]> git.karo-electronics.de Git - mv-sheeva.git/blob - mm/ksm.c
thp: KSM on THP
[mv-sheeva.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hash.h>
37 #include <linux/freezer.h>
38
39 #include <asm/tlbflush.h>
40 #include "internal.h"
41
42 /*
43  * A few notes about the KSM scanning process,
44  * to make it easier to understand the data structures below:
45  *
46  * In order to reduce excessive scanning, KSM sorts the memory pages by their
47  * contents into a data structure that holds pointers to the pages' locations.
48  *
49  * Since the contents of the pages may change at any moment, KSM cannot just
50  * insert the pages into a normal sorted tree and expect it to find anything.
51  * Therefore KSM uses two data structures - the stable and the unstable tree.
52  *
53  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
54  * by their contents.  Because each such page is write-protected, searching on
55  * this tree is fully assured to be working (except when pages are unmapped),
56  * and therefore this tree is called the stable tree.
57  *
58  * In addition to the stable tree, KSM uses a second data structure called the
59  * unstable tree: this tree holds pointers to pages which have been found to
60  * be "unchanged for a period of time".  The unstable tree sorts these pages
61  * by their contents, but since they are not write-protected, KSM cannot rely
62  * upon the unstable tree to work correctly - the unstable tree is liable to
63  * be corrupted as its contents are modified, and so it is called unstable.
64  *
65  * KSM solves this problem by several techniques:
66  *
67  * 1) The unstable tree is flushed every time KSM completes scanning all
68  *    memory areas, and then the tree is rebuilt again from the beginning.
69  * 2) KSM will only insert into the unstable tree, pages whose hash value
70  *    has not changed since the previous scan of all memory areas.
71  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
72  *    colors of the nodes and not on their contents, assuring that even when
73  *    the tree gets "corrupted" it won't get out of balance, so scanning time
74  *    remains the same (also, searching and inserting nodes in an rbtree uses
75  *    the same algorithm, so we have no overhead when we flush and rebuild).
76  * 4) KSM never flushes the stable tree, which means that even if it were to
77  *    take 10 attempts to find a page in the unstable tree, once it is found,
78  *    it is secured in the stable tree.  (When we scan a new page, we first
79  *    compare it against the stable tree, and then against the unstable tree.)
80  */
81
82 /**
83  * struct mm_slot - ksm information per mm that is being scanned
84  * @link: link to the mm_slots hash list
85  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
86  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
87  * @mm: the mm that this information is valid for
88  */
89 struct mm_slot {
90         struct hlist_node link;
91         struct list_head mm_list;
92         struct rmap_item *rmap_list;
93         struct mm_struct *mm;
94 };
95
96 /**
97  * struct ksm_scan - cursor for scanning
98  * @mm_slot: the current mm_slot we are scanning
99  * @address: the next address inside that to be scanned
100  * @rmap_list: link to the next rmap to be scanned in the rmap_list
101  * @seqnr: count of completed full scans (needed when removing unstable node)
102  *
103  * There is only the one ksm_scan instance of this cursor structure.
104  */
105 struct ksm_scan {
106         struct mm_slot *mm_slot;
107         unsigned long address;
108         struct rmap_item **rmap_list;
109         unsigned long seqnr;
110 };
111
112 /**
113  * struct stable_node - node of the stable rbtree
114  * @node: rb node of this ksm page in the stable tree
115  * @hlist: hlist head of rmap_items using this ksm page
116  * @kpfn: page frame number of this ksm page
117  */
118 struct stable_node {
119         struct rb_node node;
120         struct hlist_head hlist;
121         unsigned long kpfn;
122 };
123
124 /**
125  * struct rmap_item - reverse mapping item for virtual addresses
126  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
127  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
128  * @mm: the memory structure this rmap_item is pointing into
129  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
130  * @oldchecksum: previous checksum of the page at that virtual address
131  * @node: rb node of this rmap_item in the unstable tree
132  * @head: pointer to stable_node heading this list in the stable tree
133  * @hlist: link into hlist of rmap_items hanging off that stable_node
134  */
135 struct rmap_item {
136         struct rmap_item *rmap_list;
137         struct anon_vma *anon_vma;      /* when stable */
138         struct mm_struct *mm;
139         unsigned long address;          /* + low bits used for flags below */
140         unsigned int oldchecksum;       /* when unstable */
141         union {
142                 struct rb_node node;    /* when node of unstable tree */
143                 struct {                /* when listed from stable tree */
144                         struct stable_node *head;
145                         struct hlist_node hlist;
146                 };
147         };
148 };
149
150 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
151 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
152 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
153
154 /* The stable and unstable tree heads */
155 static struct rb_root root_stable_tree = RB_ROOT;
156 static struct rb_root root_unstable_tree = RB_ROOT;
157
158 #define MM_SLOTS_HASH_SHIFT 10
159 #define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
160 static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
161
162 static struct mm_slot ksm_mm_head = {
163         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
164 };
165 static struct ksm_scan ksm_scan = {
166         .mm_slot = &ksm_mm_head,
167 };
168
169 static struct kmem_cache *rmap_item_cache;
170 static struct kmem_cache *stable_node_cache;
171 static struct kmem_cache *mm_slot_cache;
172
173 /* The number of nodes in the stable tree */
174 static unsigned long ksm_pages_shared;
175
176 /* The number of page slots additionally sharing those nodes */
177 static unsigned long ksm_pages_sharing;
178
179 /* The number of nodes in the unstable tree */
180 static unsigned long ksm_pages_unshared;
181
182 /* The number of rmap_items in use: to calculate pages_volatile */
183 static unsigned long ksm_rmap_items;
184
185 /* Number of pages ksmd should scan in one batch */
186 static unsigned int ksm_thread_pages_to_scan = 100;
187
188 /* Milliseconds ksmd should sleep between batches */
189 static unsigned int ksm_thread_sleep_millisecs = 20;
190
191 #define KSM_RUN_STOP    0
192 #define KSM_RUN_MERGE   1
193 #define KSM_RUN_UNMERGE 2
194 static unsigned int ksm_run = KSM_RUN_STOP;
195
196 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
197 static DEFINE_MUTEX(ksm_thread_mutex);
198 static DEFINE_SPINLOCK(ksm_mmlist_lock);
199
200 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
201                 sizeof(struct __struct), __alignof__(struct __struct),\
202                 (__flags), NULL)
203
204 static int __init ksm_slab_init(void)
205 {
206         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
207         if (!rmap_item_cache)
208                 goto out;
209
210         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
211         if (!stable_node_cache)
212                 goto out_free1;
213
214         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
215         if (!mm_slot_cache)
216                 goto out_free2;
217
218         return 0;
219
220 out_free2:
221         kmem_cache_destroy(stable_node_cache);
222 out_free1:
223         kmem_cache_destroy(rmap_item_cache);
224 out:
225         return -ENOMEM;
226 }
227
228 static void __init ksm_slab_free(void)
229 {
230         kmem_cache_destroy(mm_slot_cache);
231         kmem_cache_destroy(stable_node_cache);
232         kmem_cache_destroy(rmap_item_cache);
233         mm_slot_cache = NULL;
234 }
235
236 static inline struct rmap_item *alloc_rmap_item(void)
237 {
238         struct rmap_item *rmap_item;
239
240         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
241         if (rmap_item)
242                 ksm_rmap_items++;
243         return rmap_item;
244 }
245
246 static inline void free_rmap_item(struct rmap_item *rmap_item)
247 {
248         ksm_rmap_items--;
249         rmap_item->mm = NULL;   /* debug safety */
250         kmem_cache_free(rmap_item_cache, rmap_item);
251 }
252
253 static inline struct stable_node *alloc_stable_node(void)
254 {
255         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
256 }
257
258 static inline void free_stable_node(struct stable_node *stable_node)
259 {
260         kmem_cache_free(stable_node_cache, stable_node);
261 }
262
263 static inline struct mm_slot *alloc_mm_slot(void)
264 {
265         if (!mm_slot_cache)     /* initialization failed */
266                 return NULL;
267         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
268 }
269
270 static inline void free_mm_slot(struct mm_slot *mm_slot)
271 {
272         kmem_cache_free(mm_slot_cache, mm_slot);
273 }
274
275 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
276 {
277         struct mm_slot *mm_slot;
278         struct hlist_head *bucket;
279         struct hlist_node *node;
280
281         bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
282         hlist_for_each_entry(mm_slot, node, bucket, link) {
283                 if (mm == mm_slot->mm)
284                         return mm_slot;
285         }
286         return NULL;
287 }
288
289 static void insert_to_mm_slots_hash(struct mm_struct *mm,
290                                     struct mm_slot *mm_slot)
291 {
292         struct hlist_head *bucket;
293
294         bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
295         mm_slot->mm = mm;
296         hlist_add_head(&mm_slot->link, bucket);
297 }
298
299 static inline int in_stable_tree(struct rmap_item *rmap_item)
300 {
301         return rmap_item->address & STABLE_FLAG;
302 }
303
304 static void hold_anon_vma(struct rmap_item *rmap_item,
305                           struct anon_vma *anon_vma)
306 {
307         rmap_item->anon_vma = anon_vma;
308         get_anon_vma(anon_vma);
309 }
310
311 static void ksm_drop_anon_vma(struct rmap_item *rmap_item)
312 {
313         struct anon_vma *anon_vma = rmap_item->anon_vma;
314
315         drop_anon_vma(anon_vma);
316 }
317
318 /*
319  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
320  * page tables after it has passed through ksm_exit() - which, if necessary,
321  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
322  * a special flag: they can just back out as soon as mm_users goes to zero.
