf_misc_flags(regs);
3593
3594         if (sample_type & PERF_SAMPLE_IP) {
3595                 data->ip = perf_instruction_pointer(regs);
3596
3597                 header->size += sizeof(data->ip);
3598         }
3599
3600         if (sample_type & PERF_SAMPLE_TID) {
3601                 /* namespace issues */
3602                 data->tid_entry.pid = perf_event_pid(event, current);
3603                 data->tid_entry.tid = perf_event_tid(event, current);
3604
3605                 header->size += sizeof(data->tid_entry);
3606         }
3607
3608         if (sample_type & PERF_SAMPLE_TIME) {
3609                 data->time = perf_clock();
3610
3611                 header->size += sizeof(data->time);
3612         }
3613
3614         if (sample_type & PERF_SAMPLE_ADDR)
3615                 header->size += sizeof(data->addr);
3616
3617         if (sample_type & PERF_SAMPLE_ID) {
3618                 data->id = primary_event_id(event);
3619
3620                 header->size += sizeof(data->id);
3621         }
3622
3623         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3624                 data->stream_id = event->id;
3625
3626                 header->size += sizeof(data->stream_id);
3627         }
3628
3629         if (sample_type & PERF_SAMPLE_CPU) {
3630                 data->cpu_entry.cpu             = raw_smp_processor_id();
3631                 data->cpu_entry.reserved        = 0;
3632
3633                 header->size += sizeof(data->cpu_entry);
3634         }
3635
3636         if (sample_type & PERF_SAMPLE_PERIOD)
3637                 header->size += sizeof(data->period);
3638
3639         if (sample_type & PERF_SAMPLE_READ)
3640                 header->size += perf_event_read_size(event);
3641
3642         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3643                 int size = 1;
3644
3645                 data->callchain = perf_callchain(regs);
3646
3647                 if (data->callchain)
3648                         size += data->callchain->nr;
3649
3650                 header->size += size * sizeof(u64);
3651         }
3652
3653         if (sample_type & PERF_SAMPLE_RAW) {
3654                 int size = sizeof(u32);
3655
3656                 if (data->raw)
3657                         size += data->raw->size;
3658                 else
3659                         size += sizeof(u32);
3660
3661                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3662                 header->size += size;
3663         }
3664 }
3665
3666 static void perf_event_output(struct perf_event *event, int nmi,
3667                                 struct perf_sample_data *data,
3668                                 struct pt_regs *regs)
3669 {
3670         struct perf_output_handle handle;
3671         struct perf_event_header header;
3672
3673         /* protect the callchain buffers */
3674         rcu_read_lock();
3675
3676         perf_prepare_sample(&header, data, event, regs);
3677
3678         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3679                 goto exit;
3680
3681         perf_output_sample(&handle, &header, data, event);
3682
3683         perf_output_end(&handle);
3684
3685 exit:
3686         rcu_read_unlock();
3687 }
3688
3689 /*
3690  * read event_id
3691  */
3692
3693 struct perf_read_event {
3694         struct perf_event_header        header;
3695
3696         u32                             pid;
3697         u32                             tid;
3698 };
3699
3700 static void
3701 perf_event_read_event(struct perf_event *event,
3702                         struct task_struct *task)
3703 {
3704         struct perf_output_handle handle;
3705         struct perf_read_event read_event = {
3706                 .header = {
3707                         .type = PERF_RECORD_READ,
3708                         .misc = 0,
3709                         .size = sizeof(read_event) + perf_event_read_size(event),
3710                 },
3711                 .pid = perf_event_pid(event, task),
3712                 .tid = perf_event_tid(event, task),
3713         };
3714         int ret;
3715
3716         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3717         if (ret)
3718                 return;
3719
3720         perf_output_put(&handle, read_event);
3721         perf_output_read(&handle, event);
3722
3723         perf_output_end(&handle);
3724 }
3725
3726 /*
3727  * task tracking -- fork/exit
3728  *
3729  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3730  */
3731
3732 struct perf_task_event {
3733         struct task_struct              *task;
3734         struct perf_event_context       *task_ctx;
3735
3736         struct {
3737                 struct perf_event_header        header;
3738
3739                 u32                             pid;
3740                 u32                             ppid;
3741                 u32                             tid;
3742                 u32                             ptid;
3743                 u64                             time;
3744         } event_id;
3745 };
3746
3747 static void perf_event_task_output(struct perf_event *event,
3748                                      struct perf_task_event *task_event)
3749 {
3750         struct perf_output_handle handle;
3751         struct task_struct *task = task_event->task;
3752         int size, ret;
3753
3754         size  = task_event->event_id.header.size;
3755         ret = perf_output_begin(&handle, event, size, 0, 0);
3756
3757         if (ret)
3758                 return;
3759
3760         task_event->event_id.pid = perf_event_pid(event, task);
3761         task_event->event_id.ppid = perf_event_pid(event, current);
3762
3763         task_event->event_id.tid = perf_event_tid(event, task);
3764         task_event->event_id.ptid = perf_event_tid(event, current);
3765
3766         perf_output_put(&handle, task_event->event_id);
3767
3768         perf_output_end(&handle);
3769 }
3770
3771 static int perf_event_task_match(struct perf_event *event)
3772 {
3773         if (event->state < PERF_EVENT_STATE_INACTIVE)
3774                 return 0;
3775
3776         if (event->cpu != -1 && event->cpu != smp_processor_id())
3777                 return 0;
3778
3779         if (event->attr.comm || event->attr.mmap ||
3780             event->attr.mmap_data || event->attr.task)
3781                 return 1;
3782
3783         return 0;
3784 }
3785
3786 static void perf_event_task_ctx(struct perf_event_context *ctx,
3787                                   struct perf_task_event *task_event)
3788 {
3789         struct perf_event *event;
3790
3791         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3792                 if (perf_event_task_match(event))
3793                         perf_event_task_output(event, task_event);
3794         }
3795 }
3796
3797 static void perf_event_task_event(struct perf_task_event *task_event)
3798 {
3799         struct perf_cpu_context *cpuctx;
3800         struct perf_event_context *ctx;
3801         struct pmu *pmu;
3802         int ctxn;
3803
3804         rcu_read_lock();
3805         list_for_each_entry_rcu(pmu, &pmus, entry) {
3806                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3807                 perf_event_task_ctx(&cpuctx->ctx, task_event);
3808
3809                 ctx = task_event->task_ctx;
3810                 if (!ctx) {
3811                         ctxn = pmu->task_ctx_nr;
3812                         if (ctxn < 0)
3813                                 goto next;
3814                         ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3815                 }
3816                 if (ctx)
3817                         perf_event_task_ctx(ctx, task_event);
3818 next:
3819                 put_cpu_ptr(pmu->pmu_cpu_context);
3820         }
3821         rcu_read_unlock();
3822 }
3823
3824 static void perf_event_task(struct task_struct *task,
3825                               struct perf_event_context *task_ctx,
3826                               int new)
3827 {
3828         struct perf_task_event task_event;
3829
3830         if (!atomic_read(&nr_comm_events) &&
3831             !atomic_read(&nr_mmap_events) &&
3832             !atomic_read(&nr_task_events))
3833                 return;
3834
3835         task_event = (struct perf_task_event){
3836                 .task     = task,
3837                 .task_ctx = task_ctx,
3838                 .event_id    = {
3839                         .header = {
3840                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3841                                 .misc = 0,
3842                                 .size = sizeof(task_event.event_id),
3843                         },
3844                         /* .pid  */
3845                         /* .ppid */
3846                         /* .tid  */
3847                         /* .ptid */
3848                         .time = perf_clock(),
3849                 },
3850         };
3851
3852         perf_event_task_event(&task_event);
3853 }
3854
3855 void perf_event_fork(struct task_struct *task)
3856 {
3857         perf_event_task(task, NULL, 1);
3858 }
3859
3860 /*
3861  * comm tracking
3862  */
3863
3864 struct perf_comm_event {
3865         struct task_struct      *task;
3866         char                    *comm;
3867         int                     comm_size;
3868
3869         struct {
3870                 struct perf_event_header        header;
3871
3872                 u32                             pid;
3873                 u32                             tid;
3874         } event_id;
3875 };
3876
3877 static void perf_event_comm_output(struct perf_event *event,
3878                                      struct perf_comm_event *comm_event)
3879 {
3880         struct perf_output_handle handle;
3881         int size = comm_event->event_id.header.size;
3882         int ret = perf_output_begin(&handle, event, size, 0, 0);
3883
3884         if (ret)
3885                 return;
3886
3887         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3888         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3889
3890         perf_output_put(&handle, comm_event->event_id);
3891         perf_output_copy(&handle, comm_event->comm,
3892                                    comm_event->comm_size);
3893         perf_output_end(&handle);
3894 }
3895
3896 static int perf_event_comm_match(struct perf_event *event)
3897 {
3898         if (event->state < PERF_EVENT_STATE_INACTIVE)
3899                 return 0;
3900
3901         if (event->cpu != -1 && event->cpu != smp_processor_id())
3902                 return 0;
3903
3904         if (event->attr.comm)
3905                 return 1;
3906
3907         return 0;
3908 }
3909
3910 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3911                                   struct perf_comm_event *comm_event)
3912 {
3913         struct perf_event *event;
3914
3915         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3916                 if (perf_event_comm_match(event))
3917                         perf_event_comm_output(event, comm_event);
3918         }
3919 }
3920
3921 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3922 {
3923         struct perf_cpu_context *cpuctx;
3924         struct perf_event_context *ctx;
3925         char comm[TASK_COMM_LEN];
3926         unsigned int size;
3927         struct pmu *pmu;
3928         int ctxn;
3929
3930         memset(comm, 0, sizeof(comm));
3931         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3932         size = ALIGN(strlen(comm)+1, sizeof(u64));
3933
3934         comm_event->comm = comm;
3935         comm_event->comm_size = size;
3936
3937         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3938
3939         rcu_read_lock();
3940         list_for_each_entry_rcu(pmu, &pmus, entry) {
3941                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3942                 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3943
3944                 ctxn = pmu->task_ctx_nr;
3945                 if (ctxn < 0)
3946                         goto next;
3947
3948                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3949                 if (ctx)
3950                         perf_event_comm_ctx(ctx, comm_event);
3951 next:
3952                 put_cpu_ptr(pmu->pmu_cpu_context);
3953         }
3954         rcu_read_unlock();
3955 }
3956
3957 void perf_event_comm(struct task_struct *task)
3958 {
3959         struct perf_comm_event comm_event;
3960         struct perf_event_context *ctx;
3961         int ctxn;
3962
3963         for_each_task_context_nr(ctxn) {
3964                 ctx = task->perf_event_ctxp[ctxn];
