]> git.karo-electronics.de Git - mv-sheeva.git/blob - mm/swap.c
thp: alter compound get_page/put_page
[mv-sheeva.git] / mm / swap.c
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34
35 #include "internal.h"
36
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42
43 /*
44  * This path almost never happens for VM activity - pages are normally
45  * freed via pagevecs.  But it gets used by networking.
46  */
47 static void __page_cache_release(struct page *page)
48 {
49         if (PageLRU(page)) {
50                 unsigned long flags;
51                 struct zone *zone = page_zone(page);
52
53                 spin_lock_irqsave(&zone->lru_lock, flags);
54                 VM_BUG_ON(!PageLRU(page));
55                 __ClearPageLRU(page);
56                 del_page_from_lru(zone, page);
57                 spin_unlock_irqrestore(&zone->lru_lock, flags);
58         }
59 }
60
61 static void __put_single_page(struct page *page)
62 {
63         __page_cache_release(page);
64         free_hot_cold_page(page, 0);
65 }
66
67 static void __put_compound_page(struct page *page)
68 {
69         compound_page_dtor *dtor;
70
71         __page_cache_release(page);
72         dtor = get_compound_page_dtor(page);
73         (*dtor)(page);
74 }
75
76 static void put_compound_page(struct page *page)
77 {
78         if (unlikely(PageTail(page))) {
79                 /* __split_huge_page_refcount can run under us */
80                 struct page *page_head = page->first_page;
81                 smp_rmb();
82                 /*
83                  * If PageTail is still set after smp_rmb() we can be sure
84                  * that the page->first_page we read wasn't a dangling pointer.
85                  * See __split_huge_page_refcount() smp_wmb().
86                  */
87                 if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
88                         unsigned long flags;
89                         /*
90                          * Verify that our page_head wasn't converted
91                          * to a a regular page before we got a
92                          * reference on it.
93                          */
94                         if (unlikely(!PageHead(page_head))) {
95                                 /* PageHead is cleared after PageTail */
96                                 smp_rmb();
97                                 VM_BUG_ON(PageTail(page));
98                                 goto out_put_head;
99                         }
100                         /*
101                          * Only run compound_lock on a valid PageHead,
102                          * after having it pinned with
103                          * get_page_unless_zero() above.
104                          */
105                         smp_mb();
106                         /* page_head wasn't a dangling pointer */
107                         flags = compound_lock_irqsave(page_head);
108                         if (unlikely(!PageTail(page))) {
109                                 /* __split_huge_page_refcount run before us */
110                                 compound_unlock_irqrestore(page_head, flags);
111                                 VM_BUG_ON(PageHead(page_head));
112                         out_put_head:
113                                 if (put_page_testzero(page_head))
114                                         __put_single_page(page_head);
115                         out_put_single:
116                                 if (put_page_testzero(page))
117                                         __put_single_page(page);
118                                 return;
119                         }
120                         VM_BUG_ON(page_head != page->first_page);
121                         /*
122                          * We can release the refcount taken by
123                          * get_page_unless_zero now that
124                          * split_huge_page_refcount is blocked on the
125                          * compound_lock.
126                          */
127                         if (put_page_testzero(page_head))
128                                 VM_BUG_ON(1);
129                         /* __split_huge_page_refcount will wait now */
130                         VM_BUG_ON(atomic_read(&page->_count) <= 0);
131                         atomic_dec(&page->_count);
132                         VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
133                         compound_unlock_irqrestore(page_head, flags);
134                         if (put_page_testzero(page_head))
135                                 __put_compound_page(page_head);
136                 } else {
137                         /* page_head is a dangling pointer */
138                         VM_BUG_ON(PageTail(page));
139                         goto out_put_single;
140                 }
141         } else if (put_page_testzero(page)) {
142                 if (PageHead(page))
143                         __put_compound_page(page);
144                 else
145                         __put_single_page(page);
146         }
147 }
148
149 void put_page(struct page *page)
150 {
151         if (unlikely(PageCompound(page)))
152                 put_compound_page(page);
153         else if (put_page_testzero(page))
154                 __put_single_page(page);
155 }
156 EXPORT_SYMBOL(put_page);
157
158 /**
159  * put_pages_list() - release a list of pages
160  * @pages: list of pages threaded on page->lru
161  *
162  * Release a list of pages which are strung together on page.lru.  Currently
163  * used by read_cache_pages() and related error recovery code.