323  * ksm_test_exit() is used throughout to make this test for exit: in some
324  * places for correctness, in some places just to avoid unnecessary work.
325  */
326 static inline bool ksm_test_exit(struct mm_struct *mm)
327 {
328         return atomic_read(&mm->mm_users) == 0;
329 }
330
331 /*
332  * We use break_ksm to break COW on a ksm page: it's a stripped down
333  *
334  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
335  *              put_page(page);
336  *
337  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
338  * in case the application has unmapped and remapped mm,addr meanwhile.
339  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
340  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
341  */
342 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
343 {
344         struct page *page;
345         int ret = 0;
346
347         do {
348                 cond_resched();
349                 page = follow_page(vma, addr, FOLL_GET);
350                 if (IS_ERR_OR_NULL(page))
351                         break;
352                 if (PageKsm(page))
353                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
354                                                         FAULT_FLAG_WRITE);
355                 else
356                         ret = VM_FAULT_WRITE;
357                 put_page(page);
358         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
359         /*
360          * We must loop because handle_mm_fault() may back out if there's
361          * any difficulty e.g. if pte accessed bit gets updated concurrently.
362          *
363          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
364          * COW has been broken, even if the vma does not permit VM_WRITE;
365          * but note that a concurrent fault might break PageKsm for us.
366          *
367          * VM_FAULT_SIGBUS could occur if we race with truncation of the
368          * backing file, which also invalidates anonymous pages: that's
369          * okay, that truncation will have unmapped the PageKsm for us.
370          *
371          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
372          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
373          * current task has TIF_MEMDIE set, and will be OOM killed on return
374          * to user; and ksmd, having no mm, would never be chosen for that.
375          *
376          * But if the mm is in a limited mem_cgroup, then the fault may fail
377          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
378          * even ksmd can fail in this way - though it's usually breaking ksm
379          * just to undo a merge it made a moment before, so unlikely to oom.
380          *
381          * That's a pity: we might therefore have more kernel pages allocated
382          * than we're counting as nodes in the stable tree; but ksm_do_scan
383          * will retry to break_cow on each pass, so should recover the page
384          * in due course.  The important thing is to not let VM_MERGEABLE
385          * be cleared while any such pages might remain in the area.
386          */
387         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
388 }
389
390 static void break_cow(struct rmap_item *rmap_item)
391 {
392         struct mm_struct *mm = rmap_item->mm;
393         unsigned long addr = rmap_item->address;
394         struct vm_area_struct *vma;
395
396         /*
397          * It is not an accident that whenever we want to break COW
398          * to undo, we also need to drop a reference to the anon_vma.
399          */
400         ksm_drop_anon_vma(rmap_item);
401
402         down_read(&mm->mmap_sem);
403         if (ksm_test_exit(mm))
404                 goto out;
405         vma = find_vma(mm, addr);
406         if (!vma || vma->vm_start > addr)
407                 goto out;
408         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
409                 goto out;
410         break_ksm(vma, addr);
411 out:
412         up_read(&mm->mmap_sem);
413 }
414
415 static struct page *page_trans_compound_anon(struct page *page)
416 {
417         if (PageTransCompound(page)) {
418                 struct page *head;
419                 head = compound_head(page);
420                 /*
421                  * head may be a dangling pointer.
422                  * __split_huge_page_refcount clears PageTail
423                  * before overwriting first_page, so if
424                  * PageTail is still there it means the head
425                  * pointer isn't dangling.
426                  */
427                 if (head != page) {
428                         smp_rmb();
429                         if (!PageTransCompound(page))
430                                 return NULL;
431                 }
432                 if (PageAnon(head))
433                         return head;
434         }
435         return NULL;
436 }
437
438 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
439 {
440         struct mm_struct *mm = rmap_item->mm;
441         unsigned long addr = rmap_item->address;
442         struct vm_area_struct *vma;
443         struct page *page;
444
445         down_read(&mm->mmap_sem);
446         if (ksm_test_exit(mm))
447                 goto out;
448         vma = find_vma(mm, addr);
449         if (!vma || vma->vm_start > addr)
450                 goto out;
451         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
452                 goto out;
453
454         page = follow_page(vma, addr, FOLL_GET);
455         if (IS_ERR_OR_NULL(page))
456                 goto out;
457         if (PageAnon(page) || page_trans_compound_anon(page)) {
458                 flush_anon_page(vma, page, addr);
459                 flush_dcache_page(page);
460         } else {
461                 put_page(page);
462 out:            page = NULL;
463         }
464         up_read(&mm->mmap_sem);
465         return page;
466 }
467
468 static void remove_node_from_stable_tree(struct stable_node *stable_node)
469 {
470         struct rmap_item *rmap_item;
471         struct hlist_node *hlist;
472
473         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
474                 if (rmap_item->hlist.next)
475                         ksm_pages_sharing--;
476                 else
477                         ksm_pages_shared--;
478                 ksm_drop_anon_vma(rmap_item);
479                 rmap_item->address &= PAGE_MASK;
480                 cond_resched();
481         }
482
483         rb_erase(&stable_node->node, &root_stable_tree);
484         free_stable_node(stable_node);
485 }
486
487 /*
488  * get_ksm_page: checks if the page indicated by the stable node
489  * is still its ksm page, despite having held no reference to it.
490  * In which case we can trust the content of the page, and it
491  * returns the gotten page; but if the page has now been zapped,
492  * remove the stale node from the stable tree and return NULL.
493  *
494  * You would expect the stable_node to hold a reference to the ksm page.
495  * But if it increments the page's count, swapping out has to wait for
496  * ksmd to come around again before it can free the page, which may take
497  * seconds or even minutes: much too unresponsive.  So instead we use a
498  * "keyhole reference": access to the ksm page from the stable node peeps
499  * out through its keyhole to see if that page still holds the right key,
500  * pointing back to this stable node.  This relies on freeing a PageAnon
501  * page to reset its page->mapping to NULL, and relies on no other use of
502  * a page to put something that might look like our key in page->mapping.
503  *
504  * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
505  * but this is different - made simpler by ksm_thread_mutex being held, but
506  * interesting for assuming that no other use of the struct page could ever
507  * put our expected_mapping into page->mapping (or a field of the union which
508  * coincides with page->mapping).  The RCU calls are not for KSM at all, but
509  * to keep the page_count protocol described with page_cache_get_speculative.
510  *
511  * Note: it is possible that get_ksm_page() will return NULL one moment,
512  * then page the next, if the page is in between page_freeze_refs() and
513  * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
514  * is on its way to being freed; but it is an anomaly to bear in mind.