3965                 if (!ctx)
3966                         continue;
3967
3968                 perf_event_enable_on_exec(ctx);
3969         }
3970
3971         if (!atomic_read(&nr_comm_events))
3972                 return;
3973
3974         comm_event = (struct perf_comm_event){
3975                 .task   = task,
3976                 /* .comm      */
3977                 /* .comm_size */
3978                 .event_id  = {
3979                         .header = {
3980                                 .type = PERF_RECORD_COMM,
3981                                 .misc = 0,
3982                                 /* .size */
3983                         },
3984                         /* .pid */
3985                         /* .tid */
3986                 },
3987         };
3988
3989         perf_event_comm_event(&comm_event);
3990 }
3991
3992 /*
3993  * mmap tracking
3994  */
3995
3996 struct perf_mmap_event {
3997         struct vm_area_struct   *vma;
3998
3999         const char              *file_name;
4000         int                     file_size;
4001
4002         struct {
4003                 struct perf_event_header        header;
4004
4005                 u32                             pid;
4006                 u32                             tid;
4007                 u64                             start;
4008                 u64                             len;
4009                 u64                             pgoff;
4010         } event_id;
4011 };
4012
4013 static void perf_event_mmap_output(struct perf_event *event,
4014                                      struct perf_mmap_event *mmap_event)
4015 {
4016         struct perf_output_handle handle;
4017         int size = mmap_event->event_id.header.size;
4018         int ret = perf_output_begin(&handle, event, size, 0, 0);
4019
4020         if (ret)
4021                 return;
4022
4023         mmap_event->event_id.pid = perf_event_pid(event, current);
4024         mmap_event->event_id.tid = perf_event_tid(event, current);
4025
4026         perf_output_put(&handle, mmap_event->event_id);
4027         perf_output_copy(&handle, mmap_event->file_name,
4028                                    mmap_event->file_size);
4029         perf_output_end(&handle);
4030 }
4031
4032 static int perf_event_mmap_match(struct perf_event *event,
4033                                    struct perf_mmap_event *mmap_event,
4034                                    int executable)
4035 {
4036         if (event->state < PERF_EVENT_STATE_INACTIVE)
4037                 return 0;
4038
4039         if (event->cpu != -1 && event->cpu != smp_processor_id())
4040                 return 0;
4041
4042         if ((!executable && event->attr.mmap_data) ||
4043             (executable && event->attr.mmap))
4044                 return 1;
4045
4046         return 0;
4047 }
4048
4049 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4050                                   struct perf_mmap_event *mmap_event,
4051                                   int executable)
4052 {
4053         struct perf_event *event;
4054
4055         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4056                 if (perf_event_mmap_match(event, mmap_event, executable))
4057                         perf_event_mmap_output(event, mmap_event);
4058         }
4059 }
4060
4061 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4062 {
4063         struct perf_cpu_context *cpuctx;
4064         struct perf_event_context *ctx;
4065         struct vm_area_struct *vma = mmap_event->vma;
4066         struct file *file = vma->vm_file;
4067         unsigned int size;
4068         char tmp[16];
4069         char *buf = NULL;
4070         const char *name;
4071         struct pmu *pmu;
4072         int ctxn;
4073
4074         memset(tmp, 0, sizeof(tmp));
4075
4076         if (file) {
4077                 /*
4078                  * d_path works from the end of the buffer backwards, so we
4079                  * need to add enough zero bytes after the string to handle
4080                  * the 64bit alignment we do later.
4081                  */
4082                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4083                 if (!buf) {
4084                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4085                         goto got_name;
4086                 }
4087                 name = d_path(&file->f_path, buf, PATH_MAX);
4088                 if (IS_ERR(name)) {
4089                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4090                         goto got_name;
4091                 }
4092         } else {
4093                 if (arch_vma_name(mmap_event->vma)) {
4094                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4095                                        sizeof(tmp));
4096                         goto got_name;
4097                 }
4098
4099                 if (!vma->vm_mm) {
4100                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4101                         goto got_name;
4102                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4103                                 vma->vm_end >= vma->vm_mm->brk) {
4104                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4105                         goto got_name;
4106                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4107                                 vma->vm_end >= vma->vm_mm->start_stack) {
4108                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4109                         goto got_name;
4110                 }
4111
4112                 name = strncpy(tmp, "//anon", sizeof(tmp));
4113                 goto got_name;
4114         }
4115
4116 got_name:
4117         size = ALIGN(strlen(name)+1, sizeof(u64));
4118
4119         mmap_event->file_name = name;
4120         mmap_event->file_size = size;
4121
4122         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4123
4124         rcu_read_lock();
4125         list_for_each_entry_rcu(pmu, &pmus, entry) {
4126                 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4127                 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4128                                         vma->vm_flags & VM_EXEC);
4129
4130                 ctxn = pmu->task_ctx_nr;
4131                 if (ctxn < 0)
4132                         goto next;
4133
4134                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4135                 if (ctx) {
4136                         perf_event_mmap_ctx(ctx, mmap_event,
4137                                         vma->vm_flags & VM_EXEC);
4138                 }
4139 next:
4140                 put_cpu_ptr(pmu->pmu_cpu_context);
4141         }
4142         rcu_read_unlock();
4143
4144         kfree(buf);
4145 }
4146
4147 void perf_event_mmap(struct vm_area_struct *vma)
4148 {
4149         struct perf_mmap_event mmap_event;
4150
4151         if (!atomic_read(&nr_mmap_events))
4152                 return;
4153
4154         mmap_event = (struct perf_mmap_event){
4155                 .vma    = vma,
4156                 /* .file_name */
4157                 /* .file_size */
4158                 .event_id  = {
4159                         .header = {
4160                                 .type = PERF_RECORD_MMAP,
4161                                 .misc = PERF_RECORD_MISC_USER,
4162                                 /* .size */
4163                         },
4164                         /* .pid */
4165                         /* .tid */
4166                         .start  = vma->vm_start,
4167                         .len    = vma->vm_end - vma->vm_start,
4168                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4169                 },
4170         };
4171
4172         perf_event_mmap_event(&mmap_event);
4173 }
4174
4175 /*
4176  * IRQ throttle logging
4177  */
4178
4179 static void perf_log_throttle(struct perf_event *event, int enable)
4180 {
4181         struct perf_output_handle handle;
4182         int ret;
4183
4184         struct {
4185                 struct perf_event_header        header;
4186                 u64                             time;
4187                 u64                             id;
4188                 u64                             stream_id;
4189         } throttle_event = {
4190                 .header = {
4191                         .type = PERF_RECORD_THROTTLE,
4192                         .misc = 0,
4193                         .size = sizeof(throttle_event),
4194                 },
4195                 .time           = perf_clock(),
4196                 .id             = primary_event_id(event),
4197                 .stream_id      = event->id,
4198         };
4199
4200         if (enable)
4201                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4202
4203         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4204         if (ret)
4205                 return;
4206
4207         perf_output_put(&handle, throttle_event);
4208         perf_output_end(&handle);
4209 }
4210
4211 /*
4212  * Generic event overflow handling, sampling.
4213  */
4214
4215 static int __perf_event_overflow(struct perf_event *event, int nmi,
4216                                    int throttle, struct perf_sample_data *data,
4217                                    struct pt_regs *regs)
4218 {
4219         int events = atomic_read(&event->event_limit);
4220         struct hw_perf_event *hwc = &event->hw;
4221         int ret = 0;
4222
4223         if (!throttle) {
4224                 hwc->interrupts++;
4225         } else {
4226                 if (hwc->interrupts != MAX_INTERRUPTS) {
4227                         hwc->interrupts++;
4228                         if (HZ * hwc->interrupts >
4229                                         (u64)sysctl_perf_event_sample_rate) {
4230                                 hwc->interrupts = MAX_INTERRUPTS;
4231                                 perf_log_throttle(event, 0);
4232                                 ret = 1;
4233                         }
4234                 } else {
4235                         /*
4236                          * Keep re-disabling events even though on the previous
4237                          * pass we disabled it - just in case we raced with a
4238                          * sched-in and the event got enabled again:
4239                          */
4240                         ret = 1;
4241                 }
4242         }
4243
4244         if (event->attr.freq) {
4245                 u64 now = perf_clock();
4246                 s64 delta = now - hwc->freq_time_stamp;
4247
4248                 hwc->freq_time_stamp = now;
4249
4250                 if (delta > 0 && delta < 2*TICK_NSEC)
4251                         perf_adjust_period(event, delta, hwc->last_period);
4252         }
4253
4254         /*
4255          * XXX event_limit might not quite work as expected on inherited
4256          * events
4257          */
4258
4259         event->pending_kill = POLL_IN;
4260         if (events && atomic_dec_and_test(&event->event_limit)) {
4261                 ret = 1;
4262                 event->pending_kill = POLL_HUP;
4263                 if (nmi) {
4264                         event->pending_disable = 1;
4265                         irq_work_queue(&event->pending);
4266                 } else
4267                         perf_event_disable(event);
4268         }
4269
4270         if (event->overflow_handler)
4271                 event->overflow_handler(event, nmi, data, regs);
4272         else
4273                 perf_event_output(event, nmi, data, regs);
4274
4275         return ret;
4276 }
4277
4278 int perf_event_overflow(struct perf_event *event, int nmi,
4279                           struct perf_sample_data *data,
4280                           struct pt_regs *regs)
4281 {
4282         return __perf_event_overflow(event, nmi, 1, data, regs);
4283 }
4284
4285 /*
4286  * Generic software event infrastructure
4287  */
4288
4289 struct swevent_htable {
4290         struct swevent_hlist            *swevent_hlist;
4291         struct mutex                    hlist_mutex;
4292         int                             hlist_refcount;
4293
4294         /* Recursion avoidance in each contexts */
4295         int                             recursion[PERF_NR_CONTEXTS];
4296 };
4297
4298 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4299
4300 /*
4301  * We directly increment event->count and keep a second value in
4302  * event->hw.period_left to count intervals. This period event
4303  * is kept in the range [-sample_period, 0] so that we can use the
4304  * sign as trigger.
