]> git.karo-electronics.de Git - mv-sheeva.git/blob - sound/soc/soc-core.c
Merge branch 'for-2.6.37' into for-2.6.38
[mv-sheeva.git] / sound / soc / soc-core.c
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/jack.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include <sound/soc.h>
40 #include <sound/initval.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/asoc.h>
44
45 #define NAME_SIZE       32
46
47 static DEFINE_MUTEX(pcm_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
49
50 #ifdef CONFIG_DEBUG_FS
51 static struct dentry *debugfs_root;
52 #endif
53
54 static DEFINE_MUTEX(client_mutex);
55 static LIST_HEAD(card_list);
56 static LIST_HEAD(dai_list);
57 static LIST_HEAD(platform_list);
58 static LIST_HEAD(codec_list);
59
60 static int snd_soc_register_card(struct snd_soc_card *card);
61 static int snd_soc_unregister_card(struct snd_soc_card *card);
62 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
63
64 /*
65  * This is a timeout to do a DAPM powerdown after a stream is closed().
66  * It can be used to eliminate pops between different playback streams, e.g.
67  * between two audio tracks.
68  */
69 static int pmdown_time = 5000;
70 module_param(pmdown_time, int, 0);
71 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
72
73 /*
74  * This function forces any delayed work to be queued and run.
75  */
76 static int run_delayed_work(struct delayed_work *dwork)
77 {
78         int ret;
79
80         /* cancel any work waiting to be queued. */
81         ret = cancel_delayed_work(dwork);
82
83         /* if there was any work waiting then we run it now and
84          * wait for it's completion */
85         if (ret) {
86                 schedule_delayed_work(dwork, 0);
87                 flush_scheduled_work();
88         }
89         return ret;
90 }
91
92 /* codec register dump */
93 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
94 {
95         int ret, i, step = 1, count = 0;
96
97         if (!codec->driver->reg_cache_size)
98                 return 0;
99
100         if (codec->driver->reg_cache_step)
101                 step = codec->driver->reg_cache_step;
102
103         count += sprintf(buf, "%s registers\n", codec->name);
104         for (i = 0; i < codec->driver->reg_cache_size; i += step) {
105                 if (codec->driver->readable_register && !codec->driver->readable_register(i))
106                         continue;
107
108                 count += sprintf(buf + count, "%2x: ", i);
109                 if (count >= PAGE_SIZE - 1)
110                         break;
111
112                 if (codec->driver->display_register) {
113                         count += codec->driver->display_register(codec, buf + count,
114                                                          PAGE_SIZE - count, i);
115                 } else {
116                         /* If the read fails it's almost certainly due to
117                          * the register being volatile and the device being
118                          * powered off.
119                          */
120                         ret = snd_soc_read(codec, i);
121                         if (ret >= 0)
122                                 count += snprintf(buf + count,
123                                                   PAGE_SIZE - count,
124                                                   "%4x", ret);
125                         else
126                                 count += snprintf(buf + count,
127                                                   PAGE_SIZE - count,
128                                                   "<no data: %d>", ret);
129                 }
130
131                 if (count >= PAGE_SIZE - 1)
132                         break;
133
134                 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
135                 if (count >= PAGE_SIZE - 1)
136                         break;
137         }
138
139         /* Truncate count; min() would cause a warning */
140         if (count >= PAGE_SIZE)
141                 count = PAGE_SIZE - 1;
142
143         return count;
144 }
145 static ssize_t codec_reg_show(struct device *dev,
146         struct device_attribute *attr, char *buf)
147 {
148         struct snd_soc_pcm_runtime *rtd =
149                         container_of(dev, struct snd_soc_pcm_runtime, dev);
150
151         return soc_codec_reg_show(rtd->codec, buf);
152 }
153
154 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
155
156 static ssize_t pmdown_time_show(struct device *dev,
157                                 struct device_attribute *attr, char *buf)
158 {
159         struct snd_soc_pcm_runtime *rtd =
160                         container_of(dev, struct snd_soc_pcm_runtime, dev);
161
162         return sprintf(buf, "%ld\n", rtd->pmdown_time);
163 }
164
165 static ssize_t pmdown_time_set(struct device *dev,
166                                struct device_attribute *attr,
167                                const char *buf, size_t count)
168 {
169         struct snd_soc_pcm_runtime *rtd =
170                         container_of(dev, struct snd_soc_pcm_runtime, dev);
171         int ret;
172
173         ret = strict_strtol(buf, 10, &rtd->pmdown_time);
174         if (ret)
175                 return ret;
176
177         return count;
178 }
179
180 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
181
182 #ifdef CONFIG_DEBUG_FS
183 static int codec_reg_open_file(struct inode *inode, struct file *file)
184 {
185         file->private_data = inode->i_private;
186         return 0;
187 }
188
189 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
190                                size_t count, loff_t *ppos)
191 {
192         ssize_t ret;
193         struct snd_soc_codec *codec = file->private_data;
194         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
195         if (!buf)
196                 return -ENOMEM;
197         ret = soc_codec_reg_show(codec, buf);
198         if (ret >= 0)
199                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
200         kfree(buf);
201         return ret;
202 }
203
204 static ssize_t codec_reg_write_file(struct file *file,
205                 const char __user *user_buf, size_t count, loff_t *ppos)
206 {
207         char buf[32];
208         int buf_size;
209         char *start = buf;
210         unsigned long reg, value;
211         int step = 1;
212         struct snd_soc_codec *codec = file->private_data;
213
214         buf_size = min(count, (sizeof(buf)-1));
215         if (copy_from_user(buf, user_buf, buf_size))
216                 return -EFAULT;
217         buf[buf_size] = 0;
218
219         if (codec->driver->reg_cache_step)
220                 step = codec->driver->reg_cache_step;
221
222         while (*start == ' ')
223                 start++;
224         reg = simple_strtoul(start, &start, 16);
225         if ((reg >= codec->driver->reg_cache_size) || (reg % step))
226                 return -EINVAL;
227         while (*start == ' ')
228                 start++;
229         if (strict_strtoul(start, 16, &value))
230                 return -EINVAL;
231         snd_soc_write(codec, reg, value);
232         return buf_size;
233 }
234
235 static const struct file_operations codec_reg_fops = {
236         .open = codec_reg_open_file,
237         .read = codec_reg_read_file,
238         .write = codec_reg_write_file,
239         .llseek = default_llseek,
240 };
241
242 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
243 {
244         struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
245
246         codec->debugfs_codec_root = debugfs_create_dir(codec->name,
247                                                        debugfs_card_root);
248         if (!codec->debugfs_codec_root) {
249                 printk(KERN_WARNING
250                        "ASoC: Failed to create codec debugfs directory\n");
251                 return;
252         }
253
254         codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
255                                                  codec->debugfs_codec_root,
256                                                  codec, &codec_reg_fops);
257         if (!codec->debugfs_reg)
258                 printk(KERN_WARNING
259                        "ASoC: Failed to create codec register debugfs file\n");
260
261         codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
262                                                  codec->debugfs_codec_root);
263         if (!codec->dapm.debugfs_dapm)
264                 printk(KERN_WARNING
265                        "Failed to create DAPM debugfs directory\n");
266
267         snd_soc_dapm_debugfs_init(&codec->dapm);
268 }
269
270 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
271 {
272         debugfs_remove_recursive(codec->debugfs_codec_root);
273 }
274
275 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
276                                     size_t count, loff_t *ppos)
277 {
278         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
279         ssize_t len, ret = 0;
280         struct snd_soc_codec *codec;
281
282         if (!buf)
283                 return -ENOMEM;
284
285         list_for_each_entry(codec, &codec_list, list) {
286                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
287                                codec->name);
288                 if (len >= 0)
289                         ret += len;
290                 if (ret > PAGE_SIZE) {
291                         ret = PAGE_SIZE;
292                         break;
293                 }
294         }
295
296         if (ret >= 0)
297                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
298
299         kfree(buf);
300
301         return ret;
302 }
303
304 static const struct file_operations codec_list_fops = {
305         .read = codec_list_read_file,
306         .llseek = default_llseek,/* read accesses f_pos */
307 };
308
309 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
310                                   size_t count, loff_t *ppos)
311 {
312         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
313         ssize_t len, ret = 0;
314         struct snd_soc_dai *dai;
315
316         if (!buf)
317                 return -ENOMEM;
318
319         list_for_each_entry(dai, &dai_list, list) {
320                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
321                 if (len >= 0)
322                         ret += len;
323                 if (ret > PAGE_SIZE) {
324                         ret = PAGE_SIZE;
325                         break;
326                 }
327         }
328
329         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
330
331         kfree(buf);
332
333         return ret;
334 }
335
336 static const struct file_operations dai_list_fops = {
337         .read = dai_list_read_file,
338         .llseek = default_llseek,/* read accesses f_pos */
339 };
340
341 static ssize_t platform_list_read_file(struct file *file,
342                                        char __user *user_buf,
343                                        size_t count, loff_t *ppos)
344 {
345         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
346         ssize_t len, ret = 0;
347         struct snd_soc_platform *platform;
348
349         if (!buf)
350                 return -ENOMEM;
351
352         list_for_each_entry(platform, &platform_list, list) {
353                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
354                                platform->name);
355                 if (len >= 0)
356                         ret += len;
357                 if (ret > PAGE_SIZE) {
358                         ret = PAGE_SIZE;
359                         break;
360                 }
361         }
362
363         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
364
365         kfree(buf);
366
367         return ret;
368 }
369
370 static const struct file_operations platform_list_fops = {
371         .read = platform_list_read_file,
372         .llseek = default_llseek,/* read accesses f_pos */
373 };
374
375 static void soc_init_card_debugfs(struct snd_soc_card *card)
376 {
377         card->debugfs_card_root = debugfs_create_dir(card->name,
378                                                      debugfs_root);
379         if (!card->debugfs_card_root) {
380                 dev_warn(card->dev,
381                          "ASoC: Failed to create codec debugfs directory\n");
382                 return;
383         }
384
385         card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
386                                                     card->debugfs_card_root,
387                                                     &card->pop_time);
388         if (!card->debugfs_pop_time)
389                 dev_warn(card->dev,
390                        "Failed to create pop time debugfs file\n");
391 }
392
393 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
394 {
395         debugfs_remove_recursive(card->debugfs_card_root);
396 }
397
398 #else
399
400 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
401 {
402 }
403
404 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
405 {
406 }
407
408 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
409 {
410 }
411
412 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
413 {
414 }
415 #endif
416
417 #ifdef CONFIG_SND_SOC_AC97_BUS
418 /* unregister ac97 codec */
419 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
420 {
421         if (codec->ac97->dev.bus)
422                 device_unregister(&codec->ac97->dev);
423         return 0;
424 }
425
426 /* stop no dev release warning */
427 static void soc_ac97_device_release(struct device *dev){}
428
429 /* register ac97 codec to bus */
430 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
431 {
432         int err;
433
434         codec->ac97->dev.bus = &ac97_bus_type;
435         codec->ac97->dev.parent = codec->card->dev;
436         codec->ac97->dev.release = soc_ac97_device_release;
437
438         dev_set_name(&codec->ac97->dev, "%d-%d:%s",
439                      codec->card->snd_card->number, 0, codec->name);
440         err = device_register(&codec->ac97->dev);
441         if (err < 0) {
442                 snd_printk(KERN_ERR "Can't register ac97 bus\n");
443                 codec->ac97->dev.bus = NULL;
444                 return err;
445         }
446         return 0;
447 }
448 #endif
449
450 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
451 {
452         struct snd_soc_pcm_runtime *rtd = substream->private_data;
453         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
454         struct snd_soc_dai *codec_dai = rtd->codec_dai;
455         int ret;
456
457         if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
458                         rtd->dai_link->symmetric_rates) {
459                 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
460                                 rtd->rate);
461
462                 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
463                                                    SNDRV_PCM_HW_PARAM_RATE,
464                                                    rtd->rate,
465                                                    rtd->rate);
466                 if (ret < 0) {
467                         dev_err(&rtd->dev,
468                                 "Unable to apply rate symmetry constraint: %d\n", ret);
469                         return ret;
470                 }
471         }
472
473         return 0;
474 }
475
476 /*
477  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
478  * then initialized and any private data can be allocated. This also calls
479  * startup for the cpu DAI, platform, machine and codec DAI.