515  */
516 static struct page *get_ksm_page(struct stable_node *stable_node)
517 {
518         struct page *page;
519         void *expected_mapping;
520
521         page = pfn_to_page(stable_node->kpfn);
522         expected_mapping = (void *)stable_node +
523                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
524         rcu_read_lock();
525         if (page->mapping != expected_mapping)
526                 goto stale;
527         if (!get_page_unless_zero(page))
528                 goto stale;
529         if (page->mapping != expected_mapping) {
530                 put_page(page);
531                 goto stale;
532         }
533         rcu_read_unlock();
534         return page;
535 stale:
536         rcu_read_unlock();
537         remove_node_from_stable_tree(stable_node);
538         return NULL;
539 }
540
541 /*
542  * Removing rmap_item from stable or unstable tree.
543  * This function will clean the information from the stable/unstable tree.
544  */
545 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
546 {
547         if (rmap_item->address & STABLE_FLAG) {
548                 struct stable_node *stable_node;
549                 struct page *page;
550
551                 stable_node = rmap_item->head;
552                 page = get_ksm_page(stable_node);
553                 if (!page)
554                         goto out;
555
556                 lock_page(page);
557                 hlist_del(&rmap_item->hlist);
558                 unlock_page(page);
559                 put_page(page);
560
561                 if (stable_node->hlist.first)
562                         ksm_pages_sharing--;
563                 else
564                         ksm_pages_shared--;
565
566                 ksm_drop_anon_vma(rmap_item);
567                 rmap_item->address &= PAGE_MASK;
568
569         } else if (rmap_item->address & UNSTABLE_FLAG) {
570                 unsigned char age;
571                 /*
572                  * Usually ksmd can and must skip the rb_erase, because
573                  * root_unstable_tree was already reset to RB_ROOT.
574                  * But be careful when an mm is exiting: do the rb_erase
575                  * if this rmap_item was inserted by this scan, rather
576                  * than left over from before.
577                  */
578                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
579                 BUG_ON(age > 1);
580                 if (!age)
581                         rb_erase(&rmap_item->node, &root_unstable_tree);
582
583                 ksm_pages_unshared--;
584                 rmap_item->address &= PAGE_MASK;
585         }
586 out:
587         cond_resched();         /* we're called from many long loops */
588 }
589
590 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
591                                        struct rmap_item **rmap_list)
592 {
593         while (*rmap_list) {
594                 struct rmap_item *rmap_item = *rmap_list;
595                 *rmap_list = rmap_item->rmap_list;
596                 remove_rmap_item_from_tree(rmap_item);
597                 free_rmap_item(rmap_item);
598         }
599 }
600
601 /*
602  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
603  * than check every pte of a given vma, the locking doesn't quite work for
604  * that - an rmap_item is assigned to the stable tree after inserting ksm
605  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
606  * rmap_items from parent to child at fork time (so as not to waste time
607  * if exit comes before the next scan reaches it).
608  *
609  * Similarly, although we'd like to remove rmap_items (so updating counts
610  * and freeing memory) when unmerging an area, it's easier to leave that
611  * to the next pass of ksmd - consider, for example, how ksmd might be
612  * in cmp_and_merge_page on one of the rmap_items we would be removing.
613  */
614 static int unmerge_ksm_pages(struct vm_area_struct *vma,
615                              unsigned long start, unsigned long end)
616 {
617         unsigned long addr;
618         int err = 0;
619
620         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
621                 if (ksm_test_exit(vma->vm_mm))
622                         break;
623                 if (signal_pending(current))
624                         err = -ERESTARTSYS;
625                 else
626                         err = break_ksm(vma, addr);
627         }
628         return err;
629 }
630
631 #ifdef CONFIG_SYSFS
632 /*
633  * Only called through the sysfs control interface:
634  */
635 static int unmerge_and_remove_all_rmap_items(void)
636 {
637         struct mm_slot *mm_slot;
638         struct mm_struct *mm;
639         struct vm_area_struct *vma;
640         int err = 0;
641
642         spin_lock(&ksm_mmlist_lock);
643         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
644                                                 struct mm_slot, mm_list);
645         spin_unlock(&ksm_mmlist_lock);
646
647         for (mm_slot = ksm_scan.mm_slot;
648                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
649                 mm = mm_slot->mm;
650                 down_read(&mm->mmap_sem);
651                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
652                         if (ksm_test_exit(mm))
653                                 break;
654                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
655                                 continue;
656                         err = unmerge_ksm_pages(vma,
657                                                 vma->vm_start, vma->vm_end);
658                         if (err)
659                                 goto error;
660                 }
661
662                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
663
664                 spin_lock(&ksm_mmlist_lock);
665                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
666                                                 struct mm_slot, mm_list);
667                 if (ksm_test_exit(mm)) {
668                         hlist_del(&mm_slot->link);
669                         list_del(&mm_slot->mm_list);
670                         spin_unlock(&ksm_mmlist_lock);
671
672                         free_mm_slot(mm_slot);
673                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
674                         up_read(&mm->mmap_sem);
675                         mmdrop(mm);
676                 } else {
677                         spin_unlock(&ksm_mmlist_lock);
678                         up_read(&mm->mmap_sem);
679                 }
680         }
681
682         ksm_scan.seqnr = 0;
683         return 0;
684
685 error:
686         up_read(&mm->mmap_sem);
687         spin_lock(&ksm_mmlist_lock);
688         ksm_scan.mm_slot = &ksm_mm_head;
689         spin_unlock(&ksm_mmlist_lock);
690         return err;
691 }
692 #endif /* CONFIG_SYSFS */
693
694 static u32 calc_checksum(struct page *page)
695 {
696         u32 checksum;
697         void *addr = kmap_atomic(page, KM_USER0);
698         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
699         kunmap_atomic(addr, KM_USER0);
700         return checksum;
701 }
702
703 static int memcmp_pages(struct page *page1, struct page *page2)
704 {
705         char *addr1, *addr2;
706         int ret;
707
708         addr1 = kmap_atomic(page1, KM_USER0);
709         addr2 = kmap_atomic(page2, KM_USER1);
710         ret = memcmp(addr1, addr2, PAGE_SIZE);
711         kunmap_atomic(addr2, KM_USER1);
712         kunmap_atomic(addr1, KM_USER0);
713         return ret;
714 }
715
716 static inline int pages_identical(struct page *page1, struct page *page2)
717 {
718         return !memcmp_pages(page1, page2);
719 }
720
721 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
722                               pte_t *orig_pte)
723 {
724         struct mm_struct *mm = vma->vm_mm;
725         unsigned long addr;
726         pte_t *ptep;
727         spinlock_t *ptl;
728         int swapped;
729         int err = -EFAULT;
730
731         addr = page_address_in_vma(page, vma);
732         if (addr == -EFAULT)
733                 goto out;
734
735         BUG_ON(PageTransCompound(page));
736         ptep = page_check_address(page, mm, addr, &ptl, 0);
737         if (!ptep)
738                 goto out;
739
740         if (pte_write(*ptep) || pte_dirty(*ptep)) {
741                 pte_t entry;
742
743                 swapped = PageSwapCache(page);
744                 flush_cache_page(vma, addr, page_to_pfn(page));
745                 /*
746                  * Ok this is tricky, when get_user_pages_fast() run it doesnt
747                  * take any lock, therefore the check that we are going to make
748                  * with the pagecount against the mapcount is racey and
749                  * O_DIRECT can happen right after the check.
750                  * So we clear the pte and flush the tlb before the check
751                  * this assure us that no O_DIRECT can happen after the check
752                  * or in the middle of the check.
753                  */
754                 entry = ptep_clear_flush(vma, addr, ptep);
755                 /*
756                  * Check that no O_DIRECT or similar I/O is in progress on the
757                  * page
758                  */
759                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
760                         set_pte_at(mm, addr, ptep, entry);
761                         goto out_unlock;
762                 }
763                 if (pte_dirty(entry))
764                         set_page_dirty(page);
765                 entry = pte_mkclean(pte_wrprotect(entry));
766                 set_pte_at_notify(mm, addr, ptep, entry);
767         }
768         *orig_pte = *ptep;
769         err = 0;
770
771 out_unlock:
772         pte_unmap_unlock(ptep, ptl);
773 out:
774         return err;
775 }
776
777 /**
778  * replace_page - replace page in vma by new ksm page
779  * @vma:      vma that holds the pte pointing to page
780  * @page:     the page we are replacing by kpage
781  * @kpage:    the ksm page we replace page by
782  * @orig_pte: the original value of the pte
783  *
784  * Returns 0 on success, -EFAULT on failure.