4305  */
4306
4307 static u64 perf_swevent_set_period(struct perf_event *event)
4308 {
4309         struct hw_perf_event *hwc = &event->hw;
4310         u64 period = hwc->last_period;
4311         u64 nr, offset;
4312         s64 old, val;
4313
4314         hwc->last_period = hwc->sample_period;
4315
4316 again:
4317         old = val = local64_read(&hwc->period_left);
4318         if (val < 0)
4319                 return 0;
4320
4321         nr = div64_u64(period + val, period);
4322         offset = nr * period;
4323         val -= offset;
4324         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4325                 goto again;
4326
4327         return nr;
4328 }
4329
4330 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4331                                     int nmi, struct perf_sample_data *data,
4332                                     struct pt_regs *regs)
4333 {
4334         struct hw_perf_event *hwc = &event->hw;
4335         int throttle = 0;
4336
4337         data->period = event->hw.last_period;
4338         if (!overflow)
4339                 overflow = perf_swevent_set_period(event);
4340
4341         if (hwc->interrupts == MAX_INTERRUPTS)
4342                 return;
4343
4344         for (; overflow; overflow--) {
4345                 if (__perf_event_overflow(event, nmi, throttle,
4346                                             data, regs)) {
4347                         /*
4348                          * We inhibit the overflow from happening when
4349                          * hwc->interrupts == MAX_INTERRUPTS.
4350                          */
4351                         break;
4352                 }
4353                 throttle = 1;
4354         }
4355 }
4356
4357 static void perf_swevent_event(struct perf_event *event, u64 nr,
4358                                int nmi, struct perf_sample_data *data,
4359                                struct pt_regs *regs)
4360 {
4361         struct hw_perf_event *hwc = &event->hw;
4362
4363         local64_add(nr, &event->count);
4364
4365         if (!regs)
4366                 return;
4367
4368         if (!hwc->sample_period)
4369                 return;
4370
4371         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4372                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4373
4374         if (local64_add_negative(nr, &hwc->period_left))
4375                 return;
4376
4377         perf_swevent_overflow(event, 0, nmi, data, regs);
4378 }
4379
4380 static int perf_exclude_event(struct perf_event *event,
4381                               struct pt_regs *regs)
4382 {
4383         if (event->hw.state & PERF_HES_STOPPED)
4384                 return 0;
4385
4386         if (regs) {
4387                 if (event->attr.exclude_user && user_mode(regs))
4388                         return 1;
4389
4390                 if (event->attr.exclude_kernel && !user_mode(regs))
4391                         return 1;
4392         }
4393
4394         return 0;
4395 }
4396
4397 static int perf_swevent_match(struct perf_event *event,
4398                                 enum perf_type_id type,
4399                                 u32 event_id,
4400                                 struct perf_sample_data *data,
4401                                 struct pt_regs *regs)
4402 {
4403         if (event->attr.type != type)
4404                 return 0;
4405
4406         if (event->attr.config != event_id)
4407                 return 0;
4408
4409         if (perf_exclude_event(event, regs))
4410                 return 0;
4411
4412         return 1;
4413 }
4414
4415 static inline u64 swevent_hash(u64 type, u32 event_id)
4416 {
4417         u64 val = event_id | (type << 32);
4418
4419         return hash_64(val, SWEVENT_HLIST_BITS);
4420 }
4421
4422 static inline struct hlist_head *
4423 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4424 {
4425         u64 hash = swevent_hash(type, event_id);
4426
4427         return &hlist->heads[hash];
4428 }
4429
4430 /* For the read side: events when they trigger */
4431 static inline struct hlist_head *
4432 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4433 {
4434         struct swevent_hlist *hlist;
4435
4436         hlist = rcu_dereference(swhash->swevent_hlist);
4437         if (!hlist)
4438                 return NULL;
4439
4440         return __find_swevent_head(hlist, type, event_id);
4441 }
4442
4443 /* For the event head insertion and removal in the hlist */
4444 static inline struct hlist_head *
4445 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4446 {
4447         struct swevent_hlist *hlist;
4448         u32 event_id = event->attr.config;
4449         u64 type = event->attr.type;
4450
4451         /*
4452          * Event scheduling is always serialized against hlist allocation
4453          * and release. Which makes the protected version suitable here.
4454          * The context lock guarantees that.
4455          */
4456         hlist = rcu_dereference_protected(swhash->swevent_hlist,
4457                                           lockdep_is_held(&event->ctx->lock));
4458         if (!hlist)
4459                 return NULL;
4460
4461         return __find_swevent_head(hlist, type, event_id);
4462 }
4463
4464 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4465                                     u64 nr, int nmi,
4466                                     struct perf_sample_data *data,
4467                                     struct pt_regs *regs)
4468 {
4469         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4470         struct perf_event *event;
4471         struct hlist_node *node;
4472         struct hlist_head *head;
4473
4474         rcu_read_lock();
4475         head = find_swevent_head_rcu(swhash, type, event_id);
4476         if (!head)
4477                 goto end;
4478
4479         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4480                 if (perf_swevent_match(event, type, event_id, data, regs))
4481                         perf_swevent_event(event, nr, nmi, data, regs);
4482         }
4483 end:
4484         rcu_read_unlock();
4485 }
4486
4487 int perf_swevent_get_recursion_context(void)
4488 {
4489         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4490
4491         return get_recursion_context(swhash->recursion);
4492 }
4493 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4494
4495 void inline perf_swevent_put_recursion_context(int rctx)
4496 {
4497         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4498
4499         put_recursion_context(swhash->recursion, rctx);
4500 }
4501
4502 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4503                             struct pt_regs *regs, u64 addr)
4504 {
4505         struct perf_sample_data data;
4506         int rctx;
4507
4508         preempt_disable_notrace();
4509         rctx = perf_swevent_get_recursion_context();
4510         if (rctx < 0)
4511                 return;
4512
4513         perf_sample_data_init(&data, addr);
4514
4515         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4516
4517         perf_swevent_put_recursion_context(rctx);
4518         preempt_enable_notrace();
4519 }
4520
4521 static void perf_swevent_read(struct perf_event *event)
4522 {
4523 }
4524
4525 static int perf_swevent_add(struct perf_event *event, int flags)
4526 {
4527         struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4528         struct hw_perf_event *hwc = &event->hw;
4529         struct hlist_head *head;
4530
4531         if (hwc->sample_period) {
4532                 hwc->last_period = hwc->sample_period;
4533                 perf_swevent_set_period(event);
4534         }
4535
4536         hwc->state = !(flags & PERF_EF_START);
4537
4538         head = find_swevent_head(swhash, event);
4539         if (WARN_ON_ONCE(!head))
4540                 return -EINVAL;
4541
4542         hlist_add_head_rcu(&event->hlist_entry, head);
4543
4544         return 0;
4545 }
4546
4547 static void perf_swevent_del(struct perf_event *event, int flags)
4548 {
4549         hlist_del_rcu(&event->hlist_entry);
4550 }
4551
4552 static void perf_swevent_start(struct perf_event *event, int flags)
4553 {
4554         event->hw.state = 0;
4555 }
4556
4557 static void perf_swevent_stop(struct perf_event *event, int flags)
4558 {
4559         event->hw.state = PERF_HES_STOPPED;
4560 }
4561
4562 /* Deref the hlist from the update side */
4563 static inline struct swevent_hlist *
4564 swevent_hlist_deref(struct swevent_htable *swhash)
4565 {
4566         return rcu_dereference_protected(swhash->swevent_hlist,
4567                                          lockdep_is_held(&swhash->hlist_mutex));
4568 }
4569
4570 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4571 {
4572         struct swevent_hlist *hlist;
4573
4574         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4575         kfree(hlist);
4576 }
4577
4578 static void swevent_hlist_release(struct swevent_htable *swhash)
4579 {
4580         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4581
4582         if (!hlist)
4583                 return;
4584
4585         rcu_assign_pointer(swhash->swevent_hlist, NULL);
4586         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4587 }
4588
4589 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4590 {
4591         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4592
4593         mutex_lock(&swhash->hlist_mutex);
4594
4595         if (!--swhash->hlist_refcount)
4596                 swevent_hlist_release(swhash);
4597
4598         mutex_unlock(&swhash->hlist_mutex);
4599 }
4600
4601 static void swevent_hlist_put(struct perf_event *event)
4602 {
4603         int cpu;
4604
4605         if (event->cpu != -1) {
4606                 swevent_hlist_put_cpu(event, event->cpu);
4607                 return;
4608         }
4609
4610         for_each_possible_cpu(cpu)
4611                 swevent_hlist_put_cpu(event, cpu);
4612 }
4613
4614 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4615 {
4616         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4617         int err = 0;
4618
4619         mutex_lock(&swhash->hlist_mutex);
4620
4621         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4622                 struct swevent_hlist *hlist;
4623
4624                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4625                 if (!hlist) {
4626                         err = -ENOMEM;
4627                         goto exit;
4628                 }
4629                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4630         }
4631         swhash->hlist_refcount++;
4632 exit:
4633         mutex_unlock(&swhash->hlist_mutex);
4634
4635         return err;
4636 }
4637
4638 static int swevent_hlist_get(struct perf_event *event)
4639 {
4640         int err;
4641         int cpu, failed_cpu;
4642
4643         if (event->cpu != -1)
4644                 return swevent_hlist_get_cpu(event, event->cpu);
4645
4646         get_online_cpus();
4647         for_each_possible_cpu(cpu) {
4648                 err = swevent_hlist_get_cpu(event, cpu);
4649                 if (err) {
4650                         failed_cpu = cpu;
4651                         goto fail;
4652                 }
4653         }
4654         put_online_cpus();
4655
4656         return 0;
4657 fail:
4658         for_each_possible_cpu(cpu) {
4659                 if (cpu == failed_cpu)
4660                         break;
4661                 swevent_hlist_put_cpu(event, cpu);
4662         }
4663
4664         put_online_cpus();
4665         return err;
4666 }
4667
4668 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4669
4670 static void sw_perf_event_destroy(struct perf_event *event)
4671 {
4672         u64 event_id = event->attr.config;
4673
4674         WARN_ON(event->parent);
4675
4676         atomic_dec(&perf_swevent_enabled[event_id]);
4677         swevent_hlist_put(event);
4678 }
4679
4680 static int perf_swevent_init(struct perf_event *event)
4681 {
4682         int event_id = event->attr.config;
4683
4684         if (event->attr.type != PERF_TYPE_SOFTWARE)
4685                 return -ENOENT;
4686
4687         switch (event_id) {
4688         case PERF_COUNT_SW_CPU_CLOCK:
4689         case PERF_COUNT_SW_TASK_CLOCK:
4690                 return -ENOENT;
4691
4692         default:
4693                 break;
4694         }
4695
4696         if (event_id > PERF_COUNT_SW_MAX)
4697                 return -ENOENT;
4698
4699         if (!event->parent) {
4700                 int err;
4701
4702                 err = swevent_hlist_get(event);
4703                 if (err)
4704                         return err;
4705
4706                 atomic_inc(&perf_swevent_enabled[event_id]);
4707                 event->destroy = sw_perf_event_destroy;
4708         }
4709
4710         return 0;
4711 }
4712
4713 static struct pmu perf_swevent = {
4714         .task_ctx_nr    = perf_sw_context,
4715
4716         .event_init     = perf_swevent_init,
4717         .add            = perf_swevent_add,
4718         .del            = perf_swevent_del,
4719         .start          = perf_swevent_start,
4720         .stop           = perf_swevent_stop,
4721         .read           = perf_swevent_read,
4722 };
4723
4724 #ifdef CONFIG_EVENT_TRACING
4725
4726 static int perf_tp_filter_match(struct perf_event *event,
4727                                 struct perf_sample_data *data)
4728 {
4729         void *record = data->raw->data;
4730
4731         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4732                 return 1;
4733         return 0;
4734 }
4735
4736 static int perf_tp_event_match(struct perf_event *event,
4737                                 struct perf_sample_data *data,
4738                                 struct pt_regs *regs)
4739 {
4740         /*
4741          * All tracepoints are from kernel-space.