164  */
165 void put_pages_list(struct list_head *pages)
166 {
167         while (!list_empty(pages)) {
168                 struct page *victim;
169
170                 victim = list_entry(pages->prev, struct page, lru);
171                 list_del(&victim->lru);
172                 page_cache_release(victim);
173         }
174 }
175 EXPORT_SYMBOL(put_pages_list);
176
177 /*
178  * pagevec_move_tail() must be called with IRQ disabled.
179  * Otherwise this may cause nasty races.
180  */
181 static void pagevec_move_tail(struct pagevec *pvec)
182 {
183         int i;
184         int pgmoved = 0;
185         struct zone *zone = NULL;
186
187         for (i = 0; i < pagevec_count(pvec); i++) {
188                 struct page *page = pvec->pages[i];
189                 struct zone *pagezone = page_zone(page);
190
191                 if (pagezone != zone) {
192                         if (zone)
193                                 spin_unlock(&zone->lru_lock);
194                         zone = pagezone;
195                         spin_lock(&zone->lru_lock);
196                 }
197                 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
198                         int lru = page_lru_base_type(page);
199                         list_move_tail(&page->lru, &zone->lru[lru].list);
200                         pgmoved++;
201                 }
202         }
203         if (zone)
204                 spin_unlock(&zone->lru_lock);
205         __count_vm_events(PGROTATED, pgmoved);
206         release_pages(pvec->pages, pvec->nr, pvec->cold);
207         pagevec_reinit(pvec);
208 }
209
210 /*
211  * Writeback is about to end against a page which has been marked for immediate
212  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
213  * inactive list.
214  */
215 void  rotate_reclaimable_page(struct page *page)
216 {
217         if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
218             !PageUnevictable(page) && PageLRU(page)) {
219                 struct pagevec *pvec;
220                 unsigned long flags;
221
222                 page_cache_get(page);
223                 local_irq_save(flags);
224                 pvec = &__get_cpu_var(lru_rotate_pvecs);
225                 if (!pagevec_add(pvec, page))
226                         pagevec_move_tail(pvec);
227                 local_irq_restore(flags);
228         }
229 }
230
231 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
232                                      int file, int rotated)
233 {
234         struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
235         struct zone_reclaim_stat *memcg_reclaim_stat;
236
237         memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
238
239         reclaim_stat->recent_scanned[file]++;
240         if (rotated)
241                 reclaim_stat->recent_rotated[file]++;
242
243         if (!memcg_reclaim_stat)
244                 return;
245
246         memcg_reclaim_stat->recent_scanned[file]++;
247         if (rotated)
248                 memcg_reclaim_stat->recent_rotated[file]++;
249 }
250
251 /*
252  * FIXME: speed this up?
253  */
254 void activate_page(struct page *page)
255 {
256         struct zone *zone = page_zone(page);
257
258         spin_lock_irq(&zone->lru_lock);
259         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
260                 int file = page_is_file_cache(page);
261                 int lru = page_lru_base_type(page);
262                 del_page_from_lru_list(zone, page, lru);
263
264                 SetPageActive(page);
265                 lru += LRU_ACTIVE;
266                 add_page_to_lru_list(zone, page, lru);
267                 __count_vm_event(PGACTIVATE);
268
269                 update_page_reclaim_stat(zone, page, file, 1);
270         }
271         spin_unlock_irq(&zone->lru_lock);
272 }
273
274 /*
275  * Mark a page as having seen activity.
276  *
277  * inactive,unreferenced        ->      inactive,referenced
278  * inactive,referenced          ->      active,unreferenced
279  * active,unreferenced          ->      active,referenced
280  */
281 void mark_page_accessed(struct page *page)
282 {
283         if (!PageActive(page) && !PageUnevictable(page) &&
284                         PageReferenced(page) && PageLRU(page)) {
285                 activate_page(page);
286                 ClearPageReferenced(page);
287         } else if (!PageReferenced(page)) {
288                 SetPageReferenced(page);
289         }
290 }
291
292 EXPORT_SYMBOL(mark_page_accessed);
293
294 void __lru_cache_add(struct page *page, enum lru_list lru)
295 {
296         struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
297
298         page_cache_get(page);
299         if (!pagevec_add(pvec, page))
300                 ____pagevec_lru_add(pvec, lru);
301         put_cpu_var(lru_add_pvecs);
302 }
303 EXPORT_SYMBOL(__lru_cache_add);
304
305 /**
306  * lru_cache_add_lru - add a page to a page list
307  * @page: the page to be added to the LRU.
