]> git.karo-electronics.de Git - mv-sheeva.git/blob - kernel/perf_event.c
perf: Deconstify struct pmu
[mv-sheeva.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39  * Each CPU has a list of per CPU events:
40  */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53  * perf event paranoia level:
54  *  -1 - not paranoid at all
55  *   0 - disallow raw tracepoint access for unpriv
56  *   1 - disallow cpu events for unpriv
57  *   2 - disallow kernel profiling for unpriv
58  */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64  * max perf event sample rate
65  */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71  * Lock for (sysadmin-configurable) event reservations:
72  */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76  * Architecture provided APIs - weak aliases:
77  */
78 extern __weak struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80         return NULL;
81 }
82
83 void __weak hw_perf_disable(void)               { barrier(); }
84 void __weak hw_perf_enable(void)                { barrier(); }
85
86 void __weak perf_event_print_debug(void)        { }
87
88 static DEFINE_PER_CPU(int, perf_disable_count);
89
90 void perf_disable(void)
91 {
92         if (!__get_cpu_var(perf_disable_count)++)
93                 hw_perf_disable();
94 }
95
96 void perf_enable(void)
97 {
98         if (!--__get_cpu_var(perf_disable_count))
99                 hw_perf_enable();
100 }
101
102 static void get_ctx(struct perf_event_context *ctx)
103 {
104         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 }
106
107 static void free_ctx(struct rcu_head *head)
108 {
109         struct perf_event_context *ctx;
110
111         ctx = container_of(head, struct perf_event_context, rcu_head);
112         kfree(ctx);
113 }
114
115 static void put_ctx(struct perf_event_context *ctx)
116 {
117         if (atomic_dec_and_test(&ctx->refcount)) {
118                 if (ctx->parent_ctx)
119                         put_ctx(ctx->parent_ctx);
120                 if (ctx->task)
121                         put_task_struct(ctx->task);
122                 call_rcu(&ctx->rcu_head, free_ctx);
123         }
124 }
125
126 static void unclone_ctx(struct perf_event_context *ctx)
127 {
128         if (ctx->parent_ctx) {
129                 put_ctx(ctx->parent_ctx);
130                 ctx->parent_ctx = NULL;
131         }
132 }
133
134 /*
135  * If we inherit events we want to return the parent event id
136  * to userspace.
137  */
138 static u64 primary_event_id(struct perf_event *event)
139 {
140         u64 id = event->id;
141
142         if (event->parent)
143                 id = event->parent->id;
144
145         return id;
146 }
147
148 /*
149  * Get the perf_event_context for a task and lock it.
150  * This has to cope with with the fact that until it is locked,
151  * the context could get moved to another task.
152  */
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155 {
156         struct perf_event_context *ctx;
157
158         rcu_read_lock();
159  retry:
160         ctx = rcu_dereference(task->perf_event_ctxp);
161         if (ctx) {
162                 /*
163                  * If this context is a clone of another, it might
164                  * get swapped for another underneath us by
165                  * perf_event_task_sched_out, though the
166                  * rcu_read_lock() protects us from any context
167                  * getting freed.  Lock the context and check if it
168                  * got swapped before we could get the lock, and retry
169                  * if so.  If we locked the right context, then it
170                  * can't get swapped on us any more.
171                  */
172                 raw_spin_lock_irqsave(&ctx->lock, *flags);
173                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175                         goto retry;
176                 }
177
178                 if (!atomic_inc_not_zero(&ctx->refcount)) {
179                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180                         ctx = NULL;
181                 }
182         }
183         rcu_read_unlock();
184         return ctx;
185 }
186
187 /*
188  * Get the context for a task and increment its pin_count so it
189  * can't get swapped to another task.  This also increments its
190  * reference count so that the context can't get freed.
191  */
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193 {
194         struct perf_event_context *ctx;
195         unsigned long flags;
196
197         ctx = perf_lock_task_context(task, &flags);
198         if (ctx) {
199                 ++ctx->pin_count;
200                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
201         }
202         return ctx;
203 }
204
205 static void perf_unpin_context(struct perf_event_context *ctx)
206 {
207         unsigned long flags;
208
209         raw_spin_lock_irqsave(&ctx->lock, flags);
210         --ctx->pin_count;
211         raw_spin_unlock_irqrestore(&ctx->lock, flags);
212         put_ctx(ctx);
213 }
214
215 static inline u64 perf_clock(void)
216 {
217         return local_clock();
218 }
219
220 /*
221  * Update the record of the current time in a context.
222  */
223 static void update_context_time(struct perf_event_context *ctx)
224 {
225         u64 now = perf_clock();
226
227         ctx->time += now - ctx->timestamp;
228         ctx->timestamp = now;
229 }
230
231 /*
232  * Update the total_time_enabled and total_time_running fields for a event.
233  */
234 static void update_event_times(struct perf_event *event)
235 {
236         struct perf_event_context *ctx = event->ctx;
237         u64 run_end;
238
239         if (event->state < PERF_EVENT_STATE_INACTIVE ||
240             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241                 return;
242
243         if (ctx->is_active)
244                 run_end = ctx->time;
245         else
246                 run_end = event->tstamp_stopped;
247
248         event->total_time_enabled = run_end - event->tstamp_enabled;
249
250         if (event->state == PERF_EVENT_STATE_INACTIVE)
251                 run_end = event->tstamp_stopped;
252         else
253                 run_end = ctx->time;
254
255         event->total_time_running = run_end - event->tstamp_running;
256 }
257
258 /*
259  * Update total_time_enabled and total_time_running for all events in a group.
260  */
261 static void update_group_times(struct perf_event *leader)
262 {
263         struct perf_event *event;
264
265         update_event_times(leader);
266         list_for_each_entry(event, &leader->sibling_list, group_entry)
267                 update_event_times(event);
268 }
269
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272 {
273         if (event->attr.pinned)
274                 return &ctx->pinned_groups;
275         else
276                 return &ctx->flexible_groups;
277 }
278
279 /*
280  * Add a event from the lists for its context.
281  * Must be called with ctx->mutex and ctx->lock held.
282  */
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285 {
286         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
287         event->attach_state |= PERF_ATTACH_CONTEXT;
288
289         /*
290          * If we're a stand alone event or group leader, we go to the context
291          * list, group events are kept attached to the group so that
292          * perf_group_detach can, at all times, locate all siblings.
293          */
294         if (event->group_leader == event) {
295                 struct list_head *list;
296
297                 if (is_software_event(event))
298                         event->group_flags |= PERF_GROUP_SOFTWARE;
299
300                 list = ctx_group_list(event, ctx);
301                 list_add_tail(&event->group_entry, list);
302         }
303
304         list_add_rcu(&event->event_entry, &ctx->event_list);
305         ctx->nr_events++;
306         if (event->attr.inherit_stat)
307                 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312         struct perf_event *group_leader = event->group_leader;
313
314         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315         event->attach_state |= PERF_ATTACH_GROUP;
316
317         if (group_leader == event)
318                 return;
319
320         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321                         !is_software_event(event))
322                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324         list_add_tail(&event->group_entry, &group_leader->sibling_list);
325         group_leader->nr_siblings++;
326 }
327
328 /*
329  * Remove a event from the lists for its context.
330  * Must be called with ctx->mutex and ctx->lock held.
331  */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335         /*
336          * We can have double detach due to exit/hot-unplug + close.
337          */
338         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339                 return;
340
341         event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343         ctx->nr_events--;
344         if (event->attr.inherit_stat)
345                 ctx->nr_stat--;
346
347         list_del_rcu(&event->event_entry);
348
349         if (event->group_leader == event)
350                 list_del_init(&event->group_entry);
351
352         update_group_times(event);
353
354         /*
355          * If event was in error state, then keep it
356          * that way, otherwise bogus counts will be
357          * returned on read(). The only way to get out
358          * of error state is by explicit re-enabling
359          * of the event
360          */
361         if (event->state > PERF_EVENT_STATE_OFF)
362                 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367         struct perf_event *sibling, *tmp;
368         struct list_head *list = NULL;
369
370         /*
371          * We can have double detach due to exit/hot-unplug + close.
372          */
373         if (!(event->attach_state & PERF_ATTACH_GROUP))
374                 return;
375
376         event->attach_state &= ~PERF_ATTACH_GROUP;
377
378         /*
379          * If this is a sibling, remove it from its group.
380          */
381         if (event->group_leader != event) {
382                 list_del_init(&event->group_entry);
383                 event->group_leader->nr_siblings--;
384                 return;
385         }
386
387         if (!list_empty(&event->group_entry))
388                 list = &event->group_entry;
389
390         /*
391          * If this was a group event with sibling events then
392          * upgrade the siblings to singleton events by adding them
393          * to whatever list we are on.
394          */
395         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396                 if (list)
397                         list_move_tail(&sibling->group_entry, list);
398                 sibling->group_leader = sibling;
399
400                 /* Inherit group flags from the previous leader */
401                 sibling->group_flags = event->group_flags;
402         }
403 }
404
405 static inline int
406 event_filter_match(struct perf_event *event)
407 {
408         return event->cpu == -1 || event->cpu == smp_processor_id();
409 }
410
411 static void
412 event_sched_out(struct perf_event *event,
413                   struct perf_cpu_context *cpuctx,
414                   struct perf_event_context *ctx)
415 {
416         u64 delta;
417         /*
418          * An event which could not be activated because of
419          * filter mismatch still needs to have its timings
420          * maintained, otherwise bogus information is return
421          * via read() for time_enabled, time_running:
422          */
423         if (event->state == PERF_EVENT_STATE_INACTIVE
424             && !event_filter_match(event)) {
425                 delta = ctx->time - event->tstamp_stopped;
426                 event->tstamp_running += delta;
427                 event->tstamp_stopped = ctx->time;
428         }
429
430         if (event->state != PERF_EVENT_STATE_ACTIVE)
431                 return;
432
433         event->state = PERF_EVENT_STATE_INACTIVE;
434         if (event->pending_disable) {
435                 event->pending_disable = 0;
436                 event->state = PERF_EVENT_STATE_OFF;
437         }
438         event->tstamp_stopped = ctx->time;
439         event->pmu->disable(event);
440         event->oncpu = -1;
441
442         if (!is_software_event(event))
443                 cpuctx->active_oncpu--;
444         ctx->nr_active--;
445         if (event->attr.exclusive || !cpuctx->active_oncpu)
446                 cpuctx->exclusive = 0;
447 }
448
449 static void
450 group_sched_out(struct perf_event *group_event,
451                 struct perf_cpu_context *cpuctx,
452                 struct perf_event_context *ctx)
453 {
454         struct perf_event *event;
455         int state = group_event->state;
456
457         event_sched_out(group_event, cpuctx, ctx);
458
459         /*
460          * Schedule out siblings (if any):
461          */
462         list_for_each_entry(event, &group_event->sibling_list, group_entry)
463                 event_sched_out(event, cpuctx, ctx);
464
465         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
466                 cpuctx->exclusive = 0;
467 }
468
469 /*
470  * Cross CPU call to remove a performance event
471  *
472  * We disable the event on the hardware level first. After that we
473  * remove it from the context list.
474  */
475 static void __perf_event_remove_from_context(void *info)
476 {
477         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
478         struct perf_event *event = info;
479         struct perf_event_context *ctx = event->ctx;
480
481         /*
482          * If this is a task context, we need to check whether it is
483          * the current task context of this cpu. If not it has been
484          * scheduled out before the smp call arrived.
485          */
486         if (ctx->task && cpuctx->task_ctx != ctx)
487                 return;
488
489         raw_spin_lock(&ctx->lock);
490         /*
491          * Protect the list operation against NMI by disabling the
492          * events on a global level.
493          */
494         perf_disable();
495
496         event_sched_out(event, cpuctx, ctx);
497
498         list_del_event(event, ctx);
499
500         if (!ctx->task) {
501                 /*
502                  * Allow more per task events with respect to the
503                  * reservation:
504                  */
505                 cpuctx->max_pertask =
506                         min(perf_max_events - ctx->nr_events,
507                             perf_max_events - perf_reserved_percpu);
508         }
509
510         perf_enable();
511         raw_spin_unlock(&ctx->lock);
512 }
513
514
515 /*
516  * Remove the event from a task's (or a CPU's) list of events.
517  *
518  * Must be called with ctx->mutex held.
519  *
520  * CPU events are removed with a smp call. For task events we only
521  * call when the task is on a CPU.
522  *
523  * If event->ctx is a cloned context, callers must make sure that
524  * every task struct that event->ctx->task could possibly point to
525  * remains valid.  This is OK when called from perf_release since
526  * that only calls us on the top-level context, which can't be a clone.
527  * When called from perf_event_exit_task, it's OK because the
528  * context has been detached from its task.
529  */
530 static void perf_event_remove_from_context(struct perf_event *event)
531 {
532         struct perf_event_context *ctx = event->ctx;
533         struct task_struct *task = ctx->task;
534
535         if (!task) {
536                 /*
537                  * Per cpu events are removed via an smp call and
538                  * the removal is always successful.
539                  */
540                 smp_call_function_single(event->cpu,
541                                          __perf_event_remove_from_context,
542                                          event, 1);
543                 return;
544         }
545
546 retry:
547         task_oncpu_function_call(task, __perf_event_remove_from_context,
548                                  event);
549
550         raw_spin_lock_irq(&ctx->lock);
551         /*
552          * If the context is active we need to retry the smp call.
553          */
554         if (ctx->nr_active && !list_empty(&event->group_entry)) {
555                 raw_spin_unlock_irq(&ctx->lock);
556                 goto retry;
557         }
558
559         /*
560          * The lock prevents that this context is scheduled in so we
561          * can remove the event safely, if the call above did not
562          * succeed.
563          */
564         if (!list_empty(&event->group_entry))
565                 list_del_event(event, ctx);
566         raw_spin_unlock_irq(&ctx->lock);
567 }
568
569 /*
570  * Cross CPU call to disable a performance event
571  */
572 static void __perf_event_disable(void *info)
573 {
574         struct perf_event *event = info;
575         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
576         struct perf_event_context *ctx = event->ctx;
577
578         /*
579          * If this is a per-task event, need to check whether this
580          * event's task is the current task on this cpu.
581          */
582         if (ctx->task && cpuctx->task_ctx != ctx)
583                 return;
584
585         raw_spin_lock(&ctx->lock);
586
587         /*
588          * If the event is on, turn it off.
589          * If it is in error state, leave it in error state.
590          */
591         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
592                 update_context_time(ctx);
593                 update_group_times(event);
594                 if (event == event->group_leader)
595                         group_sched_out(event, cpuctx, ctx);
596                 else
597                         event_sched_out(event, cpuctx, ctx);
598                 event->state = PERF_EVENT_STATE_OFF;
599         }
600
601         raw_spin_unlock(&ctx->lock);
602 }
603
604 /*
605  * Disable a event.
606  *
607  * If event->ctx is a cloned context, callers must make sure that
608  * every task struct that event->ctx->task could possibly point to
609  * remains valid.  This condition is satisifed when called through
610  * perf_event_for_each_child or perf_event_for_each because they
611  * hold the top-level event's child_mutex, so any descendant that
612  * goes to exit will block in sync_child_event.
613  * When called from perf_pending_event it's OK because event->ctx
614  * is the current context on this CPU and preemption is disabled,
615  * hence we can't get into perf_event_task_sched_out for this context.
616  */
617 void perf_event_disable(struct perf_event *event)
618 {
619         struct perf_event_context *ctx = event->ctx;
620         struct task_struct *task = ctx->task;
621
622         if (!task) {
623                 /*
624                  * Disable the event on the cpu that it's on
625                  */
626                 smp_call_function_single(event->cpu, __perf_event_disable,
627                                          event, 1);
628                 return;
629         }
630
631  retry:
632         task_oncpu_function_call(task, __perf_event_disable, event);
633
634         raw_spin_lock_irq(&ctx->lock);
635         /*
636          * If the event is still active, we need to retry the cross-call.
637          */
638         if (event->state == PERF_EVENT_STATE_ACTIVE) {
639                 raw_spin_unlock_irq(&ctx->lock);
640                 goto retry;
641         }
642
643         /*
644          * Since we have the lock this context can't be scheduled
645          * in, so we can change the state safely.
646          */
647         if (event->state == PERF_EVENT_STATE_INACTIVE) {
648                 update_group_times(event);
649                 event->state = PERF_EVENT_STATE_OFF;
650         }
651
652         raw_spin_unlock_irq(&ctx->lock);
653 }
654
655 static int
656 event_sched_in(struct perf_event *event,
657                  struct perf_cpu_context *cpuctx,
658                  struct perf_event_context *ctx)
659 {
660         if (event->state <= PERF_EVENT_STATE_OFF)
661                 return 0;
662
663         event->state = PERF_EVENT_STATE_ACTIVE;
664         event->oncpu = smp_processor_id();
665         /*
666          * The new state must be visible before we turn it on in the hardware:
667          */
668         smp_wmb();
669
670         if (event->pmu->enable(event)) {
671                 event->state = PERF_EVENT_STATE_INACTIVE;
672                 event->oncpu = -1;
673                 return -EAGAIN;
674         }
675
676         event->tstamp_running += ctx->time - event->tstamp_stopped;
677
678         if (!is_software_event(event))
679                 cpuctx->active_oncpu++;
680         ctx->nr_active++;
681
682         if (event->attr.exclusive)
683                 cpuctx->exclusive = 1;
684
685         return 0;
686 }
687
688 static int
689 group_sched_in(struct perf_event *group_event,
690                struct perf_cpu_context *cpuctx,
691                struct perf_event_context *ctx)
692 {
693         struct perf_event *event, *partial_group = NULL;
694         struct pmu *pmu = group_event->pmu;
695         bool txn = false;
696
697         if (group_event->state == PERF_EVENT_STATE_OFF)
698                 return 0;
699
700         /* Check if group transaction availabe */
701         if (pmu->start_txn)
702                 txn = true;
703
704         if (txn)
705                 pmu->start_txn(pmu);
706
707         if (event_sched_in(group_event, cpuctx, ctx)) {
708                 if (txn)
709                         pmu->cancel_txn(pmu);
710                 return -EAGAIN;
711         }
712
713         /*
714          * Schedule in siblings as one group (if any):
715          */
716         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
717                 if (event_sched_in(event, cpuctx, ctx)) {
718                         partial_group = event;
719                         goto group_error;
720                 }
721         }
722
723         if (!txn || !pmu->commit_txn(pmu))
724                 return 0;
725
726 group_error:
727         /*
728          * Groups can be scheduled in as one unit only, so undo any
729          * partial group before returning:
730          */
731         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
732                 if (event == partial_group)
733                         break;
734                 event_sched_out(event, cpuctx, ctx);
735         }
736         event_sched_out(group_event, cpuctx, ctx);
737
738         if (txn)
739                 pmu->cancel_txn(pmu);
740
741         return -EAGAIN;
742 }
743
744 /*
745  * Work out whether we can put this event group on the CPU now.
746  */
747 static int group_can_go_on(struct perf_event *event,
748                            struct perf_cpu_context *cpuctx,
749                            int can_add_hw)
750 {
751         /*
752          * Groups consisting entirely of software events can always go on.
753          */
754         if (event->group_flags & PERF_GROUP_SOFTWARE)
755                 return 1;
756         /*
757          * If an exclusive group is already on, no other hardware
758          * events can go on.
759          */
760         if (cpuctx->exclusive)
761                 return 0;
762         /*
763          * If this group is exclusive and there are already
764          * events on the CPU, it can't go on.
765          */
766         if (event->attr.exclusive && cpuctx->active_oncpu)
767                 return 0;
768         /*
769          * Otherwise, try to add it if all previous groups were able
770          * to go on.
771          */
772         return can_add_hw;
773 }
774
775 static void add_event_to_ctx(struct perf_event *event,
776                                struct perf_event_context *ctx)
777 {
778         list_add_event(event, ctx);
779         perf_group_attach(event);
780         event->tstamp_enabled = ctx->time;
781         event->tstamp_running = ctx->time;
782         event->tstamp_stopped = ctx->time;
783 }
784
785 /*
786  * Cross CPU call to install and enable a performance event
787  *
788  * Must be called with ctx->mutex held
789  */
790 static void __perf_install_in_context(void *info)
791 {
792         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
793         struct perf_event *event = info;
794         struct perf_event_context *ctx = event->ctx;
795         struct perf_event *leader = event->group_leader;
796         int err;
797
798         /*
799          * If this is a task context, we need to check whether it is
800          * the current task context of this cpu. If not it has been
801          * scheduled out before the smp call arrived.
802          * Or possibly this is the right context but it isn't
803          * on this cpu because it had no events.
804          */
805         if (ctx->task && cpuctx->task_ctx != ctx) {
806                 if (cpuctx->task_ctx || ctx->task != current)
807                         return;
808                 cpuctx->task_ctx = ctx;
809         }
810
811         raw_spin_lock(&ctx->lock);
812         ctx->is_active = 1;
813         update_context_time(ctx);
814
815         /*
816          * Protect the list operation against NMI by disabling the
817          * events on a global level. NOP for non NMI based events.
818          */
819         perf_disable();
820
821         add_event_to_ctx(event, ctx);
822
823         if (event->cpu != -1 && event->cpu != smp_processor_id())
824                 goto unlock;
825
826         /*
827          * Don't put the event on if it is disabled or if
828          * it is in a group and the group isn't on.
829          */
830         if (event->state != PERF_EVENT_STATE_INACTIVE ||
831             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
832                 goto unlock;
833
834         /*
835          * An exclusive event can't go on if there are already active
836          * hardware events, and no hardware event can go on if there
837          * is already an exclusive event on.
838          */
839         if (!group_can_go_on(event, cpuctx, 1))
840                 err = -EEXIST;
841         else
842                 err = event_sched_in(event, cpuctx, ctx);
843
844         if (err) {
845                 /*
846                  * This event couldn't go on.  If it is in a group
847                  * then we have to pull the whole group off.