4742          */
4743         if (event->attr.exclude_kernel)
4744                 return 0;
4745
4746         if (!perf_tp_filter_match(event, data))
4747                 return 0;
4748
4749         return 1;
4750 }
4751
4752 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4753                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4754 {
4755         struct perf_sample_data data;
4756         struct perf_event *event;
4757         struct hlist_node *node;
4758
4759         struct perf_raw_record raw = {
4760                 .size = entry_size,
4761                 .data = record,
4762         };
4763
4764         perf_sample_data_init(&data, addr);
4765         data.raw = &raw;
4766
4767         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4768                 if (perf_tp_event_match(event, &data, regs))
4769                         perf_swevent_event(event, count, 1, &data, regs);
4770         }
4771
4772         perf_swevent_put_recursion_context(rctx);
4773 }
4774 EXPORT_SYMBOL_GPL(perf_tp_event);
4775
4776 static void tp_perf_event_destroy(struct perf_event *event)
4777 {
4778         perf_trace_destroy(event);
4779 }
4780
4781 static int perf_tp_event_init(struct perf_event *event)
4782 {
4783         int err;
4784
4785         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4786                 return -ENOENT;
4787
4788         /*
4789          * Raw tracepoint data is a severe data leak, only allow root to
4790          * have these.
4791          */
4792         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4793                         perf_paranoid_tracepoint_raw() &&
4794                         !capable(CAP_SYS_ADMIN))
4795                 return -EPERM;
4796
4797         err = perf_trace_init(event);
4798         if (err)
4799                 return err;
4800
4801         event->destroy = tp_perf_event_destroy;
4802
4803         return 0;
4804 }
4805
4806 static struct pmu perf_tracepoint = {
4807         .task_ctx_nr    = perf_sw_context,
4808
4809         .event_init     = perf_tp_event_init,
4810         .add            = perf_trace_add,
4811         .del            = perf_trace_del,
4812         .start          = perf_swevent_start,
4813         .stop           = perf_swevent_stop,
4814         .read           = perf_swevent_read,
4815 };
4816
4817 static inline void perf_tp_register(void)
4818 {
4819         perf_pmu_register(&perf_tracepoint);
4820 }
4821
4822 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4823 {
4824         char *filter_str;
4825         int ret;
4826
4827         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4828                 return -EINVAL;
4829
4830         filter_str = strndup_user(arg, PAGE_SIZE);
4831         if (IS_ERR(filter_str))
4832                 return PTR_ERR(filter_str);
4833
4834         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4835
4836         kfree(filter_str);
4837         return ret;
4838 }
4839
4840 static void perf_event_free_filter(struct perf_event *event)
4841 {
4842         ftrace_profile_free_filter(event);
4843 }
4844
4845 #else
4846
4847 static inline void perf_tp_register(void)
4848 {
4849 }
4850
4851 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4852 {
4853         return -ENOENT;
4854 }
4855
4856 static void perf_event_free_filter(struct perf_event *event)
4857 {
4858 }
4859
4860 #endif /* CONFIG_EVENT_TRACING */
4861
4862 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4863 void perf_bp_event(struct perf_event *bp, void *data)
4864 {
4865         struct perf_sample_data sample;
4866         struct pt_regs *regs = data;
4867
4868         perf_sample_data_init(&sample, bp->attr.bp_addr);
4869
4870         if (!bp->hw.state && !perf_exclude_event(bp, regs))
4871                 perf_swevent_event(bp, 1, 1, &sample, regs);
4872 }
4873 #endif
4874
4875 /*
4876  * hrtimer based swevent callback
4877  */
4878
4879 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4880 {
4881         enum hrtimer_restart ret = HRTIMER_RESTART;
4882         struct perf_sample_data data;
4883         struct pt_regs *regs;
4884         struct perf_event *event;
4885         u64 period;
4886
4887         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4888         event->pmu->read(event);
4889
4890         perf_sample_data_init(&data, 0);
4891         data.period = event->hw.last_period;
4892         regs = get_irq_regs();
4893
4894         if (regs && !perf_exclude_event(event, regs)) {
4895                 if (!(event->attr.exclude_idle && current->pid == 0))
4896                         if (perf_event_overflow(event, 0, &data, regs))
4897                                 ret = HRTIMER_NORESTART;
4898         }
4899
4900         period = max_t(u64, 10000, event->hw.sample_period);
4901         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4902
4903         return ret;
4904 }
4905
4906 static void perf_swevent_start_hrtimer(struct perf_event *event)
4907 {
4908         struct hw_perf_event *hwc = &event->hw;
4909
4910         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4911         hwc->hrtimer.function = perf_swevent_hrtimer;
4912         if (hwc->sample_period) {
4913                 s64 period = local64_read(&hwc->period_left);
4914
4915                 if (period) {
4916                         if (period < 0)
4917                                 period = 10000;
4918
4919                         local64_set(&hwc->period_left, 0);
4920                 } else {
4921                         period = max_t(u64, 10000, hwc->sample_period);
4922                 }
4923                 __hrtimer_start_range_ns(&hwc->hrtimer,
4924                                 ns_to_ktime(period), 0,
4925                                 HRTIMER_MODE_REL_PINNED, 0);
4926         }
4927 }
4928
4929 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4930 {
4931         struct hw_perf_event *hwc = &event->hw;
4932
4933         if (hwc->sample_period) {
4934                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4935                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4936
4937                 hrtimer_cancel(&hwc->hrtimer);
4938         }
4939 }
4940
4941 /*
4942  * Software event: cpu wall time clock
4943  */
4944
4945 static void cpu_clock_event_update(struct perf_event *event)
4946 {
4947         s64 prev;
4948         u64 now;
4949
4950         now = local_clock();
4951         prev = local64_xchg(&event->hw.prev_count, now);
4952         local64_add(now - prev, &event->count);
4953 }
4954
4955 static void cpu_clock_event_start(struct perf_event *event, int flags)
4956 {
4957         local64_set(&event->hw.prev_count, local_clock());
4958         perf_swevent_start_hrtimer(event);
4959 }
4960
4961 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4962 {
4963         perf_swevent_cancel_hrtimer(event);
4964         cpu_clock_event_update(event);
4965 }
4966
4967 static int cpu_clock_event_add(struct perf_event *event, int flags)
4968 {
4969         if (flags & PERF_EF_START)
4970                 cpu_clock_event_start(event, flags);
4971
4972         return 0;
4973 }
4974
4975 static void cpu_clock_event_del(struct perf_event *event, int flags)
4976 {
4977         cpu_clock_event_stop(event, flags);
4978 }
4979
4980 static void cpu_clock_event_read(struct perf_event *event)
4981 {
4982         cpu_clock_event_update(event);
4983 }
4984
4985 static int cpu_clock_event_init(struct perf_event *event)
4986 {
4987         if (event->attr.type != PERF_TYPE_SOFTWARE)
4988                 return -ENOENT;
4989
4990         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4991                 return -ENOENT;
4992
4993         return 0;
4994 }
4995
4996 static struct pmu perf_cpu_clock = {
4997         .task_ctx_nr    = perf_sw_context,
4998
4999         .event_init     = cpu_clock_event_init,
5000         .add            = cpu_clock_event_add,
5001         .del            = cpu_clock_event_del,
5002         .start          = cpu_clock_event_start,
5003         .stop           = cpu_clock_event_stop,
5004         .read           = cpu_clock_event_read,
5005 };
5006
5007 /*
5008  * Software event: task time clock
5009  */
5010
5011 static void task_clock_event_update(struct perf_event *event, u64 now)
5012 {
5013         u64 prev;
5014         s64 delta;
5015
5016         prev = local64_xchg(&event->hw.prev_count, now);
5017         delta = now - prev;
5018         local64_add(delta, &event->count);
5019 }
5020
5021 static void task_clock_event_start(struct perf_event *event, int flags)
5022 {
5023         local64_set(&event->hw.prev_count, event->ctx->time);
5024         perf_swevent_start_hrtimer(event);
5025 }
5026
5027 static void task_clock_event_stop(struct perf_event *event, int flags)
5028 {
5029         perf_swevent_cancel_hrtimer(event);
5030         task_clock_event_update(event, event->ctx->time);
5031 }
5032
5033 static int task_clock_event_add(struct perf_event *event, int flags)
5034 {
5035         if (flags & PERF_EF_START)
5036                 task_clock_event_start(event, flags);
5037
5038         return 0;
5039 }
5040
5041 static void task_clock_event_del(struct perf_event *event, int flags)
5042 {
5043         task_clock_event_stop(event, PERF_EF_UPDATE);
5044 }
5045
5046 static void task_clock_event_read(struct perf_event *event)
5047 {
5048         u64 time;
5049
5050         if (!in_nmi()) {
5051                 update_context_time(event->ctx);
5052                 time = event->ctx->time;
5053         } else {
5054                 u64 now = perf_clock();
5055                 u64 delta = now - event->ctx->timestamp;
5056                 time = event->ctx->time + delta;
5057         }
5058
5059         task_clock_event_update(event, time);
5060 }
5061
5062 static int task_clock_event_init(struct perf_event *event)
5063 {
5064         if (event->attr.type != PERF_TYPE_SOFTWARE)
5065                 return -ENOENT;
5066
5067         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5068                 return -ENOENT;
5069
5070         return 0;
5071 }
5072
5073 static struct pmu perf_task_clock = {
5074         .task_ctx_nr    = perf_sw_context,
5075
5076         .event_init     = task_clock_event_init,
5077         .add            = task_clock_event_add,
5078         .del            = task_clock_event_del,
5079         .start          = task_clock_event_start,
5080         .stop           = task_clock_event_stop,
5081         .read           = task_clock_event_read,
5082 };
5083
5084 static void perf_pmu_nop_void(struct pmu *pmu)
5085 {
5086 }
5087
5088 static int perf_pmu_nop_int(struct pmu *pmu)
5089 {
5090         return 0;
5091 }
5092
5093 static void perf_pmu_start_txn(struct pmu *pmu)
5094 {
5095         perf_pmu_disable(pmu);
5096 }
5097
5098 static int perf_pmu_commit_txn(struct pmu *pmu)
5099 {
5100         perf_pmu_enable(pmu);
5101         return 0;
5102 }
5103
5104 static void perf_pmu_cancel_txn(struct pmu *pmu)
5105 {
5106         perf_pmu_enable(pmu);
5107 }
5108
5109 /*
5110  * Ensures all contexts with the same task_ctx_nr have the same
5111  * pmu_cpu_context too.