308  * @lru: the LRU list to which the page is added.
309  */
310 void lru_cache_add_lru(struct page *page, enum lru_list lru)
311 {
312         if (PageActive(page)) {
313                 VM_BUG_ON(PageUnevictable(page));
314                 ClearPageActive(page);
315         } else if (PageUnevictable(page)) {
316                 VM_BUG_ON(PageActive(page));
317                 ClearPageUnevictable(page);
318         }
319
320         VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
321         __lru_cache_add(page, lru);
322 }
323
324 /**
325  * add_page_to_unevictable_list - add a page to the unevictable list
326  * @page:  the page to be added to the unevictable list
327  *
328  * Add page directly to its zone's unevictable list.  To avoid races with
329  * tasks that might be making the page evictable, through eg. munlock,
330  * munmap or exit, while it's not on the lru, we want to add the page
331  * while it's locked or otherwise "invisible" to other tasks.  This is
332  * difficult to do when using the pagevec cache, so bypass that.
333  */
334 void add_page_to_unevictable_list(struct page *page)
335 {
336         struct zone *zone = page_zone(page);
337
338         spin_lock_irq(&zone->lru_lock);
339         SetPageUnevictable(page);
340         SetPageLRU(page);
341         add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
342         spin_unlock_irq(&zone->lru_lock);
343 }
344
345 /*
346  * Drain pages out of the cpu's pagevecs.
347  * Either "cpu" is the current CPU, and preemption has already been
348  * disabled; or "cpu" is being hot-unplugged, and is already dead.
349  */
350 static void drain_cpu_pagevecs(int cpu)
351 {
352         struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
353         struct pagevec *pvec;
354         int lru;
355
356         for_each_lru(lru) {
357                 pvec = &pvecs[lru - LRU_BASE];
358                 if (pagevec_count(pvec))
359                         ____pagevec_lru_add(pvec, lru);
360         }
361
362         pvec = &per_cpu(lru_rotate_pvecs, cpu);
363         if (pagevec_count(pvec)) {
364                 unsigned long flags;
365
366                 /* No harm done if a racing interrupt already did this */
367                 local_irq_save(flags);
368                 pagevec_move_tail(pvec);
369                 local_irq_restore(flags);
370         }
371 }
372
373 void lru_add_drain(void)
374 {
375         drain_cpu_pagevecs(get_cpu());
376         put_cpu();
377 }
378
379 static void lru_add_drain_per_cpu(struct work_struct *dummy)
380 {
381         lru_add_drain();
382 }
383
384 /*
385  * Returns 0 for success
386  */
387 int lru_add_drain_all(void)
388 {
389         return schedule_on_each_cpu(lru_add_drain_per_cpu);
390 }
391
392 /*
393  * Batched page_cache_release().  Decrement the reference count on all the
394  * passed pages.  If it fell to zero then remove the page from the LRU and
395  * free it.
396  *
397  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
398  * for the remainder of the operation.
399  *
400  * The locking in this function is against shrink_inactive_list(): we recheck
401  * the page count inside the lock to see whether shrink_inactive_list()
402  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
403  * will free it.
404  */
405 void release_pages(struct page **pages, int nr, int cold)
406 {
407         int i;
408         struct pagevec pages_to_free;
409         struct zone *zone = NULL;
410         unsigned long uninitialized_var(flags);
411
412         pagevec_init(&pages_to_free, cold);
413         for (i = 0; i < nr; i++) {
414                 struct page *page = pages[i];
415
416                 if (unlikely(PageCompound(page))) {
417                         if (zone) {
418                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
419                                 zone = NULL;
420                         }
421                         put_compound_page(page);
422                         continue;
423                 }
424
425                 if (!put_page_testzero(page))
426                         continue;
427
428                 if (PageLRU(page)) {
429                         struct zone *pagezone = page_zone(page);
430
431                         if (pagezone != zone) {
432                                 if (zone)
433                                         spin_unlock_irqrestore(&zone->lru_lock,
434                                                                         flags);
435                                 zone = pagezone;
436                                 spin_lock_irqsave(&zone->lru_lock, flags);
437                         }
438                         VM_BUG_ON(!PageLRU(page));
439                         __ClearPageLRU(page);
440                         del_page_from_lru(zone, page);
441                 }
442
443                 if (!pagevec_add(&pages_to_free, page)) {
444                         if (zone) {
445                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
446                                 zone = NULL;
447                         }
448                         __pagevec_free(&pages_to_free);
449                         pagevec_reinit(&pages_to_free);
450                 }
451         }
452         if (zone)
453                 spin_unlock_irqrestore(&zone->lru_lock, flags);
454
455         pagevec_free(&pages_to_free);
456 }
457 EXPORT_SYMBOL(release_pages);
458
459 /*
460  * The pages which we're about to release may be in the deferred lru-addition
461  * queues.  That would prevent them from really being freed right now.  That's
462  * OK from a correctness point of view but is inefficient - those pages may be
463  * cache-warm and we want to give them back to the page allocator ASAP.