848                  * If the event group is pinned then put it in error state.
849                  */
850                 if (leader != event)
851                         group_sched_out(leader, cpuctx, ctx);
852                 if (leader->attr.pinned) {
853                         update_group_times(leader);
854                         leader->state = PERF_EVENT_STATE_ERROR;
855                 }
856         }
857
858         if (!err && !ctx->task && cpuctx->max_pertask)
859                 cpuctx->max_pertask--;
860
861  unlock:
862         perf_enable();
863
864         raw_spin_unlock(&ctx->lock);
865 }
866
867 /*
868  * Attach a performance event to a context
869  *
870  * First we add the event to the list with the hardware enable bit
871  * in event->hw_config cleared.
872  *
873  * If the event is attached to a task which is on a CPU we use a smp
874  * call to enable it in the task context. The task might have been
875  * scheduled away, but we check this in the smp call again.
876  *
877  * Must be called with ctx->mutex held.
878  */
879 static void
880 perf_install_in_context(struct perf_event_context *ctx,
881                         struct perf_event *event,
882                         int cpu)
883 {
884         struct task_struct *task = ctx->task;
885
886         if (!task) {
887                 /*
888                  * Per cpu events are installed via an smp call and
889                  * the install is always successful.
890                  */
891                 smp_call_function_single(cpu, __perf_install_in_context,
892                                          event, 1);
893                 return;
894         }
895
896 retry:
897         task_oncpu_function_call(task, __perf_install_in_context,
898                                  event);
899
900         raw_spin_lock_irq(&ctx->lock);
901         /*
902          * we need to retry the smp call.
903          */
904         if (ctx->is_active && list_empty(&event->group_entry)) {
905                 raw_spin_unlock_irq(&ctx->lock);
906                 goto retry;
907         }
908
909         /*
910          * The lock prevents that this context is scheduled in so we
911          * can add the event safely, if it the call above did not
912          * succeed.
913          */
914         if (list_empty(&event->group_entry))
915                 add_event_to_ctx(event, ctx);
916         raw_spin_unlock_irq(&ctx->lock);
917 }
918
919 /*
920  * Put a event into inactive state and update time fields.
921  * Enabling the leader of a group effectively enables all
922  * the group members that aren't explicitly disabled, so we
923  * have to update their ->tstamp_enabled also.
924  * Note: this works for group members as well as group leaders
925  * since the non-leader members' sibling_lists will be empty.
926  */
927 static void __perf_event_mark_enabled(struct perf_event *event,
928                                         struct perf_event_context *ctx)
929 {
930         struct perf_event *sub;
931
932         event->state = PERF_EVENT_STATE_INACTIVE;
933         event->tstamp_enabled = ctx->time - event->total_time_enabled;
934         list_for_each_entry(sub, &event->sibling_list, group_entry)
935                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
936                         sub->tstamp_enabled =
937                                 ctx->time - sub->total_time_enabled;
938 }
939
940 /*
941  * Cross CPU call to enable a performance event
942  */
943 static void __perf_event_enable(void *info)
944 {
945         struct perf_event *event = info;
946         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
947         struct perf_event_context *ctx = event->ctx;
948         struct perf_event *leader = event->group_leader;
949         int err;
950
951         /*
952          * If this is a per-task event, need to check whether this
953          * event's task is the current task on this cpu.
954          */
955         if (ctx->task && cpuctx->task_ctx != ctx) {
956                 if (cpuctx->task_ctx || ctx->task != current)
957                         return;
958                 cpuctx->task_ctx = ctx;
959         }
960
961         raw_spin_lock(&ctx->lock);
962         ctx->is_active = 1;
963         update_context_time(ctx);
964
965         if (event->state >= PERF_EVENT_STATE_INACTIVE)
966                 goto unlock;
967         __perf_event_mark_enabled(event, ctx);
968
969         if (event->cpu != -1 && event->cpu != smp_processor_id())
970                 goto unlock;
971
972         /*
973          * If the event is in a group and isn't the group leader,
974          * then don't put it on unless the group is on.
975          */
976         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
977                 goto unlock;
978
979         if (!group_can_go_on(event, cpuctx, 1)) {
980                 err = -EEXIST;
981         } else {
982                 perf_disable();
983                 if (event == leader)
984                         err = group_sched_in(event, cpuctx, ctx);
985                 else
986                         err = event_sched_in(event, cpuctx, ctx);
987                 perf_enable();
988         }
989
990         if (err) {
991                 /*
992                  * If this event can't go on and it's part of a
993                  * group, then the whole group has to come off.
994                  */
995                 if (leader != event)
996                         group_sched_out(leader, cpuctx, ctx);
997                 if (leader->attr.pinned) {
998                         update_group_times(leader);
999                         leader->state = PERF_EVENT_STATE_ERROR;
1000                 }
1001         }
1002
1003  unlock:
1004         raw_spin_unlock(&ctx->lock);
1005 }
1006
1007 /*
1008  * Enable a event.
1009  *
1010  * If event->ctx is a cloned context, callers must make sure that
1011  * every task struct that event->ctx->task could possibly point to
1012  * remains valid.  This condition is satisfied when called through
1013  * perf_event_for_each_child or perf_event_for_each as described
1014  * for perf_event_disable.
1015  */
1016 void perf_event_enable(struct perf_event *event)
1017 {
1018         struct perf_event_context *ctx = event->ctx;
1019         struct task_struct *task = ctx->task;
1020
1021         if (!task) {
1022                 /*
1023                  * Enable the event on the cpu that it's on
1024                  */
1025                 smp_call_function_single(event->cpu, __perf_event_enable,
1026                                          event, 1);
1027                 return;
1028         }
1029
1030         raw_spin_lock_irq(&ctx->lock);
1031         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1032                 goto out;
1033
1034         /*
1035          * If the event is in error state, clear that first.
1036          * That way, if we see the event in error state below, we
1037          * know that it has gone back into error state, as distinct
1038          * from the task having been scheduled away before the
1039          * cross-call arrived.
1040          */
1041         if (event->state == PERF_EVENT_STATE_ERROR)
1042                 event->state = PERF_EVENT_STATE_OFF;
1043
1044  retry:
1045         raw_spin_unlock_irq(&ctx->lock);
1046         task_oncpu_function_call(task, __perf_event_enable, event);
1047
1048         raw_spin_lock_irq(&ctx->lock);
1049
1050         /*
1051          * If the context is active and the event is still off,
1052          * we need to retry the cross-call.
1053          */
1054         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1055                 goto retry;
1056
1057         /*
1058          * Since we have the lock this context can't be scheduled
1059          * in, so we can change the state safely.
1060          */
1061         if (event->state == PERF_EVENT_STATE_OFF)
1062                 __perf_event_mark_enabled(event, ctx);
1063
1064  out:
1065         raw_spin_unlock_irq(&ctx->lock);
1066 }
1067
1068 static int perf_event_refresh(struct perf_event *event, int refresh)
1069 {
1070         /*
1071          * not supported on inherited events
1072          */
1073         if (event->attr.inherit)
1074                 return -EINVAL;
1075
1076         atomic_add(refresh, &event->event_limit);
1077         perf_event_enable(event);
1078
1079         return 0;
1080 }
1081
1082 enum event_type_t {
1083         EVENT_FLEXIBLE = 0x1,
1084         EVENT_PINNED = 0x2,
1085         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1086 };
1087
1088 static void ctx_sched_out(struct perf_event_context *ctx,
1089                           struct perf_cpu_context *cpuctx,
1090                           enum event_type_t event_type)
1091 {
1092         struct perf_event *event;
1093
1094         raw_spin_lock(&ctx->lock);
1095         ctx->is_active = 0;
1096         if (likely(!ctx->nr_events))
1097                 goto out;
1098         update_context_time(ctx);
1099
1100         perf_disable();
1101         if (!ctx->nr_active)
1102                 goto out_enable;
1103
1104         if (event_type & EVENT_PINNED)
1105                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1106                         group_sched_out(event, cpuctx, ctx);
1107
1108         if (event_type & EVENT_FLEXIBLE)
1109                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1110                         group_sched_out(event, cpuctx, ctx);
1111
1112  out_enable:
1113         perf_enable();
1114  out:
1115         raw_spin_unlock(&ctx->lock);
1116 }
1117
1118 /*
1119  * Test whether two contexts are equivalent, i.e. whether they
1120  * have both been cloned from the same version of the same context
1121  * and they both have the same number of enabled events.
1122  * If the number of enabled events is the same, then the set
1123  * of enabled events should be the same, because these are both
1124  * inherited contexts, therefore we can't access individual events
1125  * in them directly with an fd; we can only enable/disable all
1126  * events via prctl, or enable/disable all events in a family
1127  * via ioctl, which will have the same effect on both contexts.
1128  */
1129 static int context_equiv(struct perf_event_context *ctx1,
1130                          struct perf_event_context *ctx2)
1131 {
1132         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1133                 && ctx1->parent_gen == ctx2->parent_gen
1134                 && !ctx1->pin_count && !ctx2->pin_count;
1135 }
1136
1137 static void __perf_event_sync_stat(struct perf_event *event,
1138                                      struct perf_event *next_event)
1139 {
1140         u64 value;
1141
1142         if (!event->attr.inherit_stat)
1143                 return;
1144
1145         /*
1146          * Update the event value, we cannot use perf_event_read()
1147          * because we're in the middle of a context switch and have IRQs
1148          * disabled, which upsets smp_call_function_single(), however
1149          * we know the event must be on the current CPU, therefore we
1150          * don't need to use it.
1151          */
1152         switch (event->state) {
1153         case PERF_EVENT_STATE_ACTIVE:
1154                 event->pmu->read(event);
1155                 /* fall-through */
1156
1157         case PERF_EVENT_STATE_INACTIVE:
1158                 update_event_times(event);
1159                 break;
1160
1161         default:
1162                 break;
1163         }
1164
1165         /*
1166          * In order to keep per-task stats reliable we need to flip the event
1167          * values when we flip the contexts.
1168          */
1169         value = local64_read(&next_event->count);
1170         value = local64_xchg(&event->count, value);
1171         local64_set(&next_event->count, value);
1172
1173         swap(event->total_time_enabled, next_event->total_time_enabled);
1174         swap(event->total_time_running, next_event->total_time_running);
1175
1176         /*
1177          * Since we swizzled the values, update the user visible data too.
1178          */
1179         perf_event_update_userpage(event);
1180         perf_event_update_userpage(next_event);
1181 }
1182
1183 #define list_next_entry(pos, member) \
1184         list_entry(pos->member.next, typeof(*pos), member)
1185
1186 static void perf_event_sync_stat(struct perf_event_context *ctx,
1187                                    struct perf_event_context *next_ctx)
1188 {
1189         struct perf_event *event, *next_event;
1190
1191         if (!ctx->nr_stat)
1192                 return;
1193
1194         update_context_time(ctx);
1195
1196         event = list_first_entry(&ctx->event_list,
1197                                    struct perf_event, event_entry);
1198
1199         next_event = list_first_entry(&next_ctx->event_list,
1200                                         struct perf_event, event_entry);
1201
1202         while (&event->event_entry != &ctx->event_list &&
1203                &next_event->event_entry != &next_ctx->event_list) {
1204
1205                 __perf_event_sync_stat(event, next_event);
1206
1207                 event = list_next_entry(event, event_entry);
1208                 next_event = list_next_entry(next_event, event_entry);
1209         }
1210 }
1211
1212 /*
1213  * Called from scheduler to remove the events of the current task,
1214  * with interrupts disabled.
1215  *
1216  * We stop each event and update the event value in event->count.
1217  *
1218  * This does not protect us against NMI, but disable()
1219  * sets the disabled bit in the control field of event _before_
1220  * accessing the event control register. If a NMI hits, then it will
1221  * not restart the event.
1222  */
1223 void perf_event_task_sched_out(struct task_struct *task,
1224                                  struct task_struct *next)
1225 {
1226         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1227         struct perf_event_context *ctx = task->perf_event_ctxp;
1228         struct perf_event_context *next_ctx;
1229         struct perf_event_context *parent;
1230         int do_switch = 1;
1231
1232         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1233
1234         if (likely(!ctx || !cpuctx->task_ctx))
1235                 return;
1236
1237         rcu_read_lock();
1238         parent = rcu_dereference(ctx->parent_ctx);
1239         next_ctx = next->perf_event_ctxp;
1240         if (parent && next_ctx &&
1241             rcu_dereference(next_ctx->parent_ctx) == parent) {
1242                 /*
1243                  * Looks like the two contexts are clones, so we might be
1244                  * able to optimize the context switch.  We lock both
1245                  * contexts and check that they are clones under the
1246                  * lock (including re-checking that neither has been
1247                  * uncloned in the meantime).  It doesn't matter which
1248                  * order we take the locks because no other cpu could
1249                  * be trying to lock both of these tasks.
1250                  */
1251                 raw_spin_lock(&ctx->lock);
1252                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1253                 if (context_equiv(ctx, next_ctx)) {
1254                         /*
1255                          * XXX do we need a memory barrier of sorts
1256                          * wrt to rcu_dereference() of perf_event_ctxp
1257                          */
1258                         task->perf_event_ctxp = next_ctx;
1259                         next->perf_event_ctxp = ctx;
1260                         ctx->task = next;
1261                         next_ctx->task = task;
1262                         do_switch = 0;
1263
1264                         perf_event_sync_stat(ctx, next_ctx);
1265                 }
1266                 raw_spin_unlock(&next_ctx->lock);
1267                 raw_spin_unlock(&ctx->lock);
1268         }
1269         rcu_read_unlock();
1270
1271         if (do_switch) {
1272                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1273                 cpuctx->task_ctx = NULL;
1274         }
1275 }
1276
1277 static void task_ctx_sched_out(struct perf_event_context *ctx,
1278                                enum event_type_t event_type)
1279 {
1280         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1281
1282         if (!cpuctx->task_ctx)
1283                 return;
1284
1285         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1286                 return;
1287
1288         ctx_sched_out(ctx, cpuctx, event_type);
1289         cpuctx->task_ctx = NULL;
1290 }
1291
1292 /*
1293  * Called with IRQs disabled
1294  */
1295 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1296 {
1297         task_ctx_sched_out(ctx, EVENT_ALL);
1298 }
1299
1300 /*
1301  * Called with IRQs disabled
1302  */
1303 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1304                               enum event_type_t event_type)
1305 {
1306         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1307 }
1308
1309 static void
1310 ctx_pinned_sched_in(struct perf_event_context *ctx,
1311                     struct perf_cpu_context *cpuctx)
1312 {
1313         struct perf_event *event;
1314
1315         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1316                 if (event->state <= PERF_EVENT_STATE_OFF)
1317                         continue;
1318                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1319                         continue;
1320
1321                 if (group_can_go_on(event, cpuctx, 1))
1322                         group_sched_in(event, cpuctx, ctx);
1323
1324                 /*
1325                  * If this pinned group hasn't been scheduled,
1326                  * put it in error state.
1327                  */
1328                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1329                         update_group_times(event);
1330                         event->state = PERF_EVENT_STATE_ERROR;
1331                 }
1332         }
1333 }
1334
1335 static void
1336 ctx_flexible_sched_in(struct perf_event_context *ctx,
1337                       struct perf_cpu_context *cpuctx)
1338 {
1339         struct perf_event *event;
1340         int can_add_hw = 1;
1341
1342         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1343                 /* Ignore events in OFF or ERROR state */
1344                 if (event->state <= PERF_EVENT_STATE_OFF)
1345                         continue;
1346                 /*
1347                  * Listen to the 'cpu' scheduling filter constraint
1348                  * of events:
1349                  */
1350                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1351                         continue;
1352
1353                 if (group_can_go_on(event, cpuctx, can_add_hw))
1354                         if (group_sched_in(event, cpuctx, ctx))
1355                                 can_add_hw = 0;
1356         }
1357 }
1358
1359 static void
1360 ctx_sched_in(struct perf_event_context *ctx,
1361              struct perf_cpu_context *cpuctx,
1362              enum event_type_t event_type)
1363 {
1364         raw_spin_lock(&ctx->lock);
1365         ctx->is_active = 1;
1366         if (likely(!ctx->nr_events))
1367                 goto out;
1368
1369         ctx->timestamp = perf_clock();
1370
1371         perf_disable();
1372
1373         /*
1374          * First go through the list and put on any pinned groups
1375          * in order to give them the best chance of going on.
1376          */
1377         if (event_type & EVENT_PINNED)
1378                 ctx_pinned_sched_in(ctx, cpuctx);
1379
1380         /* Then walk through the lower prio flexible groups */
1381         if (event_type & EVENT_FLEXIBLE)
1382                 ctx_flexible_sched_in(ctx, cpuctx);
1383
1384         perf_enable();
1385  out:
1386         raw_spin_unlock(&ctx->lock);
1387 }
1388
1389 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1390                              enum event_type_t event_type)
1391 {
1392         struct perf_event_context *ctx = &cpuctx->ctx;
1393
1394         ctx_sched_in(ctx, cpuctx, event_type);
1395 }
1396
1397 static void task_ctx_sched_in(struct task_struct *task,
1398                               enum event_type_t event_type)
1399 {
1400         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1401         struct perf_event_context *ctx = task->perf_event_ctxp;
1402
1403         if (likely(!ctx))
1404                 return;
1405         if (cpuctx->task_ctx == ctx)
1406                 return;
1407         ctx_sched_in(ctx, cpuctx, event_type);
1408         cpuctx->task_ctx = ctx;
1409 }
1410 /*
1411  * Called from scheduler to add the events of the current task
1412  * with interrupts disabled.
1413  *
1414  * We restore the event value and then enable it.
1415  *
1416  * This does not protect us against NMI, but enable()
1417  * sets the enabled bit in the control field of event _before_
1418  * accessing the event control register. If a NMI hits, then it will
1419  * keep the event running.
1420  */
1421 void perf_event_task_sched_in(struct task_struct *task)
1422 {
1423         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1424         struct perf_event_context *ctx = task->perf_event_ctxp;
1425
1426         if (likely(!ctx))
1427                 return;
1428
1429         if (cpuctx->task_ctx == ctx)
1430                 return;
1431
1432         perf_disable();
1433
1434         /*
1435          * We want to keep the following priority order:
1436          * cpu pinned (that don't need to move), task pinned,
1437          * cpu flexible, task flexible.
1438          */
1439         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1440
1441         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1442         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1443         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1444
1445         cpuctx->task_ctx = ctx;
1446
1447         perf_enable();
1448 }
1449
1450 #define MAX_INTERRUPTS (~0ULL)
1451
1452 static void perf_log_throttle(struct perf_event *event, int enable);
1453
1454 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1455 {
1456         u64 frequency = event->attr.sample_freq;
1457         u64 sec = NSEC_PER_SEC;
1458         u64 divisor, dividend;
1459
1460         int count_fls, nsec_fls, frequency_fls, sec_fls;
1461
1462         count_fls = fls64(count);
1463         nsec_fls = fls64(nsec);
1464         frequency_fls = fls64(frequency);
1465         sec_fls = 30;
1466
1467         /*
1468          * We got @count in @nsec, with a target of sample_freq HZ
1469          * the target period becomes:
1470          *
1471          *             @count * 10^9
1472          * period = -------------------
1473          *          @nsec * sample_freq
1474          *
1475          */
1476
1477         /*
1478          * Reduce accuracy by one bit such that @a and @b converge
1479          * to a similar magnitude.
1480          */
1481 #define REDUCE_FLS(a, b)                \
1482 do {                                    \
1483         if (a##_fls > b##_fls) {        \
1484                 a >>= 1;                \
1485                 a##_fls--;              \
1486         } else {                        \
1487                 b >>= 1;                \
1488                 b##_fls--;              \
1489         }                               \
1490 } while (0)
1491
1492         /*
1493          * Reduce accuracy until either term fits in a u64, then proceed with
1494          * the other, so that finally we can do a u64/u64 division.