785  */
786 static int replace_page(struct vm_area_struct *vma, struct page *page,
787                         struct page *kpage, pte_t orig_pte)
788 {
789         struct mm_struct *mm = vma->vm_mm;
790         pgd_t *pgd;
791         pud_t *pud;
792         pmd_t *pmd;
793         pte_t *ptep;
794         spinlock_t *ptl;
795         unsigned long addr;
796         int err = -EFAULT;
797
798         addr = page_address_in_vma(page, vma);
799         if (addr == -EFAULT)
800                 goto out;
801
802         pgd = pgd_offset(mm, addr);
803         if (!pgd_present(*pgd))
804                 goto out;
805
806         pud = pud_offset(pgd, addr);
807         if (!pud_present(*pud))
808                 goto out;
809
810         pmd = pmd_offset(pud, addr);
811         BUG_ON(pmd_trans_huge(*pmd));
812         if (!pmd_present(*pmd))
813                 goto out;
814
815         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
816         if (!pte_same(*ptep, orig_pte)) {
817                 pte_unmap_unlock(ptep, ptl);
818                 goto out;
819         }
820
821         get_page(kpage);
822         page_add_anon_rmap(kpage, vma, addr);
823
824         flush_cache_page(vma, addr, pte_pfn(*ptep));
825         ptep_clear_flush(vma, addr, ptep);
826         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
827
828         page_remove_rmap(page);
829         if (!page_mapped(page))
830                 try_to_free_swap(page);
831         put_page(page);
832
833         pte_unmap_unlock(ptep, ptl);
834         err = 0;
835 out:
836         return err;
837 }
838
839 static int page_trans_compound_anon_split(struct page *page)
840 {
841         int ret = 0;
842         struct page *transhuge_head = page_trans_compound_anon(page);
843         if (transhuge_head) {
844                 /* Get the reference on the head to split it. */
845                 if (get_page_unless_zero(transhuge_head)) {
846                         /*
847                          * Recheck we got the reference while the head
848                          * was still anonymous.
849                          */
850                         if (PageAnon(transhuge_head))
851                                 ret = split_huge_page(transhuge_head);
852                         else
853                                 /*
854                                  * Retry later if split_huge_page run
855                                  * from under us.
856                                  */
857                                 ret = 1;
858                         put_page(transhuge_head);
859                 } else
860                         /* Retry later if split_huge_page run from under us. */
861                         ret = 1;
862         }
863         return ret;
864 }
865
866 /*
867  * try_to_merge_one_page - take two pages and merge them into one
868  * @vma: the vma that holds the pte pointing to page
869  * @page: the PageAnon page that we want to replace with kpage
870  * @kpage: the PageKsm page that we want to map instead of page,
871  *         or NULL the first time when we want to use page as kpage.
872  *
873  * This function returns 0 if the pages were merged, -EFAULT otherwise.
874  */
875 static int try_to_merge_one_page(struct vm_area_struct *vma,
876                                  struct page *page, struct page *kpage)
877 {
878         pte_t orig_pte = __pte(0);
879         int err = -EFAULT;
880
881         if (page == kpage)                      /* ksm page forked */
882                 return 0;
883
884         if (!(vma->vm_flags & VM_MERGEABLE))
885                 goto out;
886         if (PageTransCompound(page) && page_trans_compound_anon_split(page))
887                 goto out;
888         BUG_ON(PageTransCompound(page));
889         if (!PageAnon(page))
890                 goto out;
891
892         /*
893          * We need the page lock to read a stable PageSwapCache in
894          * write_protect_page().  We use trylock_page() instead of
895          * lock_page() because we don't want to wait here - we
896          * prefer to continue scanning and merging different pages,
897          * then come back to this page when it is unlocked.
898          */
899         if (!trylock_page(page))
900                 goto out;
901         /*
902          * If this anonymous page is mapped only here, its pte may need
903          * to be write-protected.  If it's mapped elsewhere, all of its
904          * ptes are necessarily already write-protected.  But in either
905          * case, we need to lock and check page_count is not raised.
906          */
907         if (write_protect_page(vma, page, &orig_pte) == 0) {
908                 if (!kpage) {
909                         /*
910                          * While we hold page lock, upgrade page from
911                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
912                          * stable_tree_insert() will update stable_node.
913                          */
914                         set_page_stable_node(page, NULL);
915                         mark_page_accessed(page);
916                         err = 0;
917                 } else if (pages_identical(page, kpage))
918                         err = replace_page(vma, page, kpage, orig_pte);
919         }
920
921         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
922                 munlock_vma_page(page);
923                 if (!PageMlocked(kpage)) {
924                         unlock_page(page);
925                         lock_page(kpage);
926                         mlock_vma_page(kpage);
927                         page = kpage;           /* for final unlock */
928                 }
929         }
930
931         unlock_page(page);
932 out:
933         return err;
934 }
935
936 /*
937  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
938  * but no new kernel page is allocated: kpage must already be a ksm page.
939  *
940  * This function returns 0 if the pages were merged, -EFAULT otherwise.
941  */
942 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
943                                       struct page *page, struct page *kpage)
944 {
945         struct mm_struct *mm = rmap_item->mm;
946         struct vm_area_struct *vma;
947         int err = -EFAULT;
948
949         down_read(&mm->mmap_sem);
950         if (ksm_test_exit(mm))
951                 goto out;
952         vma = find_vma(mm, rmap_item->address);
953         if (!vma || vma->vm_start > rmap_item->address)
954                 goto out;
955
956         err = try_to_merge_one_page(vma, page, kpage);
957         if (err)
958                 goto out;
959
960         /* Must get reference to anon_vma while still holding mmap_sem */
961         hold_anon_vma(rmap_item, vma->anon_vma);
962 out:
963         up_read(&mm->mmap_sem);
964         return err;
965 }
966
967 /*
968  * try_to_merge_two_pages - take two identical pages and prepare them
969  * to be merged into one page.
970  *
971  * This function returns the kpage if we successfully merged two identical
972  * pages into one ksm page, NULL otherwise.
973  *
974  * Note that this function upgrades page to ksm page: if one of the pages
975  * is already a ksm page, try_to_merge_with_ksm_page should be used.
976  */
977 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
978                                            struct page *page,
979                                            struct rmap_item *tree_rmap_item,
980                                            struct page *tree_page)
981 {
982         int err;
983
984         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
985         if (!err) {
986                 err = try_to_merge_with_ksm_page(tree_rmap_item,
987                                                         tree_page, page);
988                 /*
989                  * If that fails, we have a ksm page with only one pte
990                  * pointing to it: so break it.
991                  */
992                 if (err)
993                         break_cow(rmap_item);
994         }
995         return err ? NULL : page;
996 }
997
998 /*
999  * stable_tree_search - search for page inside the stable tree
1000  *
1001  * This function checks if there is a page inside the stable tree
1002  * with identical content to the page that we are scanning right now.
1003  *
1004  * This function returns the stable tree node of identical content if found,
1005  * NULL otherwise.
1006  */
1007 static struct page *stable_tree_search(struct page *page)
1008 {
1009         struct rb_node *node = root_stable_tree.rb_node;
1010         struct stable_node *stable_node;
1011
1012         stable_node = page_stable_node(page);
1013         if (stable_node) {                      /* ksm page forked */
1014                 get_page(page);
1015                 return page;
1016         }
1017
1018         while (node) {
1019                 struct page *tree_page;
1020                 int ret;
1021
1022                 cond_resched();
1023                 stable_node = rb_entry(node, struct stable_node, node);
1024                 tree_page = get_ksm_page(stable_node);
1025                 if (!tree_page)
1026                         return NULL;
1027
1028                 ret = memcmp_pages(page, tree_page);
1029
1030                 if (ret < 0) {
1031                         put_page(tree_page);
1032                         node = node->rb_left;
1033                 } else if (ret > 0) {
1034                         put_page(tree_page);
1035                         node = node->rb_right;
1036                 } else
1037                         return tree_page;
1038         }
1039
1040         return NULL;
1041 }
1042
1043 /*
1044  * stable_tree_insert - insert rmap_item pointing to new ksm page
1045  * into the stable tree.