480  */
481 static int soc_pcm_open(struct snd_pcm_substream *substream)
482 {
483         struct snd_soc_pcm_runtime *rtd = substream->private_data;
484         struct snd_pcm_runtime *runtime = substream->runtime;
485         struct snd_soc_platform *platform = rtd->platform;
486         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
487         struct snd_soc_dai *codec_dai = rtd->codec_dai;
488         struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
489         struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
490         int ret = 0;
491
492         mutex_lock(&pcm_mutex);
493
494         /* startup the audio subsystem */
495         if (cpu_dai->driver->ops->startup) {
496                 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
497                 if (ret < 0) {
498                         printk(KERN_ERR "asoc: can't open interface %s\n",
499                                 cpu_dai->name);
500                         goto out;
501                 }
502         }
503
504         if (platform->driver->ops->open) {
505                 ret = platform->driver->ops->open(substream);
506                 if (ret < 0) {
507                         printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
508                         goto platform_err;
509                 }
510         }
511
512         if (codec_dai->driver->ops->startup) {
513                 ret = codec_dai->driver->ops->startup(substream, codec_dai);
514                 if (ret < 0) {
515                         printk(KERN_ERR "asoc: can't open codec %s\n",
516                                 codec_dai->name);
517                         goto codec_dai_err;
518                 }
519         }
520
521         if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
522                 ret = rtd->dai_link->ops->startup(substream);
523                 if (ret < 0) {
524                         printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
525                         goto machine_err;
526                 }
527         }
528
529         /* Check that the codec and cpu DAIs are compatible */
530         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
531                 runtime->hw.rate_min =
532                         max(codec_dai_drv->playback.rate_min,
533                             cpu_dai_drv->playback.rate_min);
534                 runtime->hw.rate_max =
535                         min(codec_dai_drv->playback.rate_max,
536                             cpu_dai_drv->playback.rate_max);
537                 runtime->hw.channels_min =
538                         max(codec_dai_drv->playback.channels_min,
539                                 cpu_dai_drv->playback.channels_min);
540                 runtime->hw.channels_max =
541                         min(codec_dai_drv->playback.channels_max,
542                                 cpu_dai_drv->playback.channels_max);
543                 runtime->hw.formats =
544                         codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
545                 runtime->hw.rates =
546                         codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
547                 if (codec_dai_drv->playback.rates
548                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
549                         runtime->hw.rates |= cpu_dai_drv->playback.rates;
550                 if (cpu_dai_drv->playback.rates
551                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
552                         runtime->hw.rates |= codec_dai_drv->playback.rates;
553         } else {
554                 runtime->hw.rate_min =
555                         max(codec_dai_drv->capture.rate_min,
556                             cpu_dai_drv->capture.rate_min);
557                 runtime->hw.rate_max =
558                         min(codec_dai_drv->capture.rate_max,
559                             cpu_dai_drv->capture.rate_max);
560                 runtime->hw.channels_min =
561                         max(codec_dai_drv->capture.channels_min,
562                                 cpu_dai_drv->capture.channels_min);
563                 runtime->hw.channels_max =
564                         min(codec_dai_drv->capture.channels_max,
565                                 cpu_dai_drv->capture.channels_max);
566                 runtime->hw.formats =
567                         codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
568                 runtime->hw.rates =
569                         codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
570                 if (codec_dai_drv->capture.rates
571                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
572                         runtime->hw.rates |= cpu_dai_drv->capture.rates;
573                 if (cpu_dai_drv->capture.rates
574                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
575                         runtime->hw.rates |= codec_dai_drv->capture.rates;
576         }
577
578         snd_pcm_limit_hw_rates(runtime);
579         if (!runtime->hw.rates) {
580                 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
581                         codec_dai->name, cpu_dai->name);
582                 goto config_err;
583         }
584         if (!runtime->hw.formats) {
585                 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
586                         codec_dai->name, cpu_dai->name);
587                 goto config_err;
588         }
589         if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
590                 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
591                                 codec_dai->name, cpu_dai->name);
592                 goto config_err;
593         }
594
595         /* Symmetry only applies if we've already got an active stream. */
596         if (cpu_dai->active || codec_dai->active) {
597                 ret = soc_pcm_apply_symmetry(substream);
598                 if (ret != 0)
599                         goto config_err;
600         }
601
602         pr_debug("asoc: %s <-> %s info:\n",
603                         codec_dai->name, cpu_dai->name);
604         pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
605         pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
606                  runtime->hw.channels_max);
607         pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
608                  runtime->hw.rate_max);
609
610         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
611                 cpu_dai->playback_active++;
612                 codec_dai->playback_active++;
613         } else {
614                 cpu_dai->capture_active++;
615                 codec_dai->capture_active++;
616         }
617         cpu_dai->active++;
618         codec_dai->active++;
619         rtd->codec->active++;
620         mutex_unlock(&pcm_mutex);
621         return 0;
622
623 config_err:
624         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
625                 rtd->dai_link->ops->shutdown(substream);
626
627 machine_err:
628         if (codec_dai->driver->ops->shutdown)
629                 codec_dai->driver->ops->shutdown(substream, codec_dai);
630
631 codec_dai_err:
632         if (platform->driver->ops->close)
633                 platform->driver->ops->close(substream);
634
635 platform_err:
636         if (cpu_dai->driver->ops->shutdown)
637                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
638 out:
639         mutex_unlock(&pcm_mutex);
640         return ret;
641 }
642
643 /*
644  * Power down the audio subsystem pmdown_time msecs after close is called.
645  * This is to ensure there are no pops or clicks in between any music tracks
646  * due to DAPM power cycling.
647  */
648 static void close_delayed_work(struct work_struct *work)
649 {
650         struct snd_soc_pcm_runtime *rtd =
651                         container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
652         struct snd_soc_dai *codec_dai = rtd->codec_dai;
653
654         mutex_lock(&pcm_mutex);
655
656         pr_debug("pop wq checking: %s status: %s waiting: %s\n",
657                  codec_dai->driver->playback.stream_name,
658                  codec_dai->playback_active ? "active" : "inactive",
659                  codec_dai->pop_wait ? "yes" : "no");
660
661         /* are we waiting on this codec DAI stream */
662         if (codec_dai->pop_wait == 1) {
663                 codec_dai->pop_wait = 0;
664                 snd_soc_dapm_stream_event(rtd,
665                         codec_dai->driver->playback.stream_name,
666                         SND_SOC_DAPM_STREAM_STOP);
667         }
668
669         mutex_unlock(&pcm_mutex);
670 }
671
672 /*
673  * Called by ALSA when a PCM substream is closed. Private data can be
674  * freed here. The cpu DAI, codec DAI, machine and platform are also
675  * shutdown.
676  */
677 static int soc_codec_close(struct snd_pcm_substream *substream)
678 {
679         struct snd_soc_pcm_runtime *rtd = substream->private_data;
680         struct snd_soc_platform *platform = rtd->platform;
681         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
682         struct snd_soc_dai *codec_dai = rtd->codec_dai;
683         struct snd_soc_codec *codec = rtd->codec;
684
685         mutex_lock(&pcm_mutex);
686
687         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
688                 cpu_dai->playback_active--;
689                 codec_dai->playback_active--;
690         } else {
691                 cpu_dai->capture_active--;
692                 codec_dai->capture_active--;
693         }
694
695         cpu_dai->active--;
696         codec_dai->active--;
697         codec->active--;
698
699         /* Muting the DAC suppresses artifacts caused during digital
700          * shutdown, for example from stopping clocks.
701          */
702         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
703                 snd_soc_dai_digital_mute(codec_dai, 1);
704
705         if (cpu_dai->driver->ops->shutdown)
706                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
707
708         if (codec_dai->driver->ops->shutdown)
709                 codec_dai->driver->ops->shutdown(substream, codec_dai);
710
711         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
712                 rtd->dai_link->ops->shutdown(substream);
713
714         if (platform->driver->ops->close)
715                 platform->driver->ops->close(substream);
716         cpu_dai->runtime = NULL;
717
718         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
719                 /* start delayed pop wq here for playback streams */
720                 codec_dai->pop_wait = 1;
721                 schedule_delayed_work(&rtd->delayed_work,
722                         msecs_to_jiffies(rtd->pmdown_time));
723         } else {
724                 /* capture streams can be powered down now */
725                 snd_soc_dapm_stream_event(rtd,
726                         codec_dai->driver->capture.stream_name,
727                         SND_SOC_DAPM_STREAM_STOP);
728         }
729
730         mutex_unlock(&pcm_mutex);
731         return 0;
732 }
733
734 /*
735  * Called by ALSA when the PCM substream is prepared, can set format, sample
736  * rate, etc.  This function is non atomic and can be called multiple times,
737  * it can refer to the runtime info.
738  */
739 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
740 {
741         struct snd_soc_pcm_runtime *rtd = substream->private_data;
742         struct snd_soc_platform *platform = rtd->platform;
743         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
744         struct snd_soc_dai *codec_dai = rtd->codec_dai;
745         int ret = 0;
746
747         mutex_lock(&pcm_mutex);
748
749         if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
750                 ret = rtd->dai_link->ops->prepare(substream);
751                 if (ret < 0) {
752                         printk(KERN_ERR "asoc: machine prepare error\n");
753                         goto out;
754                 }
755         }
756
757         if (platform->driver->ops->prepare) {
758                 ret = platform->driver->ops->prepare(substream);
759                 if (ret < 0) {
760                         printk(KERN_ERR "asoc: platform prepare error\n");
761                         goto out;
762                 }
763         }
764
765         if (codec_dai->driver->ops->prepare) {
766                 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
767                 if (ret < 0) {
768                         printk(KERN_ERR "asoc: codec DAI prepare error\n");
769                         goto out;
770                 }
771         }
772
773         if (cpu_dai->driver->ops->prepare) {
774                 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
775                 if (ret < 0) {
776                         printk(KERN_ERR "asoc: cpu DAI prepare error\n");
777                         goto out;
778                 }
779         }
780
781         /* cancel any delayed stream shutdown that is pending */
782         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
783             codec_dai->pop_wait) {
784                 codec_dai->pop_wait = 0;
785                 cancel_delayed_work(&rtd->delayed_work);
786         }
787
788         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
789                 snd_soc_dapm_stream_event(rtd,
790                                           codec_dai->driver->playback.stream_name,
791                                           SND_SOC_DAPM_STREAM_START);
792         else
793                 snd_soc_dapm_stream_event(rtd,
794                                           codec_dai->driver->capture.stream_name,
795                                           SND_SOC_DAPM_STREAM_START);
796
797         snd_soc_dai_digital_mute(codec_dai, 0);
798
799 out:
800         mutex_unlock(&pcm_mutex);
801         return ret;
802 }
803
804 /*
805  * Called by ALSA when the hardware params are set by application. This
806  * function can also be called multiple times and can allocate buffers
807  * (using snd_pcm_lib_* ). It's non-atomic.
808  */
809 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
810                                 struct snd_pcm_hw_params *params)
811 {
812         struct snd_soc_pcm_runtime *rtd = substream->private_data;
813         struct snd_soc_platform *platform = rtd->platform;
814         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
815         struct snd_soc_dai *codec_dai = rtd->codec_dai;
816         int ret = 0;
817
818         mutex_lock(&pcm_mutex);
819
820         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
821                 ret = rtd->dai_link->ops->hw_params(substream, params);
822                 if (ret < 0) {
823                         printk(KERN_ERR "asoc: machine hw_params failed\n");
824                         goto out;
825                 }
826         }
827
828         if (codec_dai->driver->ops->hw_params) {
829                 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
830                 if (ret < 0) {
831                         printk(KERN_ERR "asoc: can't set codec %s hw params\n",
832                                 codec_dai->name);
833                         goto codec_err;
834                 }
835         }
836
837         if (cpu_dai->driver->ops->hw_params) {
838                 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
839                 if (ret < 0) {
840                         printk(KERN_ERR "asoc: interface %s hw params failed\n",
841                                 cpu_dai->name);
842                         goto interface_err;
843                 }
844         }
845
846         if (platform->driver->ops->hw_params) {
847                 ret = platform->driver->ops->hw_params(substream, params);
848                 if (ret < 0) {
849                         printk(KERN_ERR "asoc: platform %s hw params failed\n",
850                                 platform->name);
851                         goto platform_err;
852                 }
853         }
854
855         rtd->rate = params_rate(params);
856
857 out:
858         mutex_unlock(&pcm_mutex);
859         return ret;
860
861 platform_err:
862         if (cpu_dai->driver->ops->hw_free)
863                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
864
865 interface_err:
866         if (codec_dai->driver->ops->hw_free)
867                 codec_dai->driver->ops->hw_free(substream, codec_dai);
868
869 codec_err:
870         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
871                 rtd->dai_link->ops->hw_free(substream);
872
873         mutex_unlock(&pcm_mutex);
874         return ret;
875 }
876
877 /*
878  * Frees resources allocated by hw_params, can be called multiple times
879  */
880 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
881 {
882         struct snd_soc_pcm_runtime *rtd = substream->private_data;
883         struct snd_soc_platform *platform = rtd->platform;
884         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
885         struct snd_soc_dai *codec_dai = rtd->codec_dai;
886         struct snd_soc_codec *codec = rtd->codec;
887
888         mutex_lock(&pcm_mutex);
889
890         /* apply codec digital mute */
891         if (!codec->active)
892                 snd_soc_dai_digital_mute(codec_dai, 1);
893
894         /* free any machine hw params */
895         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
896                 rtd->dai_link->ops->hw_free(substream);
897
898         /* free any DMA resources */
899         if (platform->driver->ops->hw_free)
900                 platform->driver->ops->hw_free(substream);
901
902         /* now free hw params for the DAIs  */
903         if (codec_dai->driver->ops->hw_free)
904                 codec_dai->driver->ops->hw_free(substream, codec_dai);
905
906         if (cpu_dai->driver->ops->hw_free)
907                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
908
909         mutex_unlock(&pcm_mutex);
910         return 0;
911 }
912
913 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
914 {
915         struct snd_soc_pcm_runtime *rtd = substream->private_data;
916         struct snd_soc_platform *platform = rtd->platform;
917         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
918         struct snd_soc_dai *codec_dai = rtd->codec_dai;
919         int ret;
920
921         if (codec_dai->driver->ops->trigger) {
922                 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
923                 if (ret < 0)
924                         return ret;
925         }
926
927         if (platform->driver->ops->trigger) {
928                 ret = platform->driver->ops->trigger(substream, cmd);
929                 if (ret < 0)
930                         return ret;
931         }
932
933         if (cpu_dai->driver->ops->trigger) {
934                 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
935                 if (ret < 0)
936                         return ret;
937         }
938         return 0;
939 }
940
941 /*
942  * soc level wrapper for pointer callback
943  * If cpu_dai, codec_dai, platform driver has the delay callback, than
944  * the runtime->delay will be updated accordingly.