1495          */
1496         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1497                 REDUCE_FLS(nsec, frequency);
1498                 REDUCE_FLS(sec, count);
1499         }
1500
1501         if (count_fls + sec_fls > 64) {
1502                 divisor = nsec * frequency;
1503
1504                 while (count_fls + sec_fls > 64) {
1505                         REDUCE_FLS(count, sec);
1506                         divisor >>= 1;
1507                 }
1508
1509                 dividend = count * sec;
1510         } else {
1511                 dividend = count * sec;
1512
1513                 while (nsec_fls + frequency_fls > 64) {
1514                         REDUCE_FLS(nsec, frequency);
1515                         dividend >>= 1;
1516                 }
1517
1518                 divisor = nsec * frequency;
1519         }
1520
1521         if (!divisor)
1522                 return dividend;
1523
1524         return div64_u64(dividend, divisor);
1525 }
1526
1527 static void perf_event_stop(struct perf_event *event)
1528 {
1529         if (!event->pmu->stop)
1530                 return event->pmu->disable(event);
1531
1532         return event->pmu->stop(event);
1533 }
1534
1535 static int perf_event_start(struct perf_event *event)
1536 {
1537         if (!event->pmu->start)
1538                 return event->pmu->enable(event);
1539
1540         return event->pmu->start(event);
1541 }
1542
1543 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1544 {
1545         struct hw_perf_event *hwc = &event->hw;
1546         s64 period, sample_period;
1547         s64 delta;
1548
1549         period = perf_calculate_period(event, nsec, count);
1550
1551         delta = (s64)(period - hwc->sample_period);
1552         delta = (delta + 7) / 8; /* low pass filter */
1553
1554         sample_period = hwc->sample_period + delta;
1555
1556         if (!sample_period)
1557                 sample_period = 1;
1558
1559         hwc->sample_period = sample_period;
1560
1561         if (local64_read(&hwc->period_left) > 8*sample_period) {
1562                 perf_disable();
1563                 perf_event_stop(event);
1564                 local64_set(&hwc->period_left, 0);
1565                 perf_event_start(event);
1566                 perf_enable();
1567         }
1568 }
1569
1570 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1571 {
1572         struct perf_event *event;
1573         struct hw_perf_event *hwc;
1574         u64 interrupts, now;
1575         s64 delta;
1576
1577         raw_spin_lock(&ctx->lock);
1578         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1579                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1580                         continue;
1581
1582                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1583                         continue;
1584
1585                 hwc = &event->hw;
1586
1587                 interrupts = hwc->interrupts;
1588                 hwc->interrupts = 0;
1589
1590                 /*
1591                  * unthrottle events on the tick
1592                  */
1593                 if (interrupts == MAX_INTERRUPTS) {
1594                         perf_log_throttle(event, 1);
1595                         perf_disable();
1596                         event->pmu->unthrottle(event);
1597                         perf_enable();
1598                 }
1599
1600                 if (!event->attr.freq || !event->attr.sample_freq)
1601                         continue;
1602
1603                 perf_disable();
1604                 event->pmu->read(event);
1605                 now = local64_read(&event->count);
1606                 delta = now - hwc->freq_count_stamp;
1607                 hwc->freq_count_stamp = now;
1608
1609                 if (delta > 0)
1610                         perf_adjust_period(event, TICK_NSEC, delta);
1611                 perf_enable();
1612         }
1613         raw_spin_unlock(&ctx->lock);
1614 }
1615
1616 /*
1617  * Round-robin a context's events:
1618  */
1619 static void rotate_ctx(struct perf_event_context *ctx)
1620 {
1621         raw_spin_lock(&ctx->lock);
1622
1623         /* Rotate the first entry last of non-pinned groups */
1624         list_rotate_left(&ctx->flexible_groups);
1625
1626         raw_spin_unlock(&ctx->lock);
1627 }
1628
1629 void perf_event_task_tick(struct task_struct *curr)
1630 {
1631         struct perf_cpu_context *cpuctx;
1632         struct perf_event_context *ctx;
1633         int rotate = 0;
1634
1635         if (!atomic_read(&nr_events))
1636                 return;
1637
1638         cpuctx = &__get_cpu_var(perf_cpu_context);
1639         if (cpuctx->ctx.nr_events &&
1640             cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1641                 rotate = 1;
1642
1643         ctx = curr->perf_event_ctxp;
1644         if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1645                 rotate = 1;
1646
1647         perf_ctx_adjust_freq(&cpuctx->ctx);
1648         if (ctx)
1649                 perf_ctx_adjust_freq(ctx);
1650
1651         if (!rotate)
1652                 return;
1653
1654         perf_disable();
1655         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1656         if (ctx)
1657                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1658
1659         rotate_ctx(&cpuctx->ctx);
1660         if (ctx)
1661                 rotate_ctx(ctx);
1662
1663         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1664         if (ctx)
1665                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1666         perf_enable();
1667 }
1668
1669 static int event_enable_on_exec(struct perf_event *event,
1670                                 struct perf_event_context *ctx)
1671 {
1672         if (!event->attr.enable_on_exec)
1673                 return 0;
1674
1675         event->attr.enable_on_exec = 0;
1676         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1677                 return 0;
1678
1679         __perf_event_mark_enabled(event, ctx);
1680
1681         return 1;
1682 }
1683
1684 /*
1685  * Enable all of a task's events that have been marked enable-on-exec.
1686  * This expects task == current.
1687  */
1688 static void perf_event_enable_on_exec(struct task_struct *task)
1689 {
1690         struct perf_event_context *ctx;
1691         struct perf_event *event;
1692         unsigned long flags;
1693         int enabled = 0;
1694         int ret;
1695
1696         local_irq_save(flags);
1697         ctx = task->perf_event_ctxp;
1698         if (!ctx || !ctx->nr_events)
1699                 goto out;
1700
1701         __perf_event_task_sched_out(ctx);
1702
1703         raw_spin_lock(&ctx->lock);
1704
1705         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1706                 ret = event_enable_on_exec(event, ctx);
1707                 if (ret)
1708                         enabled = 1;
1709         }
1710
1711         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1712                 ret = event_enable_on_exec(event, ctx);
1713                 if (ret)
1714                         enabled = 1;
1715         }
1716
1717         /*
1718          * Unclone this context if we enabled any event.
1719          */
1720         if (enabled)
1721                 unclone_ctx(ctx);
1722
1723         raw_spin_unlock(&ctx->lock);
1724
1725         perf_event_task_sched_in(task);
1726  out:
1727         local_irq_restore(flags);
1728 }
1729
1730 /*
1731  * Cross CPU call to read the hardware event
1732  */
1733 static void __perf_event_read(void *info)
1734 {
1735         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1736         struct perf_event *event = info;
1737         struct perf_event_context *ctx = event->ctx;
1738
1739         /*
1740          * If this is a task context, we need to check whether it is
1741          * the current task context of this cpu.  If not it has been
1742          * scheduled out before the smp call arrived.  In that case
1743          * event->count would have been updated to a recent sample
1744          * when the event was scheduled out.
1745          */
1746         if (ctx->task && cpuctx->task_ctx != ctx)
1747                 return;
1748
1749         raw_spin_lock(&ctx->lock);
1750         update_context_time(ctx);
1751         update_event_times(event);
1752         raw_spin_unlock(&ctx->lock);
1753
1754         event->pmu->read(event);
1755 }
1756
1757 static inline u64 perf_event_count(struct perf_event *event)
1758 {
1759         return local64_read(&event->count) + atomic64_read(&event->child_count);
1760 }
1761
1762 static u64 perf_event_read(struct perf_event *event)
1763 {
1764         /*
1765          * If event is enabled and currently active on a CPU, update the
1766          * value in the event structure:
1767          */
1768         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1769                 smp_call_function_single(event->oncpu,
1770                                          __perf_event_read, event, 1);
1771         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1772                 struct perf_event_context *ctx = event->ctx;
1773                 unsigned long flags;
1774
1775                 raw_spin_lock_irqsave(&ctx->lock, flags);
1776                 update_context_time(ctx);
1777                 update_event_times(event);
1778                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1779         }
1780
1781         return perf_event_count(event);
1782 }
1783
1784 /*
1785  * Callchain support
1786  */
1787
1788 struct callchain_cpus_entries {
1789         struct rcu_head                 rcu_head;
1790         struct perf_callchain_entry     *cpu_entries[0];
1791 };
1792
1793 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1794 static atomic_t nr_callchain_events;
1795 static DEFINE_MUTEX(callchain_mutex);
1796 struct callchain_cpus_entries *callchain_cpus_entries;
1797
1798
1799 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1800                                   struct pt_regs *regs)
1801 {
1802 }
1803
1804 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1805                                 struct pt_regs *regs)
1806 {
1807 }
1808
1809 static void release_callchain_buffers_rcu(struct rcu_head *head)
1810 {
1811         struct callchain_cpus_entries *entries;
1812         int cpu;
1813
1814         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1815
1816         for_each_possible_cpu(cpu)
1817                 kfree(entries->cpu_entries[cpu]);
1818
1819         kfree(entries);
1820 }
1821
1822 static void release_callchain_buffers(void)
1823 {
1824         struct callchain_cpus_entries *entries;
1825
1826         entries = callchain_cpus_entries;
1827         rcu_assign_pointer(callchain_cpus_entries, NULL);
1828         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1829 }
1830
1831 static int alloc_callchain_buffers(void)
1832 {
1833         int cpu;
1834         int size;
1835         struct callchain_cpus_entries *entries;
1836
1837         /*
1838          * We can't use the percpu allocation API for data that can be
1839          * accessed from NMI. Use a temporary manual per cpu allocation
1840          * until that gets sorted out.
1841          */
1842         size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1843                 num_possible_cpus();
1844
1845         entries = kzalloc(size, GFP_KERNEL);
1846         if (!entries)
1847                 return -ENOMEM;
1848
1849         size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1850
1851         for_each_possible_cpu(cpu) {
1852                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1853                                                          cpu_to_node(cpu));
1854                 if (!entries->cpu_entries[cpu])
1855                         goto fail;
1856         }
1857
1858         rcu_assign_pointer(callchain_cpus_entries, entries);
1859
1860         return 0;
1861
1862 fail:
1863         for_each_possible_cpu(cpu)
1864                 kfree(entries->cpu_entries[cpu]);
1865         kfree(entries);
1866
1867         return -ENOMEM;
1868 }
1869
1870 static int get_callchain_buffers(void)
1871 {
1872         int err = 0;
1873         int count;
1874
1875         mutex_lock(&callchain_mutex);
1876
1877         count = atomic_inc_return(&nr_callchain_events);
1878         if (WARN_ON_ONCE(count < 1)) {
1879                 err = -EINVAL;
1880                 goto exit;
1881         }
1882
1883         if (count > 1) {
1884                 /* If the allocation failed, give up */
1885                 if (!callchain_cpus_entries)
1886                         err = -ENOMEM;
1887                 goto exit;
1888         }
1889
1890         err = alloc_callchain_buffers();
1891         if (err)
1892                 release_callchain_buffers();
1893 exit:
1894         mutex_unlock(&callchain_mutex);
1895
1896         return err;
1897 }
1898
1899 static void put_callchain_buffers(void)
1900 {
1901         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1902                 release_callchain_buffers();
1903                 mutex_unlock(&callchain_mutex);
1904         }
1905 }
1906
1907 static int get_recursion_context(int *recursion)
1908 {
1909         int rctx;
1910
1911         if (in_nmi())
1912                 rctx = 3;
1913         else if (in_irq())
1914                 rctx = 2;
1915         else if (in_softirq())
1916                 rctx = 1;
1917         else
1918                 rctx = 0;
1919
1920         if (recursion[rctx])
1921                 return -1;
1922
1923         recursion[rctx]++;
1924         barrier();
1925
1926         return rctx;
1927 }
1928
1929 static inline void put_recursion_context(int *recursion, int rctx)
1930 {
1931         barrier();
1932         recursion[rctx]--;
1933 }
1934
1935 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1936 {
1937         int cpu;
1938         struct callchain_cpus_entries *entries;
1939
1940         *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1941         if (*rctx == -1)
1942                 return NULL;
1943
1944         entries = rcu_dereference(callchain_cpus_entries);
1945         if (!entries)
1946                 return NULL;
1947
1948         cpu = smp_processor_id();
1949
1950         return &entries->cpu_entries[cpu][*rctx];
1951 }
1952
1953 static void
1954 put_callchain_entry(int rctx)
1955 {
1956         put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1957 }
1958
1959 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1960 {
1961         int rctx;
1962         struct perf_callchain_entry *entry;
1963
1964
1965         entry = get_callchain_entry(&rctx);
1966         if (rctx == -1)
1967                 return NULL;
1968
1969         if (!entry)
1970                 goto exit_put;
1971
1972         entry->nr = 0;
1973
1974         if (!user_mode(regs)) {
1975                 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
1976                 perf_callchain_kernel(entry, regs);
1977                 if (current->mm)
1978                         regs = task_pt_regs(current);
1979                 else
1980                         regs = NULL;
1981         }
1982
1983         if (regs) {
1984                 perf_callchain_store(entry, PERF_CONTEXT_USER);
1985                 perf_callchain_user(entry, regs);
1986         }
1987
1988 exit_put:
1989         put_callchain_entry(rctx);
1990
1991         return entry;
1992 }
1993
1994 /*
1995  * Initialize the perf_event context in a task_struct:
1996  */
1997 static void
1998 __perf_event_init_context(struct perf_event_context *ctx,
1999                             struct task_struct *task)
2000 {
2001         raw_spin_lock_init(&ctx->lock);
2002         mutex_init(&ctx->mutex);
2003         INIT_LIST_HEAD(&ctx->pinned_groups);
2004         INIT_LIST_HEAD(&ctx->flexible_groups);
2005         INIT_LIST_HEAD(&ctx->event_list);
2006         atomic_set(&ctx->refcount, 1);
2007         ctx->task = task;
2008 }
2009
2010 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
2011 {
2012         struct perf_event_context *ctx;
2013         struct perf_cpu_context *cpuctx;
2014         struct task_struct *task;
2015         unsigned long flags;
2016         int err;
2017
2018         if (pid == -1 && cpu != -1) {
2019                 /* Must be root to operate on a CPU event: */
2020                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2021                         return ERR_PTR(-EACCES);
2022
2023                 if (cpu < 0 || cpu >= nr_cpumask_bits)
2024                         return ERR_PTR(-EINVAL);
2025
2026                 /*
2027                  * We could be clever and allow to attach a event to an
2028                  * offline CPU and activate it when the CPU comes up, but
2029                  * that's for later.
2030                  */
2031                 if (!cpu_online(cpu))
2032                         return ERR_PTR(-ENODEV);
2033
2034                 cpuctx = &per_cpu(perf_cpu_context, cpu);
2035                 ctx = &cpuctx->ctx;
2036                 get_ctx(ctx);
2037
2038                 return ctx;
2039         }
2040
2041         rcu_read_lock();
2042         if (!pid)
2043                 task = current;
2044         else
2045                 task = find_task_by_vpid(pid);
2046         if (task)
2047                 get_task_struct(task);
2048         rcu_read_unlock();
2049
2050         if (!task)
2051                 return ERR_PTR(-ESRCH);
2052
2053         /*
2054          * Can't attach events to a dying task.
2055          */
2056         err = -ESRCH;
2057         if (task->flags & PF_EXITING)
2058                 goto errout;
2059
2060         /* Reuse ptrace permission checks for now. */
2061         err = -EACCES;
2062         if (!ptrace_may_access(task, PTRACE_MODE_READ))
2063                 goto errout;
2064
2065  retry:
2066         ctx = perf_lock_task_context(task, &flags);
2067         if (ctx) {
2068                 unclone_ctx(ctx);
2069                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2070         }
2071
2072         if (!ctx) {
2073                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2074                 err = -ENOMEM;
2075                 if (!ctx)
2076                         goto errout;
2077                 __perf_event_init_context(ctx, task);
2078                 get_ctx(ctx);
2079                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
2080                         /*
2081                          * We raced with some other task; use
2082                          * the context they set.
2083                          */
2084                         kfree(ctx);
2085                         goto retry;
2086                 }
2087                 get_task_struct(task);
2088         }
2089
2090         put_task_struct(task);
2091         return ctx;
2092
2093  errout:
2094         put_task_struct(task);
2095         return ERR_PTR(err);
2096 }
2097
2098 static void perf_event_free_filter(struct perf_event *event);
2099
2100 static void free_event_rcu(struct rcu_head *head)
2101 {
2102         struct perf_event *event;
2103
2104         event = container_of(head, struct perf_event, rcu_head);
2105         if (event->ns)
2106                 put_pid_ns(event->ns);
2107         perf_event_free_filter(event);
2108         kfree(event);
2109 }
2110
2111 static void perf_pending_sync(struct perf_event *event);
2112 static void perf_buffer_put(struct perf_buffer *buffer);
2113
2114 static void free_event(struct perf_event *event)
2115 {
2116         perf_pending_sync(event);
2117
2118         if (!event->parent) {
2119                 atomic_dec(&nr_events);
2120                 if (event->attr.mmap || event->attr.mmap_data)
2121                         atomic_dec(&nr_mmap_events);
2122                 if (event->attr.comm)
2123                         atomic_dec(&nr_comm_events);
2124                 if (event->attr.task)
2125                         atomic_dec(&nr_task_events);
2126                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2127                         put_callchain_buffers();
2128         }
2129
2130         if (event->buffer) {
2131                 perf_buffer_put(event->buffer);
2132                 event->buffer = NULL;
2133         }
2134
2135         if (event->destroy)
2136                 event->destroy(event);
2137
2138         put_ctx(event->ctx);
2139         call_rcu(&event->rcu_head, free_event_rcu);
2140 }
2141
2142 int perf_event_release_kernel(struct perf_event *event)
2143 {
2144         struct perf_event_context *ctx = event->ctx;
2145
2146         /*
2147          * Remove from the PMU, can't get re-enabled since we got
2148          * here because the last ref went.
2149          */
2150         perf_event_disable(event);
2151
2152         WARN_ON_ONCE(ctx->parent_ctx);
2153         /*
2154          * There are two ways this annotation is useful:
2155          *
2156          *  1) there is a lock recursion from perf_event_exit_task
2157          *     see the comment there.
2158          *
2159          *  2) there is a lock-inversion with mmap_sem through
2160          *     perf_event_read_group(), which takes faults while
2161          *     holding ctx->mutex, however this is called after
2162          *     the last filedesc died, so there is no possibility
2163          *     to trigger the AB-BA case.
2164          */
2165         mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2166         raw_spin_lock_irq(&ctx->lock);
2167         perf_group_detach(event);
2168         list_del_event(event, ctx);
2169         raw_spin_unlock_irq(&ctx->lock);
2170         mutex_unlock(&ctx->mutex);
2171
2172         mutex_lock(&event->owner->perf_event_mutex);
2173         list_del_init(&event->owner_entry);
2174         mutex_unlock(&event->owner->perf_event_mutex);
2175         put_task_struct(event->owner);
2176
2177         free_event(event);
2178
2179         return 0;
2180 }
2181 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2182
2183 /*
2184  * Called when the last reference to the file is gone.
2185  */
2186 static int perf_release(struct inode *inode, struct file *file)
2187 {
2188         struct perf_event *event = file->private_data;
2189
2190         file->private_data = NULL;
2191
2192         return perf_event_release_kernel(event);
2193 }
2194
2195 static int perf_event_read_size(struct perf_event *event)
2196 {
2197         int entry = sizeof(u64); /* value */
2198         int size = 0;
2199         int nr = 1;
2200
2201         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2202                 size += sizeof(u64);
2203
2204         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2205                 size += sizeof(u64);
2206
2207         if (event->attr.read_format & PERF_FORMAT_ID)
2208                 entry += sizeof(u64);
2209
2210         if (event->attr.read_format & PERF_FORMAT_GROUP) {
2211                 nr += event->group_leader->nr_siblings;
2212                 size += sizeof(u64);
2213         }
2214
2215         size += entry * nr;
2216
2217         return size;
2218 }
2219
2220 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2221 {
2222         struct perf_event *child;
2223         u64 total = 0;
2224
2225         *enabled = 0;
2226         *running = 0;
2227
2228         mutex_lock(&event->child_mutex);
2229         total += perf_event_read(event);
2230         *enabled += event->total_time_enabled +
2231                         atomic64_read(&event->child_total_time_enabled);
2232         *running += event->total_time_running +
2233                         atomic64_read(&event->child_total_time_running);
2234
2235         list_for_each_entry(child, &event->child_list, child_list) {
2236                 total += perf_event_read(child);
2237                 *enabled += child->total_time_enabled;
2238                 *running += child->total_time_running;
2239         }
2240         mutex_unlock(&event->child_mutex);
2241
2242         return total;
2243 }
2244 EXPORT_SYMBOL_GPL(perf_event_read_value);
2245
2246 static int perf_event_read_group(struct perf_event *event,
2247                                    u64 read_format, char __user *buf)
2248 {
2249         struct perf_event *leader = event->group_leader, *sub;
2250         int n = 0, size = 0, ret = -EFAULT;
2251         struct perf_event_context *ctx = leader->ctx;
2252         u64 values[5];
2253         u64 count, enabled, running;
2254
2255         mutex_lock(&ctx->mutex);
2256         count = perf_event_read_value(leader, &enabled, &running);
2257
2258         values[n++] = 1 + leader->nr_siblings;
2259         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2260                 values[n++] = enabled;
2261         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2262                 values[n++] = running;
2263         values[n++] = count;
2264         if (read_format & PERF_FORMAT_ID)
2265                 values[n++] = primary_event_id(leader);
2266
2267         size = n * sizeof(u64);
2268
2269         if (copy_to_user(buf, values, size))
2270                 goto unlock;
2271
2272         ret = size;
2273
2274         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2275                 n = 0;
2276
2277                 values[n++] = perf_event_read_value(sub, &enabled, &running);
2278                 if (read_format & PERF_FORMAT_ID)
2279                         values[n++] = primary_event_id(sub);
2280
2281                 size = n * sizeof(u64);
2282
2283                 if (copy_to_user(buf + ret, values, size)) {
2284                         ret = -EFAULT;
2285                         goto unlock;
2286                 }
2287
2288                 ret += size;
2289         }
2290 unlock:
2291         mutex_unlock(&ctx->mutex);
2292
2293         return ret;
2294 }
2295
2296 static int perf_event_read_one(struct perf_event *event,
2297                                  u64 read_format, char __user *buf)
2298 {
2299         u64 enabled, running;
2300         u64 values[4];
2301         int n = 0;
2302
2303         values[n++] = perf_event_read_value(event, &enabled, &running);
2304         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2305                 values[n++] = enabled;
2306         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2307                 values[n++] = running;
2308         if (read_format & PERF_FORMAT_ID)
2309                 values[n++] = primary_event_id(event);
2310
2311         if (copy_to_user(buf, values, n * sizeof(u64)))
2312                 return -EFAULT;
2313
2314         return n * sizeof(u64);
2315 }
2316
2317 /*
2318  * Read the performance event - simple non blocking version for now
2319  */
2320 static ssize_t
2321 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2322 {
2323         u64 read_format = event->attr.read_format;
2324         int ret;
2325
2326         /*
2327          * Return end-of-file for a read on a event that is in
2328          * error state (i.e. because it was pinned but it couldn't be
2329          * scheduled on to the CPU at some point).