1046  *
1047  * This function returns the stable tree node just allocated on success,
1048  * NULL otherwise.
1049  */
1050 static struct stable_node *stable_tree_insert(struct page *kpage)
1051 {
1052         struct rb_node **new = &root_stable_tree.rb_node;
1053         struct rb_node *parent = NULL;
1054         struct stable_node *stable_node;
1055
1056         while (*new) {
1057                 struct page *tree_page;
1058                 int ret;
1059
1060                 cond_resched();
1061                 stable_node = rb_entry(*new, struct stable_node, node);
1062                 tree_page = get_ksm_page(stable_node);
1063                 if (!tree_page)
1064                         return NULL;
1065
1066                 ret = memcmp_pages(kpage, tree_page);
1067                 put_page(tree_page);
1068
1069                 parent = *new;
1070                 if (ret < 0)
1071                         new = &parent->rb_left;
1072                 else if (ret > 0)
1073                         new = &parent->rb_right;
1074                 else {
1075                         /*
1076                          * It is not a bug that stable_tree_search() didn't
1077                          * find this node: because at that time our page was
1078                          * not yet write-protected, so may have changed since.
1079                          */
1080                         return NULL;
1081                 }
1082         }
1083
1084         stable_node = alloc_stable_node();
1085         if (!stable_node)
1086                 return NULL;
1087
1088         rb_link_node(&stable_node->node, parent, new);
1089         rb_insert_color(&stable_node->node, &root_stable_tree);
1090
1091         INIT_HLIST_HEAD(&stable_node->hlist);
1092
1093         stable_node->kpfn = page_to_pfn(kpage);
1094         set_page_stable_node(kpage, stable_node);
1095
1096         return stable_node;
1097 }
1098
1099 /*
1100  * unstable_tree_search_insert - search for identical page,
1101  * else insert rmap_item into the unstable tree.
1102  *
1103  * This function searches for a page in the unstable tree identical to the
1104  * page currently being scanned; and if no identical page is found in the
1105  * tree, we insert rmap_item as a new object into the unstable tree.
1106  *
1107  * This function returns pointer to rmap_item found to be identical
1108  * to the currently scanned page, NULL otherwise.
1109  *
1110  * This function does both searching and inserting, because they share
1111  * the same walking algorithm in an rbtree.
1112  */
1113 static
1114 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1115                                               struct page *page,
1116                                               struct page **tree_pagep)
1117
1118 {
1119         struct rb_node **new = &root_unstable_tree.rb_node;
1120         struct rb_node *parent = NULL;
1121
1122         while (*new) {
1123                 struct rmap_item *tree_rmap_item;
1124                 struct page *tree_page;
1125                 int ret;
1126
1127                 cond_resched();
1128                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1129                 tree_page = get_mergeable_page(tree_rmap_item);
1130                 if (IS_ERR_OR_NULL(tree_page))
1131                         return NULL;
1132
1133                 /*
1134                  * Don't substitute a ksm page for a forked page.
1135                  */
1136                 if (page == tree_page) {
1137                         put_page(tree_page);
1138                         return NULL;
1139                 }
1140
1141                 ret = memcmp_pages(page, tree_page);
1142
1143                 parent = *new;
1144                 if (ret < 0) {
1145                         put_page(tree_page);
1146                         new = &parent->rb_left;
1147                 } else if (ret > 0) {
1148                         put_page(tree_page);
1149                         new = &parent->rb_right;
1150                 } else {
1151                         *tree_pagep = tree_page;
1152                         return tree_rmap_item;
1153                 }
1154         }
1155
1156         rmap_item->address |= UNSTABLE_FLAG;
1157         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1158         rb_link_node(&rmap_item->node, parent, new);
1159         rb_insert_color(&rmap_item->node, &root_unstable_tree);
1160
1161         ksm_pages_unshared++;
1162         return NULL;
1163 }
1164
1165 /*
1166  * stable_tree_append - add another rmap_item to the linked list of
1167  * rmap_items hanging off a given node of the stable tree, all sharing
1168  * the same ksm page.
1169  */
1170 static void stable_tree_append(struct rmap_item *rmap_item,
1171                                struct stable_node *stable_node)
1172 {
1173         rmap_item->head = stable_node;
1174         rmap_item->address |= STABLE_FLAG;
1175         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1176
1177         if (rmap_item->hlist.next)
1178                 ksm_pages_sharing++;
1179         else
1180                 ksm_pages_shared++;
1181 }
1182
1183 /*
1184  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1185  * if not, compare checksum to previous and if it's the same, see if page can
1186  * be inserted into the unstable tree, or merged with a page already there and
1187  * both transferred to the stable tree.
1188  *
1189  * @page: the page that we are searching identical page to.
1190  * @rmap_item: the reverse mapping into the virtual address of this page
1191  */
1192 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1193 {
1194         struct rmap_item *tree_rmap_item;
1195         struct page *tree_page = NULL;
1196         struct stable_node *stable_node;
1197         struct page *kpage;
1198         unsigned int checksum;
1199         int err;
1200
1201         remove_rmap_item_from_tree(rmap_item);
1202
1203         /* We first start with searching the page inside the stable tree */
1204         kpage = stable_tree_search(page);
1205         if (kpage) {
1206                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1207                 if (!err) {
1208                         /*
1209                          * The page was successfully merged:
1210                          * add its rmap_item to the stable tree.
1211                          */
1212                         lock_page(kpage);
1213                         stable_tree_append(rmap_item, page_stable_node(kpage));
1214                         unlock_page(kpage);
1215                 }
1216                 put_page(kpage);
1217                 return;
1218         }
1219
1220         /*
1221          * If the hash value of the page has changed from the last time
1222          * we calculated it, this page is changing frequently: therefore we
1223          * don't want to insert it in the unstable tree, and we don't want
1224          * to waste our time searching for something identical to it there.
1225          */
1226         checksum = calc_checksum(page);
1227         if (rmap_item->oldchecksum != checksum) {
1228                 rmap_item->oldchecksum = checksum;
1229                 return;
1230         }
1231
1232         tree_rmap_item =
1233                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1234         if (tree_rmap_item) {
1235                 kpage = try_to_merge_two_pages(rmap_item, page,
1236                                                 tree_rmap_item, tree_page);
1237                 put_page(tree_page);
1238                 /*
1239                  * As soon as we merge this page, we want to remove the
1240                  * rmap_item of the page we have merged with from the unstable
1241                  * tree, and insert it instead as new node in the stable tree.
1242                  */
1243                 if (kpage) {
1244                         remove_rmap_item_from_tree(tree_rmap_item);
1245
1246                         lock_page(kpage);
1247                         stable_node = stable_tree_insert(kpage);
1248                         if (stable_node) {
1249                                 stable_tree_append(tree_rmap_item, stable_node);
1250                                 stable_tree_append(rmap_item, stable_node);
1251                         }
1252                         unlock_page(kpage);
1253
1254                         /*
1255                          * If we fail to insert the page into the stable tree,
1256                          * we will have 2 virtual addresses that are pointing
1257                          * to a ksm page left outside the stable tree,
1258                          * in which case we need to break_cow on both.