945  */
946 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
947 {
948         struct snd_soc_pcm_runtime *rtd = substream->private_data;
949         struct snd_soc_platform *platform = rtd->platform;
950         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
951         struct snd_soc_dai *codec_dai = rtd->codec_dai;
952         struct snd_pcm_runtime *runtime = substream->runtime;
953         snd_pcm_uframes_t offset = 0;
954         snd_pcm_sframes_t delay = 0;
955
956         if (platform->driver->ops->pointer)
957                 offset = platform->driver->ops->pointer(substream);
958
959         if (cpu_dai->driver->ops->delay)
960                 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
961
962         if (codec_dai->driver->ops->delay)
963                 delay += codec_dai->driver->ops->delay(substream, codec_dai);
964
965         if (platform->driver->delay)
966                 delay += platform->driver->delay(substream, codec_dai);
967
968         runtime->delay = delay;
969
970         return offset;
971 }
972
973 /* ASoC PCM operations */
974 static struct snd_pcm_ops soc_pcm_ops = {
975         .open           = soc_pcm_open,
976         .close          = soc_codec_close,
977         .hw_params      = soc_pcm_hw_params,
978         .hw_free        = soc_pcm_hw_free,
979         .prepare        = soc_pcm_prepare,
980         .trigger        = soc_pcm_trigger,
981         .pointer        = soc_pcm_pointer,
982 };
983
984 #ifdef CONFIG_PM
985 /* powers down audio subsystem for suspend */
986 static int soc_suspend(struct device *dev)
987 {
988         struct platform_device *pdev = to_platform_device(dev);
989         struct snd_soc_card *card = platform_get_drvdata(pdev);
990         struct snd_soc_codec *codec;
991         int i;
992
993         /* If the initialization of this soc device failed, there is no codec
994          * associated with it. Just bail out in this case.
995          */
996         if (list_empty(&card->codec_dev_list))
997                 return 0;
998
999         /* Due to the resume being scheduled into a workqueue we could
1000         * suspend before that's finished - wait for it to complete.
1001          */
1002         snd_power_lock(card->snd_card);
1003         snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
1004         snd_power_unlock(card->snd_card);
1005
1006         /* we're going to block userspace touching us until resume completes */
1007         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
1008
1009         /* mute any active DACs */
1010         for (i = 0; i < card->num_rtd; i++) {
1011                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1012                 struct snd_soc_dai_driver *drv = dai->driver;
1013
1014                 if (card->rtd[i].dai_link->ignore_suspend)
1015                         continue;
1016
1017                 if (drv->ops->digital_mute && dai->playback_active)
1018                         drv->ops->digital_mute(dai, 1);
1019         }
1020
1021         /* suspend all pcms */
1022         for (i = 0; i < card->num_rtd; i++) {
1023                 if (card->rtd[i].dai_link->ignore_suspend)
1024                         continue;
1025
1026                 snd_pcm_suspend_all(card->rtd[i].pcm);
1027         }
1028
1029         if (card->suspend_pre)
1030                 card->suspend_pre(pdev, PMSG_SUSPEND);
1031
1032         for (i = 0; i < card->num_rtd; i++) {
1033                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1034                 struct snd_soc_platform *platform = card->rtd[i].platform;
1035
1036                 if (card->rtd[i].dai_link->ignore_suspend)
1037                         continue;
1038
1039                 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1040                         cpu_dai->driver->suspend(cpu_dai);
1041                 if (platform->driver->suspend && !platform->suspended) {
1042                         platform->driver->suspend(cpu_dai);
1043                         platform->suspended = 1;
1044                 }
1045         }
1046
1047         /* close any waiting streams and save state */
1048         for (i = 0; i < card->num_rtd; i++) {
1049                 run_delayed_work(&card->rtd[i].delayed_work);
1050                 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1051         }
1052
1053         for (i = 0; i < card->num_rtd; i++) {
1054                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1055
1056                 if (card->rtd[i].dai_link->ignore_suspend)
1057                         continue;
1058
1059                 if (driver->playback.stream_name != NULL)
1060                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1061                                 SND_SOC_DAPM_STREAM_SUSPEND);
1062
1063                 if (driver->capture.stream_name != NULL)
1064                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1065                                 SND_SOC_DAPM_STREAM_SUSPEND);
1066         }
1067
1068         /* suspend all CODECs */
1069         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1070                 /* If there are paths active then the CODEC will be held with
1071                  * bias _ON and should not be suspended. */
1072                 if (!codec->suspended && codec->driver->suspend) {
1073                         switch (codec->dapm.bias_level) {
1074                         case SND_SOC_BIAS_STANDBY:
1075                         case SND_SOC_BIAS_OFF:
1076                                 codec->driver->suspend(codec, PMSG_SUSPEND);
1077                                 codec->suspended = 1;
1078                                 break;
1079                         default:
1080                                 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1081                                 break;
1082                         }
1083                 }
1084         }
1085
1086         for (i = 0; i < card->num_rtd; i++) {
1087                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1088
1089                 if (card->rtd[i].dai_link->ignore_suspend)
1090                         continue;
1091
1092                 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1093                         cpu_dai->driver->suspend(cpu_dai);
1094         }
1095
1096         if (card->suspend_post)
1097                 card->suspend_post(pdev, PMSG_SUSPEND);
1098
1099         return 0;
1100 }
1101
1102 /* deferred resume work, so resume can complete before we finished
1103  * setting our codec back up, which can be very slow on I2C
1104  */
1105 static void soc_resume_deferred(struct work_struct *work)
1106 {
1107         struct snd_soc_card *card =
1108                         container_of(work, struct snd_soc_card, deferred_resume_work);
1109         struct platform_device *pdev = to_platform_device(card->dev);
1110         struct snd_soc_codec *codec;
1111         int i;
1112
1113         /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1114          * so userspace apps are blocked from touching us
1115          */
1116
1117         dev_dbg(card->dev, "starting resume work\n");
1118
1119         /* Bring us up into D2 so that DAPM starts enabling things */
1120         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1121
1122         if (card->resume_pre)
1123                 card->resume_pre(pdev);
1124
1125         /* resume AC97 DAIs */
1126         for (i = 0; i < card->num_rtd; i++) {
1127                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1128
1129                 if (card->rtd[i].dai_link->ignore_suspend)
1130                         continue;
1131
1132                 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1133                         cpu_dai->driver->resume(cpu_dai);
1134         }
1135
1136         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1137                 /* If the CODEC was idle over suspend then it will have been
1138                  * left with bias OFF or STANDBY and suspended so we must now
1139                  * resume.  Otherwise the suspend was suppressed.
1140                  */
1141                 if (codec->driver->resume && codec->suspended) {
1142                         switch (codec->dapm.bias_level) {
1143                         case SND_SOC_BIAS_STANDBY:
1144                         case SND_SOC_BIAS_OFF:
1145                                 codec->driver->resume(codec);
1146                                 codec->suspended = 0;
1147                                 break;
1148                         default:
1149                                 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1150                                 break;
1151                         }
1152                 }
1153         }
1154
1155         for (i = 0; i < card->num_rtd; i++) {
1156                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1157
1158                 if (card->rtd[i].dai_link->ignore_suspend)
1159                         continue;
1160
1161                 if (driver->playback.stream_name != NULL)
1162                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1163                                 SND_SOC_DAPM_STREAM_RESUME);
1164
1165                 if (driver->capture.stream_name != NULL)
1166                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1167                                 SND_SOC_DAPM_STREAM_RESUME);
1168         }
1169
1170         /* unmute any active DACs */
1171         for (i = 0; i < card->num_rtd; i++) {
1172                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1173                 struct snd_soc_dai_driver *drv = dai->driver;
1174
1175                 if (card->rtd[i].dai_link->ignore_suspend)
1176                         continue;
1177
1178                 if (drv->ops->digital_mute && dai->playback_active)
1179                         drv->ops->digital_mute(dai, 0);
1180         }
1181
1182         for (i = 0; i < card->num_rtd; i++) {
1183                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1184                 struct snd_soc_platform *platform = card->rtd[i].platform;
1185
1186                 if (card->rtd[i].dai_link->ignore_suspend)
1187                         continue;
1188
1189                 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1190                         cpu_dai->driver->resume(cpu_dai);
1191                 if (platform->driver->resume && platform->suspended) {
1192                         platform->driver->resume(cpu_dai);
1193                         platform->suspended = 0;
1194                 }
1195         }
1196
1197         if (card->resume_post)
1198                 card->resume_post(pdev);
1199
1200         dev_dbg(card->dev, "resume work completed\n");
1201
1202         /* userspace can access us now we are back as we were before */
1203         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1204 }
1205
1206 /* powers up audio subsystem after a suspend */
1207 static int soc_resume(struct device *dev)
1208 {
1209         struct platform_device *pdev = to_platform_device(dev);
1210         struct snd_soc_card *card = platform_get_drvdata(pdev);
1211         int i;
1212
1213         /* AC97 devices might have other drivers hanging off them so
1214          * need to resume immediately.  Other drivers don't have that
1215          * problem and may take a substantial amount of time to resume
1216          * due to I/O costs and anti-pop so handle them out of line.