2330          */
2331         if (event->state == PERF_EVENT_STATE_ERROR)
2332                 return 0;
2333
2334         if (count < perf_event_read_size(event))
2335                 return -ENOSPC;
2336
2337         WARN_ON_ONCE(event->ctx->parent_ctx);
2338         if (read_format & PERF_FORMAT_GROUP)
2339                 ret = perf_event_read_group(event, read_format, buf);
2340         else
2341                 ret = perf_event_read_one(event, read_format, buf);
2342
2343         return ret;
2344 }
2345
2346 static ssize_t
2347 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2348 {
2349         struct perf_event *event = file->private_data;
2350
2351         return perf_read_hw(event, buf, count);
2352 }
2353
2354 static unsigned int perf_poll(struct file *file, poll_table *wait)
2355 {
2356         struct perf_event *event = file->private_data;
2357         struct perf_buffer *buffer;
2358         unsigned int events = POLL_HUP;
2359
2360         rcu_read_lock();
2361         buffer = rcu_dereference(event->buffer);
2362         if (buffer)
2363                 events = atomic_xchg(&buffer->poll, 0);
2364         rcu_read_unlock();
2365
2366         poll_wait(file, &event->waitq, wait);
2367
2368         return events;
2369 }
2370
2371 static void perf_event_reset(struct perf_event *event)
2372 {
2373         (void)perf_event_read(event);
2374         local64_set(&event->count, 0);
2375         perf_event_update_userpage(event);
2376 }
2377
2378 /*
2379  * Holding the top-level event's child_mutex means that any
2380  * descendant process that has inherited this event will block
2381  * in sync_child_event if it goes to exit, thus satisfying the
2382  * task existence requirements of perf_event_enable/disable.
2383  */
2384 static void perf_event_for_each_child(struct perf_event *event,
2385                                         void (*func)(struct perf_event *))
2386 {
2387         struct perf_event *child;
2388
2389         WARN_ON_ONCE(event->ctx->parent_ctx);
2390         mutex_lock(&event->child_mutex);
2391         func(event);
2392         list_for_each_entry(child, &event->child_list, child_list)
2393                 func(child);
2394         mutex_unlock(&event->child_mutex);
2395 }
2396
2397 static void perf_event_for_each(struct perf_event *event,
2398                                   void (*func)(struct perf_event *))
2399 {
2400         struct perf_event_context *ctx = event->ctx;
2401         struct perf_event *sibling;
2402
2403         WARN_ON_ONCE(ctx->parent_ctx);
2404         mutex_lock(&ctx->mutex);
2405         event = event->group_leader;
2406
2407         perf_event_for_each_child(event, func);
2408         func(event);
2409         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2410                 perf_event_for_each_child(event, func);
2411         mutex_unlock(&ctx->mutex);
2412 }
2413
2414 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2415 {
2416         struct perf_event_context *ctx = event->ctx;
2417         unsigned long size;
2418         int ret = 0;
2419         u64 value;
2420
2421         if (!event->attr.sample_period)
2422                 return -EINVAL;
2423
2424         size = copy_from_user(&value, arg, sizeof(value));
2425         if (size != sizeof(value))
2426                 return -EFAULT;
2427
2428         if (!value)
2429                 return -EINVAL;
2430
2431         raw_spin_lock_irq(&ctx->lock);
2432         if (event->attr.freq) {
2433                 if (value > sysctl_perf_event_sample_rate) {
2434                         ret = -EINVAL;
2435                         goto unlock;
2436                 }
2437
2438                 event->attr.sample_freq = value;
2439         } else {
2440                 event->attr.sample_period = value;
2441                 event->hw.sample_period = value;
2442         }
2443 unlock:
2444         raw_spin_unlock_irq(&ctx->lock);
2445
2446         return ret;
2447 }
2448
2449 static const struct file_operations perf_fops;
2450
2451 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2452 {
2453         struct file *file;
2454
2455         file = fget_light(fd, fput_needed);
2456         if (!file)
2457                 return ERR_PTR(-EBADF);
2458
2459         if (file->f_op != &perf_fops) {
2460                 fput_light(file, *fput_needed);
2461                 *fput_needed = 0;
2462                 return ERR_PTR(-EBADF);
2463         }
2464
2465         return file->private_data;
2466 }
2467
2468 static int perf_event_set_output(struct perf_event *event,
2469                                  struct perf_event *output_event);
2470 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2471
2472 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2473 {
2474         struct perf_event *event = file->private_data;
2475         void (*func)(struct perf_event *);
2476         u32 flags = arg;
2477
2478         switch (cmd) {
2479         case PERF_EVENT_IOC_ENABLE:
2480                 func = perf_event_enable;
2481                 break;
2482         case PERF_EVENT_IOC_DISABLE:
2483                 func = perf_event_disable;
2484                 break;
2485         case PERF_EVENT_IOC_RESET:
2486                 func = perf_event_reset;
2487                 break;
2488
2489         case PERF_EVENT_IOC_REFRESH:
2490                 return perf_event_refresh(event, arg);
2491
2492         case PERF_EVENT_IOC_PERIOD:
2493                 return perf_event_period(event, (u64 __user *)arg);
2494
2495         case PERF_EVENT_IOC_SET_OUTPUT:
2496         {
2497                 struct perf_event *output_event = NULL;
2498                 int fput_needed = 0;
2499                 int ret;
2500
2501                 if (arg != -1) {
2502                         output_event = perf_fget_light(arg, &fput_needed);
2503                         if (IS_ERR(output_event))
2504                                 return PTR_ERR(output_event);
2505                 }
2506
2507                 ret = perf_event_set_output(event, output_event);
2508                 if (output_event)
2509                         fput_light(output_event->filp, fput_needed);
2510
2511                 return ret;
2512         }
2513
2514         case PERF_EVENT_IOC_SET_FILTER:
2515                 return perf_event_set_filter(event, (void __user *)arg);
2516
2517         default:
2518                 return -ENOTTY;
2519         }
2520
2521         if (flags & PERF_IOC_FLAG_GROUP)
2522                 perf_event_for_each(event, func);
2523         else
2524                 perf_event_for_each_child(event, func);
2525
2526         return 0;
2527 }
2528
2529 int perf_event_task_enable(void)
2530 {
2531         struct perf_event *event;
2532
2533         mutex_lock(&current->perf_event_mutex);
2534         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2535                 perf_event_for_each_child(event, perf_event_enable);
2536         mutex_unlock(&current->perf_event_mutex);
2537
2538         return 0;
2539 }
2540
2541 int perf_event_task_disable(void)
2542 {
2543         struct perf_event *event;
2544
2545         mutex_lock(&current->perf_event_mutex);
2546         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2547                 perf_event_for_each_child(event, perf_event_disable);
2548         mutex_unlock(&current->perf_event_mutex);
2549
2550         return 0;
2551 }
2552
2553 #ifndef PERF_EVENT_INDEX_OFFSET
2554 # define PERF_EVENT_INDEX_OFFSET 0
2555 #endif
2556
2557 static int perf_event_index(struct perf_event *event)
2558 {
2559         if (event->state != PERF_EVENT_STATE_ACTIVE)
2560                 return 0;
2561
2562         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2563 }
2564
2565 /*
2566  * Callers need to ensure there can be no nesting of this function, otherwise
2567  * the seqlock logic goes bad. We can not serialize this because the arch
2568  * code calls this from NMI context.
2569  */
2570 void perf_event_update_userpage(struct perf_event *event)
2571 {
2572         struct perf_event_mmap_page *userpg;
2573         struct perf_buffer *buffer;
2574
2575         rcu_read_lock();
2576         buffer = rcu_dereference(event->buffer);
2577         if (!buffer)
2578                 goto unlock;
2579
2580         userpg = buffer->user_page;
2581
2582         /*
2583          * Disable preemption so as to not let the corresponding user-space
2584          * spin too long if we get preempted.
2585          */
2586         preempt_disable();
2587         ++userpg->lock;
2588         barrier();
2589         userpg->index = perf_event_index(event);
2590         userpg->offset = perf_event_count(event);
2591         if (event->state == PERF_EVENT_STATE_ACTIVE)
2592                 userpg->offset -= local64_read(&event->hw.prev_count);
2593
2594         userpg->time_enabled = event->total_time_enabled +
2595                         atomic64_read(&event->child_total_time_enabled);
2596
2597         userpg->time_running = event->total_time_running +
2598                         atomic64_read(&event->child_total_time_running);
2599
2600         barrier();
2601         ++userpg->lock;
2602         preempt_enable();
2603 unlock:
2604         rcu_read_unlock();
2605 }
2606
2607 static unsigned long perf_data_size(struct perf_buffer *buffer);
2608
2609 static void
2610 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2611 {
2612         long max_size = perf_data_size(buffer);
2613
2614         if (watermark)
2615                 buffer->watermark = min(max_size, watermark);
2616
2617         if (!buffer->watermark)
2618                 buffer->watermark = max_size / 2;
2619
2620         if (flags & PERF_BUFFER_WRITABLE)
2621                 buffer->writable = 1;
2622
2623         atomic_set(&buffer->refcount, 1);
2624 }
2625
2626 #ifndef CONFIG_PERF_USE_VMALLOC
2627
2628 /*
2629  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2630  */
2631
2632 static struct page *
2633 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2634 {
2635         if (pgoff > buffer->nr_pages)
2636                 return NULL;
2637
2638         if (pgoff == 0)
2639                 return virt_to_page(buffer->user_page);
2640
2641         return virt_to_page(buffer->data_pages[pgoff - 1]);
2642 }
2643
2644 static void *perf_mmap_alloc_page(int cpu)
2645 {
2646         struct page *page;
2647         int node;
2648
2649         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2650         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2651         if (!page)
2652                 return NULL;
2653
2654         return page_address(page);
2655 }
2656
2657 static struct perf_buffer *
2658 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2659 {
2660         struct perf_buffer *buffer;
2661         unsigned long size;
2662         int i;
2663
2664         size = sizeof(struct perf_buffer);
2665         size += nr_pages * sizeof(void *);
2666
2667         buffer = kzalloc(size, GFP_KERNEL);
2668         if (!buffer)
2669                 goto fail;
2670
2671         buffer->user_page = perf_mmap_alloc_page(cpu);
2672         if (!buffer->user_page)
2673                 goto fail_user_page;
2674
2675         for (i = 0; i < nr_pages; i++) {
2676                 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2677                 if (!buffer->data_pages[i])
2678                         goto fail_data_pages;
2679         }
2680
2681         buffer->nr_pages = nr_pages;
2682
2683         perf_buffer_init(buffer, watermark, flags);
2684
2685         return buffer;
2686
2687 fail_data_pages:
2688         for (i--; i >= 0; i--)
2689                 free_page((unsigned long)buffer->data_pages[i]);
2690
2691         free_page((unsigned long)buffer->user_page);
2692
2693 fail_user_page:
2694         kfree(buffer);
2695
2696 fail:
2697         return NULL;
2698 }
2699
2700 static void perf_mmap_free_page(unsigned long addr)
2701 {
2702         struct page *page = virt_to_page((void *)addr);
2703
2704         page->mapping = NULL;
2705         __free_page(page);
2706 }
2707
2708 static void perf_buffer_free(struct perf_buffer *buffer)
2709 {
2710         int i;
2711
2712         perf_mmap_free_page((unsigned long)buffer->user_page);
2713         for (i = 0; i < buffer->nr_pages; i++)
2714                 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2715         kfree(buffer);
2716 }
2717
2718 static inline int page_order(struct perf_buffer *buffer)
2719 {
2720         return 0;
2721 }
2722
2723 #else
2724
2725 /*
2726  * Back perf_mmap() with vmalloc memory.
2727  *
2728  * Required for architectures that have d-cache aliasing issues.
2729  */
2730
2731 static inline int page_order(struct perf_buffer *buffer)
2732 {
2733         return buffer->page_order;
2734 }
2735
2736 static struct page *
2737 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2738 {
2739         if (pgoff > (1UL << page_order(buffer)))
2740                 return NULL;
2741
2742         return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2743 }
2744
2745 static void perf_mmap_unmark_page(void *addr)
2746 {
2747         struct page *page = vmalloc_to_page(addr);
2748
2749         page->mapping = NULL;
2750 }
2751
2752 static void perf_buffer_free_work(struct work_struct *work)
2753 {
2754         struct perf_buffer *buffer;
2755         void *base;
2756         int i, nr;
2757
2758         buffer = container_of(work, struct perf_buffer, work);
2759         nr = 1 << page_order(buffer);
2760
2761         base = buffer->user_page;
2762         for (i = 0; i < nr + 1; i++)
2763                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2764
2765         vfree(base);
2766         kfree(buffer);
2767 }
2768
2769 static void perf_buffer_free(struct perf_buffer *buffer)
2770 {
2771         schedule_work(&buffer->work);
2772 }
2773
2774 static struct perf_buffer *
2775 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2776 {
2777         struct perf_buffer *buffer;
2778         unsigned long size;
2779         void *all_buf;
2780
2781         size = sizeof(struct perf_buffer);
2782         size += sizeof(void *);
2783
2784         buffer = kzalloc(size, GFP_KERNEL);
2785         if (!buffer)
2786                 goto fail;
2787
2788         INIT_WORK(&buffer->work, perf_buffer_free_work);
2789
2790         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2791         if (!all_buf)
2792                 goto fail_all_buf;
2793
2794         buffer->user_page = all_buf;
2795         buffer->data_pages[0] = all_buf + PAGE_SIZE;
2796         buffer->page_order = ilog2(nr_pages);
2797         buffer->nr_pages = 1;
2798
2799         perf_buffer_init(buffer, watermark, flags);
2800
2801         return buffer;
2802
2803 fail_all_buf:
2804         kfree(buffer);
2805
2806 fail:
2807         return NULL;
2808 }
2809
2810 #endif
2811
2812 static unsigned long perf_data_size(struct perf_buffer *buffer)
2813 {
2814         return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2815 }
2816
2817 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2818 {
2819         struct perf_event *event = vma->vm_file->private_data;
2820         struct perf_buffer *buffer;
2821         int ret = VM_FAULT_SIGBUS;
2822
2823         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2824                 if (vmf->pgoff == 0)
2825                         ret = 0;
2826                 return ret;
2827         }
2828
2829         rcu_read_lock();
2830         buffer = rcu_dereference(event->buffer);
2831         if (!buffer)
2832                 goto unlock;
2833
2834         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2835                 goto unlock;
2836
2837         vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2838         if (!vmf->page)
2839                 goto unlock;
2840
2841         get_page(vmf->page);
2842         vmf->page->mapping = vma->vm_file->f_mapping;
2843         vmf->page->index   = vmf->pgoff;
2844
2845         ret = 0;
2846 unlock:
2847         rcu_read_unlock();
2848
2849         return ret;
2850 }
2851
2852 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2853 {
2854         struct perf_buffer *buffer;
2855
2856         buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2857         perf_buffer_free(buffer);
2858 }
2859
2860 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2861 {
2862         struct perf_buffer *buffer;
2863
2864         rcu_read_lock();
2865         buffer = rcu_dereference(event->buffer);
2866         if (buffer) {
2867                 if (!atomic_inc_not_zero(&buffer->refcount))
2868                         buffer = NULL;
2869         }
2870         rcu_read_unlock();
2871
2872         return buffer;
2873 }
2874
2875 static void perf_buffer_put(struct perf_buffer *buffer)
2876 {
2877         if (!atomic_dec_and_test(&buffer->refcount))
2878                 return;
2879
2880         call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2881 }
2882
2883 static void perf_mmap_open(struct vm_area_struct *vma)
2884 {
2885         struct perf_event *event = vma->vm_file->private_data;
2886
2887         atomic_inc(&event->mmap_count);
2888 }
2889
2890 static void perf_mmap_close(struct vm_area_struct *vma)
2891 {
2892         struct perf_event *event = vma->vm_file->private_data;
2893
2894         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2895                 unsigned long size = perf_data_size(event->buffer);
2896                 struct user_struct *user = event->mmap_user;
2897                 struct perf_buffer *buffer = event->buffer;
2898
2899                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2900                 vma->vm_mm->locked_vm -= event->mmap_locked;
2901                 rcu_assign_pointer(event->buffer, NULL);
2902                 mutex_unlock(&event->mmap_mutex);
2903
2904                 perf_buffer_put(buffer);
2905                 free_uid(user);
2906         }
2907 }
2908
2909 static const struct vm_operations_struct perf_mmap_vmops = {
2910         .open           = perf_mmap_open,
2911         .close          = perf_mmap_close,
2912         .fault          = perf_mmap_fault,
2913         .page_mkwrite   = perf_mmap_fault,
2914 };
2915
2916 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2917 {
2918         struct perf_event *event = file->private_data;
2919         unsigned long user_locked, user_lock_limit;
2920         struct user_struct *user = current_user();
2921         unsigned long locked, lock_limit;
2922         struct perf_buffer *buffer;
2923         unsigned long vma_size;
2924         unsigned long nr_pages;
2925         long user_extra, extra;
2926         int ret = 0, flags = 0;
2927
2928         /*
2929          * Don't allow mmap() of inherited per-task counters. This would
2930          * create a performance issue due to all children writing to the
2931          * same buffer.
2932          */
2933         if (event->cpu == -1 && event->attr.inherit)
2934                 return -EINVAL;
2935
2936         if (!(vma->vm_flags & VM_SHARED))
2937                 return -EINVAL;
2938
2939         vma_size = vma->vm_end - vma->vm_start;
2940         nr_pages = (vma_size / PAGE_SIZE) - 1;
2941
2942         /*
2943          * If we have buffer pages ensure they're a power-of-two number, so we
2944          * can do bitmasks instead of modulo.
2945          */
2946         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2947                 return -EINVAL;
2948
2949         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2950                 return -EINVAL;
2951
2952         if (vma->vm_pgoff != 0)
2953                 return -EINVAL;
2954
2955         WARN_ON_ONCE(event->ctx->parent_ctx);
2956         mutex_lock(&event->mmap_mutex);
2957         if (event->buffer) {
2958                 if (event->buffer->nr_pages == nr_pages)
2959                         atomic_inc(&event->buffer->refcount);
2960                 else
2961                         ret = -EINVAL;
2962                 goto unlock;
2963         }
2964
2965         user_extra = nr_pages + 1;
2966         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2967
2968         /*
2969          * Increase the limit linearly with more CPUs:
2970          */
2971         user_lock_limit *= num_online_cpus();
2972
2973         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2974
2975         extra = 0;
2976         if (user_locked > user_lock_limit)
2977                 extra = user_locked - user_lock_limit;
2978
2979         lock_limit = rlimit(RLIMIT_MEMLOCK);
2980         lock_limit >>= PAGE_SHIFT;
2981         locked = vma->vm_mm->locked_vm + extra;
2982
2983         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2984                 !capable(CAP_IPC_LOCK)) {
2985                 ret = -EPERM;
2986                 goto unlock;
2987         }
2988
2989         WARN_ON(event->buffer);
2990
2991         if (vma->vm_flags & VM_WRITE)
2992                 flags |= PERF_BUFFER_WRITABLE;
2993
2994         buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
2995                                    event->cpu, flags);
2996         if (!buffer) {
2997                 ret = -ENOMEM;
2998                 goto unlock;
2999         }
3000         rcu_assign_pointer(event->buffer, buffer);
3001
3002         atomic_long_add(user_extra, &user->locked_vm);
3003         event->mmap_locked = extra;
3004         event->mmap_user = get_current_user();
3005         vma->vm_mm->locked_vm += event->mmap_locked;
3006
3007 unlock:
3008         if (!ret)
3009                 atomic_inc(&event->mmap_count);
3010         mutex_unlock(&event->mmap_mutex);
3011
3012         vma->vm_flags |= VM_RESERVED;
3013         vma->vm_ops = &perf_mmap_vmops;
3014
3015         return ret;
3016 }
3017
3018 static int perf_fasync(int fd, struct file *filp, int on)
3019 {
3020         struct inode *inode = filp->f_path.dentry->d_inode;
3021         struct perf_event *event = filp->private_data;
3022         int retval;
3023
3024         mutex_lock(&inode->i_mutex);
3025         retval = fasync_helper(fd, filp, on, &event->fasync);
3026         mutex_unlock(&inode->i_mutex);
3027
3028         if (retval < 0)
3029                 return retval;
3030
3031         return 0;
3032 }
3033
3034 static const struct file_operations perf_fops = {
3035         .llseek                 = no_llseek,
3036         .release                = perf_release,
3037         .read                   = perf_read,
3038         .poll                   = perf_poll,
3039         .unlocked_ioctl         = perf_ioctl,
3040         .compat_ioctl           = perf_ioctl,
3041         .mmap                   = perf_mmap,
3042         .fasync                 = perf_fasync,
3043 };
3044
3045 /*
3046  * Perf event wakeup
3047  *
3048  * If there's data, ensure we set the poll() state and publish everything
3049  * to user-space before waking everybody up.
3050  */
3051
3052 void perf_event_wakeup(struct perf_event *event)
3053 {
3054         wake_up_all(&event->waitq);
3055
3056         if (event->pending_kill) {
3057                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3058                 event->pending_kill = 0;
3059         }
3060 }
3061
3062 /*
3063  * Pending wakeups
3064  *
3065  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
3066  *
3067  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
3068  * single linked list and use cmpxchg() to add entries lockless.
3069  */
3070
3071 static void perf_pending_event(struct perf_pending_entry *entry)
3072 {
3073         struct perf_event *event = container_of(entry,
3074                         struct perf_event, pending);
3075
3076         if (event->pending_disable) {
3077                 event->pending_disable = 0;
3078                 __perf_event_disable(event);
3079         }
3080
3081         if (event->pending_wakeup) {
3082                 event->pending_wakeup = 0;
3083                 perf_event_wakeup(event);
3084         }
3085 }
3086
3087 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3088
3089 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3090         PENDING_TAIL,
3091 };
3092
3093 static void perf_pending_queue(struct perf_pending_entry *entry,
3094                                void (*func)(struct perf_pending_entry *))
3095 {
3096         struct perf_pending_entry **head;
3097
3098         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3099                 return;
3100
3101         entry->func = func;
3102
3103         head = &get_cpu_var(perf_pending_head);
3104
3105         do {
3106                 entry->next = *head;
3107         } while (cmpxchg(head, entry->next, entry) != entry->next);
3108
3109         set_perf_event_pending();
3110
3111         put_cpu_var(perf_pending_head);
3112 }
3113
3114 static int __perf_pending_run(void)
3115 {
3116         struct perf_pending_entry *list;
3117         int nr = 0;
3118
3119         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3120         while (list != PENDING_TAIL) {
3121                 void (*func)(struct perf_pending_entry *);
3122                 struct perf_pending_entry *entry = list;
3123
3124                 list = list->next;
3125
3126                 func = entry->func;
3127                 entry->next = NULL;
3128                 /*
3129                  * Ensure we observe the unqueue before we issue the wakeup,
3130                  * so that we won't be waiting forever.