1259                          */
1260                         if (!stable_node) {
1261                                 break_cow(tree_rmap_item);
1262                                 break_cow(rmap_item);
1263                         }
1264                 }
1265         }
1266 }
1267
1268 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1269                                             struct rmap_item **rmap_list,
1270                                             unsigned long addr)
1271 {
1272         struct rmap_item *rmap_item;
1273
1274         while (*rmap_list) {
1275                 rmap_item = *rmap_list;
1276                 if ((rmap_item->address & PAGE_MASK) == addr)
1277                         return rmap_item;
1278                 if (rmap_item->address > addr)
1279                         break;
1280                 *rmap_list = rmap_item->rmap_list;
1281                 remove_rmap_item_from_tree(rmap_item);
1282                 free_rmap_item(rmap_item);
1283         }
1284
1285         rmap_item = alloc_rmap_item();
1286         if (rmap_item) {
1287                 /* It has already been zeroed */
1288                 rmap_item->mm = mm_slot->mm;
1289                 rmap_item->address = addr;
1290                 rmap_item->rmap_list = *rmap_list;
1291                 *rmap_list = rmap_item;
1292         }
1293         return rmap_item;
1294 }
1295
1296 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1297 {
1298         struct mm_struct *mm;
1299         struct mm_slot *slot;
1300         struct vm_area_struct *vma;
1301         struct rmap_item *rmap_item;
1302
1303         if (list_empty(&ksm_mm_head.mm_list))
1304                 return NULL;
1305
1306         slot = ksm_scan.mm_slot;
1307         if (slot == &ksm_mm_head) {
1308                 root_unstable_tree = RB_ROOT;
1309
1310                 spin_lock(&ksm_mmlist_lock);
1311                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1312                 ksm_scan.mm_slot = slot;
1313                 spin_unlock(&ksm_mmlist_lock);
1314 next_mm:
1315                 ksm_scan.address = 0;
1316                 ksm_scan.rmap_list = &slot->rmap_list;
1317         }
1318
1319         mm = slot->mm;
1320         down_read(&mm->mmap_sem);
1321         if (ksm_test_exit(mm))
1322                 vma = NULL;
1323         else
1324                 vma = find_vma(mm, ksm_scan.address);
1325
1326         for (; vma; vma = vma->vm_next) {
1327                 if (!(vma->vm_flags & VM_MERGEABLE))
1328                         continue;
1329                 if (ksm_scan.address < vma->vm_start)
1330                         ksm_scan.address = vma->vm_start;
1331                 if (!vma->anon_vma)
1332                         ksm_scan.address = vma->vm_end;
1333
1334                 while (ksm_scan.address < vma->vm_end) {
1335                         if (ksm_test_exit(mm))
1336                                 break;
1337                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1338                         if (IS_ERR_OR_NULL(*page)) {
1339                                 ksm_scan.address += PAGE_SIZE;
1340                                 cond_resched();
1341                                 continue;
1342                         }
1343                         if (PageAnon(*page) ||
1344                             page_trans_compound_anon(*page)) {
1345                                 flush_anon_page(vma, *page, ksm_scan.address);
1346                                 flush_dcache_page(*page);
1347                                 rmap_item = get_next_rmap_item(slot,
1348                                         ksm_scan.rmap_list, ksm_scan.address);
1349                                 if (rmap_item) {
1350                                         ksm_scan.rmap_list =
1351                                                         &rmap_item->rmap_list;
1352                                         ksm_scan.address += PAGE_SIZE;
1353                                 } else
1354                                         put_page(*page);
1355                                 up_read(&mm->mmap_sem);
1356                                 return rmap_item;
1357                         }
1358                         put_page(*page);
1359                         ksm_scan.address += PAGE_SIZE;
1360                         cond_resched();
1361                 }
1362         }
1363
1364         if (ksm_test_exit(mm)) {
1365                 ksm_scan.address = 0;
1366                 ksm_scan.rmap_list = &slot->rmap_list;
1367         }
1368         /*
1369          * Nuke all the rmap_items that are above this current rmap:
1370          * because there were no VM_MERGEABLE vmas with such addresses.
1371          */
1372         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1373
1374         spin_lock(&ksm_mmlist_lock);
1375         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1376                                                 struct mm_slot, mm_list);
1377         if (ksm_scan.address == 0) {
1378                 /*
1379                  * We've completed a full scan of all vmas, holding mmap_sem
1380                  * throughout, and found no VM_MERGEABLE: so do the same as
1381                  * __ksm_exit does to remove this mm from all our lists now.
1382                  * This applies either when cleaning up after __ksm_exit
1383                  * (but beware: we can reach here even before __ksm_exit),
1384                  * or when all VM_MERGEABLE areas have been unmapped (and
1385                  * mmap_sem then protects against race with MADV_MERGEABLE).
1386                  */
1387                 hlist_del(&slot->link);
1388                 list_del(&slot->mm_list);
1389                 spin_unlock(&ksm_mmlist_lock);
1390
1391                 free_mm_slot(slot);
1392                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1393                 up_read(&mm->mmap_sem);
1394                 mmdrop(mm);
1395         } else {
1396                 spin_unlock(&ksm_mmlist_lock);
1397                 up_read(&mm->mmap_sem);
1398         }
1399
1400         /* Repeat until we've completed scanning the whole list */
1401         slot = ksm_scan.mm_slot;
1402         if (slot != &ksm_mm_head)
1403                 goto next_mm;
1404
1405         ksm_scan.seqnr++;
1406         return NULL;
1407 }
1408
1409 /**
1410  * ksm_do_scan  - the ksm scanner main worker function.
1411  * @scan_npages - number of pages we want to scan before we return.
1412  */
1413 static void ksm_do_scan(unsigned int scan_npages)
1414 {
1415         struct rmap_item *rmap_item;
1416         struct page *uninitialized_var(page);
1417
1418         while (scan_npages-- && likely(!freezing(current))) {
1419                 cond_resched();
1420                 rmap_item = scan_get_next_rmap_item(&page);
1421                 if (!rmap_item)
1422                         return;
1423                 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1424                         cmp_and_merge_page(page, rmap_item);
1425                 put_page(page);
1426         }
1427 }
1428
1429 static int ksmd_should_run(void)
1430 {
1431         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1432 }
1433
1434 static int ksm_scan_thread(void *nothing)
1435 {
1436         set_freezable();
1437         set_user_nice(current, 5);
1438
1439         while (!kthread_should_stop()) {
1440                 mutex_lock(&ksm_thread_mutex);
1441                 if (ksmd_should_run())
1442                         ksm_do_scan(ksm_thread_pages_to_scan);
1443                 mutex_unlock(&ksm_thread_mutex);
1444
1445                 try_to_freeze();
1446
1447                 if (ksmd_should_run()) {
1448                         schedule_timeout_interruptible(
1449                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1450                 } else {
1451                         wait_event_freezable(ksm_thread_wait,
1452                                 ksmd_should_run() || kthread_should_stop());
1453                 }
1454         }
1455         return 0;
1456 }
1457
1458 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1459                 unsigned long end, int advice, unsigned long *vm_flags)
1460 {
1461         struct mm_struct *mm = vma->vm_mm;
1462         int err;
1463
1464         switch (advice) {
1465         case MADV_MERGEABLE:
1466                 /*
1467                  * Be somewhat over-protective for now!
1468                  */
1469                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1470                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1471                                  VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1472                                  VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
1473                         return 0;               /* just ignore the advice */
1474
1475                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1476                         err = __ksm_enter(mm);
1477                         if (err)
1478                                 return err;
1479                 }
1480
1481                 *vm_flags |= VM_MERGEABLE;
1482                 break;
1483
1484         case MADV_UNMERGEABLE:
1485                 if (!(*vm_flags & VM_MERGEABLE))
1486                         return 0;               /* just ignore the advice */
1487
1488                 if (vma->anon_vma) {
1489                         err = unmerge_ksm_pages(vma, start, end);
1490                         if (err)
1491                                 return err;
1492                 }
1493
1494                 *vm_flags &= ~VM_MERGEABLE;
1495                 break;
1496         }
1497
1498         return 0;
1499 }
1500
1501 int __ksm_enter(struct mm_struct *mm)
1502 {
1503         struct mm_slot *mm_slot;
1504         int needs_wakeup;
1505
1506         mm_slot = alloc_mm_slot();
1507         if (!mm_slot)
1508                 return -ENOMEM;
1509
1510         /* Check ksm_run too?  Would need tighter locking */
1511         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1512
1513         spin_lock(&ksm_mmlist_lock);
1514         insert_to_mm_slots_hash(mm, mm_slot);
1515         /*
1516          * Insert just behind the scanning cursor, to let the area settle
1517          * down a little; when fork is followed by immediate exec, we don't
1518          * want ksmd to waste time setting up and tearing down an rmap_list.