1217          */
1218         for (i = 0; i < card->num_rtd; i++) {
1219                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1220                 if (cpu_dai->driver->ac97_control) {
1221                         dev_dbg(dev, "Resuming AC97 immediately\n");
1222                         soc_resume_deferred(&card->deferred_resume_work);
1223                 } else {
1224                         dev_dbg(dev, "Scheduling resume work\n");
1225                         if (!schedule_work(&card->deferred_resume_work))
1226                                 dev_err(dev, "resume work item may be lost\n");
1227                 }
1228         }
1229
1230         return 0;
1231 }
1232 #else
1233 #define soc_suspend     NULL
1234 #define soc_resume      NULL
1235 #endif
1236
1237 static struct snd_soc_dai_ops null_dai_ops = {
1238 };
1239
1240 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1241 {
1242         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1243         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1244         struct snd_soc_codec *codec;
1245         struct snd_soc_platform *platform;
1246         struct snd_soc_dai *codec_dai, *cpu_dai;
1247
1248         if (rtd->complete)
1249                 return 1;
1250         dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1251
1252         /* do we already have the CPU DAI for this link ? */
1253         if (rtd->cpu_dai) {
1254                 goto find_codec;
1255         }
1256         /* no, then find CPU DAI from registered DAIs*/
1257         list_for_each_entry(cpu_dai, &dai_list, list) {
1258                 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1259
1260                         if (!try_module_get(cpu_dai->dev->driver->owner))
1261                                 return -ENODEV;
1262
1263                         rtd->cpu_dai = cpu_dai;
1264                         goto find_codec;
1265                 }
1266         }
1267         dev_dbg(card->dev, "CPU DAI %s not registered\n",
1268                         dai_link->cpu_dai_name);
1269
1270 find_codec:
1271         /* do we already have the CODEC for this link ? */
1272         if (rtd->codec) {
1273                 goto find_platform;
1274         }
1275
1276         /* no, then find CODEC from registered CODECs*/
1277         list_for_each_entry(codec, &codec_list, list) {
1278                 if (!strcmp(codec->name, dai_link->codec_name)) {
1279                         rtd->codec = codec;
1280
1281                         if (!try_module_get(codec->dev->driver->owner))
1282                                 return -ENODEV;
1283
1284                         /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1285                         list_for_each_entry(codec_dai, &dai_list, list) {
1286                                 if (codec->dev == codec_dai->dev &&
1287                                                 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1288                                         rtd->codec_dai = codec_dai;
1289                                         goto find_platform;
1290                                 }
1291                         }
1292                         dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1293                                         dai_link->codec_dai_name);
1294
1295                         goto find_platform;
1296                 }
1297         }
1298         dev_dbg(card->dev, "CODEC %s not registered\n",
1299                         dai_link->codec_name);
1300
1301 find_platform:
1302         /* do we already have the CODEC DAI for this link ? */
1303         if (rtd->platform) {
1304                 goto out;
1305         }
1306         /* no, then find CPU DAI from registered DAIs*/
1307         list_for_each_entry(platform, &platform_list, list) {
1308                 if (!strcmp(platform->name, dai_link->platform_name)) {
1309
1310                         if (!try_module_get(platform->dev->driver->owner))
1311                                 return -ENODEV;
1312
1313                         rtd->platform = platform;
1314                         goto out;
1315                 }
1316         }
1317
1318         dev_dbg(card->dev, "platform %s not registered\n",
1319                         dai_link->platform_name);
1320         return 0;
1321
1322 out:
1323         /* mark rtd as complete if we found all 4 of our client devices */
1324         if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1325                 rtd->complete = 1;
1326                 card->num_rtd++;
1327         }
1328         return 1;
1329 }
1330
1331 static void soc_remove_codec(struct snd_soc_codec *codec)
1332 {
1333         int err;
1334
1335         if (codec->driver->remove) {
1336                 err = codec->driver->remove(codec);
1337                 if (err < 0)
1338                         dev_err(codec->dev,
1339                                 "asoc: failed to remove %s: %d\n",
1340                                 codec->name, err);
1341         }
1342
1343         /* Make sure all DAPM widgets are freed */
1344         snd_soc_dapm_free(&codec->dapm);
1345
1346         soc_cleanup_codec_debugfs(codec);
1347         codec->probed = 0;
1348         list_del(&codec->card_list);
1349         module_put(codec->dev->driver->owner);
1350 }
1351
1352 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1353 {
1354         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1355         struct snd_soc_codec *codec = rtd->codec;
1356         struct snd_soc_platform *platform = rtd->platform;
1357         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1358         int err;
1359
1360         /* unregister the rtd device */
1361         if (rtd->dev_registered) {
1362                 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1363                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1364                 device_unregister(&rtd->dev);
1365                 rtd->dev_registered = 0;
1366         }
1367
1368         /* remove the CODEC DAI */
1369         if (codec_dai && codec_dai->probed) {
1370                 if (codec_dai->driver->remove) {
1371                         err = codec_dai->driver->remove(codec_dai);
1372                         if (err < 0)
1373                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1374                 }
1375                 codec_dai->probed = 0;
1376                 list_del(&codec_dai->card_list);
1377         }
1378
1379         /* remove the platform */
1380         if (platform && platform->probed) {
1381                 if (platform->driver->remove) {
1382                         err = platform->driver->remove(platform);
1383                         if (err < 0)
1384                                 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1385                 }
1386                 platform->probed = 0;
1387                 list_del(&platform->card_list);
1388                 module_put(platform->dev->driver->owner);
1389         }
1390
1391         /* remove the CODEC */
1392         if (codec && codec->probed)
1393                 soc_remove_codec(codec);
1394
1395         /* remove the cpu_dai */
1396         if (cpu_dai && cpu_dai->probed) {
1397                 if (cpu_dai->driver->remove) {
1398                         err = cpu_dai->driver->remove(cpu_dai);
1399                         if (err < 0)
1400                                 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1401                 }
1402                 cpu_dai->probed = 0;
1403                 list_del(&cpu_dai->card_list);
1404                 module_put(cpu_dai->dev->driver->owner);
1405         }
1406 }
1407
1408 static void soc_set_name_prefix(struct snd_soc_card *card,
1409                                 struct snd_soc_codec *codec)
1410 {
1411         int i;
1412
1413         if (card->codec_conf == NULL)
1414                 return;
1415
1416         for (i = 0; i < card->num_configs; i++) {
1417                 struct snd_soc_codec_conf *map = &card->codec_conf[i];
1418                 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1419                         codec->name_prefix = map->name_prefix;
1420                         break;
1421                 }
1422         }
1423 }
1424
1425 static int soc_probe_codec(struct snd_soc_card *card,
1426                            struct snd_soc_codec *codec)
1427 {
1428         int ret = 0;
1429
1430         codec->card = card;
1431         codec->dapm.card = card;
1432         soc_set_name_prefix(card, codec);
1433
1434         if (codec->driver->probe) {
1435                 ret = codec->driver->probe(codec);
1436                 if (ret < 0) {
1437                         dev_err(codec->dev,
1438                                 "asoc: failed to probe CODEC %s: %d\n",
1439                                 codec->name, ret);
1440                         return ret;
1441                 }
1442         }
1443
1444         soc_init_codec_debugfs(codec);
1445
1446         /* mark codec as probed and add to card codec list */
1447         codec->probed = 1;
1448         list_add(&codec->card_list, &card->codec_dev_list);
1449
1450         return ret;
1451 }
1452
1453 static void rtd_release(struct device *dev) {}
1454
1455 static int soc_post_component_init(struct snd_soc_card *card,
1456                                    struct snd_soc_codec *codec,
1457                                    int num, int dailess)
1458 {
1459         struct snd_soc_dai_link *dai_link = NULL;
1460         struct snd_soc_aux_dev *aux_dev = NULL;
1461         struct snd_soc_pcm_runtime *rtd;
1462         const char *temp, *name;
1463         int ret = 0;
1464
1465         if (!dailess) {
1466                 dai_link = &card->dai_link[num];
1467                 rtd = &card->rtd[num];
1468                 name = dai_link->name;
1469         } else {
1470                 aux_dev = &card->aux_dev[num];
1471                 rtd = &card->rtd_aux[num];
1472                 name = aux_dev->name;
1473         }
1474
1475         /* machine controls, routes and widgets are not prefixed */
1476         temp = codec->name_prefix;
1477         codec->name_prefix = NULL;
1478
1479         /* do machine specific initialization */
1480         if (!dailess && dai_link->init)
1481                 ret = dai_link->init(rtd);
1482         else if (dailess && aux_dev->init)
1483                 ret = aux_dev->init(&codec->dapm);
1484         if (ret < 0) {
1485                 dev_err(card->dev, "asoc: failed to init %s: %d\n", name, ret);
1486                 return ret;
1487         }
1488         codec->name_prefix = temp;
1489
1490         /* Make sure all DAPM widgets are instantiated */
1491         snd_soc_dapm_new_widgets(&codec->dapm);
1492         snd_soc_dapm_sync(&codec->dapm);
1493
1494         /* register the rtd device */
1495         rtd->codec = codec;
1496         rtd->card = card;
1497         rtd->dev.parent = card->dev;
1498         rtd->dev.release = rtd_release;
1499         rtd->dev.init_name = name;
1500         ret = device_register(&rtd->dev);
1501         if (ret < 0) {
1502                 dev_err(card->dev,
1503                         "asoc: failed to register runtime device: %d\n", ret);
1504                 return ret;
1505         }
1506         rtd->dev_registered = 1;
1507
1508         /* add DAPM sysfs entries for this codec */
1509         ret = snd_soc_dapm_sys_add(&rtd->dev);
1510         if (ret < 0)
1511                 dev_err(codec->dev,
1512                         "asoc: failed to add codec dapm sysfs entries: %d\n",
1513                         ret);
1514
1515         /* add codec sysfs entries */
1516         ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1517         if (ret < 0)
1518                 dev_err(codec->dev,
1519                         "asoc: failed to add codec sysfs files: %d\n", ret);
1520
1521         return 0;
1522 }
1523
1524 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1525 {
1526         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1527         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1528         struct snd_soc_codec *codec = rtd->codec;
1529         struct snd_soc_platform *platform = rtd->platform;
1530         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1531         int ret;
1532
1533         dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1534
1535         /* config components */
1536         codec_dai->codec = codec;
1537         cpu_dai->platform = platform;
1538         codec_dai->card = card;
1539         cpu_dai->card = card;
1540
1541         /* set default power off timeout */
1542         rtd->pmdown_time = pmdown_time;
1543
1544         /* probe the cpu_dai */
1545         if (!cpu_dai->probed) {
1546                 if (cpu_dai->driver->probe) {
1547                         ret = cpu_dai->driver->probe(cpu_dai);
1548                         if (ret < 0) {
1549                                 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1550                                                 cpu_dai->name);
1551                                 return ret;
1552                         }
1553                 }
1554                 cpu_dai->probed = 1;
1555                 /* mark cpu_dai as probed and add to card cpu_dai list */
1556                 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1557         }
1558
1559         /* probe the CODEC */
1560         if (!codec->probed) {
1561                 ret = soc_probe_codec(card, codec);
1562                 if (ret < 0)
1563                         return ret;
1564         }
1565
1566         /* probe the platform */
1567         if (!platform->probed) {
1568                 if (platform->driver->probe) {
1569                         ret = platform->driver->probe(platform);
1570                         if (ret < 0) {
1571                                 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1572                                                 platform->name);
1573                                 return ret;
1574                         }
1575                 }
1576                 /* mark platform as probed and add to card platform list */
1577                 platform->probed = 1;
1578                 list_add(&platform->card_list, &card->platform_dev_list);
1579         }
1580
1581         /* probe the CODEC DAI */
1582         if (!codec_dai->probed) {
1583                 if (codec_dai->driver->probe) {
1584                         ret = codec_dai->driver->probe(codec_dai);
1585                         if (ret < 0) {
1586                                 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1587                                                 codec_dai->name);
1588                                 return ret;
1589                         }
1590                 }
1591
1592                 /* mark cpu_dai as probed and add to card cpu_dai list */
1593                 codec_dai->probed = 1;
1594                 list_add(&codec_dai->card_list, &card->dai_dev_list);
1595         }
1596
1597         /* DAPM dai link stream work */
1598         INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1599
1600         ret = soc_post_component_init(card, codec, num, 0);
1601         if (ret)
1602                 return ret;
1603
1604         ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1605         if (ret < 0)
1606                 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1607
1608         /* create the pcm */
1609         ret = soc_new_pcm(rtd, num);
1610         if (ret < 0) {
1611                 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1612                 return ret;
1613         }
1614
1615         /* add platform data for AC97 devices */
1616         if (rtd->codec_dai->driver->ac97_control)
1617                 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1618
1619         return 0;
1620 }
1621
1622 #ifdef CONFIG_SND_SOC_AC97_BUS
1623 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1624 {
1625         int ret;
1626
1627         /* Only instantiate AC97 if not already done by the adaptor
1628          * for the generic AC97 subsystem.
1629          */
1630         if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1631                 /*
1632                  * It is possible that the AC97 device is already registered to
1633                  * the device subsystem. This happens when the device is created
1634                  * via snd_ac97_mixer(). Currently only SoC codec that does so
1635                  * is the generic AC97 glue but others migh emerge.
1636                  *
1637                  * In those cases we don't try to register the device again.