3131                  * -- see perf_not_pending().
3132                  */
3133                 smp_wmb();
3134
3135                 func(entry);
3136                 nr++;
3137         }
3138
3139         return nr;
3140 }
3141
3142 static inline int perf_not_pending(struct perf_event *event)
3143 {
3144         /*
3145          * If we flush on whatever cpu we run, there is a chance we don't
3146          * need to wait.
3147          */
3148         get_cpu();
3149         __perf_pending_run();
3150         put_cpu();
3151
3152         /*
3153          * Ensure we see the proper queue state before going to sleep
3154          * so that we do not miss the wakeup. -- see perf_pending_handle()
3155          */
3156         smp_rmb();
3157         return event->pending.next == NULL;
3158 }
3159
3160 static void perf_pending_sync(struct perf_event *event)
3161 {
3162         wait_event(event->waitq, perf_not_pending(event));
3163 }
3164
3165 void perf_event_do_pending(void)
3166 {
3167         __perf_pending_run();
3168 }
3169
3170 /*
3171  * We assume there is only KVM supporting the callbacks.
3172  * Later on, we might change it to a list if there is
3173  * another virtualization implementation supporting the callbacks.
3174  */
3175 struct perf_guest_info_callbacks *perf_guest_cbs;
3176
3177 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3178 {
3179         perf_guest_cbs = cbs;
3180         return 0;
3181 }
3182 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3183
3184 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3185 {
3186         perf_guest_cbs = NULL;
3187         return 0;
3188 }
3189 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3190
3191 /*
3192  * Output
3193  */
3194 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3195                               unsigned long offset, unsigned long head)
3196 {
3197         unsigned long mask;
3198
3199         if (!buffer->writable)
3200                 return true;
3201
3202         mask = perf_data_size(buffer) - 1;
3203
3204         offset = (offset - tail) & mask;
3205         head   = (head   - tail) & mask;
3206
3207         if ((int)(head - offset) < 0)
3208                 return false;
3209
3210         return true;
3211 }
3212
3213 static void perf_output_wakeup(struct perf_output_handle *handle)
3214 {
3215         atomic_set(&handle->buffer->poll, POLL_IN);
3216
3217         if (handle->nmi) {
3218                 handle->event->pending_wakeup = 1;
3219                 perf_pending_queue(&handle->event->pending,
3220                                    perf_pending_event);
3221         } else
3222                 perf_event_wakeup(handle->event);
3223 }
3224
3225 /*
3226  * We need to ensure a later event_id doesn't publish a head when a former
3227  * event isn't done writing. However since we need to deal with NMIs we
3228  * cannot fully serialize things.
3229  *
3230  * We only publish the head (and generate a wakeup) when the outer-most
3231  * event completes.
3232  */
3233 static void perf_output_get_handle(struct perf_output_handle *handle)
3234 {
3235         struct perf_buffer *buffer = handle->buffer;
3236
3237         preempt_disable();
3238         local_inc(&buffer->nest);
3239         handle->wakeup = local_read(&buffer->wakeup);
3240 }
3241
3242 static void perf_output_put_handle(struct perf_output_handle *handle)
3243 {
3244         struct perf_buffer *buffer = handle->buffer;
3245         unsigned long head;
3246
3247 again:
3248         head = local_read(&buffer->head);
3249
3250         /*
3251          * IRQ/NMI can happen here, which means we can miss a head update.
3252          */
3253
3254         if (!local_dec_and_test(&buffer->nest))
3255                 goto out;
3256
3257         /*
3258          * Publish the known good head. Rely on the full barrier implied
3259          * by atomic_dec_and_test() order the buffer->head read and this
3260          * write.
3261          */
3262         buffer->user_page->data_head = head;
3263
3264         /*
3265          * Now check if we missed an update, rely on the (compiler)
3266          * barrier in atomic_dec_and_test() to re-read buffer->head.
3267          */
3268         if (unlikely(head != local_read(&buffer->head))) {
3269                 local_inc(&buffer->nest);
3270                 goto again;
3271         }
3272
3273         if (handle->wakeup != local_read(&buffer->wakeup))
3274                 perf_output_wakeup(handle);
3275
3276  out:
3277         preempt_enable();
3278 }
3279
3280 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3281                       const void *buf, unsigned int len)
3282 {
3283         do {
3284                 unsigned long size = min_t(unsigned long, handle->size, len);
3285
3286                 memcpy(handle->addr, buf, size);
3287
3288                 len -= size;
3289                 handle->addr += size;
3290                 buf += size;
3291                 handle->size -= size;
3292                 if (!handle->size) {
3293                         struct perf_buffer *buffer = handle->buffer;
3294
3295                         handle->page++;
3296                         handle->page &= buffer->nr_pages - 1;
3297                         handle->addr = buffer->data_pages[handle->page];
3298                         handle->size = PAGE_SIZE << page_order(buffer);
3299                 }
3300         } while (len);
3301 }
3302
3303 int perf_output_begin(struct perf_output_handle *handle,
3304                       struct perf_event *event, unsigned int size,
3305                       int nmi, int sample)
3306 {
3307         struct perf_buffer *buffer;
3308         unsigned long tail, offset, head;
3309         int have_lost;
3310         struct {
3311                 struct perf_event_header header;
3312                 u64                      id;
3313                 u64                      lost;
3314         } lost_event;
3315
3316         rcu_read_lock();
3317         /*
3318          * For inherited events we send all the output towards the parent.
3319          */
3320         if (event->parent)
3321                 event = event->parent;
3322
3323         buffer = rcu_dereference(event->buffer);
3324         if (!buffer)
3325                 goto out;
3326
3327         handle->buffer  = buffer;
3328         handle->event   = event;
3329         handle->nmi     = nmi;
3330         handle->sample  = sample;
3331
3332         if (!buffer->nr_pages)
3333                 goto out;
3334
3335         have_lost = local_read(&buffer->lost);
3336         if (have_lost)
3337                 size += sizeof(lost_event);
3338
3339         perf_output_get_handle(handle);
3340
3341         do {
3342                 /*
3343                  * Userspace could choose to issue a mb() before updating the
3344                  * tail pointer. So that all reads will be completed before the
3345                  * write is issued.
3346                  */
3347                 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3348                 smp_rmb();
3349                 offset = head = local_read(&buffer->head);
3350                 head += size;
3351                 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3352                         goto fail;
3353         } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3354
3355         if (head - local_read(&buffer->wakeup) > buffer->watermark)
3356                 local_add(buffer->watermark, &buffer->wakeup);
3357
3358         handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3359         handle->page &= buffer->nr_pages - 1;
3360         handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3361         handle->addr = buffer->data_pages[handle->page];
3362         handle->addr += handle->size;
3363         handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3364
3365         if (have_lost) {
3366                 lost_event.header.type = PERF_RECORD_LOST;
3367                 lost_event.header.misc = 0;
3368                 lost_event.header.size = sizeof(lost_event);
3369                 lost_event.id          = event->id;
3370                 lost_event.lost        = local_xchg(&buffer->lost, 0);
3371
3372                 perf_output_put(handle, lost_event);
3373         }
3374
3375         return 0;
3376
3377 fail:
3378         local_inc(&buffer->lost);
3379         perf_output_put_handle(handle);
3380 out:
3381         rcu_read_unlock();
3382
3383         return -ENOSPC;
3384 }
3385
3386 void perf_output_end(struct perf_output_handle *handle)
3387 {
3388         struct perf_event *event = handle->event;
3389         struct perf_buffer *buffer = handle->buffer;
3390
3391         int wakeup_events = event->attr.wakeup_events;
3392
3393         if (handle->sample && wakeup_events) {
3394                 int events = local_inc_return(&buffer->events);
3395                 if (events >= wakeup_events) {
3396                         local_sub(wakeup_events, &buffer->events);
3397                         local_inc(&buffer->wakeup);
3398                 }
3399         }
3400
3401         perf_output_put_handle(handle);
3402         rcu_read_unlock();
3403 }
3404
3405 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3406 {
3407         /*
3408          * only top level events have the pid namespace they were created in
3409          */
3410         if (event->parent)
3411                 event = event->parent;
3412
3413         return task_tgid_nr_ns(p, event->ns);
3414 }
3415
3416 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3417 {
3418         /*
3419          * only top level events have the pid namespace they were created in
3420          */
3421         if (event->parent)
3422                 event = event->parent;
3423
3424         return task_pid_nr_ns(p, event->ns);
3425 }
3426
3427 static void perf_output_read_one(struct perf_output_handle *handle,
3428                                  struct perf_event *event)
3429 {
3430         u64 read_format = event->attr.read_format;
3431         u64 values[4];
3432         int n = 0;
3433
3434         values[n++] = perf_event_count(event);
3435         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3436                 values[n++] = event->total_time_enabled +
3437                         atomic64_read(&event->child_total_time_enabled);
3438         }
3439         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3440                 values[n++] = event->total_time_running +
3441                         atomic64_read(&event->child_total_time_running);
3442         }
3443         if (read_format & PERF_FORMAT_ID)
3444                 values[n++] = primary_event_id(event);
3445
3446         perf_output_copy(handle, values, n * sizeof(u64));
3447 }
3448
3449 /*
3450  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3451  */
3452 static void perf_output_read_group(struct perf_output_handle *handle,
3453                             struct perf_event *event)
3454 {
3455         struct perf_event *leader = event->group_leader, *sub;
3456         u64 read_format = event->attr.read_format;
3457         u64 values[5];
3458         int n = 0;
3459
3460         values[n++] = 1 + leader->nr_siblings;
3461
3462         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3463                 values[n++] = leader->total_time_enabled;
3464
3465         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3466                 values[n++] = leader->total_time_running;
3467
3468         if (leader != event)
3469                 leader->pmu->read(leader);
3470
3471         values[n++] = perf_event_count(leader);
3472         if (read_format & PERF_FORMAT_ID)
3473                 values[n++] = primary_event_id(leader);
3474
3475         perf_output_copy(handle, values, n * sizeof(u64));
3476
3477         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3478                 n = 0;
3479
3480                 if (sub != event)
3481                         sub->pmu->read(sub);
3482
3483                 values[n++] = perf_event_count(sub);
3484                 if (read_format & PERF_FORMAT_ID)
3485                         values[n++] = primary_event_id(sub);
3486
3487                 perf_output_copy(handle, values, n * sizeof(u64));
3488         }
3489 }
3490
3491 static void perf_output_read(struct perf_output_handle *handle,
3492                              struct perf_event *event)
3493 {
3494         if (event->attr.read_format & PERF_FORMAT_GROUP)
3495                 perf_output_read_group(handle, event);
3496         else
3497                 perf_output_read_one(handle, event);
3498 }
3499
3500 void perf_output_sample(struct perf_output_handle *handle,
3501                         struct perf_event_header *header,
3502                         struct perf_sample_data *data,
3503                         struct perf_event *event)
3504 {
3505         u64 sample_type = data->type;
3506
3507         perf_output_put(handle, *header);
3508
3509         if (sample_type & PERF_SAMPLE_IP)
3510                 perf_output_put(handle, data->ip);
3511
3512         if (sample_type & PERF_SAMPLE_TID)
3513                 perf_output_put(handle, data->tid_entry);
3514
3515         if (sample_type & PERF_SAMPLE_TIME)
3516                 perf_output_put(handle, data->time);
3517
3518         if (sample_type & PERF_SAMPLE_ADDR)
3519                 perf_output_put(handle, data->addr);
3520
3521         if (sample_type & PERF_SAMPLE_ID)
3522                 perf_output_put(handle, data->id);
3523
3524         if (sample_type & PERF_SAMPLE_STREAM_ID)
3525                 perf_output_put(handle, data->stream_id);
3526
3527         if (sample_type & PERF_SAMPLE_CPU)
3528                 perf_output_put(handle, data->cpu_entry);
3529
3530         if (sample_type & PERF_SAMPLE_PERIOD)
3531                 perf_output_put(handle, data->period);
3532
3533         if (sample_type & PERF_SAMPLE_READ)
3534                 perf_output_read(handle, event);
3535
3536         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3537                 if (data->callchain) {
3538                         int size = 1;
3539
3540                         if (data->callchain)
3541                                 size += data->callchain->nr;
3542
3543                         size *= sizeof(u64);
3544
3545                         perf_output_copy(handle, data->callchain, size);
3546                 } else {
3547                         u64 nr = 0;
3548                         perf_output_put(handle, nr);
3549                 }
3550         }
3551
3552         if (sample_type & PERF_SAMPLE_RAW) {
3553                 if (data->raw) {
3554                         perf_output_put(handle, data->raw->size);
3555                         perf_output_copy(handle, data->raw->data,
3556                                          data->raw->size);
3557                 } else {
3558                         struct {
3559                                 u32     size;
3560                                 u32     data;
3561                         } raw = {
3562                                 .size = sizeof(u32),
3563                                 .data = 0,
3564                         };
3565                         perf_output_put(handle, raw);
3566                 }
3567         }
3568 }
3569
3570 void perf_prepare_sample(struct perf_event_header *header,
3571                          struct perf_sample_data *data,
3572                          struct perf_event *event,
3573                          struct pt_regs *regs)
3574 {
3575         u64 sample_type = event->attr.sample_type;
3576
3577         data->type = sample_type;
3578
3579         header->type = PERF_RECORD_SAMPLE;
3580         header->size = sizeof(*header);
3581
3582         header->misc = 0;
3583         header->misc |= perf_misc_flags(regs);
3584
3585         if (sample_type & PERF_SAMPLE_IP) {
3586                 data->ip = perf_instruction_pointer(regs);
3587
3588                 header->size += sizeof(data->ip);
3589         }
3590
3591         if (sample_type & PERF_SAMPLE_TID) {
3592                 /* namespace issues */
3593                 data->tid_entry.pid = perf_event_pid(event, current);
3594                 data->tid_entry.tid = perf_event_tid(event, current);
3595
3596                 header->size += sizeof(data->tid_entry);
3597         }
3598
3599         if (sample_type & PERF_SAMPLE_TIME) {
3600                 data->time = perf_clock();
3601
3602                 header->size += sizeof(data->time);
3603         }
3604
3605         if (sample_type & PERF_SAMPLE_ADDR)
3606                 header->size += sizeof(data->addr);
3607
3608         if (sample_type & PERF_SAMPLE_ID) {
3609                 data->id = primary_event_id(event);
3610
3611                 header->size += sizeof(data->id);
3612         }
3613
3614         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3615                 data->stream_id = event->id;
3616
3617                 header->size += sizeof(data->stream_id);
3618         }
3619
3620         if (sample_type & PERF_SAMPLE_CPU) {
3621                 data->cpu_entry.cpu             = raw_smp_processor_id();
3622                 data->cpu_entry.reserved        = 0;
3623
3624                 header->size += sizeof(data->cpu_entry);
3625         }
3626
3627         if (sample_type & PERF_SAMPLE_PERIOD)
3628                 header->size += sizeof(data->period);
3629
3630         if (sample_type & PERF_SAMPLE_READ)
3631                 header->size += perf_event_read_size(event);
3632
3633         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3634                 int size = 1;
3635
3636                 data->callchain = perf_callchain(regs);
3637
3638                 if (data->callchain)
3639                         size += data->callchain->nr;
3640
3641                 header->size += size * sizeof(u64);
3642         }
3643
3644         if (sample_type & PERF_SAMPLE_RAW) {
3645                 int size = sizeof(u32);
3646
3647                 if (data->raw)
3648                         size += data->raw->size;
3649                 else
3650                         size += sizeof(u32);
3651
3652                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3653                 header->size += size;
3654         }
3655 }
3656
3657 static void perf_event_output(struct perf_event *event, int nmi,
3658                                 struct perf_sample_data *data,
3659                                 struct pt_regs *regs)
3660 {
3661         struct perf_output_handle handle;
3662         struct perf_event_header header;
3663
3664         /* protect the callchain buffers */
3665         rcu_read_lock();
3666
3667         perf_prepare_sample(&header, data, event, regs);
3668
3669         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3670                 goto exit;
3671
3672         perf_output_sample(&handle, &header, data, event);
3673
3674         perf_output_end(&handle);
3675
3676 exit:
3677         rcu_read_unlock();
3678 }
3679
3680 /*
3681  * read event_id
3682  */
3683
3684 struct perf_read_event {
3685         struct perf_event_header        header;
3686
3687         u32                             pid;
3688         u32                             tid;
3689 };
3690
3691 static void
3692 perf_event_read_event(struct perf_event *event,
3693                         struct task_struct *task)
3694 {
3695         struct perf_output_handle handle;
3696         struct perf_read_event read_event = {
3697                 .header = {
3698                         .type = PERF_RECORD_READ,
3699                         .misc = 0,
3700                         .size = sizeof(read_event) + perf_event_read_size(event),
3701                 },
3702                 .pid = perf_event_pid(event, task),
3703                 .tid = perf_event_tid(event, task),
3704         };
3705         int ret;
3706
3707         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3708         if (ret)
3709                 return;
3710
3711         perf_output_put(&handle, read_event);
3712         perf_output_read(&handle, event);
3713
3714         perf_output_end(&handle);
3715 }
3716
3717 /*
3718  * task tracking -- fork/exit
3719  *
3720  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3721  */
3722
3723 struct perf_task_event {
3724         struct task_struct              *task;
3725         struct perf_event_context       *task_ctx;
3726
3727         struct {
3728                 struct perf_event_header        header;
3729
3730                 u32                             pid;
3731                 u32                             ppid;
3732                 u32                             tid;
3733                 u32                             ptid;
3734                 u64                             time;
3735         } event_id;
3736 };
3737
3738 static void perf_event_task_output(struct perf_event *event,
3739                                      struct perf_task_event *task_event)
3740 {
3741         struct perf_output_handle handle;
3742         struct task_struct *task = task_event->task;
3743         int size, ret;
3744
3745         size  = task_event->event_id.header.size;
3746         ret = perf_output_begin(&handle, event, size, 0, 0);
3747
3748         if (ret)
3749                 return;
3750
3751         task_event->event_id.pid = perf_event_pid(event, task);
3752         task_event->event_id.ppid = perf_event_pid(event, current);
3753
3754         task_event->event_id.tid = perf_event_tid(event, task);
3755         task_event->event_id.ptid = perf_event_tid(event, current);
3756
3757         perf_output_put(&handle, task_event->event_id);
3758
3759         perf_output_end(&handle);
3760 }
3761
3762 static int perf_event_task_match(struct perf_event *event)
3763 {
3764         if (event->state < PERF_EVENT_STATE_INACTIVE)
3765                 return 0;
3766
3767         if (event->cpu != -1 && event->cpu != smp_processor_id())
3768                 return 0;
3769
3770         if (event->attr.comm || event->attr.mmap ||
3771             event->attr.mmap_data || event->attr.task)
3772                 return 1;
3773
3774         return 0;
3775 }
3776
3777 static void perf_event_task_ctx(struct perf_event_context *ctx,
3778                                   struct perf_task_event *task_event)
3779 {
3780         struct perf_event *event;
3781
3782         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3783                 if (perf_event_task_match(event))
3784                         perf_event_task_output(event, task_event);
3785         }
3786 }
3787
3788 static void perf_event_task_event(struct perf_task_event *task_event)
3789 {
3790         struct perf_cpu_context *cpuctx;
3791         struct perf_event_context *ctx = task_event->task_ctx;
3792
3793         rcu_read_lock();
3794         cpuctx = &get_cpu_var(perf_cpu_context);
3795         perf_event_task_ctx(&cpuctx->ctx, task_event);
3796         if (!ctx)
3797                 ctx = rcu_dereference(current->perf_event_ctxp);
3798         if (ctx)
3799                 perf_event_task_ctx(ctx, task_event);
3800         put_cpu_var(perf_cpu_context);
3801         rcu_read_unlock();
3802 }
3803
3804 static void perf_event_task(struct task_struct *task,
3805                               struct perf_event_context *task_ctx,
3806                               int new)
3807 {
3808         struct perf_task_event task_event;
3809
3810         if (!atomic_read(&nr_comm_events) &&
3811             !atomic_read(&nr_mmap_events) &&
3812             !atomic_read(&nr_task_events))
3813                 return;
3814
3815         task_event = (struct perf_task_event){
3816                 .task     = task,
3817                 .task_ctx = task_ctx,
3818                 .event_id    = {
3819                         .header = {
3820                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3821                                 .misc = 0,
3822                                 .size = sizeof(task_event.event_id),
3823                         },
3824                         /* .pid  */
3825                         /* .ppid */
3826                         /* .tid  */
3827                         /* .ptid */
3828                         .time = perf_clock(),
3829                 },
3830         };
3831
3832         perf_event_task_event(&task_event);
3833 }
3834
3835 void perf_event_fork(struct task_struct *task)
3836 {
3837         perf_event_task(task, NULL, 1);
3838 }
3839
3840 /*
3841  * comm tracking
3842  */
3843
3844 struct perf_comm_event {
3845         struct task_struct      *task;
3846         char                    *comm;
3847         int                     comm_size;
3848
3849         struct {
3850                 struct perf_event_header        header;
3851
3852                 u32                             pid;
3853                 u32                             tid;
3854         } event_id;
3855 };
3856
3857 static void perf_event_comm_output(struct perf_event *event,
3858                                      struct perf_comm_event *comm_event)
3859 {
3860         struct perf_output_handle handle;
3861         int size = comm_event->event_id.header.size;
3862         int ret = perf_output_begin(&handle, event, size, 0, 0);
3863
3864         if (ret)
3865                 return;
3866
3867         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3868         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3869
3870         perf_output_put(&handle, comm_event->event_id);
3871         perf_output_copy(&handle, comm_event->comm,
3872                                    comm_event->comm_size);
3873         perf_output_end(&handle);
3874 }
3875
3876 static int perf_event_comm_match(struct perf_event *event)
3877 {
3878         if (event->state < PERF_EVENT_STATE_INACTIVE)
3879                 return 0;
3880
3881         if (event->cpu != -1 && event->cpu != smp_processor_id())
3882                 return 0;
3883
3884         if (event->attr.comm)
3885                 return 1;
3886
3887         return 0;
3888 }
3889
3890 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3891                                   struct perf_comm_event *comm_event)
3892 {
3893         struct perf_event *event;
3894
3895         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3896                 if (perf_event_comm_match(event))
3897                         perf_event_comm_output(event, comm_event);
3898         }
3899 }
3900
3901 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3902 {
3903         struct perf_cpu_context *cpuctx;
3904         struct perf_event_context *ctx;
3905         unsigned int size;
3906         char comm[TASK_COMM_LEN];
3907
3908         memset(comm, 0, sizeof(comm));
3909         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3910         size = ALIGN(strlen(comm)+1, sizeof(u64));
3911
3912         comm_event->comm = comm;
3913         comm_event->comm_size = size;
3914
3915         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3916
3917         rcu_read_lock();
3918         cpuctx = &get_cpu_var(perf_cpu_context);
3919         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3920         ctx = rcu_dereference(current->perf_event_ctxp);
3921         if (ctx)
3922                 perf_event_comm_ctx(ctx, comm_event);
3923         put_cpu_var(perf_cpu_context);
3924         rcu_read_unlock();
3925 }
3926
3927 void perf_event_comm(struct task_struct *task)
3928 {
3929         struct perf_comm_event comm_event;
3930
3931         if (task->perf_event_ctxp)
3932                 perf_event_enable_on_exec(task);
3933
3934         if (!atomic_read(&nr_comm_events))
3935                 return;
3936
3937         comm_event = (struct perf_comm_event){
3938                 .task   = task,
3939                 /* .comm      */
3940                 /* .comm_size */
3941                 .event_id  = {
3942                         .header = {
3943                                 .type = PERF_RECORD_COMM,
3944                                 .misc = 0,
3945                                 /* .size */
3946                         },
3947                         /* .pid */
3948                         /* .tid */
3949                 },
3950         };
3951
3952         perf_event_comm_event(&comm_event);
3953 }
3954
3955 /*
3956  * mmap tracking
3957  */
3958
3959 struct perf_mmap_event {
3960         struct vm_area_struct   *vma;
3961
3962         const char              *file_name;
3963         int                     file_size;
3964
3965         struct {
3966                 struct perf_event_header        header;
3967
3968                 u32                             pid;
3969                 u32                             tid;
3970                 u64                             start;
3971                 u64                             len;
3972                 u64                             pgoff;
3973         } event_id;
3974 };
3975
3976 static void perf_event_mmap_output(struct perf_event *event,
3977                                      struct perf_mmap_event *mmap_event)
3978 {
3979         struct perf_output_handle handle;
3980         int size = mmap_event->event_id.header.size;
3981         int ret = perf_output_begin(&handle, event, size, 0, 0);
3982
3983         if (ret)
3984                 return;
3985
3986         mmap_event->event_id.pid = perf_event_pid(event, current);
3987         mmap_event->event_id.tid = perf_event_tid(event, current);
3988
3989         perf_output_put(&handle, mmap_event->event_id);
3990         perf_output_copy(&handle, mmap_event->file_name,
3991                                    mmap_event->file_size);
3992         perf_output_end(&handle);
3993 }
3994
3995 static int perf_event_mmap_match(struct perf_event *event,
3996                                    struct perf_mmap_event *mmap_event,
3997                                    int executable)
3998 {
3999         if (event->state < PERF_EVENT_STATE_INACTIVE)
4000                 return 0;
4001
4002         if (event->cpu != -1 && event->cpu != smp_processor_id())
4003                 return 0;
4004
4005         if ((!executable && event->attr.mmap_data) ||
4006             (executable && event->attr.mmap))
4007                 return 1;
4008
4009         return 0;
4010 }
4011
4012 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4013                                   struct perf_mmap_event *mmap_event,
4014                                   int executable)
4015 {
4016         struct perf_event *event;
4017
4018         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4019                 if (perf_event_mmap_match(event, mmap_event, executable))
4020                         perf_event_mmap_output(event, mmap_event);
4021         }
4022 }
4023
4024 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4025 {
4026         struct perf_cpu_context *cpuctx;
4027         struct perf_event_context *ctx;
4028         struct vm_area_struct *vma = mmap_event->vma;
4029         struct file *file = vma->vm_file;
4030         unsigned int size;
4031         char tmp[16];
4032         char *buf = NULL;
4033         const char *name;
4034
4035         memset(tmp, 0, sizeof(tmp));
4036
4037         if (file) {
4038                 /*
4039                  * d_path works from the end of the buffer backwards, so we
4040                  * need to add enough zero bytes after the string to handle
4041                  * the 64bit alignment we do later.