5112  */
5113 static void *find_pmu_context(int ctxn)
5114 {
5115         struct pmu *pmu;
5116
5117         if (ctxn < 0)
5118                 return NULL;
5119
5120         list_for_each_entry(pmu, &pmus, entry) {
5121                 if (pmu->task_ctx_nr == ctxn)
5122                         return pmu->pmu_cpu_context;
5123         }
5124
5125         return NULL;
5126 }
5127
5128 static void free_pmu_context(void * __percpu cpu_context)
5129 {
5130         struct pmu *pmu;
5131
5132         mutex_lock(&pmus_lock);
5133         /*
5134          * Like a real lame refcount.
5135          */
5136         list_for_each_entry(pmu, &pmus, entry) {
5137                 if (pmu->pmu_cpu_context == cpu_context)
5138                         goto out;
5139         }
5140
5141         free_percpu(cpu_context);
5142 out:
5143         mutex_unlock(&pmus_lock);
5144 }
5145
5146 int perf_pmu_register(struct pmu *pmu)
5147 {
5148         int cpu, ret;
5149
5150         mutex_lock(&pmus_lock);
5151         ret = -ENOMEM;
5152         pmu->pmu_disable_count = alloc_percpu(int);
5153         if (!pmu->pmu_disable_count)
5154                 goto unlock;
5155
5156         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5157         if (pmu->pmu_cpu_context)
5158                 goto got_cpu_context;
5159
5160         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5161         if (!pmu->pmu_cpu_context)
5162                 goto free_pdc;
5163
5164         for_each_possible_cpu(cpu) {
5165                 struct perf_cpu_context *cpuctx;
5166
5167                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5168                 __perf_event_init_context(&cpuctx->ctx);
5169                 cpuctx->ctx.type = cpu_context;
5170                 cpuctx->ctx.pmu = pmu;
5171                 cpuctx->jiffies_interval = 1;
5172                 INIT_LIST_HEAD(&cpuctx->rotation_list);
5173         }
5174
5175 got_cpu_context:
5176         if (!pmu->start_txn) {
5177                 if (pmu->pmu_enable) {
5178                         /*
5179                          * If we have pmu_enable/pmu_disable calls, install
5180                          * transaction stubs that use that to try and batch
5181                          * hardware accesses.
5182                          */
5183                         pmu->start_txn  = perf_pmu_start_txn;
5184                         pmu->commit_txn = perf_pmu_commit_txn;
5185                         pmu->cancel_txn = perf_pmu_cancel_txn;
5186                 } else {
5187                         pmu->start_txn  = perf_pmu_nop_void;
5188                         pmu->commit_txn = perf_pmu_nop_int;
5189                         pmu->cancel_txn = perf_pmu_nop_void;
5190                 }
5191         }
5192
5193         if (!pmu->pmu_enable) {
5194                 pmu->pmu_enable  = perf_pmu_nop_void;
5195                 pmu->pmu_disable = perf_pmu_nop_void;
5196         }
5197
5198         list_add_rcu(&pmu->entry, &pmus);
5199         ret = 0;
5200 unlock:
5201         mutex_unlock(&pmus_lock);
5202
5203         return ret;
5204
5205 free_pdc:
5206         free_percpu(pmu->pmu_disable_count);
5207         goto unlock;
5208 }
5209
5210 void perf_pmu_unregister(struct pmu *pmu)
5211 {
5212         mutex_lock(&pmus_lock);
5213         list_del_rcu(&pmu->entry);
5214         mutex_unlock(&pmus_lock);
5215
5216         /*
5217          * We dereference the pmu list under both SRCU and regular RCU, so
5218          * synchronize against both of those.
5219          */
5220         synchronize_srcu(&pmus_srcu);
5221         synchronize_rcu();
5222
5223         free_percpu(pmu->pmu_disable_count);
5224         free_pmu_context(pmu->pmu_cpu_context);
5225 }
5226
5227 struct pmu *perf_init_event(struct perf_event *event)
5228 {
5229         struct pmu *pmu = NULL;
5230         int idx;
5231
5232         idx = srcu_read_lock(&pmus_srcu);
5233         list_for_each_entry_rcu(pmu, &pmus, entry) {
5234                 int ret = pmu->event_init(event);
5235                 if (!ret)
5236                         goto unlock;
5237
5238                 if (ret != -ENOENT) {
5239                         pmu = ERR_PTR(ret);
5240                         goto unlock;
5241                 }
5242         }
5243         pmu = ERR_PTR(-ENOENT);
5244 unlock:
5245         srcu_read_unlock(&pmus_srcu, idx);
5246
5247         return pmu;
5248 }
5249
5250 /*
5251  * Allocate and initialize a event structure
5252  */
5253 static struct perf_event *
5254 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5255                    struct perf_event *group_leader,
5256                    struct perf_event *parent_event,
5257                    perf_overflow_handler_t overflow_handler)
5258 {
5259         struct pmu *pmu;
5260         struct perf_event *event;
5261         struct hw_perf_event *hwc;
5262         long err;
5263
5264         event = kzalloc(sizeof(*event), GFP_KERNEL);
5265         if (!event)
5266                 return ERR_PTR(-ENOMEM);
5267
5268         /*
5269          * Single events are their own group leaders, with an
5270          * empty sibling list:
5271          */
5272         if (!group_leader)
5273                 group_leader = event;
5274
5275         mutex_init(&event->child_mutex);
5276         INIT_LIST_HEAD(&event->child_list);
5277
5278         INIT_LIST_HEAD(&event->group_entry);
5279         INIT_LIST_HEAD(&event->event_entry);
5280         INIT_LIST_HEAD(&event->sibling_list);
5281         init_waitqueue_head(&event->waitq);
5282         init_irq_work(&event->pending, perf_pending_event);
5283
5284         mutex_init(&event->mmap_mutex);
5285
5286         event->cpu              = cpu;
5287         event->attr             = *attr;
5288         event->group_leader     = group_leader;
5289         event->pmu              = NULL;
5290         event->oncpu            = -1;
5291
5292         event->parent           = parent_event;
5293
5294         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5295         event->id               = atomic64_inc_return(&perf_event_id);
5296
5297         event->state            = PERF_EVENT_STATE_INACTIVE;
5298
5299         if (!overflow_handler && parent_event)
5300                 overflow_handler = parent_event->overflow_handler;
5301         
5302         event->overflow_handler = overflow_handler;
5303
5304         if (attr->disabled)
5305                 event->state = PERF_EVENT_STATE_OFF;
5306
5307         pmu = NULL;
5308
5309         hwc = &event->hw;
5310         hwc->sample_period = attr->sample_period;
5311         if (attr->freq && attr->sample_freq)
5312                 hwc->sample_period = 1;
5313         hwc->last_period = hwc->sample_period;
5314
5315         local64_set(&hwc->period_left, hwc->sample_period);
5316
5317         /*
5318          * we currently do not support PERF_FORMAT_GROUP on inherited events
5319          */
5320         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5321                 goto done;
5322
5323         pmu = perf_init_event(event);
5324
5325 done:
5326         err = 0;
5327         if (!pmu)
5328                 err = -EINVAL;
5329         else if (IS_ERR(pmu))
5330                 err = PTR_ERR(pmu);
5331
5332         if (err) {
5333                 if (event->ns)
5334                         put_pid_ns(event->ns);
5335                 kfree(event);
5336                 return ERR_PTR(err);
5337         }
5338
5339         event->pmu = pmu;
5340
5341         if (!event->parent) {
5342                 atomic_inc(&nr_events);
5343                 if (event->attr.mmap || event->attr.mmap_data)
5344                         atomic_inc(&nr_mmap_events);
5345                 if (event->attr.comm)
5346                         atomic_inc(&nr_comm_events);
5347                 if (event->attr.task)
5348                         atomic_inc(&nr_task_events);
5349                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5350                         err = get_callchain_buffers();
5351                         if (err) {
5352                                 free_event(event);
5353                                 return ERR_PTR(err);
5354                         }
5355                 }
5356         }
5357
5358         return event;
5359 }
5360
5361 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5362                           struct perf_event_attr *attr)
5363 {
5364         u32 size;
5365         int ret;
5366
5367         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5368                 return -EFAULT;
5369
5370         /*
5371          * zero the full structure, so that a short copy will be nice.