1638                  */
1639                 if (!rtd->codec->ac97_created)
1640                         return 0;
1641
1642                 ret = soc_ac97_dev_register(rtd->codec);
1643                 if (ret < 0) {
1644                         printk(KERN_ERR "asoc: AC97 device register failed\n");
1645                         return ret;
1646                 }
1647
1648                 rtd->codec->ac97_registered = 1;
1649         }
1650         return 0;
1651 }
1652
1653 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1654 {
1655         if (codec->ac97_registered) {
1656                 soc_ac97_dev_unregister(codec);
1657                 codec->ac97_registered = 0;
1658         }
1659 }
1660 #endif
1661
1662 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1663 {
1664         struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1665         struct snd_soc_codec *codec;
1666         int ret = -ENODEV;
1667
1668         /* find CODEC from registered CODECs*/
1669         list_for_each_entry(codec, &codec_list, list) {
1670                 if (!strcmp(codec->name, aux_dev->codec_name)) {
1671                         if (codec->probed) {
1672                                 dev_err(codec->dev,
1673                                         "asoc: codec already probed");
1674                                 ret = -EBUSY;
1675                                 goto out;
1676                         }
1677                         goto found;
1678                 }
1679         }
1680         /* codec not found */
1681         dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name);
1682         goto out;
1683
1684 found:
1685         if (!try_module_get(codec->dev->driver->owner))
1686                 return -ENODEV;
1687
1688         ret = soc_probe_codec(card, codec);
1689         if (ret < 0)
1690                 return ret;
1691
1692         ret = soc_post_component_init(card, codec, num, 1);
1693
1694 out:
1695         return ret;
1696 }
1697
1698 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1699 {
1700         struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1701         struct snd_soc_codec *codec = rtd->codec;
1702
1703         /* unregister the rtd device */
1704         if (rtd->dev_registered) {
1705                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1706                 device_unregister(&rtd->dev);
1707                 rtd->dev_registered = 0;
1708         }
1709
1710         if (codec && codec->probed)
1711                 soc_remove_codec(codec);
1712 }
1713
1714 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec,
1715                                     enum snd_soc_compress_type compress_type)
1716 {
1717         int ret;
1718
1719         if (codec->cache_init)
1720                 return 0;
1721
1722         /* override the compress_type if necessary */
1723         if (compress_type && codec->compress_type != compress_type)
1724                 codec->compress_type = compress_type;
1725         ret = snd_soc_cache_init(codec);
1726         if (ret < 0) {
1727                 dev_err(codec->dev, "Failed to set cache compression type: %d\n",
1728                         ret);
1729                 return ret;
1730         }
1731         codec->cache_init = 1;
1732         return 0;
1733 }
1734
1735 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1736 {
1737         struct platform_device *pdev = to_platform_device(card->dev);
1738         struct snd_soc_codec *codec;
1739         struct snd_soc_codec_conf *codec_conf;
1740         enum snd_soc_compress_type compress_type;
1741         int ret, i;
1742
1743         mutex_lock(&card->mutex);
1744
1745         if (card->instantiated) {
1746                 mutex_unlock(&card->mutex);
1747                 return;
1748         }
1749
1750         /* bind DAIs */
1751         for (i = 0; i < card->num_links; i++)
1752                 soc_bind_dai_link(card, i);
1753
1754         /* bind completed ? */
1755         if (card->num_rtd != card->num_links) {
1756                 mutex_unlock(&card->mutex);
1757                 return;
1758         }
1759
1760         /* initialize the register cache for each available codec */
1761         list_for_each_entry(codec, &codec_list, list) {
1762                 if (codec->cache_init)
1763                         continue;
1764                 /* check to see if we need to override the compress_type */
1765                 for (i = 0; i < card->num_configs; ++i) {
1766                         codec_conf = &card->codec_conf[i];
1767                         if (!strcmp(codec->name, codec_conf->dev_name)) {
1768                                 compress_type = codec_conf->compress_type;
1769                                 if (compress_type && compress_type
1770                                     != codec->compress_type)
1771                                         break;
1772                         }
1773                 }
1774                 if (i == card->num_configs) {
1775                         /* no need to override the compress_type so
1776                          * go ahead and do the standard thing */
1777                         ret = snd_soc_init_codec_cache(codec, 0);
1778                         if (ret < 0) {
1779                                 mutex_unlock(&card->mutex);
1780                                 return;
1781                         }
1782                         continue;
1783                 }
1784                 /* override the compress_type with the one supplied in
1785                  * the machine driver */
1786                 ret = snd_soc_init_codec_cache(codec, compress_type);
1787                 if (ret < 0) {
1788                         mutex_unlock(&card->mutex);
1789                         return;
1790                 }
1791         }
1792
1793         /* card bind complete so register a sound card */
1794         ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1795                         card->owner, 0, &card->snd_card);
1796         if (ret < 0) {
1797                 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1798                         card->name);
1799                 mutex_unlock(&card->mutex);
1800                 return;
1801         }
1802         card->snd_card->dev = card->dev;
1803
1804 #ifdef CONFIG_PM
1805         /* deferred resume work */
1806         INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1807 #endif
1808
1809         /* initialise the sound card only once */
1810         if (card->probe) {
1811                 ret = card->probe(pdev);
1812                 if (ret < 0)
1813                         goto card_probe_error;
1814         }
1815
1816         for (i = 0; i < card->num_links; i++) {
1817                 ret = soc_probe_dai_link(card, i);
1818                 if (ret < 0) {
1819                         pr_err("asoc: failed to instantiate card %s: %d\n",
1820                                card->name, ret);
1821                         goto probe_dai_err;
1822                 }
1823         }
1824
1825         for (i = 0; i < card->num_aux_devs; i++) {
1826                 ret = soc_probe_aux_dev(card, i);
1827                 if (ret < 0) {
1828                         pr_err("asoc: failed to add auxiliary devices %s: %d\n",
1829                                card->name, ret);
1830                         goto probe_aux_dev_err;
1831                 }
1832         }
1833
1834         snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1835                  "%s",  card->name);
1836         snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1837                  "%s", card->name);
1838
1839         ret = snd_card_register(card->snd_card);
1840         if (ret < 0) {
1841                 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1842                 goto probe_aux_dev_err;
1843         }
1844
1845 #ifdef CONFIG_SND_SOC_AC97_BUS
1846         /* register any AC97 codecs */
1847         for (i = 0; i < card->num_rtd; i++) {
1848                 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1849                 if (ret < 0) {
1850                         printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1851                         while (--i >= 0)
1852                                 soc_unregister_ac97_dai_link(&card->rtd[i]);
1853                         goto probe_aux_dev_err;
1854                 }
1855         }
1856 #endif
1857
1858         card->instantiated = 1;
1859         mutex_unlock(&card->mutex);
1860         return;
1861
1862 probe_aux_dev_err:
1863         for (i = 0; i < card->num_aux_devs; i++)
1864                 soc_remove_aux_dev(card, i);
1865
1866 probe_dai_err:
1867         for (i = 0; i < card->num_links; i++)
1868                 soc_remove_dai_link(card, i);
1869
1870 card_probe_error:
1871         if (card->remove)
1872                 card->remove(pdev);
1873
1874         snd_card_free(card->snd_card);
1875
1876         mutex_unlock(&card->mutex);
1877 }
1878
1879 /*
1880  * Attempt to initialise any uninitialised cards.  Must be called with
1881  * client_mutex.
1882  */
1883 static void snd_soc_instantiate_cards(void)
1884 {
1885         struct snd_soc_card *card;
1886         list_for_each_entry(card, &card_list, list)
1887                 snd_soc_instantiate_card(card);
1888 }
1889
1890 /* probes a new socdev */
1891 static int soc_probe(struct platform_device *pdev)
1892 {
1893         struct snd_soc_card *card = platform_get_drvdata(pdev);
1894         int ret = 0;
1895
1896         /* Bodge while we unpick instantiation */
1897         card->dev = &pdev->dev;
1898         INIT_LIST_HEAD(&card->dai_dev_list);
1899         INIT_LIST_HEAD(&card->codec_dev_list);
1900         INIT_LIST_HEAD(&card->platform_dev_list);
1901
1902         soc_init_card_debugfs(card);
1903
1904         ret = snd_soc_register_card(card);
1905         if (ret != 0) {
1906                 dev_err(&pdev->dev, "Failed to register card\n");
1907                 return ret;
1908         }
1909
1910         return 0;
1911 }
1912
1913 /* removes a socdev */
1914 static int soc_remove(struct platform_device *pdev)
1915 {
1916         struct snd_soc_card *card = platform_get_drvdata(pdev);
1917         int i;
1918
1919                 if (card->instantiated) {
1920
1921                 /* make sure any delayed work runs */
1922                 for (i = 0; i < card->num_rtd; i++) {
1923                         struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1924                         run_delayed_work(&rtd->delayed_work);
1925                 }
1926
1927                 /* remove auxiliary devices */
1928                 for (i = 0; i < card->num_aux_devs; i++)
1929                         soc_remove_aux_dev(card, i);
1930
1931                 /* remove and free each DAI */
1932                 for (i = 0; i < card->num_rtd; i++)
1933                         soc_remove_dai_link(card, i);
1934
1935                 soc_cleanup_card_debugfs(card);
1936
1937                 /* remove the card */
1938                 if (card->remove)
1939                         card->remove(pdev);
1940
1941                 kfree(card->rtd);
1942                 snd_card_free(card->snd_card);
1943         }
1944         snd_soc_unregister_card(card);
1945         return 0;
1946 }
1947
1948 static int soc_poweroff(struct device *dev)
1949 {
1950         struct platform_device *pdev = to_platform_device(dev);
1951         struct snd_soc_card *card = platform_get_drvdata(pdev);
1952         int i;
1953
1954         if (!card->instantiated)
1955                 return 0;
1956
1957         /* Flush out pmdown_time work - we actually do want to run it
1958          * now, we're shutting down so no imminent restart. */
1959         for (i = 0; i < card->num_rtd; i++) {
1960                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1961                 run_delayed_work(&rtd->delayed_work);
1962         }
1963
1964         snd_soc_dapm_shutdown(card);
1965
1966         return 0;
1967 }
1968
1969 static const struct dev_pm_ops soc_pm_ops = {
1970         .suspend = soc_suspend,
1971         .resume = soc_resume,
1972         .poweroff = soc_poweroff,
1973 };
1974
1975 /* ASoC platform driver */
1976 static struct platform_driver soc_driver = {
1977         .driver         = {
1978                 .name           = "soc-audio",
1979                 .owner          = THIS_MODULE,
1980                 .pm             = &soc_pm_ops,
1981         },
1982         .probe          = soc_probe,
1983         .remove         = soc_remove,
1984 };
1985
1986 /* create a new pcm */
1987 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1988 {
1989         struct snd_soc_codec *codec = rtd->codec;
1990         struct snd_soc_platform *platform = rtd->platform;
1991         struct snd_soc_dai *codec_dai = rtd->codec_dai;
1992         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1993         struct snd_pcm *pcm;
1994         char new_name[64];
1995         int ret = 0, playback = 0, capture = 0;
1996
1997         /* check client and interface hw capabilities */
1998         snprintf(new_name, sizeof(new_name), "%s %s-%d",
1999                         rtd->dai_link->stream_name, codec_dai->name, num);
2000
2001         if (codec_dai->driver->playback.channels_min)
2002                 playback = 1;
2003         if (codec_dai->driver->capture.channels_min)
2004                 capture = 1;
2005
2006         dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
2007         ret = snd_pcm_new(rtd->card->snd_card, new_name,
2008                         num, playback, capture, &pcm);
2009         if (ret < 0) {
2010                 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
2011                 return ret;
2012         }
2013
2014         rtd->pcm = pcm;
2015         pcm->private_data = rtd;
2016         soc_pcm_ops.mmap = platform->driver->ops->mmap;
2017         soc_pcm_ops.pointer = platform->driver->ops->pointer;
2018         soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
2019         soc_pcm_ops.copy = platform->driver->ops->copy;
2020         soc_pcm_ops.silence = platform->driver->ops->silence;
2021         soc_pcm_ops.ack = platform->driver->ops->ack;
2022         soc_pcm_ops.page = platform->driver->ops->page;
2023
2024         if (playback)
2025                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
2026
2027         if (capture)
2028                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
2029
2030         ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
2031         if (ret < 0) {
2032                 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
2033                 return ret;
2034         }
2035
2036         pcm->private_free = platform->driver->pcm_free;
2037         printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
2038                 cpu_dai->name);
2039         return ret;
2040 }
2041
2042 /**
2043  * snd_soc_codec_volatile_register: Report if a register is volatile.
2044  *
2045  * @codec: CODEC to query.
2046  * @reg: Register to query.
2047  *
2048  * Boolean function indiciating if a CODEC register is volatile.
2049  */
2050 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
2051 {
2052         if (codec->driver->volatile_register)
2053                 return codec->driver->volatile_register(reg);
2054         else
2055                 return 0;
2056 }
2057 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
2058
2059 /**
2060  * snd_soc_new_ac97_codec - initailise AC97 device
2061  * @codec: audio codec
2062  * @ops: AC97 bus operations
2063  * @num: AC97 codec number
2064  *
2065  * Initialises AC97 codec resources for use by ad-hoc devices only.
2066  */
2067 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2068         struct snd_ac97_bus_ops *ops, int num)
2069 {
2070         mutex_lock(&codec->mutex);
2071
2072         codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2073         if (codec->ac97 == NULL) {
2074                 mutex_unlock(&codec->mutex);
2075                 return -ENOMEM;
2076         }
2077
2078         codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2079         if (codec->ac97->bus == NULL) {
2080                 kfree(codec->ac97);
2081                 codec->ac97 = NULL;
2082                 mutex_unlock(&codec->mutex);
2083                 return -ENOMEM;
2084         }
2085
2086         codec->ac97->bus->ops = ops;
2087         codec->ac97->num = num;
2088
2089         /*
2090          * Mark the AC97 device to be created by us. This way we ensure that the
2091          * device will be registered with the device subsystem later on.
2092          */
2093         codec->ac97_created = 1;
2094
2095         mutex_unlock(&codec->mutex);
2096         return 0;
2097 }
2098 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2099
2100 /**
2101  * snd_soc_free_ac97_codec - free AC97 codec device
2102  * @codec: audio codec
2103  *
2104  * Frees AC97 codec device resources.