4042                  */
4043                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4044                 if (!buf) {
4045                         name = strncpy(tmp, "//enomem", sizeof(tmp));
4046                         goto got_name;
4047                 }
4048                 name = d_path(&file->f_path, buf, PATH_MAX);
4049                 if (IS_ERR(name)) {
4050                         name = strncpy(tmp, "//toolong", sizeof(tmp));
4051                         goto got_name;
4052                 }
4053         } else {
4054                 if (arch_vma_name(mmap_event->vma)) {
4055                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4056                                        sizeof(tmp));
4057                         goto got_name;
4058                 }
4059
4060                 if (!vma->vm_mm) {
4061                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
4062                         goto got_name;
4063                 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4064                                 vma->vm_end >= vma->vm_mm->brk) {
4065                         name = strncpy(tmp, "[heap]", sizeof(tmp));
4066                         goto got_name;
4067                 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4068                                 vma->vm_end >= vma->vm_mm->start_stack) {
4069                         name = strncpy(tmp, "[stack]", sizeof(tmp));
4070                         goto got_name;
4071                 }
4072
4073                 name = strncpy(tmp, "//anon", sizeof(tmp));
4074                 goto got_name;
4075         }
4076
4077 got_name:
4078         size = ALIGN(strlen(name)+1, sizeof(u64));
4079
4080         mmap_event->file_name = name;
4081         mmap_event->file_size = size;
4082
4083         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4084
4085         rcu_read_lock();
4086         cpuctx = &get_cpu_var(perf_cpu_context);
4087         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
4088         ctx = rcu_dereference(current->perf_event_ctxp);
4089         if (ctx)
4090                 perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
4091         put_cpu_var(perf_cpu_context);
4092         rcu_read_unlock();
4093
4094         kfree(buf);
4095 }
4096
4097 void perf_event_mmap(struct vm_area_struct *vma)
4098 {
4099         struct perf_mmap_event mmap_event;
4100
4101         if (!atomic_read(&nr_mmap_events))
4102                 return;
4103
4104         mmap_event = (struct perf_mmap_event){
4105                 .vma    = vma,
4106                 /* .file_name */
4107                 /* .file_size */
4108                 .event_id  = {
4109                         .header = {
4110                                 .type = PERF_RECORD_MMAP,
4111                                 .misc = PERF_RECORD_MISC_USER,
4112                                 /* .size */
4113                         },
4114                         /* .pid */
4115                         /* .tid */
4116                         .start  = vma->vm_start,
4117                         .len    = vma->vm_end - vma->vm_start,
4118                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4119                 },
4120         };
4121
4122         perf_event_mmap_event(&mmap_event);
4123 }
4124
4125 /*
4126  * IRQ throttle logging
4127  */
4128
4129 static void perf_log_throttle(struct perf_event *event, int enable)
4130 {
4131         struct perf_output_handle handle;
4132         int ret;
4133
4134         struct {
4135                 struct perf_event_header        header;
4136                 u64                             time;
4137                 u64                             id;
4138                 u64                             stream_id;
4139         } throttle_event = {
4140                 .header = {
4141                         .type = PERF_RECORD_THROTTLE,
4142                         .misc = 0,
4143                         .size = sizeof(throttle_event),
4144                 },
4145                 .time           = perf_clock(),
4146                 .id             = primary_event_id(event),
4147                 .stream_id      = event->id,
4148         };
4149
4150         if (enable)
4151                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4152
4153         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4154         if (ret)
4155                 return;
4156
4157         perf_output_put(&handle, throttle_event);
4158         perf_output_end(&handle);
4159 }
4160
4161 /*
4162  * Generic event overflow handling, sampling.
4163  */
4164
4165 static int __perf_event_overflow(struct perf_event *event, int nmi,
4166                                    int throttle, struct perf_sample_data *data,
4167                                    struct pt_regs *regs)
4168 {
4169         int events = atomic_read(&event->event_limit);
4170         struct hw_perf_event *hwc = &event->hw;
4171         int ret = 0;
4172
4173         throttle = (throttle && event->pmu->unthrottle != NULL);
4174
4175         if (!throttle) {
4176                 hwc->interrupts++;
4177         } else {
4178                 if (hwc->interrupts != MAX_INTERRUPTS) {
4179                         hwc->interrupts++;
4180                         if (HZ * hwc->interrupts >
4181                                         (u64)sysctl_perf_event_sample_rate) {
4182                                 hwc->interrupts = MAX_INTERRUPTS;
4183                                 perf_log_throttle(event, 0);
4184                                 ret = 1;
4185                         }
4186                 } else {
4187                         /*
4188                          * Keep re-disabling events even though on the previous
4189                          * pass we disabled it - just in case we raced with a
4190                          * sched-in and the event got enabled again:
4191                          */
4192                         ret = 1;
4193                 }
4194         }
4195
4196         if (event->attr.freq) {
4197                 u64 now = perf_clock();
4198                 s64 delta = now - hwc->freq_time_stamp;
4199
4200                 hwc->freq_time_stamp = now;
4201
4202                 if (delta > 0 && delta < 2*TICK_NSEC)
4203                         perf_adjust_period(event, delta, hwc->last_period);
4204         }
4205
4206         /*
4207          * XXX event_limit might not quite work as expected on inherited
4208          * events
4209          */
4210
4211         event->pending_kill = POLL_IN;
4212         if (events && atomic_dec_and_test(&event->event_limit)) {
4213                 ret = 1;
4214                 event->pending_kill = POLL_HUP;
4215                 if (nmi) {
4216                         event->pending_disable = 1;
4217                         perf_pending_queue(&event->pending,
4218                                            perf_pending_event);
4219                 } else
4220                         perf_event_disable(event);
4221         }
4222
4223         if (event->overflow_handler)
4224                 event->overflow_handler(event, nmi, data, regs);
4225         else
4226                 perf_event_output(event, nmi, data, regs);
4227
4228         return ret;
4229 }
4230
4231 int perf_event_overflow(struct perf_event *event, int nmi,
4232                           struct perf_sample_data *data,
4233                           struct pt_regs *regs)
4234 {
4235         return __perf_event_overflow(event, nmi, 1, data, regs);
4236 }
4237
4238 /*
4239  * Generic software event infrastructure
4240  */
4241
4242 /*
4243  * We directly increment event->count and keep a second value in
4244  * event->hw.period_left to count intervals. This period event
4245  * is kept in the range [-sample_period, 0] so that we can use the
4246  * sign as trigger.
4247  */
4248
4249 static u64 perf_swevent_set_period(struct perf_event *event)
4250 {
4251         struct hw_perf_event *hwc = &event->hw;
4252         u64 period = hwc->last_period;
4253         u64 nr, offset;
4254         s64 old, val;
4255
4256         hwc->last_period = hwc->sample_period;
4257
4258 again:
4259         old = val = local64_read(&hwc->period_left);
4260         if (val < 0)
4261                 return 0;
4262
4263         nr = div64_u64(period + val, period);
4264         offset = nr * period;
4265         val -= offset;
4266         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4267                 goto again;
4268
4269         return nr;
4270 }
4271
4272 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4273                                     int nmi, struct perf_sample_data *data,
4274                                     struct pt_regs *regs)
4275 {
4276         struct hw_perf_event *hwc = &event->hw;
4277         int throttle = 0;
4278
4279         data->period = event->hw.last_period;
4280         if (!overflow)
4281                 overflow = perf_swevent_set_period(event);
4282
4283         if (hwc->interrupts == MAX_INTERRUPTS)
4284                 return;
4285
4286         for (; overflow; overflow--) {
4287                 if (__perf_event_overflow(event, nmi, throttle,
4288                                             data, regs)) {
4289                         /*
4290                          * We inhibit the overflow from happening when
4291                          * hwc->interrupts == MAX_INTERRUPTS.
4292                          */
4293                         break;
4294                 }
4295                 throttle = 1;
4296         }
4297 }
4298
4299 static void perf_swevent_add(struct perf_event *event, u64 nr,
4300                                int nmi, struct perf_sample_data *data,
4301                                struct pt_regs *regs)
4302 {
4303         struct hw_perf_event *hwc = &event->hw;
4304
4305         local64_add(nr, &event->count);
4306
4307         if (!regs)
4308                 return;
4309
4310         if (!hwc->sample_period)
4311                 return;
4312
4313         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4314                 return perf_swevent_overflow(event, 1, nmi, data, regs);
4315
4316         if (local64_add_negative(nr, &hwc->period_left))
4317                 return;
4318
4319         perf_swevent_overflow(event, 0, nmi, data, regs);
4320 }
4321
4322 static int perf_exclude_event(struct perf_event *event,
4323                               struct pt_regs *regs)
4324 {
4325         if (regs) {
4326                 if (event->attr.exclude_user && user_mode(regs))
4327                         return 1;
4328
4329                 if (event->attr.exclude_kernel && !user_mode(regs))
4330                         return 1;
4331         }
4332
4333         return 0;
4334 }
4335
4336 static int perf_swevent_match(struct perf_event *event,
4337                                 enum perf_type_id type,
4338                                 u32 event_id,
4339                                 struct perf_sample_data *data,
4340                                 struct pt_regs *regs)
4341 {
4342         if (event->attr.type != type)
4343                 return 0;
4344
4345         if (event->attr.config != event_id)
4346                 return 0;
4347
4348         if (perf_exclude_event(event, regs))
4349                 return 0;
4350
4351         return 1;
4352 }
4353
4354 static inline u64 swevent_hash(u64 type, u32 event_id)
4355 {
4356         u64 val = event_id | (type << 32);
4357
4358         return hash_64(val, SWEVENT_HLIST_BITS);
4359 }
4360
4361 static inline struct hlist_head *
4362 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4363 {
4364         u64 hash = swevent_hash(type, event_id);
4365
4366         return &hlist->heads[hash];
4367 }
4368
4369 /* For the read side: events when they trigger */
4370 static inline struct hlist_head *
4371 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4372 {
4373         struct swevent_hlist *hlist;
4374
4375         hlist = rcu_dereference(ctx->swevent_hlist);
4376         if (!hlist)
4377                 return NULL;
4378
4379         return __find_swevent_head(hlist, type, event_id);
4380 }
4381
4382 /* For the event head insertion and removal in the hlist */
4383 static inline struct hlist_head *
4384 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4385 {
4386         struct swevent_hlist *hlist;
4387         u32 event_id = event->attr.config;
4388         u64 type = event->attr.type;
4389
4390         /*
4391          * Event scheduling is always serialized against hlist allocation
4392          * and release. Which makes the protected version suitable here.
4393          * The context lock guarantees that.
4394          */
4395         hlist = rcu_dereference_protected(ctx->swevent_hlist,
4396                                           lockdep_is_held(&event->ctx->lock));
4397         if (!hlist)
4398                 return NULL;
4399
4400         return __find_swevent_head(hlist, type, event_id);
4401 }
4402
4403 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4404                                     u64 nr, int nmi,
4405                                     struct perf_sample_data *data,
4406                                     struct pt_regs *regs)
4407 {
4408         struct perf_cpu_context *cpuctx;
4409         struct perf_event *event;
4410         struct hlist_node *node;
4411         struct hlist_head *head;
4412
4413         cpuctx = &__get_cpu_var(perf_cpu_context);
4414
4415         rcu_read_lock();
4416
4417         head = find_swevent_head_rcu(cpuctx, type, event_id);
4418
4419         if (!head)
4420                 goto end;
4421
4422         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4423                 if (perf_swevent_match(event, type, event_id, data, regs))
4424                         perf_swevent_add(event, nr, nmi, data, regs);
4425         }
4426 end:
4427         rcu_read_unlock();
4428 }
4429
4430 int perf_swevent_get_recursion_context(void)
4431 {
4432         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4433
4434         return get_recursion_context(cpuctx->recursion);
4435 }
4436 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4437
4438 void inline perf_swevent_put_recursion_context(int rctx)
4439 {
4440         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4441
4442         put_recursion_context(cpuctx->recursion, rctx);
4443 }
4444
4445 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4446                             struct pt_regs *regs, u64 addr)
4447 {
4448         struct perf_sample_data data;
4449         int rctx;
4450
4451         preempt_disable_notrace();
4452         rctx = perf_swevent_get_recursion_context();
4453         if (rctx < 0)
4454                 return;
4455
4456         perf_sample_data_init(&data, addr);
4457
4458         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4459
4460         perf_swevent_put_recursion_context(rctx);
4461         preempt_enable_notrace();
4462 }
4463
4464 static void perf_swevent_read(struct perf_event *event)
4465 {
4466 }
4467
4468 static int perf_swevent_enable(struct perf_event *event)
4469 {
4470         struct hw_perf_event *hwc = &event->hw;
4471         struct perf_cpu_context *cpuctx;
4472         struct hlist_head *head;
4473
4474         cpuctx = &__get_cpu_var(perf_cpu_context);
4475
4476         if (hwc->sample_period) {
4477                 hwc->last_period = hwc->sample_period;
4478                 perf_swevent_set_period(event);
4479         }
4480
4481         head = find_swevent_head(cpuctx, event);
4482         if (WARN_ON_ONCE(!head))
4483                 return -EINVAL;
4484
4485         hlist_add_head_rcu(&event->hlist_entry, head);
4486
4487         return 0;
4488 }
4489
4490 static void perf_swevent_disable(struct perf_event *event)
4491 {
4492         hlist_del_rcu(&event->hlist_entry);
4493 }
4494
4495 static void perf_swevent_void(struct perf_event *event)
4496 {
4497 }
4498
4499 static int perf_swevent_int(struct perf_event *event)
4500 {
4501         return 0;
4502 }
4503
4504 static struct pmu perf_ops_generic = {
4505         .enable         = perf_swevent_enable,
4506         .disable        = perf_swevent_disable,
4507         .start          = perf_swevent_int,
4508         .stop           = perf_swevent_void,
4509         .read           = perf_swevent_read,
4510         .unthrottle     = perf_swevent_void, /* hwc->interrupts already reset */
4511 };
4512
4513 /*
4514  * hrtimer based swevent callback
4515  */
4516
4517 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4518 {
4519         enum hrtimer_restart ret = HRTIMER_RESTART;
4520         struct perf_sample_data data;
4521         struct pt_regs *regs;
4522         struct perf_event *event;
4523         u64 period;
4524
4525         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4526         event->pmu->read(event);
4527
4528         perf_sample_data_init(&data, 0);
4529         data.period = event->hw.last_period;
4530         regs = get_irq_regs();
4531
4532         if (regs && !perf_exclude_event(event, regs)) {
4533                 if (!(event->attr.exclude_idle && current->pid == 0))
4534                         if (perf_event_overflow(event, 0, &data, regs))
4535                                 ret = HRTIMER_NORESTART;
4536         }
4537
4538         period = max_t(u64, 10000, event->hw.sample_period);
4539         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4540
4541         return ret;
4542 }
4543
4544 static void perf_swevent_start_hrtimer(struct perf_event *event)
4545 {
4546         struct hw_perf_event *hwc = &event->hw;
4547
4548         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4549         hwc->hrtimer.function = perf_swevent_hrtimer;
4550         if (hwc->sample_period) {
4551                 u64 period;
4552
4553                 if (hwc->remaining) {
4554                         if (hwc->remaining < 0)
4555                                 period = 10000;
4556                         else
4557                                 period = hwc->remaining;
4558                         hwc->remaining = 0;
4559                 } else {
4560                         period = max_t(u64, 10000, hwc->sample_period);
4561                 }
4562                 __hrtimer_start_range_ns(&hwc->hrtimer,
4563                                 ns_to_ktime(period), 0,
4564                                 HRTIMER_MODE_REL, 0);
4565         }
4566 }
4567
4568 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4569 {
4570         struct hw_perf_event *hwc = &event->hw;
4571
4572         if (hwc->sample_period) {
4573                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4574                 hwc->remaining = ktime_to_ns(remaining);
4575
4576                 hrtimer_cancel(&hwc->hrtimer);
4577         }
4578 }
4579
4580 /*
4581  * Software event: cpu wall time clock
4582  */
4583
4584 static void cpu_clock_perf_event_update(struct perf_event *event)
4585 {
4586         int cpu = raw_smp_processor_id();
4587         s64 prev;
4588         u64 now;
4589
4590         now = cpu_clock(cpu);
4591         prev = local64_xchg(&event->hw.prev_count, now);
4592         local64_add(now - prev, &event->count);
4593 }
4594
4595 static int cpu_clock_perf_event_enable(struct perf_event *event)
4596 {
4597         struct hw_perf_event *hwc = &event->hw;
4598         int cpu = raw_smp_processor_id();
4599
4600         local64_set(&hwc->prev_count, cpu_clock(cpu));
4601         perf_swevent_start_hrtimer(event);
4602
4603         return 0;
4604 }
4605
4606 static void cpu_clock_perf_event_disable(struct perf_event *event)
4607 {
4608         perf_swevent_cancel_hrtimer(event);
4609         cpu_clock_perf_event_update(event);
4610 }
4611
4612 static void cpu_clock_perf_event_read(struct perf_event *event)
4613 {
4614         cpu_clock_perf_event_update(event);
4615 }
4616
4617 static struct pmu perf_ops_cpu_clock = {
4618         .enable         = cpu_clock_perf_event_enable,
4619         .disable        = cpu_clock_perf_event_disable,
4620         .read           = cpu_clock_perf_event_read,
4621 };
4622
4623 /*
4624  * Software event: task time clock
4625  */
4626
4627 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4628 {
4629         u64 prev;
4630         s64 delta;
4631
4632         prev = local64_xchg(&event->hw.prev_count, now);
4633         delta = now - prev;
4634         local64_add(delta, &event->count);
4635 }
4636
4637 static int task_clock_perf_event_enable(struct perf_event *event)
4638 {
4639         struct hw_perf_event *hwc = &event->hw;
4640         u64 now;
4641
4642         now = event->ctx->time;
4643
4644         local64_set(&hwc->prev_count, now);
4645
4646         perf_swevent_start_hrtimer(event);
4647
4648         return 0;
4649 }
4650
4651 static void task_clock_perf_event_disable(struct perf_event *event)
4652 {
4653         perf_swevent_cancel_hrtimer(event);
4654         task_clock_perf_event_update(event, event->ctx->time);
4655
4656 }
4657
4658 static void task_clock_perf_event_read(struct perf_event *event)
4659 {
4660         u64 time;
4661
4662         if (!in_nmi()) {
4663                 update_context_time(event->ctx);
4664                 time = event->ctx->time;
4665         } else {
4666                 u64 now = perf_clock();
4667                 u64 delta = now - event->ctx->timestamp;
4668                 time = event->ctx->time + delta;
4669         }
4670
4671         task_clock_perf_event_update(event, time);
4672 }
4673
4674 static struct pmu perf_ops_task_clock = {
4675         .enable         = task_clock_perf_event_enable,
4676         .disable        = task_clock_perf_event_disable,
4677         .read           = task_clock_perf_event_read,
4678 };
4679
4680 /* Deref the hlist from the update side */
4681 static inline struct swevent_hlist *
4682 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4683 {
4684         return rcu_dereference_protected(cpuctx->swevent_hlist,
4685                                          lockdep_is_held(&cpuctx->hlist_mutex));
4686 }
4687
4688 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4689 {
4690         struct swevent_hlist *hlist;
4691
4692         hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4693         kfree(hlist);
4694 }
4695
4696 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4697 {
4698         struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4699
4700         if (!hlist)
4701                 return;
4702
4703         rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4704         call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4705 }
4706
4707 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4708 {
4709         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4710
4711         mutex_lock(&cpuctx->hlist_mutex);
4712
4713         if (!--cpuctx->hlist_refcount)
4714                 swevent_hlist_release(cpuctx);
4715
4716         mutex_unlock(&cpuctx->hlist_mutex);
4717 }
4718
4719 static void swevent_hlist_put(struct perf_event *event)
4720 {
4721         int cpu;
4722
4723         if (event->cpu != -1) {
4724                 swevent_hlist_put_cpu(event, event->cpu);
4725                 return;
4726         }
4727
4728         for_each_possible_cpu(cpu)
4729                 swevent_hlist_put_cpu(event, cpu);
4730 }
4731
4732 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4733 {
4734         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4735         int err = 0;
4736
4737         mutex_lock(&cpuctx->hlist_mutex);
4738
4739         if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4740                 struct swevent_hlist *hlist;
4741
4742                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4743                 if (!hlist) {
4744                         err = -ENOMEM;
4745                         goto exit;
4746                 }
4747                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4748         }
4749         cpuctx->hlist_refcount++;
4750  exit:
4751         mutex_unlock(&cpuctx->hlist_mutex);
4752
4753         return err;
4754 }
4755
4756 static int swevent_hlist_get(struct perf_event *event)
4757 {
4758         int err;
4759         int cpu, failed_cpu;
4760
4761         if (event->cpu != -1)
4762                 return swevent_hlist_get_cpu(event, event->cpu);
4763
4764         get_online_cpus();
4765         for_each_possible_cpu(cpu) {
4766                 err = swevent_hlist_get_cpu(event, cpu);
4767                 if (err) {
4768                         failed_cpu = cpu;
4769                         goto fail;
4770                 }
4771         }
4772         put_online_cpus();
4773
4774         return 0;
4775  fail:
4776         for_each_possible_cpu(cpu) {
4777                 if (cpu == failed_cpu)
4778                         break;
4779                 swevent_hlist_put_cpu(event, cpu);
4780         }
4781
4782         put_online_cpus();
4783         return err;
4784 }
4785
4786 #ifdef CONFIG_EVENT_TRACING
4787
4788 static struct pmu perf_ops_tracepoint = {
4789         .enable         = perf_trace_enable,
4790         .disable        = perf_trace_disable,
4791         .start          = perf_swevent_int,
4792         .stop           = perf_swevent_void,
4793         .read           = perf_swevent_read,
4794         .unthrottle     = perf_swevent_void,
4795 };
4796
4797 static int perf_tp_filter_match(struct perf_event *event,
4798                                 struct perf_sample_data *data)
4799 {
4800         void *record = data->raw->data;
4801
4802         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4803                 return 1;
4804         return 0;
4805 }
4806
4807 static int perf_tp_event_match(struct perf_event *event,
4808                                 struct perf_sample_data *data,
4809                                 struct pt_regs *regs)
4810 {
4811         /*
4812          * All tracepoints are from kernel-space.