464  *
465  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
466  * and __pagevec_lru_add_active() call release_pages() directly to avoid
467  * mutual recursion.
468  */
469 void __pagevec_release(struct pagevec *pvec)
470 {
471         lru_add_drain();
472         release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
473         pagevec_reinit(pvec);
474 }
475
476 EXPORT_SYMBOL(__pagevec_release);
477
478 /*
479  * Add the passed pages to the LRU, then drop the caller's refcount
480  * on them.  Reinitialises the caller's pagevec.
481  */
482 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
483 {
484         int i;
485         struct zone *zone = NULL;
486
487         VM_BUG_ON(is_unevictable_lru(lru));
488
489         for (i = 0; i < pagevec_count(pvec); i++) {
490                 struct page *page = pvec->pages[i];
491                 struct zone *pagezone = page_zone(page);
492                 int file;
493                 int active;
494
495                 if (pagezone != zone) {
496                         if (zone)
497                                 spin_unlock_irq(&zone->lru_lock);
498                         zone = pagezone;
499                         spin_lock_irq(&zone->lru_lock);
500                 }
501                 VM_BUG_ON(PageActive(page));
502                 VM_BUG_ON(PageUnevictable(page));
503                 VM_BUG_ON(PageLRU(page));
504                 SetPageLRU(page);
505                 active = is_active_lru(lru);
506                 file = is_file_lru(lru);
507                 if (active)
508                         SetPageActive(page);
509                 update_page_reclaim_stat(zone, page, file, active);
510                 add_page_to_lru_list(zone, page, lru);
511         }
512         if (zone)
513                 spin_unlock_irq(&zone->lru_lock);
514         release_pages(pvec->pages, pvec->nr, pvec->cold);
515         pagevec_reinit(pvec);
516 }
517
518 EXPORT_SYMBOL(____pagevec_lru_add);
519
520 /*
521  * Try to drop buffers from the pages in a pagevec
522  */
523 void pagevec_strip(struct pagevec *pvec)
524 {
525         int i;
526
527         for (i = 0; i < pagevec_count(pvec); i++) {
528                 struct page *page = pvec->pages[i];
529
530                 if (page_has_private(page) && trylock_page(page)) {
531                         if (page_has_private(page))
532                                 try_to_release_page(page, 0);
533                         unlock_page(page);
534                 }
535         }
536 }
537
538 /**
539  * pagevec_lookup - gang pagecache lookup
540  * @pvec:       Where the resulting pages are placed
541  * @mapping:    The address_space to search
542  * @start:      The starting page index
543  * @nr_pages:   The maximum number of pages
544  *
545  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
546  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
547  * reference against the pages in @pvec.
548  *
549  * The search returns a group of mapping-contiguous pages with ascending
550  * indexes.  There may be holes in the indices due to not-present pages.
551  *
552  * pagevec_lookup() returns the number of pages which were found.
553  */
554 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
555                 pgoff_t start, unsigned nr_pages)
556 {
557         pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
558         return pagevec_count(pvec);
559 }
560
561 EXPORT_SYMBOL(pagevec_lookup);
562
563 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
564                 pgoff_t *index, int tag, unsigned nr_pages)
565 {
566         pvec->nr = find_get_pages_tag(mapping, index, tag,
567                                         nr_pages, pvec->pages);
568         return pagevec_count(pvec);
569 }
570
571 EXPORT_SYMBOL(pagevec_lookup_tag);
572
573 /*
574  * Perform any setup for the swap system
575  */
576 void __init swap_setup(void)
577 {
578         unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
579
580 #ifdef CONFIG_SWAP
581         bdi_init(swapper_space.backing_dev_info);
582 #endif
583
584         /* Use a smaller cluster for small-memory machines */
585         if (megs < 16)
586                 page_cluster = 2;
587         else
588                 page_cluster = 3;
589         /*
590          * Right now other parts of the system means that we
591          * _really_ don't want to cluster much more
592          */
593 }