5372          */
5373         memset(attr, 0, sizeof(*attr));
5374
5375         ret = get_user(size, &uattr->size);
5376         if (ret)
5377                 return ret;
5378
5379         if (size > PAGE_SIZE)   /* silly large */
5380                 goto err_size;
5381
5382         if (!size)              /* abi compat */
5383                 size = PERF_ATTR_SIZE_VER0;
5384
5385         if (size < PERF_ATTR_SIZE_VER0)
5386                 goto err_size;
5387
5388         /*
5389          * If we're handed a bigger struct than we know of,
5390          * ensure all the unknown bits are 0 - i.e. new
5391          * user-space does not rely on any kernel feature
5392          * extensions we dont know about yet.
5393          */
5394         if (size > sizeof(*attr)) {
5395                 unsigned char __user *addr;
5396                 unsigned char __user *end;
5397                 unsigned char val;
5398
5399                 addr = (void __user *)uattr + sizeof(*attr);
5400                 end  = (void __user *)uattr + size;
5401
5402                 for (; addr < end; addr++) {
5403                         ret = get_user(val, addr);
5404                         if (ret)
5405                                 return ret;
5406                         if (val)
5407                                 goto err_size;
5408                 }
5409                 size = sizeof(*attr);
5410         }
5411
5412         ret = copy_from_user(attr, uattr, size);
5413         if (ret)
5414                 return -EFAULT;
5415
5416         /*
5417          * If the type exists, the corresponding creation will verify
5418          * the attr->config.
5419          */
5420         if (attr->type >= PERF_TYPE_MAX)
5421                 return -EINVAL;
5422
5423         if (attr->__reserved_1)
5424                 return -EINVAL;
5425
5426         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5427                 return -EINVAL;
5428
5429         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5430                 return -EINVAL;
5431
5432 out:
5433         return ret;
5434
5435 err_size:
5436         put_user(sizeof(*attr), &uattr->size);
5437         ret = -E2BIG;
5438         goto out;
5439 }
5440
5441 static int
5442 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5443 {
5444         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5445         int ret = -EINVAL;
5446
5447         if (!output_event)
5448                 goto set;
5449
5450         /* don't allow circular references */
5451         if (event == output_event)
5452                 goto out;
5453
5454         /*
5455          * Don't allow cross-cpu buffers
5456          */
5457         if (output_event->cpu != event->cpu)
5458                 goto out;
5459
5460         /*
5461          * If its not a per-cpu buffer, it must be the same task.
5462          */
5463         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5464                 goto out;
5465
5466 set:
5467         mutex_lock(&event->mmap_mutex);
5468         /* Can't redirect output if we've got an active mmap() */
5469         if (atomic_read(&event->mmap_count))
5470                 goto unlock;
5471
5472         if (output_event) {
5473                 /* get the buffer we want to redirect to */
5474                 buffer = perf_buffer_get(output_event);
5475                 if (!buffer)
5476                         goto unlock;
5477         }
5478
5479         old_buffer = event->buffer;
5480         rcu_assign_pointer(event->buffer, buffer);
5481         ret = 0;
5482 unlock:
5483         mutex_unlock(&event->mmap_mutex);
5484
5485         if (old_buffer)
5486                 perf_buffer_put(old_buffer);
5487 out:
5488         return ret;
5489 }
5490
5491 /**
5492  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5493  *
5494  * @attr_uptr:  event_id type attributes for monitoring/sampling
5495  * @pid:                target pid
5496  * @cpu:                target cpu
5497  * @group_fd:           group leader event fd
5498  */
5499 SYSCALL_DEFINE5(perf_event_open,
5500                 struct perf_event_attr __user *, attr_uptr,
5501                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5502 {
5503         struct perf_event *group_leader = NULL, *output_event = NULL;
5504         struct perf_event *event, *sibling;
5505         struct perf_event_attr attr;
5506         struct perf_event_context *ctx;
5507         struct file *event_file = NULL;
5508         struct file *group_file = NULL;
5509         struct task_struct *task = NULL;
5510         struct pmu *pmu;
5511         int event_fd;
5512         int move_group = 0;
5513         int fput_needed = 0;
5514         int err;
5515
5516         /* for future expandability... */
5517         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5518                 return -EINVAL;
5519
5520         err = perf_copy_attr(attr_uptr, &attr);
5521         if (err)
5522                 return err;
5523
5524         if (!attr.exclude_kernel) {
5525                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5526                         return -EACCES;
5527         }
5528
5529         if (attr.freq) {
5530                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5531                         return -EINVAL;
5532         }
5533
5534         event_fd = get_unused_fd_flags(O_RDWR);
5535         if (event_fd < 0)
5536                 return event_fd;
5537
5538         if (group_fd != -1) {
5539                 group_leader = perf_fget_light(group_fd, &fput_needed);
5540                 if (IS_ERR(group_leader)) {
5541                         err = PTR_ERR(group_leader);
5542                         goto err_fd;
5543                 }
5544                 group_file = group_leader->filp;
5545                 if (flags & PERF_FLAG_FD_OUTPUT)
5546                         output_event = group_leader;
5547                 if (flags & PERF_FLAG_FD_NO_GROUP)
5548                         group_leader = NULL;
5549         }
5550
5551         event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
5552         if (IS_ERR(event)) {
5553                 err = PTR_ERR(event);
5554                 goto err_fd;
5555         }
5556
5557         /*
5558          * Special case software events and allow them to be part of
5559          * any hardware group.
5560          */
5561         pmu = event->pmu;
5562
5563         if (group_leader &&
5564             (is_software_event(event) != is_software_event(group_leader))) {
5565                 if (is_software_event(event)) {
5566                         /*
5567                          * If event and group_leader are not both a software
5568                          * event, and event is, then group leader is not.
5569                          *
5570                          * Allow the addition of software events to !software
5571                          * groups, this is safe because software events never
5572                          * fail to schedule.
5573                          */
5574                         pmu = group_leader->pmu;
5575                 } else if (is_software_event(group_leader) &&
5576                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5577                         /*
5578                          * In case the group is a pure software group, and we
5579                          * try to add a hardware event, move the whole group to
5580                          * the hardware context.
5581                          */
5582                         move_group = 1;
5583                 }
5584         }
5585
5586         if (pid != -1) {
5587                 task = find_lively_task_by_vpid(pid);
5588                 if (IS_ERR(task)) {
5589                         err = PTR_ERR(task);
5590                         goto err_group_fd;
5591                 }
5592         }
5593
5594         /*
5595          * Get the target context (task or percpu):
5596          */
5597         ctx = find_get_context(pmu, task, cpu);
5598         if (IS_ERR(ctx)) {
5599                 err = PTR_ERR(ctx);
5600                 goto err_group_fd;
5601         }
5602
5603         /*
5604          * Look up the group leader (we will attach this event to it):
5605          */
5606         if (group_leader) {
5607                 err = -EINVAL;
5608
5609                 /*
5610                  * Do not allow a recursive hierarchy (this new sibling
5611                  * becoming part of another group-sibling):
5612                  */
5613                 if (group_leader->group_leader != group_leader)
5614                         goto err_context;
5615                 /*
5616                  * Do not allow to attach to a group in a different
5617                  * task or CPU context:
5618                  */
5619                 if (move_group) {
5620                         if (group_leader->ctx->type != ctx->type)
5621                                 goto err_context;
5622                 } else {
5623                         if (group_leader->ctx != ctx)
5624                                 goto err_context;
5625                 }
5626
5627                 /*
5628                  * Only a group leader can be exclusive or pinned
5629                  */
5630                 if (attr.exclusive || attr.pinned)
5631                         goto err_context;
5632         }
5633
5634         if (output_event) {
5635                 err = perf_event_set_output(event, output_event);
5636                 if (err)
5637                         goto err_context;
5638         }
5639
5640         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5641         if (IS_ERR(event_file)) {
5642                 err = PTR_ERR(event_file);
5643                 goto err_context;
5644         }
5645
5646         if (move_group) {
5647                 struct perf_event_context *gctx = group_leader->ctx;
5648
5649                 mutex_lock(&gctx->mutex);
5650                 perf_event_remove_from_context(group_leader);
5651                 list_for_each_entry(sibling, &group_leader->sibling_list,
5652                                     group_entry) {
5653                         perf_event_remove_from_context(sibling);
5654                         put_ctx(gctx);
5655                 }
5656                 mutex_unlock(&gctx->mutex);
5657                 put_ctx(gctx);
5658         }
5659
5660         event->filp = event_file;
5661         WARN_ON_ONCE(ctx->parent_ctx);
5662         mutex_lock(&ctx->mutex);
5663
5664         if (move_group) {
5665                 perf_install_in_context(ctx, group_leader, cpu);
5666                 get_ctx(ctx);
5667                 list_for_each_entry(sibling, &group_leader->sibling_list,
5668                                     group_entry) {
5669                         perf_install_in_context(ctx, sibling, cpu);
5670                         get_ctx(ctx);
5671                 }
5672         }
5673
5674         perf_install_in_context(ctx, event, cpu);
5675         ++ctx->generation;
5676         mutex_unlock(&ctx->mutex);
5677
5678         event->owner = current;
5679         get_task_struct(current);
5680         mutex_lock(&current->perf_event_mutex);
5681         list_add_tail(&event->owner_entry, &current->perf_event_list);
5682         mutex_unlock(&current->perf_event_mutex);
5683
5684         /*
5685          * Drop the reference on the group_event after placing the
5686          * new event on the sibling_list. This ensures destruction
5687          * of the group leader will find the pointer to itself in
5688          * perf_group_detach().