2105  */
2106 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2107 {
2108         mutex_lock(&codec->mutex);
2109 #ifdef CONFIG_SND_SOC_AC97_BUS
2110         soc_unregister_ac97_dai_link(codec);
2111 #endif
2112         kfree(codec->ac97->bus);
2113         kfree(codec->ac97);
2114         codec->ac97 = NULL;
2115         codec->ac97_created = 0;
2116         mutex_unlock(&codec->mutex);
2117 }
2118 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2119
2120 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2121 {
2122         unsigned int ret;
2123
2124         ret = codec->read(codec, reg);
2125         dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2126         trace_snd_soc_reg_read(codec, reg, ret);
2127
2128         return ret;
2129 }
2130 EXPORT_SYMBOL_GPL(snd_soc_read);
2131
2132 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2133                            unsigned int reg, unsigned int val)
2134 {
2135         dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2136         trace_snd_soc_reg_write(codec, reg, val);
2137         return codec->write(codec, reg, val);
2138 }
2139 EXPORT_SYMBOL_GPL(snd_soc_write);
2140
2141 /**
2142  * snd_soc_update_bits - update codec register bits
2143  * @codec: audio codec
2144  * @reg: codec register
2145  * @mask: register mask
2146  * @value: new value
2147  *
2148  * Writes new register value.
2149  *
2150  * Returns 1 for change else 0.
2151  */
2152 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2153                                 unsigned int mask, unsigned int value)
2154 {
2155         int change;
2156         unsigned int old, new;
2157
2158         old = snd_soc_read(codec, reg);
2159         new = (old & ~mask) | value;
2160         change = old != new;
2161         if (change)
2162                 snd_soc_write(codec, reg, new);
2163
2164         return change;
2165 }
2166 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2167
2168 /**
2169  * snd_soc_update_bits_locked - update codec register bits
2170  * @codec: audio codec
2171  * @reg: codec register
2172  * @mask: register mask
2173  * @value: new value
2174  *
2175  * Writes new register value, and takes the codec mutex.
2176  *
2177  * Returns 1 for change else 0.
2178  */
2179 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2180                                unsigned short reg, unsigned int mask,
2181                                unsigned int value)
2182 {
2183         int change;
2184
2185         mutex_lock(&codec->mutex);
2186         change = snd_soc_update_bits(codec, reg, mask, value);
2187         mutex_unlock(&codec->mutex);
2188
2189         return change;
2190 }
2191 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2192
2193 /**
2194  * snd_soc_test_bits - test register for change
2195  * @codec: audio codec
2196  * @reg: codec register
2197  * @mask: register mask
2198  * @value: new value
2199  *
2200  * Tests a register with a new value and checks if the new value is
2201  * different from the old value.
2202  *
2203  * Returns 1 for change else 0.
2204  */
2205 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2206                                 unsigned int mask, unsigned int value)
2207 {
2208         int change;
2209         unsigned int old, new;
2210
2211         old = snd_soc_read(codec, reg);
2212         new = (old & ~mask) | value;
2213         change = old != new;
2214
2215         return change;
2216 }
2217 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2218
2219 /**
2220  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2221  * @substream: the pcm substream
2222  * @hw: the hardware parameters
2223  *
2224  * Sets the substream runtime hardware parameters.
2225  */
2226 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2227         const struct snd_pcm_hardware *hw)
2228 {
2229         struct snd_pcm_runtime *runtime = substream->runtime;
2230         runtime->hw.info = hw->info;
2231         runtime->hw.formats = hw->formats;
2232         runtime->hw.period_bytes_min = hw->period_bytes_min;
2233         runtime->hw.period_bytes_max = hw->period_bytes_max;
2234         runtime->hw.periods_min = hw->periods_min;
2235         runtime->hw.periods_max = hw->periods_max;
2236         runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2237         runtime->hw.fifo_size = hw->fifo_size;
2238         return 0;
2239 }
2240 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2241
2242 /**
2243  * snd_soc_cnew - create new control
2244  * @_template: control template
2245  * @data: control private data
2246  * @long_name: control long name
2247  *
2248  * Create a new mixer control from a template control.
2249  *
2250  * Returns 0 for success, else error.
2251  */
2252 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2253         void *data, char *long_name)
2254 {
2255         struct snd_kcontrol_new template;
2256
2257         memcpy(&template, _template, sizeof(template));
2258         if (long_name)
2259                 template.name = long_name;
2260         template.index = 0;
2261
2262         return snd_ctl_new1(&template, data);
2263 }
2264 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2265
2266 /**
2267  * snd_soc_add_controls - add an array of controls to a codec.
2268  * Convienience function to add a list of controls. Many codecs were
2269  * duplicating this code.
2270  *
2271  * @codec: codec to add controls to
2272  * @controls: array of controls to add
2273  * @num_controls: number of elements in the array
2274  *
2275  * Return 0 for success, else error.
2276  */
2277 int snd_soc_add_controls(struct snd_soc_codec *codec,
2278         const struct snd_kcontrol_new *controls, int num_controls)
2279 {
2280         struct snd_card *card = codec->card->snd_card;
2281         char prefixed_name[44], *name;
2282         int err, i;
2283
2284         for (i = 0; i < num_controls; i++) {
2285                 const struct snd_kcontrol_new *control = &controls[i];
2286                 if (codec->name_prefix) {
2287                         snprintf(prefixed_name, sizeof(prefixed_name), "%s %s",
2288                                  codec->name_prefix, control->name);
2289                         name = prefixed_name;
2290                 } else {
2291                         name = control->name;
2292                 }
2293                 err = snd_ctl_add(card, snd_soc_cnew(control, codec, name));
2294                 if (err < 0) {
2295                         dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2296                                 codec->name, name, err);
2297                         return err;
2298                 }
2299         }
2300
2301         return 0;
2302 }
2303 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2304
2305 /**
2306  * snd_soc_info_enum_double - enumerated double mixer info callback
2307  * @kcontrol: mixer control
2308  * @uinfo: control element information
2309  *
2310  * Callback to provide information about a double enumerated
2311  * mixer control.
2312  *
2313  * Returns 0 for success.
2314  */
2315 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2316         struct snd_ctl_elem_info *uinfo)
2317 {
2318         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2319
2320         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2321         uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2322         uinfo->value.enumerated.items = e->max;
2323
2324         if (uinfo->value.enumerated.item > e->max - 1)
2325                 uinfo->value.enumerated.item = e->max - 1;
2326         strcpy(uinfo->value.enumerated.name,
2327                 e->texts[uinfo->value.enumerated.item]);
2328         return 0;
2329 }
2330 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2331
2332 /**
2333  * snd_soc_get_enum_double - enumerated double mixer get callback
2334  * @kcontrol: mixer control
2335  * @ucontrol: control element information
2336  *
2337  * Callback to get the value of a double enumerated mixer.
2338  *
2339  * Returns 0 for success.
2340  */
2341 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2342         struct snd_ctl_elem_value *ucontrol)
2343 {
2344         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2345         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2346         unsigned int val, bitmask;
2347
2348         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2349                 ;
2350         val = snd_soc_read(codec, e->reg);
2351         ucontrol->value.enumerated.item[0]
2352                 = (val >> e->shift_l) & (bitmask - 1);
2353         if (e->shift_l != e->shift_r)
2354                 ucontrol->value.enumerated.item[1] =
2355                         (val >> e->shift_r) & (bitmask - 1);
2356
2357         return 0;
2358 }
2359 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2360
2361 /**
2362  * snd_soc_put_enum_double - enumerated double mixer put callback
2363  * @kcontrol: mixer control
2364  * @ucontrol: control element information
2365  *
2366  * Callback to set the value of a double enumerated mixer.
2367  *
2368  * Returns 0 for success.
2369  */
2370 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2371         struct snd_ctl_elem_value *ucontrol)
2372 {
2373         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2374         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2375         unsigned int val;
2376         unsigned int mask, bitmask;
2377
2378         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2379                 ;
2380         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2381                 return -EINVAL;
2382         val = ucontrol->value.enumerated.item[0] << e->shift_l;
2383         mask = (bitmask - 1) << e->shift_l;
2384         if (e->shift_l != e->shift_r) {
2385                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2386                         return -EINVAL;
2387                 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2388                 mask |= (bitmask - 1) << e->shift_r;
2389         }
2390
2391         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2392 }
2393 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2394
2395 /**
2396  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2397  * @kcontrol: mixer control
2398  * @ucontrol: control element information
2399  *
2400  * Callback to get the value of a double semi enumerated mixer.
2401  *
2402  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2403  * used for handling bitfield coded enumeration for example.
2404  *
2405  * Returns 0 for success.
2406  */
2407 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2408         struct snd_ctl_elem_value *ucontrol)
2409 {
2410         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2411         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2412         unsigned int reg_val, val, mux;
2413
2414         reg_val = snd_soc_read(codec, e->reg);
2415         val = (reg_val >> e->shift_l) & e->mask;
2416         for (mux = 0; mux < e->max; mux++) {
2417                 if (val == e->values[mux])
2418                         break;
2419         }
2420         ucontrol->value.enumerated.item[0] = mux;
2421         if (e->shift_l != e->shift_r) {
2422                 val = (reg_val >> e->shift_r) & e->mask;
2423                 for (mux = 0; mux < e->max; mux++) {
2424                         if (val == e->values[mux])
2425                                 break;
2426                 }
2427                 ucontrol->value.enumerated.item[1] = mux;
2428         }
2429
2430         return 0;
2431 }
2432 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2433
2434 /**
2435  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2436  * @kcontrol: mixer control
2437  * @ucontrol: control element information
2438  *
2439  * Callback to set the value of a double semi enumerated mixer.
2440  *
2441  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2442  * used for handling bitfield coded enumeration for example.
2443  *
2444  * Returns 0 for success.
2445  */
2446 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2447         struct snd_ctl_elem_value *ucontrol)
2448 {
2449         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2450         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2451         unsigned int val;
2452         unsigned int mask;
2453
2454         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2455                 return -EINVAL;
2456         val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2457         mask = e->mask << e->shift_l;
2458         if (e->shift_l != e->shift_r) {
2459                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2460                         return -EINVAL;
2461                 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2462                 mask |= e->mask << e->shift_r;
2463         }
2464
2465         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2466 }
2467 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2468
2469 /**
2470  * snd_soc_info_enum_ext - external enumerated single mixer info callback
2471  * @kcontrol: mixer control
2472  * @uinfo: control element information
2473  *
2474  * Callback to provide information about an external enumerated
2475  * single mixer.
2476  *
2477  * Returns 0 for success.
2478  */
2479 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2480         struct snd_ctl_elem_info *uinfo)
2481 {
2482         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2483
2484         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2485         uinfo->count = 1;
2486         uinfo->value.enumerated.items = e->max;
2487
2488         if (uinfo->value.enumerated.item > e->max - 1)
2489                 uinfo->value.enumerated.item = e->max - 1;
2490         strcpy(uinfo->value.enumerated.name,
2491                 e->texts[uinfo->value.enumerated.item]);
2492         return 0;
2493 }
2494 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2495
2496 /**
2497  * snd_soc_info_volsw_ext - external single mixer info callback
2498  * @kcontrol: mixer control
2499  * @uinfo: control element information
2500  *
2501  * Callback to provide information about a single external mixer control.
2502  *
2503  * Returns 0 for success.
2504  */
2505 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2506         struct snd_ctl_elem_info *uinfo)
2507 {
2508         int max = kcontrol->private_value;
2509
2510         if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2511                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2512         else
2513                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2514
2515         uinfo->count = 1;
2516         uinfo->value.integer.min = 0;
2517         uinfo->value.integer.max = max;
2518         return 0;
2519 }
2520 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2521
2522 /**
2523  * snd_soc_info_volsw - single mixer info callback
2524  * @kcontrol: mixer control
2525  * @uinfo: control element information
2526  *
2527  * Callback to provide information about a single mixer control.
2528  *
2529  * Returns 0 for success.
2530  */
2531 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2532         struct snd_ctl_elem_info *uinfo)
2533 {
2534         struct soc_mixer_control *mc =
2535                 (struct soc_mixer_control *)kcontrol->private_value;
2536         int platform_max;
2537         unsigned int shift = mc->shift;
2538         unsigned int rshift = mc->rshift;
2539
2540         if (!mc->platform_max)
2541                 mc->platform_max = mc->max;
2542         platform_max = mc->platform_max;
2543
2544         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2545                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2546         else
2547                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2548
2549         uinfo->count = shift == rshift ? 1 : 2;
2550         uinfo->value.integer.min = 0;
2551         uinfo->value.integer.max = platform_max;
2552         return 0;
2553 }
2554 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2555
2556 /**
2557  * snd_soc_get_volsw - single mixer get callback
2558  * @kcontrol: mixer control
2559  * @ucontrol: control element information
2560  *
2561  * Callback to get the value of a single mixer control.
2562  *
2563  * Returns 0 for success.