4813          */
4814         if (event->attr.exclude_kernel)
4815                 return 0;
4816
4817         if (!perf_tp_filter_match(event, data))
4818                 return 0;
4819
4820         return 1;
4821 }
4822
4823 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4824                    struct pt_regs *regs, struct hlist_head *head, int rctx)
4825 {
4826         struct perf_sample_data data;
4827         struct perf_event *event;
4828         struct hlist_node *node;
4829
4830         struct perf_raw_record raw = {
4831                 .size = entry_size,
4832                 .data = record,
4833         };
4834
4835         perf_sample_data_init(&data, addr);
4836         data.raw = &raw;
4837
4838         hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4839                 if (perf_tp_event_match(event, &data, regs))
4840                         perf_swevent_add(event, count, 1, &data, regs);
4841         }
4842
4843         perf_swevent_put_recursion_context(rctx);
4844 }
4845 EXPORT_SYMBOL_GPL(perf_tp_event);
4846
4847 static void tp_perf_event_destroy(struct perf_event *event)
4848 {
4849         perf_trace_destroy(event);
4850 }
4851
4852 static struct pmu *tp_perf_event_init(struct perf_event *event)
4853 {
4854         int err;
4855
4856         /*
4857          * Raw tracepoint data is a severe data leak, only allow root to
4858          * have these.
4859          */
4860         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4861                         perf_paranoid_tracepoint_raw() &&
4862                         !capable(CAP_SYS_ADMIN))
4863                 return ERR_PTR(-EPERM);
4864
4865         err = perf_trace_init(event);
4866         if (err)
4867                 return NULL;
4868
4869         event->destroy = tp_perf_event_destroy;
4870
4871         return &perf_ops_tracepoint;
4872 }
4873
4874 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4875 {
4876         char *filter_str;
4877         int ret;
4878
4879         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4880                 return -EINVAL;
4881
4882         filter_str = strndup_user(arg, PAGE_SIZE);
4883         if (IS_ERR(filter_str))
4884                 return PTR_ERR(filter_str);
4885
4886         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4887
4888         kfree(filter_str);
4889         return ret;
4890 }
4891
4892 static void perf_event_free_filter(struct perf_event *event)
4893 {
4894         ftrace_profile_free_filter(event);
4895 }
4896
4897 #else
4898
4899 static struct pmu *tp_perf_event_init(struct perf_event *event)
4900 {
4901         return NULL;
4902 }
4903
4904 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4905 {
4906         return -ENOENT;
4907 }
4908
4909 static void perf_event_free_filter(struct perf_event *event)
4910 {
4911 }
4912
4913 #endif /* CONFIG_EVENT_TRACING */
4914
4915 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4916 static void bp_perf_event_destroy(struct perf_event *event)
4917 {
4918         release_bp_slot(event);
4919 }
4920
4921 static struct pmu *bp_perf_event_init(struct perf_event *bp)
4922 {
4923         int err;
4924
4925         err = register_perf_hw_breakpoint(bp);
4926         if (err)
4927                 return ERR_PTR(err);
4928
4929         bp->destroy = bp_perf_event_destroy;
4930
4931         return &perf_ops_bp;
4932 }
4933
4934 void perf_bp_event(struct perf_event *bp, void *data)
4935 {
4936         struct perf_sample_data sample;
4937         struct pt_regs *regs = data;
4938
4939         perf_sample_data_init(&sample, bp->attr.bp_addr);
4940
4941         if (!perf_exclude_event(bp, regs))
4942                 perf_swevent_add(bp, 1, 1, &sample, regs);
4943 }
4944 #else
4945 static struct pmu *bp_perf_event_init(struct perf_event *bp)
4946 {
4947         return NULL;
4948 }
4949
4950 void perf_bp_event(struct perf_event *bp, void *regs)
4951 {
4952 }
4953 #endif
4954
4955 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4956
4957 static void sw_perf_event_destroy(struct perf_event *event)
4958 {
4959         u64 event_id = event->attr.config;
4960
4961         WARN_ON(event->parent);
4962
4963         atomic_dec(&perf_swevent_enabled[event_id]);
4964         swevent_hlist_put(event);
4965 }
4966
4967 static struct pmu *sw_perf_event_init(struct perf_event *event)
4968 {
4969         struct pmu *pmu = NULL;
4970         u64 event_id = event->attr.config;
4971
4972         /*
4973          * Software events (currently) can't in general distinguish
4974          * between user, kernel and hypervisor events.
4975          * However, context switches and cpu migrations are considered
4976          * to be kernel events, and page faults are never hypervisor
4977          * events.
4978          */
4979         switch (event_id) {
4980         case PERF_COUNT_SW_CPU_CLOCK:
4981                 pmu = &perf_ops_cpu_clock;
4982
4983                 break;
4984         case PERF_COUNT_SW_TASK_CLOCK:
4985                 /*
4986                  * If the user instantiates this as a per-cpu event,
4987                  * use the cpu_clock event instead.
4988                  */
4989                 if (event->ctx->task)
4990                         pmu = &perf_ops_task_clock;
4991                 else
4992                         pmu = &perf_ops_cpu_clock;
4993
4994                 break;
4995         case PERF_COUNT_SW_PAGE_FAULTS:
4996         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4997         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4998         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4999         case PERF_COUNT_SW_CPU_MIGRATIONS:
5000         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
5001         case PERF_COUNT_SW_EMULATION_FAULTS:
5002                 if (!event->parent) {
5003                         int err;
5004
5005                         err = swevent_hlist_get(event);
5006                         if (err)
5007                                 return ERR_PTR(err);
5008
5009                         atomic_inc(&perf_swevent_enabled[event_id]);
5010                         event->destroy = sw_perf_event_destroy;
5011                 }
5012                 pmu = &perf_ops_generic;
5013                 break;
5014         }
5015
5016         return pmu;
5017 }
5018
5019 /*
5020  * Allocate and initialize a event structure
5021  */
5022 static struct perf_event *
5023 perf_event_alloc(struct perf_event_attr *attr,
5024                    int cpu,
5025                    struct perf_event_context *ctx,
5026                    struct perf_event *group_leader,
5027                    struct perf_event *parent_event,
5028                    perf_overflow_handler_t overflow_handler,
5029                    gfp_t gfpflags)
5030 {
5031         struct pmu *pmu;
5032         struct perf_event *event;
5033         struct hw_perf_event *hwc;
5034         long err;
5035
5036         event = kzalloc(sizeof(*event), gfpflags);
5037         if (!event)
5038                 return ERR_PTR(-ENOMEM);
5039
5040         /*
5041          * Single events are their own group leaders, with an
5042          * empty sibling list:
5043          */
5044         if (!group_leader)
5045                 group_leader = event;
5046
5047         mutex_init(&event->child_mutex);
5048         INIT_LIST_HEAD(&event->child_list);
5049
5050         INIT_LIST_HEAD(&event->group_entry);
5051         INIT_LIST_HEAD(&event->event_entry);
5052         INIT_LIST_HEAD(&event->sibling_list);
5053         init_waitqueue_head(&event->waitq);
5054
5055         mutex_init(&event->mmap_mutex);
5056
5057         event->cpu              = cpu;
5058         event->attr             = *attr;
5059         event->group_leader     = group_leader;
5060         event->pmu              = NULL;
5061         event->ctx              = ctx;
5062         event->oncpu            = -1;
5063
5064         event->parent           = parent_event;
5065
5066         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
5067         event->id               = atomic64_inc_return(&perf_event_id);
5068
5069         event->state            = PERF_EVENT_STATE_INACTIVE;
5070
5071         if (!overflow_handler && parent_event)
5072                 overflow_handler = parent_event->overflow_handler;
5073         
5074         event->overflow_handler = overflow_handler;
5075
5076         if (attr->disabled)
5077                 event->state = PERF_EVENT_STATE_OFF;
5078
5079         pmu = NULL;
5080
5081         hwc = &event->hw;
5082         hwc->sample_period = attr->sample_period;
5083         if (attr->freq && attr->sample_freq)
5084                 hwc->sample_period = 1;
5085         hwc->last_period = hwc->sample_period;
5086
5087         local64_set(&hwc->period_left, hwc->sample_period);
5088
5089         /*
5090          * we currently do not support PERF_FORMAT_GROUP on inherited events
5091          */
5092         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5093                 goto done;
5094
5095         switch (attr->type) {
5096         case PERF_TYPE_RAW:
5097         case PERF_TYPE_HARDWARE:
5098         case PERF_TYPE_HW_CACHE:
5099                 pmu = hw_perf_event_init(event);
5100                 break;
5101
5102         case PERF_TYPE_SOFTWARE:
5103                 pmu = sw_perf_event_init(event);
5104                 break;
5105
5106         case PERF_TYPE_TRACEPOINT:
5107                 pmu = tp_perf_event_init(event);
5108                 break;
5109
5110         case PERF_TYPE_BREAKPOINT:
5111                 pmu = bp_perf_event_init(event);
5112                 break;
5113
5114
5115         default:
5116                 break;
5117         }
5118 done:
5119         err = 0;
5120         if (!pmu)
5121                 err = -EINVAL;
5122         else if (IS_ERR(pmu))
5123                 err = PTR_ERR(pmu);
5124
5125         if (err) {
5126                 if (event->ns)
5127                         put_pid_ns(event->ns);
5128                 kfree(event);
5129                 return ERR_PTR(err);
5130         }
5131
5132         event->pmu = pmu;
5133
5134         if (!event->parent) {
5135                 atomic_inc(&nr_events);
5136                 if (event->attr.mmap || event->attr.mmap_data)
5137                         atomic_inc(&nr_mmap_events);
5138                 if (event->attr.comm)
5139                         atomic_inc(&nr_comm_events);
5140                 if (event->attr.task)
5141                         atomic_inc(&nr_task_events);
5142                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5143                         err = get_callchain_buffers();
5144                         if (err) {
5145                                 free_event(event);
5146                                 return ERR_PTR(err);
5147                         }
5148                 }
5149         }
5150
5151         return event;
5152 }
5153
5154 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5155                           struct perf_event_attr *attr)
5156 {
5157         u32 size;
5158         int ret;
5159
5160         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5161                 return -EFAULT;
5162
5163         /*
5164          * zero the full structure, so that a short copy will be nice.
5165          */
5166         memset(attr, 0, sizeof(*attr));
5167
5168         ret = get_user(size, &uattr->size);
5169         if (ret)
5170                 return ret;
5171
5172         if (size > PAGE_SIZE)   /* silly large */
5173                 goto err_size;
5174
5175         if (!size)              /* abi compat */
5176                 size = PERF_ATTR_SIZE_VER0;
5177
5178         if (size < PERF_ATTR_SIZE_VER0)
5179                 goto err_size;
5180
5181         /*
5182          * If we're handed a bigger struct than we know of,
5183          * ensure all the unknown bits are 0 - i.e. new
5184          * user-space does not rely on any kernel feature
5185          * extensions we dont know about yet.
5186          */
5187         if (size > sizeof(*attr)) {
5188                 unsigned char __user *addr;
5189                 unsigned char __user *end;
5190                 unsigned char val;
5191
5192                 addr = (void __user *)uattr + sizeof(*attr);
5193                 end  = (void __user *)uattr + size;
5194
5195                 for (; addr < end; addr++) {
5196                         ret = get_user(val, addr);
5197                         if (ret)
5198                                 return ret;
5199                         if (val)
5200                                 goto err_size;
5201                 }
5202                 size = sizeof(*attr);
5203         }
5204
5205         ret = copy_from_user(attr, uattr, size);
5206         if (ret)
5207                 return -EFAULT;
5208
5209         /*
5210          * If the type exists, the corresponding creation will verify
5211          * the attr->config.
5212          */
5213         if (attr->type >= PERF_TYPE_MAX)
5214                 return -EINVAL;
5215
5216         if (attr->__reserved_1)
5217                 return -EINVAL;
5218
5219         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5220                 return -EINVAL;
5221
5222         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5223                 return -EINVAL;
5224
5225 out:
5226         return ret;
5227
5228 err_size:
5229         put_user(sizeof(*attr), &uattr->size);
5230         ret = -E2BIG;
5231         goto out;
5232 }
5233
5234 static int
5235 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5236 {
5237         struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5238         int ret = -EINVAL;
5239
5240         if (!output_event)
5241                 goto set;
5242
5243         /* don't allow circular references */
5244         if (event == output_event)
5245                 goto out;
5246
5247         /*
5248          * Don't allow cross-cpu buffers
5249          */
5250         if (output_event->cpu != event->cpu)
5251                 goto out;
5252
5253         /*
5254          * If its not a per-cpu buffer, it must be the same task.
5255          */
5256         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5257                 goto out;
5258
5259 set:
5260         mutex_lock(&event->mmap_mutex);
5261         /* Can't redirect output if we've got an active mmap() */
5262         if (atomic_read(&event->mmap_count))
5263                 goto unlock;
5264
5265         if (output_event) {
5266                 /* get the buffer we want to redirect to */
5267                 buffer = perf_buffer_get(output_event);
5268                 if (!buffer)
5269                         goto unlock;
5270         }
5271
5272         old_buffer = event->buffer;
5273         rcu_assign_pointer(event->buffer, buffer);
5274         ret = 0;
5275 unlock:
5276         mutex_unlock(&event->mmap_mutex);
5277
5278         if (old_buffer)
5279                 perf_buffer_put(old_buffer);
5280 out:
5281         return ret;
5282 }
5283
5284 /**
5285  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5286  *
5287  * @attr_uptr:  event_id type attributes for monitoring/sampling
5288  * @pid:                target pid
5289  * @cpu:                target cpu
5290  * @group_fd:           group leader event fd
5291  */
5292 SYSCALL_DEFINE5(perf_event_open,
5293                 struct perf_event_attr __user *, attr_uptr,
5294                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5295 {
5296         struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5297         struct perf_event_attr attr;
5298         struct perf_event_context *ctx;
5299         struct file *event_file = NULL;
5300         struct file *group_file = NULL;
5301         int event_fd;
5302         int fput_needed = 0;
5303         int err;
5304
5305         /* for future expandability... */
5306         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5307                 return -EINVAL;
5308
5309         err = perf_copy_attr(attr_uptr, &attr);
5310         if (err)
5311                 return err;
5312
5313         if (!attr.exclude_kernel) {
5314                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5315                         return -EACCES;
5316         }
5317
5318         if (attr.freq) {
5319                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5320                         return -EINVAL;
5321         }
5322
5323         event_fd = get_unused_fd_flags(O_RDWR);
5324         if (event_fd < 0)
5325                 return event_fd;
5326
5327         /*
5328          * Get the target context (task or percpu):
5329          */
5330         ctx = find_get_context(pid, cpu);
5331         if (IS_ERR(ctx)) {
5332                 err = PTR_ERR(ctx);
5333                 goto err_fd;
5334         }
5335
5336         if (group_fd != -1) {
5337                 group_leader = perf_fget_light(group_fd, &fput_needed);
5338                 if (IS_ERR(group_leader)) {
5339                         err = PTR_ERR(group_leader);
5340                         goto err_put_context;
5341                 }
5342                 group_file = group_leader->filp;
5343                 if (flags & PERF_FLAG_FD_OUTPUT)
5344                         output_event = group_leader;
5345                 if (flags & PERF_FLAG_FD_NO_GROUP)
5346                         group_leader = NULL;
5347         }
5348
5349         /*
5350          * Look up the group leader (we will attach this event to it):
5351          */
5352         if (group_leader) {
5353                 err = -EINVAL;
5354
5355                 /*
5356                  * Do not allow a recursive hierarchy (this new sibling
5357                  * becoming part of another group-sibling):
5358                  */
5359                 if (group_leader->group_leader != group_leader)
5360                         goto err_put_context;
5361                 /*
5362                  * Do not allow to attach to a group in a different
5363                  * task or CPU context:
5364                  */
5365                 if (group_leader->ctx != ctx)
5366                         goto err_put_context;
5367                 /*
5368                  * Only a group leader can be exclusive or pinned
5369                  */
5370                 if (attr.exclusive || attr.pinned)
5371                         goto err_put_context;
5372         }
5373
5374         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5375                                      NULL, NULL, GFP_KERNEL);
5376         if (IS_ERR(event)) {
5377                 err = PTR_ERR(event);
5378                 goto err_put_context;
5379         }
5380
5381         if (output_event) {
5382                 err = perf_event_set_output(event, output_event);
5383                 if (err)
5384                         goto err_free_put_context;
5385         }
5386
5387         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5388         if (IS_ERR(event_file)) {
5389                 err = PTR_ERR(event_file);
5390                 goto err_free_put_context;
5391         }
5392
5393         event->filp = event_file;
5394         WARN_ON_ONCE(ctx->parent_ctx);
5395         mutex_lock(&ctx->mutex);
5396         perf_install_in_context(ctx, event, cpu);
5397         ++ctx->generation;
5398         mutex_unlock(&ctx->mutex);
5399
5400         event->owner = current;
5401         get_task_struct(current);
5402         mutex_lock(&current->perf_event_mutex);
5403         list_add_tail(&event->owner_entry, &current->perf_event_list);
5404         mutex_unlock(&current->perf_event_mutex);
5405
5406         /*
5407          * Drop the reference on the group_event after placing the
5408          * new event on the sibling_list. This ensures destruction
5409          * of the group leader will find the pointer to itself in
5410          * perf_group_detach().