1519          */
1520         list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1521         spin_unlock(&ksm_mmlist_lock);
1522
1523         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1524         atomic_inc(&mm->mm_count);
1525
1526         if (needs_wakeup)
1527                 wake_up_interruptible(&ksm_thread_wait);
1528
1529         return 0;
1530 }
1531
1532 void __ksm_exit(struct mm_struct *mm)
1533 {
1534         struct mm_slot *mm_slot;
1535         int easy_to_free = 0;
1536
1537         /*
1538          * This process is exiting: if it's straightforward (as is the
1539          * case when ksmd was never running), free mm_slot immediately.
1540          * But if it's at the cursor or has rmap_items linked to it, use
1541          * mmap_sem to synchronize with any break_cows before pagetables
1542          * are freed, and leave the mm_slot on the list for ksmd to free.
1543          * Beware: ksm may already have noticed it exiting and freed the slot.
1544          */
1545
1546         spin_lock(&ksm_mmlist_lock);
1547         mm_slot = get_mm_slot(mm);
1548         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1549                 if (!mm_slot->rmap_list) {
1550                         hlist_del(&mm_slot->link);
1551                         list_del(&mm_slot->mm_list);
1552                         easy_to_free = 1;
1553                 } else {
1554                         list_move(&mm_slot->mm_list,
1555                                   &ksm_scan.mm_slot->mm_list);
1556                 }
1557         }
1558         spin_unlock(&ksm_mmlist_lock);
1559
1560         if (easy_to_free) {
1561                 free_mm_slot(mm_slot);
1562                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1563                 mmdrop(mm);
1564         } else if (mm_slot) {
1565                 down_write(&mm->mmap_sem);
1566                 up_write(&mm->mmap_sem);
1567         }
1568 }
1569
1570 struct page *ksm_does_need_to_copy(struct page *page,
1571                         struct vm_area_struct *vma, unsigned long address)
1572 {
1573         struct page *new_page;
1574
1575         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1576         if (new_page) {
1577                 copy_user_highpage(new_page, page, address, vma);
1578
1579                 SetPageDirty(new_page);
1580                 __SetPageUptodate(new_page);
1581                 SetPageSwapBacked(new_page);
1582                 __set_page_locked(new_page);
1583
1584                 if (page_evictable(new_page, vma))
1585                         lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1586                 else
1587                         add_page_to_unevictable_list(new_page);
1588         }
1589
1590         return new_page;
1591 }
1592
1593 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1594                         unsigned long *vm_flags)
1595 {
1596         struct stable_node *stable_node;
1597         struct rmap_item *rmap_item;
1598         struct hlist_node *hlist;
1599         unsigned int mapcount = page_mapcount(page);
1600         int referenced = 0;
1601         int search_new_forks = 0;
1602
1603         VM_BUG_ON(!PageKsm(page));
1604         VM_BUG_ON(!PageLocked(page));
1605
1606         stable_node = page_stable_node(page);
1607         if (!stable_node)
1608                 return 0;
1609 again:
1610         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1611                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1612                 struct anon_vma_chain *vmac;
1613                 struct vm_area_struct *vma;
1614
1615                 anon_vma_lock(anon_vma);
1616                 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1617                         vma = vmac->vma;
1618                         if (rmap_item->address < vma->vm_start ||
1619                             rmap_item->address >= vma->vm_end)
1620                                 continue;
1621                         /*
1622                          * Initially we examine only the vma which covers this
1623                          * rmap_item; but later, if there is still work to do,
1624                          * we examine covering vmas in other mms: in case they
1625                          * were forked from the original since ksmd passed.
1626                          */
1627                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1628                                 continue;
1629
1630                         if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1631                                 continue;
1632
1633                         referenced += page_referenced_one(page, vma,
1634                                 rmap_item->address, &mapcount, vm_flags);
1635                         if (!search_new_forks || !mapcount)
1636                                 break;
1637                 }
1638                 anon_vma_unlock(anon_vma);
1639                 if (!mapcount)
1640                         goto out;
1641         }
1642         if (!search_new_forks++)
1643                 goto again;
1644 out:
1645         return referenced;
1646 }
1647
1648 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1649 {
1650         struct stable_node *stable_node;
1651         struct hlist_node *hlist;
1652         struct rmap_item *rmap_item;
1653         int ret = SWAP_AGAIN;
1654         int search_new_forks = 0;
1655
1656         VM_BUG_ON(!PageKsm(page));
1657         VM_BUG_ON(!PageLocked(page));
1658
1659         stable_node = page_stable_node(page);
1660         if (!stable_node)
1661                 return SWAP_FAIL;
1662 again:
1663         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1664                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1665                 struct anon_vma_chain *vmac;
1666                 struct vm_area_struct *vma;
1667
1668                 anon_vma_lock(anon_vma);
1669                 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1670                         vma = vmac->vma;
1671                         if (rmap_item->address < vma->vm_start ||
1672                             rmap_item->address >= vma->vm_end)
1673                                 continue;
1674                         /*
1675                          * Initially we examine only the vma which covers this
1676                          * rmap_item; but later, if there is still work to do,
1677                          * we examine covering vmas in other mms: in case they
1678                          * were forked from the original since ksmd passed.
1679                          */
1680                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1681                                 continue;
1682
1683                         ret = try_to_unmap_one(page, vma,
1684                                         rmap_item->address, flags);
1685                         if (ret != SWAP_AGAIN || !page_mapped(page)) {
1686                                 anon_vma_unlock(anon_vma);
1687                                 goto out;
1688                         }
1689                 }
1690                 anon_vma_unlock(anon_vma);
1691         }
1692         if (!search_new_forks++)
1693                 goto again;
1694 out:
1695         return ret;
1696 }
1697
1698 #ifdef CONFIG_MIGRATION
1699 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1700                   struct vm_area_struct *, unsigned long, void *), void *arg)
1701 {
1702         struct stable_node *stable_node;
1703         struct hlist_node *hlist;
1704         struct rmap_item *rmap_item;
1705         int ret = SWAP_AGAIN;
1706         int search_new_forks = 0;
1707
1708         VM_BUG_ON(!PageKsm(page));
1709         VM_BUG_ON(!PageLocked(page));
1710
1711         stable_node = page_stable_node(page);
1712         if (!stable_node)
1713                 return ret;
1714 again:
1715         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1716                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1717                 struct anon_vma_chain *vmac;
1718                 struct vm_area_struct *vma;
1719
1720                 anon_vma_lock(anon_vma);
1721                 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1722                         vma = vmac->vma;
1723                         if (rmap_item->address < vma->vm_start ||
1724                             rmap_item->address >= vma->vm_end)
1725                                 continue;
1726                         /*
1727                          * Initially we examine only the vma which covers this
1728                          * rmap_item; but later, if there is still work to do,
1729                          * we examine covering vmas in other mms: in case they
1730                          * were forked from the original since ksmd passed.
1731                          */
1732                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1733                                 continue;
1734
1735                         ret = rmap_one(page, vma, rmap_item->address, arg);
1736                         if (ret != SWAP_AGAIN) {
1737                                 anon_vma_unlock(anon_vma);
1738                                 goto out;
1739                         }
1740                 }
1741                 anon_vma_unlock(anon_vma);
1742         }
1743         if (!search_new_forks++)
1744                 goto again;
1745 out:
1746         return ret;
1747 }
1748
1749 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1750 {
1751         struct stable_node *stable_node;
1752
1753         VM_BUG_ON(!PageLocked(oldpage));
1754         VM_BUG_ON(!PageLocked(newpage));
1755         VM_BUG_ON(newpage->mapping != oldpage->mapping);
1756
1757         stable_node = page_stable_node(newpage);
1758         if (stable_node) {
1759                 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1760                 stable_node->kpfn = page_to_pfn(newpage);
1761         }
1762 }
1763 #endif /* CONFIG_MIGRATION */
1764
1765 #ifdef CONFIG_MEMORY_HOTREMOVE
1766 static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1767                                                  unsigned long end_pfn)
1768 {
1769         struct rb_node *node;
1770
1771         for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1772                 struct stable_node *stable_node;
1773
1774                 stable_node = rb_entry(node, struct stable_node, node);
1775                 if (stable_node->kpfn >= start_pfn &&
1776                     stable_node->kpfn < end_pfn)
1777                         return stable_node;
1778         }
1779         return NULL;
1780 }
1781
1782 static int ksm_memory_callback(struct notifier_block *self,
1783                                unsigned long action, void *arg)
1784 {
1785         struct memory_notify *mn = arg;
1786         struct stable_node *stable_node;
1787
1788         switch (action) {
1789         case MEM_GOING_OFFLINE:
1790                 /*
1791                  * Keep it very simple for now: just lock out ksmd and
1792                  * MADV_UNMERGEABLE while any memory is going offline.