5689          */
5690         fput_light(group_file, fput_needed);
5691         fd_install(event_fd, event_file);
5692         return event_fd;
5693
5694 err_context:
5695         put_ctx(ctx);
5696 err_group_fd:
5697         fput_light(group_file, fput_needed);
5698         free_event(event);
5699 err_fd:
5700         put_unused_fd(event_fd);
5701         return err;
5702 }
5703
5704 /**
5705  * perf_event_create_kernel_counter
5706  *
5707  * @attr: attributes of the counter to create
5708  * @cpu: cpu in which the counter is bound
5709  * @task: task to profile (NULL for percpu)
5710  */
5711 struct perf_event *
5712 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5713                                  struct task_struct *task,
5714                                  perf_overflow_handler_t overflow_handler)
5715 {
5716         struct perf_event_context *ctx;
5717         struct perf_event *event;
5718         int err;
5719
5720         /*
5721          * Get the target context (task or percpu):
5722          */
5723
5724         event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
5725         if (IS_ERR(event)) {
5726                 err = PTR_ERR(event);
5727                 goto err;
5728         }
5729
5730         ctx = find_get_context(event->pmu, task, cpu);
5731         if (IS_ERR(ctx)) {
5732                 err = PTR_ERR(ctx);
5733                 goto err_free;
5734         }
5735
5736         event->filp = NULL;
5737         WARN_ON_ONCE(ctx->parent_ctx);
5738         mutex_lock(&ctx->mutex);
5739         perf_install_in_context(ctx, event, cpu);
5740         ++ctx->generation;
5741         mutex_unlock(&ctx->mutex);
5742
5743         event->owner = current;
5744         get_task_struct(current);
5745         mutex_lock(&current->perf_event_mutex);
5746         list_add_tail(&event->owner_entry, &current->perf_event_list);
5747         mutex_unlock(&current->perf_event_mutex);
5748
5749         return event;
5750
5751 err_free:
5752         free_event(event);
5753 err:
5754         return ERR_PTR(err);
5755 }
5756 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5757
5758 static void sync_child_event(struct perf_event *child_event,
5759                                struct task_struct *child)
5760 {
5761         struct perf_event *parent_event = child_event->parent;
5762         u64 child_val;
5763
5764         if (child_event->attr.inherit_stat)
5765                 perf_event_read_event(child_event, child);
5766
5767         child_val = perf_event_count(child_event);
5768
5769         /*
5770          * Add back the child's count to the parent's count:
5771          */
5772         atomic64_add(child_val, &parent_event->child_count);
5773         atomic64_add(child_event->total_time_enabled,
5774                      &parent_event->child_total_time_enabled);
5775         atomic64_add(child_event->total_time_running,
5776                      &parent_event->child_total_time_running);
5777
5778         /*
5779          * Remove this event from the parent's list
5780          */
5781         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5782         mutex_lock(&parent_event->child_mutex);
5783         list_del_init(&child_event->child_list);
5784         mutex_unlock(&parent_event->child_mutex);
5785
5786         /*
5787          * Release the parent event, if this was the last
5788          * reference to it.
5789          */
5790         fput(parent_event->filp);
5791 }
5792
5793 static void
5794 __perf_event_exit_task(struct perf_event *child_event,
5795                          struct perf_event_context *child_ctx,
5796                          struct task_struct *child)
5797 {
5798         struct perf_event *parent_event;
5799
5800         perf_event_remove_from_context(child_event);
5801
5802         parent_event = child_event->parent;
5803         /*
5804          * It can happen that parent exits first, and has events
5805          * that are still around due to the child reference. These
5806          * events need to be zapped - but otherwise linger.
5807          */
5808         if (parent_event) {
5809                 sync_child_event(child_event, child);
5810                 free_event(child_event);
5811         }
5812 }
5813
5814 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5815 {
5816         struct perf_event *child_event, *tmp;
5817         struct perf_event_context *child_ctx;
5818         unsigned long flags;
5819
5820         if (likely(!child->perf_event_ctxp[ctxn])) {
5821                 perf_event_task(child, NULL, 0);
5822                 return;
5823         }
5824
5825         local_irq_save(flags);
5826         /*
5827          * We can't reschedule here because interrupts are disabled,
5828          * and either child is current or it is a task that can't be
5829          * scheduled, so we are now safe from rescheduling changing
5830          * our context.
5831          */
5832         child_ctx = child->perf_event_ctxp[ctxn];
5833         __perf_event_task_sched_out(child_ctx);
5834
5835         /*
5836          * Take the context lock here so that if find_get_context is
5837          * reading child->perf_event_ctxp, we wait until it has
5838          * incremented the context's refcount before we do put_ctx below.
5839          */
5840         raw_spin_lock(&child_ctx->lock);
5841         child->perf_event_ctxp[ctxn] = NULL;
5842         /*
5843          * If this context is a clone; unclone it so it can't get
5844          * swapped to another process while we're removing all
5845          * the events from it.
5846          */
5847         unclone_ctx(child_ctx);
5848         update_context_time(child_ctx);
5849         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5850
5851         /*
5852          * Report the task dead after unscheduling the events so that we
5853          * won't get any samples after PERF_RECORD_EXIT. We can however still
5854          * get a few PERF_RECORD_READ events.
5855          */
5856         perf_event_task(child, child_ctx, 0);
5857
5858         /*
5859          * We can recurse on the same lock type through:
5860          *
5861          *   __perf_event_exit_task()
5862          *     sync_child_event()
5863          *       fput(parent_event->filp)
5864          *         perf_release()
5865          *           mutex_lock(&ctx->mutex)
5866          *
5867          * But since its the parent context it won't be the same instance.
5868          */
5869         mutex_lock(&child_ctx->mutex);
5870
5871 again:
5872         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5873                                  group_entry)
5874                 __perf_event_exit_task(child_event, child_ctx, child);
5875
5876         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5877                                  group_entry)
5878                 __perf_event_exit_task(child_event, child_ctx, child);
5879
5880         /*
5881          * If the last event was a group event, it will have appended all
5882          * its siblings to the list, but we obtained 'tmp' before that which
5883          * will still point to the list head terminating the iteration.
5884          */
5885         if (!list_empty(&child_ctx->pinned_groups) ||
5886             !list_empty(&child_ctx->flexible_groups))
5887                 goto again;
5888
5889         mutex_unlock(&child_ctx->mutex);
5890
5891         put_ctx(child_ctx);
5892 }
5893
5894 /*
5895  * When a child task exits, feed back event values to parent events.
5896  */
5897 void perf_event_exit_task(struct task_struct *child)
5898 {
5899         int ctxn;
5900
5901         for_each_task_context_nr(ctxn)
5902                 perf_event_exit_task_context(child, ctxn);
5903 }
5904
5905 static void perf_free_event(struct perf_event *event,
5906                             struct perf_event_context *ctx)
5907 {
5908         struct perf_event *parent = event->parent;
5909
5910         if (WARN_ON_ONCE(!parent))
5911                 return;
5912
5913         mutex_lock(&parent->child_mutex);
5914         list_del_init(&event->child_list);
5915         mutex_unlock(&parent->child_mutex);
5916
5917         fput(parent->filp);
5918
5919         perf_group_detach(event);
5920         list_del_event(event, ctx);
5921         free_event(event);
5922 }
5923
5924 /*
5925  * free an unexposed, unused context as created by inheritance by
5926  * perf_event_init_task below, used by fork() in case of fail.
5927  */
5928 void perf_event_free_task(struct task_struct *task)
5929 {
5930         struct perf_event_context *ctx;
5931         struct perf_event *event, *tmp;
5932         int ctxn;
5933
5934         for_each_task_context_nr(ctxn) {
5935                 ctx = task->perf_event_ctxp[ctxn];
5936                 if (!ctx)
5937                         continue;
5938
5939                 mutex_lock(&ctx->mutex);
5940 again:
5941                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5942                                 group_entry)
5943                         perf_free_event(event, ctx);
5944
5945                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5946                                 group_entry)
5947                         perf_free_event(event, ctx);
5948
5949                 if (!list_empty(&ctx->pinned_groups) ||
5950                                 !list_empty(&ctx->flexible_groups))
5951                         goto again;
5952
5953                 mutex_unlock(&ctx->mutex);
5954
5955                 put_ctx(ctx);
5956         }
5957 }
5958
5959 void perf_event_delayed_put(struct task_struct *task)
5960 {
5961         int ctxn;
5962
5963         for_each_task_context_nr(ctxn)
5964                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5965 }
5966
5967 /*
5968  * inherit a event from parent task to child task:
5969  */
5970 static struct perf_event *
5971 inherit_event(struct perf_event *parent_event,
5972               struct task_struct *parent,
5973               struct perf_event_context *parent_ctx,
5974               struct task_struct *child,
5975               struct perf_event *group_leader,
5976               struct perf_event_context *child_ctx)
5977 {
5978         struct perf_event *child_event;
5979         unsigned long flags;
5980
5981         /*
5982          * Instead of creating recursive hierarchies of events,
5983          * we link inherited events back to the original parent,
5984          * which has a filp for sure, which we use as the reference
5985          * count:
5986          */
5987         if (parent_event->parent)
5988                 parent_event = parent_event->parent;
5989
5990         child_event = perf_event_alloc(&parent_event->attr,
5991                                            parent_event->cpu,
5992                                            group_leader, parent_event,
5993                                            NULL);
5994         if (IS_ERR(child_event))
5995                 return child_event;
5996         get_ctx(child_ctx);
5997
5998         /*
5999          * Make the child state follow the state of the parent event,
6000          * not its attr.disabled bit.  We hold the parent's mutex,
6001          * so we won't race with perf_event_{en, dis}able_family.