2564  */
2565 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2566         struct snd_ctl_elem_value *ucontrol)
2567 {
2568         struct soc_mixer_control *mc =
2569                 (struct soc_mixer_control *)kcontrol->private_value;
2570         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2571         unsigned int reg = mc->reg;
2572         unsigned int shift = mc->shift;
2573         unsigned int rshift = mc->rshift;
2574         int max = mc->max;
2575         unsigned int mask = (1 << fls(max)) - 1;
2576         unsigned int invert = mc->invert;
2577
2578         ucontrol->value.integer.value[0] =
2579                 (snd_soc_read(codec, reg) >> shift) & mask;
2580         if (shift != rshift)
2581                 ucontrol->value.integer.value[1] =
2582                         (snd_soc_read(codec, reg) >> rshift) & mask;
2583         if (invert) {
2584                 ucontrol->value.integer.value[0] =
2585                         max - ucontrol->value.integer.value[0];
2586                 if (shift != rshift)
2587                         ucontrol->value.integer.value[1] =
2588                                 max - ucontrol->value.integer.value[1];
2589         }
2590
2591         return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2594
2595 /**
2596  * snd_soc_put_volsw - single mixer put callback
2597  * @kcontrol: mixer control
2598  * @ucontrol: control element information
2599  *
2600  * Callback to set the value of a single mixer control.
2601  *
2602  * Returns 0 for success.
2603  */
2604 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2605         struct snd_ctl_elem_value *ucontrol)
2606 {
2607         struct soc_mixer_control *mc =
2608                 (struct soc_mixer_control *)kcontrol->private_value;
2609         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2610         unsigned int reg = mc->reg;
2611         unsigned int shift = mc->shift;
2612         unsigned int rshift = mc->rshift;
2613         int max = mc->max;
2614         unsigned int mask = (1 << fls(max)) - 1;
2615         unsigned int invert = mc->invert;
2616         unsigned int val, val2, val_mask;
2617
2618         val = (ucontrol->value.integer.value[0] & mask);
2619         if (invert)
2620                 val = max - val;
2621         val_mask = mask << shift;
2622         val = val << shift;
2623         if (shift != rshift) {
2624                 val2 = (ucontrol->value.integer.value[1] & mask);
2625                 if (invert)
2626                         val2 = max - val2;
2627                 val_mask |= mask << rshift;
2628                 val |= val2 << rshift;
2629         }
2630         return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2631 }
2632 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2633
2634 /**
2635  * snd_soc_info_volsw_2r - double mixer info callback
2636  * @kcontrol: mixer control
2637  * @uinfo: control element information
2638  *
2639  * Callback to provide information about a double mixer control that
2640  * spans 2 codec registers.
2641  *
2642  * Returns 0 for success.
2643  */
2644 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2645         struct snd_ctl_elem_info *uinfo)
2646 {
2647         struct soc_mixer_control *mc =
2648                 (struct soc_mixer_control *)kcontrol->private_value;
2649         int platform_max;
2650
2651         if (!mc->platform_max)
2652                 mc->platform_max = mc->max;
2653         platform_max = mc->platform_max;
2654
2655         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2656                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2657         else
2658                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2659
2660         uinfo->count = 2;
2661         uinfo->value.integer.min = 0;
2662         uinfo->value.integer.max = platform_max;
2663         return 0;
2664 }
2665 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2666
2667 /**
2668  * snd_soc_get_volsw_2r - double mixer get callback
2669  * @kcontrol: mixer control
2670  * @ucontrol: control element information
2671  *
2672  * Callback to get the value of a double mixer control that spans 2 registers.
2673  *
2674  * Returns 0 for success.
2675  */
2676 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2677         struct snd_ctl_elem_value *ucontrol)
2678 {
2679         struct soc_mixer_control *mc =
2680                 (struct soc_mixer_control *)kcontrol->private_value;
2681         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2682         unsigned int reg = mc->reg;
2683         unsigned int reg2 = mc->rreg;
2684         unsigned int shift = mc->shift;
2685         int max = mc->max;
2686         unsigned int mask = (1 << fls(max)) - 1;
2687         unsigned int invert = mc->invert;
2688
2689         ucontrol->value.integer.value[0] =
2690                 (snd_soc_read(codec, reg) >> shift) & mask;
2691         ucontrol->value.integer.value[1] =
2692                 (snd_soc_read(codec, reg2) >> shift) & mask;
2693         if (invert) {
2694                 ucontrol->value.integer.value[0] =
2695                         max - ucontrol->value.integer.value[0];
2696                 ucontrol->value.integer.value[1] =
2697                         max - ucontrol->value.integer.value[1];
2698         }
2699
2700         return 0;
2701 }
2702 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2703
2704 /**
2705  * snd_soc_put_volsw_2r - double mixer set callback
2706  * @kcontrol: mixer control
2707  * @ucontrol: control element information
2708  *
2709  * Callback to set the value of a double mixer control that spans 2 registers.
2710  *
2711  * Returns 0 for success.
2712  */
2713 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2714         struct snd_ctl_elem_value *ucontrol)
2715 {
2716         struct soc_mixer_control *mc =
2717                 (struct soc_mixer_control *)kcontrol->private_value;
2718         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2719         unsigned int reg = mc->reg;
2720         unsigned int reg2 = mc->rreg;
2721         unsigned int shift = mc->shift;
2722         int max = mc->max;
2723         unsigned int mask = (1 << fls(max)) - 1;
2724         unsigned int invert = mc->invert;
2725         int err;
2726         unsigned int val, val2, val_mask;
2727
2728         val_mask = mask << shift;
2729         val = (ucontrol->value.integer.value[0] & mask);
2730         val2 = (ucontrol->value.integer.value[1] & mask);
2731
2732         if (invert) {
2733                 val = max - val;
2734                 val2 = max - val2;
2735         }
2736
2737         val = val << shift;
2738         val2 = val2 << shift;
2739
2740         err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2741         if (err < 0)
2742                 return err;
2743
2744         err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2745         return err;
2746 }
2747 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2748
2749 /**
2750  * snd_soc_info_volsw_s8 - signed mixer info callback
2751  * @kcontrol: mixer control
2752  * @uinfo: control element information
2753  *
2754  * Callback to provide information about a signed mixer control.
2755  *
2756  * Returns 0 for success.
2757  */
2758 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2759         struct snd_ctl_elem_info *uinfo)
2760 {
2761         struct soc_mixer_control *mc =
2762                 (struct soc_mixer_control *)kcontrol->private_value;
2763         int platform_max;
2764         int min = mc->min;
2765
2766         if (!mc->platform_max)
2767                 mc->platform_max = mc->max;
2768         platform_max = mc->platform_max;
2769
2770         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2771         uinfo->count = 2;
2772         uinfo->value.integer.min = 0;
2773         uinfo->value.integer.max = platform_max - min;
2774         return 0;
2775 }
2776 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2777
2778 /**
2779  * snd_soc_get_volsw_s8 - signed mixer get callback
2780  * @kcontrol: mixer control
2781  * @ucontrol: control element information
2782  *
2783  * Callback to get the value of a signed mixer control.
2784  *
2785  * Returns 0 for success.
2786  */
2787 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2788         struct snd_ctl_elem_value *ucontrol)
2789 {
2790         struct soc_mixer_control *mc =
2791                 (struct soc_mixer_control *)kcontrol->private_value;
2792         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2793         unsigned int reg = mc->reg;
2794         int min = mc->min;
2795         int val = snd_soc_read(codec, reg);
2796
2797         ucontrol->value.integer.value[0] =
2798                 ((signed char)(val & 0xff))-min;
2799         ucontrol->value.integer.value[1] =
2800                 ((signed char)((val >> 8) & 0xff))-min;
2801         return 0;
2802 }
2803 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2804
2805 /**
2806  * snd_soc_put_volsw_sgn - signed mixer put callback
2807  * @kcontrol: mixer control
2808  * @ucontrol: control element information
2809  *
2810  * Callback to set the value of a signed mixer control.
2811  *
2812  * Returns 0 for success.
2813  */
2814 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2815         struct snd_ctl_elem_value *ucontrol)
2816 {
2817         struct soc_mixer_control *mc =
2818                 (struct soc_mixer_control *)kcontrol->private_value;
2819         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2820         unsigned int reg = mc->reg;
2821         int min = mc->min;
2822         unsigned int val;
2823
2824         val = (ucontrol->value.integer.value[0]+min) & 0xff;
2825         val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2826
2827         return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2828 }
2829 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2830
2831 /**
2832  * snd_soc_limit_volume - Set new limit to an existing volume control.
2833  *
2834  * @codec: where to look for the control
2835  * @name: Name of the control
2836  * @max: new maximum limit
2837  *
2838  * Return 0 for success, else error.
2839  */
2840 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2841         const char *name, int max)
2842 {
2843         struct snd_card *card = codec->card->snd_card;
2844         struct snd_kcontrol *kctl;
2845         struct soc_mixer_control *mc;
2846         int found = 0;
2847         int ret = -EINVAL;
2848
2849         /* Sanity check for name and max */
2850         if (unlikely(!name || max <= 0))
2851                 return -EINVAL;
2852
2853         list_for_each_entry(kctl, &card->controls, list) {
2854                 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2855                         found = 1;
2856                         break;
2857                 }
2858         }
2859         if (found) {
2860                 mc = (struct soc_mixer_control *)kctl->private_value;
2861                 if (max <= mc->max) {
2862                         mc->platform_max = max;
2863                         ret = 0;
2864                 }
2865         }
2866         return ret;
2867 }
2868 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2869
2870 /**
2871  * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2872  *  mixer info callback
2873  * @kcontrol: mixer control
2874  * @uinfo: control element information
2875  *
2876  * Returns 0 for success.
2877  */
2878 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2879                         struct snd_ctl_elem_info *uinfo)
2880 {
2881         struct soc_mixer_control *mc =
2882                 (struct soc_mixer_control *)kcontrol->private_value;
2883         int max = mc->max;
2884         int min = mc->min;
2885
2886         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2887         uinfo->count = 2;
2888         uinfo->value.integer.min = 0;
2889         uinfo->value.integer.max = max-min;
2890
2891         return 0;
2892 }
2893 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2894
2895 /**
2896  * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2897  *  mixer get callback
2898  * @kcontrol: mixer control
2899  * @uinfo: control element information
2900  *
2901  * Returns 0 for success.
2902  */
2903 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2904                         struct snd_ctl_elem_value *ucontrol)
2905 {
2906         struct soc_mixer_control *mc =
2907                 (struct soc_mixer_control *)kcontrol->private_value;
2908         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2909         unsigned int mask = (1<<mc->shift)-1;
2910         int min = mc->min;
2911         int val = snd_soc_read(codec, mc->reg) & mask;
2912         int valr = snd_soc_read(codec, mc->rreg) & mask;
2913
2914         ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2915         ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2916         return 0;
2917 }
2918 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2919
2920 /**
2921  * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2922  *  mixer put callback
2923  * @kcontrol: mixer control
2924  * @uinfo: control element information
2925  *
2926  * Returns 0 for success.
2927  */
2928 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2929                         struct snd_ctl_elem_value *ucontrol)
2930 {
2931         struct soc_mixer_control *mc =
2932                 (struct soc_mixer_control *)kcontrol->private_value;
2933         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2934         unsigned int mask = (1<<mc->shift)-1;
2935         int min = mc->min;
2936         int ret;
2937         unsigned int val, valr, oval, ovalr;
2938
2939         val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2940         val &= mask;
2941         valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2942         valr &= mask;
2943
2944         oval = snd_soc_read(codec, mc->reg) & mask;
2945         ovalr = snd_soc_read(codec, mc->rreg) & mask;
2946
2947         ret = 0;
2948         if (oval != val) {
2949                 ret = snd_soc_write(codec, mc->reg, val);
2950                 if (ret < 0)
2951                         return ret;
2952         }
2953         if (ovalr != valr) {
2954                 ret = snd_soc_write(codec, mc->rreg, valr);
2955                 if (ret < 0)
2956                         return ret;
2957         }
2958
2959         return 0;
2960 }
2961 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2962
2963 /**
2964  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2965  * @dai: DAI
2966  * @clk_id: DAI specific clock ID
2967  * @freq: new clock frequency in Hz
2968  * @dir: new clock direction - input/output.
2969  *
2970  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2971  */
2972 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2973         unsigned int freq, int dir)
2974 {
2975         if (dai->driver && dai->driver->ops->set_sysclk)
2976                 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2977         else
2978                 return -EINVAL;
2979 }
2980 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2981
2982 /**
2983  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2984  * @dai: DAI
2985  * @div_id: DAI specific clock divider ID
2986  * @div: new clock divisor.
2987  *
2988  * Configures the clock dividers. This is used to derive the best DAI bit and
2989  * frame clocks from the system or master clock. It's best to set the DAI bit
2990  * and frame clocks as low as possible to save system power.
2991  */
2992 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2993         int div_id, int div)
2994 {
2995         if (dai->driver && dai->driver->ops->set_clkdiv)
2996                 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2997         else
2998                 return -EINVAL;
2999 }
3000 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
3001
3002 /**
3003  * snd_soc_dai_set_pll - configure DAI PLL.