5411          */
5412         fput_light(group_file, fput_needed);
5413         fd_install(event_fd, event_file);
5414         return event_fd;
5415
5416 err_free_put_context:
5417         free_event(event);
5418 err_put_context:
5419         fput_light(group_file, fput_needed);
5420         put_ctx(ctx);
5421 err_fd:
5422         put_unused_fd(event_fd);
5423         return err;
5424 }
5425
5426 /**
5427  * perf_event_create_kernel_counter
5428  *
5429  * @attr: attributes of the counter to create
5430  * @cpu: cpu in which the counter is bound
5431  * @pid: task to profile
5432  */
5433 struct perf_event *
5434 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5435                                  pid_t pid,
5436                                  perf_overflow_handler_t overflow_handler)
5437 {
5438         struct perf_event *event;
5439         struct perf_event_context *ctx;
5440         int err;
5441
5442         /*
5443          * Get the target context (task or percpu):
5444          */
5445
5446         ctx = find_get_context(pid, cpu);
5447         if (IS_ERR(ctx)) {
5448                 err = PTR_ERR(ctx);
5449                 goto err_exit;
5450         }
5451
5452         event = perf_event_alloc(attr, cpu, ctx, NULL,
5453                                  NULL, overflow_handler, GFP_KERNEL);
5454         if (IS_ERR(event)) {
5455                 err = PTR_ERR(event);
5456                 goto err_put_context;
5457         }
5458
5459         event->filp = NULL;
5460         WARN_ON_ONCE(ctx->parent_ctx);
5461         mutex_lock(&ctx->mutex);
5462         perf_install_in_context(ctx, event, cpu);
5463         ++ctx->generation;
5464         mutex_unlock(&ctx->mutex);
5465
5466         event->owner = current;
5467         get_task_struct(current);
5468         mutex_lock(&current->perf_event_mutex);
5469         list_add_tail(&event->owner_entry, &current->perf_event_list);
5470         mutex_unlock(&current->perf_event_mutex);
5471
5472         return event;
5473
5474  err_put_context:
5475         put_ctx(ctx);
5476  err_exit:
5477         return ERR_PTR(err);
5478 }
5479 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5480
5481 /*
5482  * inherit a event from parent task to child task:
5483  */
5484 static struct perf_event *
5485 inherit_event(struct perf_event *parent_event,
5486               struct task_struct *parent,
5487               struct perf_event_context *parent_ctx,
5488               struct task_struct *child,
5489               struct perf_event *group_leader,
5490               struct perf_event_context *child_ctx)
5491 {
5492         struct perf_event *child_event;
5493
5494         /*
5495          * Instead of creating recursive hierarchies of events,
5496          * we link inherited events back to the original parent,
5497          * which has a filp for sure, which we use as the reference
5498          * count:
5499          */
5500         if (parent_event->parent)
5501                 parent_event = parent_event->parent;
5502
5503         child_event = perf_event_alloc(&parent_event->attr,
5504                                            parent_event->cpu, child_ctx,
5505                                            group_leader, parent_event,
5506                                            NULL, GFP_KERNEL);
5507         if (IS_ERR(child_event))
5508                 return child_event;
5509         get_ctx(child_ctx);
5510
5511         /*
5512          * Make the child state follow the state of the parent event,
5513          * not its attr.disabled bit.  We hold the parent's mutex,
5514          * so we won't race with perf_event_{en, dis}able_family.
5515          */
5516         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5517                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5518         else
5519                 child_event->state = PERF_EVENT_STATE_OFF;
5520
5521         if (parent_event->attr.freq) {
5522                 u64 sample_period = parent_event->hw.sample_period;
5523                 struct hw_perf_event *hwc = &child_event->hw;
5524
5525                 hwc->sample_period = sample_period;
5526                 hwc->last_period   = sample_period;
5527
5528                 local64_set(&hwc->period_left, sample_period);
5529         }
5530
5531         child_event->overflow_handler = parent_event->overflow_handler;
5532
5533         /*
5534          * Link it up in the child's context:
5535          */
5536         add_event_to_ctx(child_event, child_ctx);
5537
5538         /*
5539          * Get a reference to the parent filp - we will fput it
5540          * when the child event exits. This is safe to do because
5541          * we are in the parent and we know that the filp still
5542          * exists and has a nonzero count:
5543          */
5544         atomic_long_inc(&parent_event->filp->f_count);
5545
5546         /*
5547          * Link this into the parent event's child list
5548          */
5549         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5550         mutex_lock(&parent_event->child_mutex);
5551         list_add_tail(&child_event->child_list, &parent_event->child_list);
5552         mutex_unlock(&parent_event->child_mutex);
5553
5554         return child_event;
5555 }
5556
5557 static int inherit_group(struct perf_event *parent_event,
5558               struct task_struct *parent,
5559               struct perf_event_context *parent_ctx,
5560               struct task_struct *child,
5561               struct perf_event_context *child_ctx)
5562 {
5563         struct perf_event *leader;
5564         struct perf_event *sub;
5565         struct perf_event *child_ctr;
5566
5567         leader = inherit_event(parent_event, parent, parent_ctx,
5568                                  child, NULL, child_ctx);
5569         if (IS_ERR(leader))
5570                 return PTR_ERR(leader);
5571         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5572                 child_ctr = inherit_event(sub, parent, parent_ctx,
5573                                             child, leader, child_ctx);
5574                 if (IS_ERR(child_ctr))
5575                         return PTR_ERR(child_ctr);
5576         }
5577         return 0;
5578 }
5579
5580 static void sync_child_event(struct perf_event *child_event,
5581                                struct task_struct *child)
5582 {
5583         struct perf_event *parent_event = child_event->parent;
5584         u64 child_val;
5585
5586         if (child_event->attr.inherit_stat)
5587                 perf_event_read_event(child_event, child);
5588
5589         child_val = perf_event_count(child_event);
5590
5591         /*
5592          * Add back the child's count to the parent's count:
5593          */
5594         atomic64_add(child_val, &parent_event->child_count);
5595         atomic64_add(child_event->total_time_enabled,
5596                      &parent_event->child_total_time_enabled);
5597         atomic64_add(child_event->total_time_running,
5598                      &parent_event->child_total_time_running);
5599
5600         /*
5601          * Remove this event from the parent's list
5602          */
5603         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5604         mutex_lock(&parent_event->child_mutex);
5605         list_del_init(&child_event->child_list);
5606         mutex_unlock(&parent_event->child_mutex);
5607
5608         /*
5609          * Release the parent event, if this was the last
5610          * reference to it.
5611          */
5612         fput(parent_event->filp);
5613 }
5614
5615 static void
5616 __perf_event_exit_task(struct perf_event *child_event,
5617                          struct perf_event_context *child_ctx,
5618                          struct task_struct *child)
5619 {
5620         struct perf_event *parent_event;
5621
5622         perf_event_remove_from_context(child_event);
5623
5624         parent_event = child_event->parent;
5625         /*
5626          * It can happen that parent exits first, and has events
5627          * that are still around due to the child reference. These
5628          * events need to be zapped - but otherwise linger.
5629          */
5630         if (parent_event) {
5631                 sync_child_event(child_event, child);
5632                 free_event(child_event);
5633         }
5634 }
5635
5636 /*
5637  * When a child task exits, feed back event values to parent events.
5638  */
5639 void perf_event_exit_task(struct task_struct *child)
5640 {
5641         struct perf_event *child_event, *tmp;
5642         struct perf_event_context *child_ctx;
5643         unsigned long flags;
5644
5645         if (likely(!child->perf_event_ctxp)) {
5646                 perf_event_task(child, NULL, 0);
5647                 return;
5648         }
5649
5650         local_irq_save(flags);
5651         /*
5652          * We can't reschedule here because interrupts are disabled,
5653          * and either child is current or it is a task that can't be
5654          * scheduled, so we are now safe from rescheduling changing
5655          * our context.
5656          */
5657         child_ctx = child->perf_event_ctxp;
5658         __perf_event_task_sched_out(child_ctx);
5659
5660         /*
5661          * Take the context lock here so that if find_get_context is
5662          * reading child->perf_event_ctxp, we wait until it has
5663          * incremented the context's refcount before we do put_ctx below.
5664          */
5665         raw_spin_lock(&child_ctx->lock);
5666         child->perf_event_ctxp = NULL;
5667         /*
5668          * If this context is a clone; unclone it so it can't get
5669          * swapped to another process while we're removing all
5670          * the events from it.
5671          */
5672         unclone_ctx(child_ctx);
5673         update_context_time(child_ctx);
5674         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5675
5676         /*
5677          * Report the task dead after unscheduling the events so that we
5678          * won't get any samples after PERF_RECORD_EXIT. We can however still
5679          * get a few PERF_RECORD_READ events.
5680          */
5681         perf_event_task(child, child_ctx, 0);
5682
5683         /*
5684          * We can recurse on the same lock type through:
5685          *
5686          *   __perf_event_exit_task()
5687          *     sync_child_event()
5688          *       fput(parent_event->filp)
5689          *         perf_release()
5690          *           mutex_lock(&ctx->mutex)
5691          *
5692          * But since its the parent context it won't be the same instance.
5693          */
5694         mutex_lock(&child_ctx->mutex);
5695
5696 again:
5697         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5698                                  group_entry)
5699                 __perf_event_exit_task(child_event, child_ctx, child);
5700
5701         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5702                                  group_entry)
5703                 __perf_event_exit_task(child_event, child_ctx, child);
5704
5705         /*
5706          * If the last event was a group event, it will have appended all
5707          * its siblings to the list, but we obtained 'tmp' before that which
5708          * will still point to the list head terminating the iteration.
5709          */
5710         if (!list_empty(&child_ctx->pinned_groups) ||
5711             !list_empty(&child_ctx->flexible_groups))
5712                 goto again;
5713
5714         mutex_unlock(&child_ctx->mutex);
5715
5716         put_ctx(child_ctx);
5717 }
5718
5719 static void perf_free_event(struct perf_event *event,
5720                             struct perf_event_context *ctx)
5721 {
5722         struct perf_event *parent = event->parent;
5723
5724         if (WARN_ON_ONCE(!parent))
5725                 return;
5726
5727         mutex_lock(&parent->child_mutex);
5728         list_del_init(&event->child_list);
5729         mutex_unlock(&parent->child_mutex);
5730
5731         fput(parent->filp);
5732
5733         perf_group_detach(event);
5734         list_del_event(event, ctx);
5735         free_event(event);
5736 }
5737
5738 /*
5739  * free an unexposed, unused context as created by inheritance by
5740  * init_task below, used by fork() in case of fail.
5741  */
5742 void perf_event_free_task(struct task_struct *task)
5743 {
5744         struct perf_event_context *ctx = task->perf_event_ctxp;
5745         struct perf_event *event, *tmp;
5746
5747         if (!ctx)
5748                 return;
5749
5750         mutex_lock(&ctx->mutex);
5751 again:
5752         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5753                 perf_free_event(event, ctx);
5754
5755         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5756                                  group_entry)
5757                 perf_free_event(event, ctx);
5758
5759         if (!list_empty(&ctx->pinned_groups) ||
5760             !list_empty(&ctx->flexible_groups))
5761                 goto again;
5762
5763         mutex_unlock(&ctx->mutex);
5764
5765         put_ctx(ctx);
5766 }
5767
5768 static int
5769 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5770                    struct perf_event_context *parent_ctx,
5771                    struct task_struct *child,
5772                    int *inherited_all)
5773 {
5774         int ret;
5775         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5776
5777         if (!event->attr.inherit) {
5778                 *inherited_all = 0;
5779                 return 0;
5780         }
5781
5782         if (!child_ctx) {
5783                 /*
5784                  * This is executed from the parent task context, so
5785                  * inherit events that have been marked for cloning.
5786                  * First allocate and initialize a context for the
5787                  * child.
5788                  */
5789
5790                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5791                                     GFP_KERNEL);
5792                 if (!child_ctx)
5793                         return -ENOMEM;
5794
5795                 __perf_event_init_context(child_ctx, child);
5796                 child->perf_event_ctxp = child_ctx;
5797                 get_task_struct(child);
5798         }
5799
5800         ret = inherit_group(event, parent, parent_ctx,
5801                             child, child_ctx);
5802
5803         if (ret)
5804                 *inherited_all = 0;
5805
5806         return ret;
5807 }
5808
5809
5810 /*
5811  * Initialize the perf_event context in task_struct
5812  */
5813 int perf_event_init_task(struct task_struct *child)
5814 {
5815         struct perf_event_context *child_ctx, *parent_ctx;
5816         struct perf_event_context *cloned_ctx;
5817         struct perf_event *event;
5818         struct task_struct *parent = current;
5819         int inherited_all = 1;
5820         int ret = 0;
5821
5822         child->perf_event_ctxp = NULL;
5823
5824         mutex_init(&child->perf_event_mutex);
5825         INIT_LIST_HEAD(&child->perf_event_list);
5826
5827         if (likely(!parent->perf_event_ctxp))
5828                 return 0;
5829
5830         /*
5831          * If the parent's context is a clone, pin it so it won't get
5832          * swapped under us.
5833          */
5834         parent_ctx = perf_pin_task_context(parent);
5835
5836         /*
5837          * No need to check if parent_ctx != NULL here; since we saw
5838          * it non-NULL earlier, the only reason for it to become NULL
5839          * is if we exit, and since we're currently in the middle of
5840          * a fork we can't be exiting at the same time.
5841          */
5842
5843         /*
5844          * Lock the parent list. No need to lock the child - not PID
5845          * hashed yet and not running, so nobody can access it.
5846          */
5847         mutex_lock(&parent_ctx->mutex);
5848
5849         /*
5850          * We dont have to disable NMIs - we are only looking at
5851          * the list, not manipulating it:
5852          */
5853         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5854                 ret = inherit_task_group(event, parent, parent_ctx, child,
5855                                          &inherited_all);
5856                 if (ret)
5857                         break;
5858         }
5859
5860         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5861                 ret = inherit_task_group(event, parent, parent_ctx, child,
5862                                          &inherited_all);
5863                 if (ret)
5864                         break;
5865         }
5866
5867         child_ctx = child->perf_event_ctxp;
5868
5869         if (child_ctx && inherited_all) {
5870                 /*
5871                  * Mark the child context as a clone of the parent
5872                  * context, or of whatever the parent is a clone of.
5873                  * Note that if the parent is a clone, it could get
5874                  * uncloned at any point, but that doesn't matter
5875                  * because the list of events and the generation
5876                  * count can't have changed since we took the mutex.
5877                  */
5878                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5879                 if (cloned_ctx) {
5880                         child_ctx->parent_ctx = cloned_ctx;
5881                         child_ctx->parent_gen = parent_ctx->parent_gen;
5882                 } else {
5883                         child_ctx->parent_ctx = parent_ctx;
5884                         child_ctx->parent_gen = parent_ctx->generation;
5885                 }
5886                 get_ctx(child_ctx->parent_ctx);
5887         }
5888
5889         mutex_unlock(&parent_ctx->mutex);
5890
5891         perf_unpin_context(parent_ctx);
5892
5893         return ret;
5894 }
5895
5896 static void __init perf_event_init_all_cpus(void)
5897 {
5898         int cpu;
5899         struct perf_cpu_context *cpuctx;
5900
5901         for_each_possible_cpu(cpu) {
5902                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5903                 mutex_init(&cpuctx->hlist_mutex);
5904                 __perf_event_init_context(&cpuctx->ctx, NULL);
5905         }
5906 }
5907
5908 static void __cpuinit perf_event_init_cpu(int cpu)
5909 {
5910         struct perf_cpu_context *cpuctx;
5911
5912         cpuctx = &per_cpu(perf_cpu_context, cpu);
5913
5914         spin_lock(&perf_resource_lock);
5915         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5916         spin_unlock(&perf_resource_lock);
5917
5918         mutex_lock(&cpuctx->hlist_mutex);
5919         if (cpuctx->hlist_refcount > 0) {
5920                 struct swevent_hlist *hlist;
5921
5922                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5923                 WARN_ON_ONCE(!hlist);
5924                 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5925         }
5926         mutex_unlock(&cpuctx->hlist_mutex);
5927 }
5928
5929 #ifdef CONFIG_HOTPLUG_CPU
5930 static void __perf_event_exit_cpu(void *info)
5931 {
5932         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5933         struct perf_event_context *ctx = &cpuctx->ctx;
5934         struct perf_event *event, *tmp;
5935
5936         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5937                 __perf_event_remove_from_context(event);
5938         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5939                 __perf_event_remove_from_context(event);
5940 }
5941 static void perf_event_exit_cpu(int cpu)
5942 {
5943         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5944         struct perf_event_context *ctx = &cpuctx->ctx;
5945
5946         mutex_lock(&cpuctx->hlist_mutex);
5947         swevent_hlist_release(cpuctx);
5948         mutex_unlock(&cpuctx->hlist_mutex);
5949
5950         mutex_lock(&ctx->mutex);
5951         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5952         mutex_unlock(&ctx->mutex);
5953 }
5954 #else
5955 static inline void perf_event_exit_cpu(int cpu) { }
5956 #endif
5957
5958 static int __cpuinit
5959 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5960 {
5961         unsigned int cpu = (long)hcpu;
5962
5963         switch (action & ~CPU_TASKS_FROZEN) {
5964
5965         case CPU_UP_PREPARE:
5966         case CPU_DOWN_FAILED:
5967                 perf_event_init_cpu(cpu);
5968                 break;
5969
5970         case CPU_UP_CANCELED:
5971         case CPU_DOWN_PREPARE:
5972                 perf_event_exit_cpu(cpu);
5973                 break;
5974
5975         default:
5976                 break;
5977         }
5978
5979         return NOTIFY_OK;
5980 }
5981
5982 /*
5983  * This has to have a higher priority than migration_notifier in sched.c.
5984  */
5985 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5986         .notifier_call          = perf_cpu_notify,
5987         .priority               = 20,
5988 };
5989
5990 void __init perf_event_init(void)
5991 {
5992         perf_event_init_all_cpus();
5993         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5994                         (void *)(long)smp_processor_id());
5995         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5996                         (void *)(long)smp_processor_id());
5997         register_cpu_notifier(&perf_cpu_nb);
5998 }
5999
6000 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
6001                                         struct sysdev_class_attribute *attr,
6002                                         char *buf)
6003 {
6004         return sprintf(buf, "%d\n", perf_reserved_percpu);
6005 }
6006
6007 static ssize_t
6008 perf_set_reserve_percpu(struct sysdev_class *class,
6009                         struct sysdev_class_attribute *attr,
6010                         const char *buf,
6011                         size_t count)
6012 {
6013         struct perf_cpu_context *cpuctx;
6014         unsigned long val;
6015         int err, cpu, mpt;
6016
6017         err = strict_strtoul(buf, 10, &val);
6018         if (err)
6019                 return err;
6020         if (val > perf_max_events)
6021                 return -EINVAL;
6022
6023         spin_lock(&perf_resource_lock);
6024         perf_reserved_percpu = val;
6025         for_each_online_cpu(cpu) {
6026                 cpuctx = &per_cpu(perf_cpu_context, cpu);
6027                 raw_spin_lock_irq(&cpuctx->ctx.lock);
6028                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
6029                           perf_max_events - perf_reserved_percpu);
6030                 cpuctx->max_pertask = mpt;
6031                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
6032         }
6033         spin_unlock(&perf_resource_lock);
6034
6035         return count;
6036 }
6037
6038 static ssize_t perf_show_overcommit(struct sysdev_class *class,
6039                                     struct sysdev_class_attribute *attr,
6040                                     char *buf)
6041 {
6042         return sprintf(buf, "%d\n", perf_overcommit);
6043 }
6044
6045 static ssize_t
6046 perf_set_overcommit(struct sysdev_class *class,
6047                     struct sysdev_class_attribute *attr,
6048                     const char *buf, size_t count)
6049 {
6050         unsigned long val;
6051         int err;
6052
6053         err = strict_strtoul(buf, 10, &val);
6054         if (err)
6055                 return err;
6056         if (val > 1)
6057                 return -EINVAL;
6058
6059         spin_lock(&perf_resource_lock);
6060         perf_overcommit = val;
6061         spin_unlock(&perf_resource_lock);
6062
6063         return count;
6064 }
6065
6066 static SYSDEV_CLASS_ATTR(
6067                                 reserve_percpu,
6068                                 0644,
6069                                 perf_show_reserve_percpu,
6070                                 perf_set_reserve_percpu
6071                         );
6072
6073 static SYSDEV_CLASS_ATTR(
6074                                 overcommit,
6075                                 0644,
6076                                 perf_show_overcommit,
6077                                 perf_set_overcommit
6078                         );
6079
6080 static struct attribute *perfclass_attrs[] = {
6081         &attr_reserve_percpu.attr,
6082         &attr_overcommit.attr,
6083         NULL
6084 };
6085
6086 static struct attribute_group perfclass_attr_group = {
6087         .attrs                  = perfclass_attrs,
6088         .name                   = "perf_events",
6089 };
6090
6091 static int __init perf_event_sysfs_init(void)
6092 {
6093         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
6094                                   &perfclass_attr_group);
6095 }
6096 device_initcall(perf_event_sysfs_init);