6002          */
6003         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6004                 child_event->state = PERF_EVENT_STATE_INACTIVE;
6005         else
6006                 child_event->state = PERF_EVENT_STATE_OFF;
6007
6008         if (parent_event->attr.freq) {
6009                 u64 sample_period = parent_event->hw.sample_period;
6010                 struct hw_perf_event *hwc = &child_event->hw;
6011
6012                 hwc->sample_period = sample_period;
6013                 hwc->last_period   = sample_period;
6014
6015                 local64_set(&hwc->period_left, sample_period);
6016         }
6017
6018         child_event->ctx = child_ctx;
6019         child_event->overflow_handler = parent_event->overflow_handler;
6020
6021         /*
6022          * Link it up in the child's context:
6023          */
6024         raw_spin_lock_irqsave(&child_ctx->lock, flags);
6025         add_event_to_ctx(child_event, child_ctx);
6026         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6027
6028         /*
6029          * Get a reference to the parent filp - we will fput it
6030          * when the child event exits. This is safe to do because
6031          * we are in the parent and we know that the filp still
6032          * exists and has a nonzero count:
6033          */
6034         atomic_long_inc(&parent_event->filp->f_count);
6035
6036         /*
6037          * Link this into the parent event's child list
6038          */
6039         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6040         mutex_lock(&parent_event->child_mutex);
6041         list_add_tail(&child_event->child_list, &parent_event->child_list);
6042         mutex_unlock(&parent_event->child_mutex);
6043
6044         return child_event;
6045 }
6046
6047 static int inherit_group(struct perf_event *parent_event,
6048               struct task_struct *parent,
6049               struct perf_event_context *parent_ctx,
6050               struct task_struct *child,
6051               struct perf_event_context *child_ctx)
6052 {
6053         struct perf_event *leader;
6054         struct perf_event *sub;
6055         struct perf_event *child_ctr;
6056
6057         leader = inherit_event(parent_event, parent, parent_ctx,
6058                                  child, NULL, child_ctx);
6059         if (IS_ERR(leader))
6060                 return PTR_ERR(leader);
6061         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6062                 child_ctr = inherit_event(sub, parent, parent_ctx,
6063                                             child, leader, child_ctx);
6064                 if (IS_ERR(child_ctr))
6065                         return PTR_ERR(child_ctr);
6066         }
6067         return 0;
6068 }
6069
6070 static int
6071 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6072                    struct perf_event_context *parent_ctx,
6073                    struct task_struct *child, int ctxn,
6074                    int *inherited_all)
6075 {
6076         int ret;
6077         struct perf_event_context *child_ctx;
6078
6079         if (!event->attr.inherit) {
6080                 *inherited_all = 0;
6081                 return 0;
6082         }
6083
6084         child_ctx = child->perf_event_ctxp[ctxn];
6085         if (!child_ctx) {
6086                 /*
6087                  * This is executed from the parent task context, so
6088                  * inherit events that have been marked for cloning.
6089                  * First allocate and initialize a context for the
6090                  * child.
6091                  */
6092
6093                 child_ctx = alloc_perf_context(event->pmu, child);
6094                 if (!child_ctx)
6095                         return -ENOMEM;
6096
6097                 child->perf_event_ctxp[ctxn] = child_ctx;
6098         }
6099
6100         ret = inherit_group(event, parent, parent_ctx,
6101                             child, child_ctx);
6102
6103         if (ret)
6104                 *inherited_all = 0;
6105
6106         return ret;
6107 }
6108
6109 /*
6110  * Initialize the perf_event context in task_struct
6111  */
6112 int perf_event_init_context(struct task_struct *child, int ctxn)
6113 {
6114         struct perf_event_context *child_ctx, *parent_ctx;
6115         struct perf_event_context *cloned_ctx;
6116         struct perf_event *event;
6117         struct task_struct *parent = current;
6118         int inherited_all = 1;
6119         int ret = 0;
6120
6121         child->perf_event_ctxp[ctxn] = NULL;
6122
6123         mutex_init(&child->perf_event_mutex);
6124         INIT_LIST_HEAD(&child->perf_event_list);
6125
6126         if (likely(!parent->perf_event_ctxp[ctxn]))
6127                 return 0;
6128
6129         /*
6130          * If the parent's context is a clone, pin it so it won't get
6131          * swapped under us.
6132          */
6133         parent_ctx = perf_pin_task_context(parent, ctxn);
6134
6135         /*
6136          * No need to check if parent_ctx != NULL here; since we saw
6137          * it non-NULL earlier, the only reason for it to become NULL
6138          * is if we exit, and since we're currently in the middle of
6139          * a fork we can't be exiting at the same time.
6140          */
6141
6142         /*
6143          * Lock the parent list. No need to lock the child - not PID
6144          * hashed yet and not running, so nobody can access it.
6145          */
6146         mutex_lock(&parent_ctx->mutex);
6147
6148         /*
6149          * We dont have to disable NMIs - we are only looking at
6150          * the list, not manipulating it:
6151          */
6152         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6153                 ret = inherit_task_group(event, parent, parent_ctx,
6154                                          child, ctxn, &inherited_all);
6155                 if (ret)
6156                         break;
6157         }
6158
6159         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6160                 ret = inherit_task_group(event, parent, parent_ctx,
6161                                          child, ctxn, &inherited_all);
6162                 if (ret)
6163                         break;
6164         }
6165
6166         child_ctx = child->perf_event_ctxp[ctxn];
6167
6168         if (child_ctx && inherited_all) {
6169                 /*
6170                  * Mark the child context as a clone of the parent
6171                  * context, or of whatever the parent is a clone of.
6172                  * Note that if the parent is a clone, it could get
6173                  * uncloned at any point, but that doesn't matter
6174                  * because the list of events and the generation
6175                  * count can't have changed since we took the mutex.
6176                  */
6177                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6178                 if (cloned_ctx) {
6179                         child_ctx->parent_ctx = cloned_ctx;
6180                         child_ctx->parent_gen = parent_ctx->parent_gen;
6181                 } else {
6182                         child_ctx->parent_ctx = parent_ctx;
6183                         child_ctx->parent_gen = parent_ctx->generation;
6184                 }
6185                 get_ctx(child_ctx->parent_ctx);
6186         }
6187
6188         mutex_unlock(&parent_ctx->mutex);
6189
6190         perf_unpin_context(parent_ctx);
6191
6192         return ret;
6193 }
6194
6195 /*
6196  * Initialize the perf_event context in task_struct
6197  */
6198 int perf_event_init_task(struct task_struct *child)
6199 {
6200         int ctxn, ret;
6201
6202         for_each_task_context_nr(ctxn) {
6203                 ret = perf_event_init_context(child, ctxn);
6204                 if (ret)
6205                         return ret;
6206         }
6207
6208         return 0;
6209 }
6210
6211 static void __init perf_event_init_all_cpus(void)
6212 {
6213         struct swevent_htable *swhash;
6214         int cpu;
6215
6216         for_each_possible_cpu(cpu) {
6217                 swhash = &per_cpu(swevent_htable, cpu);
6218                 mutex_init(&swhash->hlist_mutex);
6219                 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6220         }
6221 }
6222
6223 static void __cpuinit perf_event_init_cpu(int cpu)
6224 {
6225         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6226
6227         mutex_lock(&swhash->hlist_mutex);
6228         if (swhash->hlist_refcount > 0) {
6229                 struct swevent_hlist *hlist;
6230
6231                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6232                 WARN_ON(!hlist);
6233                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6234         }
6235         mutex_unlock(&swhash->hlist_mutex);
6236 }
6237
6238 #ifdef CONFIG_HOTPLUG_CPU
6239 static void perf_pmu_rotate_stop(struct pmu *pmu)
6240 {
6241         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6242
6243         WARN_ON(!irqs_disabled());
6244
6245         list_del_init(&cpuctx->rotation_list);
6246 }
6247
6248 static void __perf_event_exit_context(void *__info)
6249 {
6250         struct perf_event_context *ctx = __info;
6251         struct perf_event *event, *tmp;
6252
6253         perf_pmu_rotate_stop(ctx->pmu);
6254
6255         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6256                 __perf_event_remove_from_context(event);
6257         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6258                 __perf_event_remove_from_context(event);
6259 }
6260
6261 static void perf_event_exit_cpu_context(int cpu)
6262 {
6263         struct perf_event_context *ctx;
6264         struct pmu *pmu;
6265         int idx;
6266
6267         idx = srcu_read_lock(&pmus_srcu);
6268         list_for_each_entry_rcu(pmu, &pmus, entry) {
6269                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6270
6271                 mutex_lock(&ctx->mutex);
6272                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6273                 mutex_unlock(&ctx->mutex);
6274         }
6275         srcu_read_unlock(&pmus_srcu, idx);
6276 }
6277
6278 static void perf_event_exit_cpu(int cpu)
6279 {
6280         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6281
6282         mutex_lock(&swhash->hlist_mutex);
6283         swevent_hlist_release(swhash);
6284         mutex_unlock(&swhash->hlist_mutex);
6285
6286         perf_event_exit_cpu_context(cpu);
6287 }
6288 #else
6289 static inline void perf_event_exit_cpu(int cpu) { }
6290 #endif
6291
6292 static int __cpuinit
6293 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6294 {
6295         unsigned int cpu = (long)hcpu;
6296
6297         switch (action & ~CPU_TASKS_FROZEN) {
6298
6299         case CPU_UP_PREPARE:
6300         case CPU_DOWN_FAILED:
6301                 perf_event_init_cpu(cpu);
6302                 break;
6303
6304         case CPU_UP_CANCELED:
6305         case CPU_DOWN_PREPARE:
6306                 perf_event_exit_cpu(cpu);
6307                 break;
6308
6309         default:
6310                 break;
6311         }
6312
6313         return NOTIFY_OK;
6314 }
6315
6316 void __init perf_event_init(void)
6317 {
6318         perf_event_init_all_cpus();
6319         init_srcu_struct(&pmus_srcu);
6320         perf_pmu_register(&perf_swevent);
6321         perf_pmu_register(&perf_cpu_clock);
6322         perf_pmu_register(&perf_task_clock);
6323         perf_tp_register();
6324         perf_cpu_notifier(perf_cpu_notify);
6325 }