1793                  * mutex_lock_nested() is necessary because lockdep was alarmed
1794                  * that here we take ksm_thread_mutex inside notifier chain
1795                  * mutex, and later take notifier chain mutex inside
1796                  * ksm_thread_mutex to unlock it.   But that's safe because both
1797                  * are inside mem_hotplug_mutex.
1798                  */
1799                 mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
1800                 break;
1801
1802         case MEM_OFFLINE:
1803                 /*
1804                  * Most of the work is done by page migration; but there might
1805                  * be a few stable_nodes left over, still pointing to struct
1806                  * pages which have been offlined: prune those from the tree.
1807                  */
1808                 while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1809                                         mn->start_pfn + mn->nr_pages)) != NULL)
1810                         remove_node_from_stable_tree(stable_node);
1811                 /* fallthrough */
1812
1813         case MEM_CANCEL_OFFLINE:
1814                 mutex_unlock(&ksm_thread_mutex);
1815                 break;
1816         }
1817         return NOTIFY_OK;
1818 }
1819 #endif /* CONFIG_MEMORY_HOTREMOVE */
1820
1821 #ifdef CONFIG_SYSFS
1822 /*
1823  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1824  */
1825
1826 #define KSM_ATTR_RO(_name) \
1827         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1828 #define KSM_ATTR(_name) \
1829         static struct kobj_attribute _name##_attr = \
1830                 __ATTR(_name, 0644, _name##_show, _name##_store)
1831
1832 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1833                                     struct kobj_attribute *attr, char *buf)
1834 {
1835         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1836 }
1837
1838 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1839                                      struct kobj_attribute *attr,
1840                                      const char *buf, size_t count)
1841 {
1842         unsigned long msecs;
1843         int err;
1844
1845         err = strict_strtoul(buf, 10, &msecs);
1846         if (err || msecs > UINT_MAX)
1847                 return -EINVAL;
1848
1849         ksm_thread_sleep_millisecs = msecs;
1850
1851         return count;
1852 }
1853 KSM_ATTR(sleep_millisecs);
1854
1855 static ssize_t pages_to_scan_show(struct kobject *kobj,
1856                                   struct kobj_attribute *attr, char *buf)
1857 {
1858         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1859 }
1860
1861 static ssize_t pages_to_scan_store(struct kobject *kobj,
1862                                    struct kobj_attribute *attr,
1863                                    const char *buf, size_t count)
1864 {
1865         int err;
1866         unsigned long nr_pages;
1867
1868         err = strict_strtoul(buf, 10, &nr_pages);
1869         if (err || nr_pages > UINT_MAX)
1870                 return -EINVAL;
1871
1872         ksm_thread_pages_to_scan = nr_pages;
1873
1874         return count;
1875 }
1876 KSM_ATTR(pages_to_scan);
1877
1878 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1879                         char *buf)
1880 {
1881         return sprintf(buf, "%u\n", ksm_run);
1882 }
1883
1884 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1885                          const char *buf, size_t count)
1886 {
1887         int err;
1888         unsigned long flags;
1889
1890         err = strict_strtoul(buf, 10, &flags);
1891         if (err || flags > UINT_MAX)
1892                 return -EINVAL;
1893         if (flags > KSM_RUN_UNMERGE)
1894                 return -EINVAL;
1895
1896         /*
1897          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1898          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1899          * breaking COW to free the pages_shared (but leaves mm_slots
1900          * on the list for when ksmd may be set running again).
1901          */
1902
1903         mutex_lock(&ksm_thread_mutex);
1904         if (ksm_run != flags) {
1905                 ksm_run = flags;
1906                 if (flags & KSM_RUN_UNMERGE) {
1907                         current->flags |= PF_OOM_ORIGIN;
1908                         err = unmerge_and_remove_all_rmap_items();
1909                         current->flags &= ~PF_OOM_ORIGIN;
1910                         if (err) {
1911                                 ksm_run = KSM_RUN_STOP;
1912                                 count = err;
1913                         }
1914                 }
1915         }
1916         mutex_unlock(&ksm_thread_mutex);
1917
1918         if (flags & KSM_RUN_MERGE)
1919                 wake_up_interruptible(&ksm_thread_wait);
1920
1921         return count;
1922 }
1923 KSM_ATTR(run);
1924
1925 static ssize_t pages_shared_show(struct kobject *kobj,
1926                                  struct kobj_attribute *attr, char *buf)
1927 {
1928         return sprintf(buf, "%lu\n", ksm_pages_shared);
1929 }
1930 KSM_ATTR_RO(pages_shared);
1931
1932 static ssize_t pages_sharing_show(struct kobject *kobj,
1933                                   struct kobj_attribute *attr, char *buf)
1934 {
1935         return sprintf(buf, "%lu\n", ksm_pages_sharing);
1936 }
1937 KSM_ATTR_RO(pages_sharing);
1938
1939 static ssize_t pages_unshared_show(struct kobject *kobj,
1940                                    struct kobj_attribute *attr, char *buf)
1941 {
1942         return sprintf(buf, "%lu\n", ksm_pages_unshared);
1943 }
1944 KSM_ATTR_RO(pages_unshared);
1945
1946 static ssize_t pages_volatile_show(struct kobject *kobj,
1947                                    struct kobj_attribute *attr, char *buf)
1948 {
1949         long ksm_pages_volatile;
1950
1951         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1952                                 - ksm_pages_sharing - ksm_pages_unshared;
1953         /*
1954          * It was not worth any locking to calculate that statistic,
1955          * but it might therefore sometimes be negative: conceal that.
1956          */
1957         if (ksm_pages_volatile < 0)
1958                 ksm_pages_volatile = 0;
1959         return sprintf(buf, "%ld\n", ksm_pages_volatile);
1960 }
1961 KSM_ATTR_RO(pages_volatile);
1962
1963 static ssize_t full_scans_show(struct kobject *kobj,
1964                                struct kobj_attribute *attr, char *buf)
1965 {
1966         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1967 }
1968 KSM_ATTR_RO(full_scans);
1969
1970 static struct attribute *ksm_attrs[] = {
1971         &sleep_millisecs_attr.attr,
1972         &pages_to_scan_attr.attr,
1973         &run_attr.attr,
1974         &pages_shared_attr.attr,
1975         &pages_sharing_attr.attr,
1976         &pages_unshared_attr.attr,
1977         &pages_volatile_attr.attr,
1978         &full_scans_attr.attr,
1979         NULL,
1980 };
1981
1982 static struct attribute_group ksm_attr_group = {
1983         .attrs = ksm_attrs,
1984         .name = "ksm",
1985 };
1986 #endif /* CONFIG_SYSFS */
1987
1988 static int __init ksm_init(void)
1989 {
1990         struct task_struct *ksm_thread;
1991         int err;
1992
1993         err = ksm_slab_init();
1994         if (err)
1995                 goto out;
1996
1997         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1998         if (IS_ERR(ksm_thread)) {
1999                 printk(KERN_ERR "ksm: creating kthread failed\n");
2000                 err = PTR_ERR(ksm_thread);
2001                 goto out_free;
2002         }
2003
2004 #ifdef CONFIG_SYSFS
2005         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2006         if (err) {
2007                 printk(KERN_ERR "ksm: register sysfs failed\n");
2008                 kthread_stop(ksm_thread);
2009                 goto out_free;
2010         }
2011 #else
2012         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2013
2014 #endif /* CONFIG_SYSFS */
2015
2016 #ifdef CONFIG_MEMORY_HOTREMOVE
2017         /*
2018          * Choose a high priority since the callback takes ksm_thread_mutex:
2019          * later callbacks could only be taking locks which nest within that.
2020          */
2021         hotplug_memory_notifier(ksm_memory_callback, 100);
2022 #endif
2023         return 0;
2024
2025 out_free:
2026         ksm_slab_free();
2027 out:
2028         return err;
2029 }
2030 module_init(ksm_init)