3004  * @dai: DAI
3005  * @pll_id: DAI specific PLL ID
3006  * @source: DAI specific source for the PLL
3007  * @freq_in: PLL input clock frequency in Hz
3008  * @freq_out: requested PLL output clock frequency in Hz
3009  *
3010  * Configures and enables PLL to generate output clock based on input clock.
3011  */
3012 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
3013         unsigned int freq_in, unsigned int freq_out)
3014 {
3015         if (dai->driver && dai->driver->ops->set_pll)
3016                 return dai->driver->ops->set_pll(dai, pll_id, source,
3017                                          freq_in, freq_out);
3018         else
3019                 return -EINVAL;
3020 }
3021 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3022
3023 /**
3024  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3025  * @dai: DAI
3026  * @fmt: SND_SOC_DAIFMT_ format value.
3027  *
3028  * Configures the DAI hardware format and clocking.
3029  */
3030 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3031 {
3032         if (dai->driver && dai->driver->ops->set_fmt)
3033                 return dai->driver->ops->set_fmt(dai, fmt);
3034         else
3035                 return -EINVAL;
3036 }
3037 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3038
3039 /**
3040  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3041  * @dai: DAI
3042  * @tx_mask: bitmask representing active TX slots.
3043  * @rx_mask: bitmask representing active RX slots.
3044  * @slots: Number of slots in use.
3045  * @slot_width: Width in bits for each slot.
3046  *
3047  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3048  * specific.
3049  */
3050 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3051         unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3052 {
3053         if (dai->driver && dai->driver->ops->set_tdm_slot)
3054                 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3055                                 slots, slot_width);
3056         else
3057                 return -EINVAL;
3058 }
3059 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3060
3061 /**
3062  * snd_soc_dai_set_channel_map - configure DAI audio channel map
3063  * @dai: DAI
3064  * @tx_num: how many TX channels
3065  * @tx_slot: pointer to an array which imply the TX slot number channel
3066  *           0~num-1 uses
3067  * @rx_num: how many RX channels
3068  * @rx_slot: pointer to an array which imply the RX slot number channel
3069  *           0~num-1 uses
3070  *
3071  * configure the relationship between channel number and TDM slot number.
3072  */
3073 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3074         unsigned int tx_num, unsigned int *tx_slot,
3075         unsigned int rx_num, unsigned int *rx_slot)
3076 {
3077         if (dai->driver && dai->driver->ops->set_channel_map)
3078                 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3079                         rx_num, rx_slot);
3080         else
3081                 return -EINVAL;
3082 }
3083 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3084
3085 /**
3086  * snd_soc_dai_set_tristate - configure DAI system or master clock.
3087  * @dai: DAI
3088  * @tristate: tristate enable
3089  *
3090  * Tristates the DAI so that others can use it.
3091  */
3092 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3093 {
3094         if (dai->driver && dai->driver->ops->set_tristate)
3095                 return dai->driver->ops->set_tristate(dai, tristate);
3096         else
3097                 return -EINVAL;
3098 }
3099 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3100
3101 /**
3102  * snd_soc_dai_digital_mute - configure DAI system or master clock.
3103  * @dai: DAI
3104  * @mute: mute enable
3105  *
3106  * Mutes the DAI DAC.
3107  */
3108 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
3109 {
3110         if (dai->driver && dai->driver->ops->digital_mute)
3111                 return dai->driver->ops->digital_mute(dai, mute);
3112         else
3113                 return -EINVAL;
3114 }
3115 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3116
3117 /**
3118  * snd_soc_register_card - Register a card with the ASoC core
3119  *
3120  * @card: Card to register
3121  *
3122  * Note that currently this is an internal only function: it will be
3123  * exposed to machine drivers after further backporting of ASoC v2
3124  * registration APIs.
3125  */
3126 static int snd_soc_register_card(struct snd_soc_card *card)
3127 {
3128         int i;
3129
3130         if (!card->name || !card->dev)
3131                 return -EINVAL;
3132
3133         card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
3134                             (card->num_links + card->num_aux_devs),
3135                             GFP_KERNEL);
3136         if (card->rtd == NULL)
3137                 return -ENOMEM;
3138         card->rtd_aux = &card->rtd[card->num_links];
3139
3140         for (i = 0; i < card->num_links; i++)
3141                 card->rtd[i].dai_link = &card->dai_link[i];
3142
3143         INIT_LIST_HEAD(&card->list);
3144         card->instantiated = 0;
3145         mutex_init(&card->mutex);
3146
3147         mutex_lock(&client_mutex);
3148         list_add(&card->list, &card_list);
3149         snd_soc_instantiate_cards();
3150         mutex_unlock(&client_mutex);
3151
3152         dev_dbg(card->dev, "Registered card '%s'\n", card->name);
3153
3154         return 0;
3155 }
3156
3157 /**
3158  * snd_soc_unregister_card - Unregister a card with the ASoC core
3159  *
3160  * @card: Card to unregister
3161  *
3162  * Note that currently this is an internal only function: it will be
3163  * exposed to machine drivers after further backporting of ASoC v2
3164  * registration APIs.
3165  */
3166 static int snd_soc_unregister_card(struct snd_soc_card *card)
3167 {
3168         mutex_lock(&client_mutex);
3169         list_del(&card->list);
3170         mutex_unlock(&client_mutex);
3171         dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
3172
3173         return 0;
3174 }
3175
3176 /*
3177  * Simplify DAI link configuration by removing ".-1" from device names
3178  * and sanitizing names.
3179  */
3180 static char *fmt_single_name(struct device *dev, int *id)
3181 {
3182         char *found, name[NAME_SIZE];
3183         int id1, id2;
3184
3185         if (dev_name(dev) == NULL)
3186                 return NULL;
3187
3188         strlcpy(name, dev_name(dev), NAME_SIZE);
3189
3190         /* are we a "%s.%d" name (platform and SPI components) */
3191         found = strstr(name, dev->driver->name);
3192         if (found) {
3193                 /* get ID */
3194                 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3195
3196                         /* discard ID from name if ID == -1 */
3197                         if (*id == -1)
3198                                 found[strlen(dev->driver->name)] = '\0';
3199                 }
3200
3201         } else {
3202                 /* I2C component devices are named "bus-addr"  */
3203                 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3204                         char tmp[NAME_SIZE];
3205
3206                         /* create unique ID number from I2C addr and bus */
3207                         *id = ((id1 & 0xffff) << 16) + id2;
3208
3209                         /* sanitize component name for DAI link creation */
3210                         snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3211                         strlcpy(name, tmp, NAME_SIZE);
3212                 } else
3213                         *id = 0;
3214         }
3215
3216         return kstrdup(name, GFP_KERNEL);
3217 }
3218
3219 /*
3220  * Simplify DAI link naming for single devices with multiple DAIs by removing
3221  * any ".-1" and using the DAI name (instead of device name).
3222  */
3223 static inline char *fmt_multiple_name(struct device *dev,
3224                 struct snd_soc_dai_driver *dai_drv)
3225 {
3226         if (dai_drv->name == NULL) {
3227                 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3228                                 dev_name(dev));
3229                 return NULL;
3230         }
3231
3232         return kstrdup(dai_drv->name, GFP_KERNEL);
3233 }
3234
3235 /**
3236  * snd_soc_register_dai - Register a DAI with the ASoC core
3237  *
3238  * @dai: DAI to register
3239  */
3240 int snd_soc_register_dai(struct device *dev,
3241                 struct snd_soc_dai_driver *dai_drv)
3242 {
3243         struct snd_soc_dai *dai;
3244
3245         dev_dbg(dev, "dai register %s\n", dev_name(dev));
3246
3247         dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3248         if (dai == NULL)
3249                         return -ENOMEM;
3250
3251         /* create DAI component name */
3252         dai->name = fmt_single_name(dev, &dai->id);
3253         if (dai->name == NULL) {
3254                 kfree(dai);
3255                 return -ENOMEM;
3256         }
3257
3258         dai->dev = dev;
3259         dai->driver = dai_drv;
3260         if (!dai->driver->ops)
3261                 dai->driver->ops = &null_dai_ops;
3262
3263         mutex_lock(&client_mutex);
3264         list_add(&dai->list, &dai_list);
3265         snd_soc_instantiate_cards();
3266         mutex_unlock(&client_mutex);
3267
3268         pr_debug("Registered DAI '%s'\n", dai->name);
3269
3270         return 0;
3271 }
3272 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3273
3274 /**
3275  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3276  *
3277  * @dai: DAI to unregister
3278  */
3279 void snd_soc_unregister_dai(struct device *dev)
3280 {
3281         struct snd_soc_dai *dai;
3282
3283         list_for_each_entry(dai, &dai_list, list) {
3284                 if (dev == dai->dev)
3285                         goto found;
3286         }
3287         return;
3288
3289 found:
3290         mutex_lock(&client_mutex);
3291         list_del(&dai->list);
3292         mutex_unlock(&client_mutex);
3293
3294         pr_debug("Unregistered DAI '%s'\n", dai->name);
3295         kfree(dai->name);
3296         kfree(dai);
3297 }
3298 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3299
3300 /**
3301  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3302  *
3303  * @dai: Array of DAIs to register
3304  * @count: Number of DAIs
3305  */
3306 int snd_soc_register_dais(struct device *dev,
3307                 struct snd_soc_dai_driver *dai_drv, size_t count)
3308 {
3309         struct snd_soc_dai *dai;
3310         int i, ret = 0;
3311
3312         dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3313
3314         for (i = 0; i < count; i++) {
3315
3316                 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3317                 if (dai == NULL) {
3318                         ret = -ENOMEM;
3319                         goto err;
3320                 }
3321
3322                 /* create DAI component name */
3323                 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3324                 if (dai->name == NULL) {
3325                         kfree(dai);
3326                         ret = -EINVAL;
3327                         goto err;
3328                 }
3329
3330                 dai->dev = dev;
3331                 dai->driver = &dai_drv[i];
3332                 if (dai->driver->id)
3333                         dai->id = dai->driver->id;
3334                 else
3335                         dai->id = i;
3336                 if (!dai->driver->ops)
3337                         dai->driver->ops = &null_dai_ops;
3338
3339                 mutex_lock(&client_mutex);
3340                 list_add(&dai->list, &dai_list);
3341                 mutex_unlock(&client_mutex);
3342
3343                 pr_debug("Registered DAI '%s'\n", dai->name);
3344         }
3345
3346         mutex_lock(&client_mutex);
3347         snd_soc_instantiate_cards();
3348         mutex_unlock(&client_mutex);
3349         return 0;
3350
3351 err:
3352         for (i--; i >= 0; i--)
3353                 snd_soc_unregister_dai(dev);
3354
3355         return ret;
3356 }
3357 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3358
3359 /**
3360  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3361  *
3362  * @dai: Array of DAIs to unregister
3363  * @count: Number of DAIs
3364  */
3365 void snd_soc_unregister_dais(struct device *dev, size_t count)
3366 {
3367         int i;
3368
3369         for (i = 0; i < count; i++)
3370                 snd_soc_unregister_dai(dev);
3371 }
3372 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3373
3374 /**
3375  * snd_soc_register_platform - Register a platform with the ASoC core
3376  *
3377  * @platform: platform to register
3378  */
3379 int snd_soc_register_platform(struct device *dev,
3380                 struct snd_soc_platform_driver *platform_drv)
3381 {
3382         struct snd_soc_platform *platform;
3383
3384         dev_dbg(dev, "platform register %s\n", dev_name(dev));
3385
3386         platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3387         if (platform == NULL)
3388                         return -ENOMEM;
3389
3390         /* create platform component name */
3391         platform->name = fmt_single_name(dev, &platform->id);
3392         if (platform->name == NULL) {
3393                 kfree(platform);
3394                 return -ENOMEM;
3395         }
3396
3397         platform->dev = dev;
3398         platform->driver = platform_drv;
3399
3400         mutex_lock(&client_mutex);
3401         list_add(&platform->list, &platform_list);
3402         snd_soc_instantiate_cards();
3403         mutex_unlock(&client_mutex);
3404
3405         pr_debug("Registered platform '%s'\n", platform->name);
3406
3407         return 0;
3408 }
3409 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3410
3411 /**
3412  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3413  *
3414  * @platform: platform to unregister
3415  */
3416 void snd_soc_unregister_platform(struct device *dev)
3417 {
3418         struct snd_soc_platform *platform;
3419
3420         list_for_each_entry(platform, &platform_list, list) {
3421                 if (dev == platform->dev)
3422                         goto found;
3423         }
3424         return;
3425
3426 found:
3427         mutex_lock(&client_mutex);
3428         list_del(&platform->list);
3429         mutex_unlock(&client_mutex);
3430
3431         pr_debug("Unregistered platform '%s'\n", platform->name);
3432         kfree(platform->name);
3433         kfree(platform);
3434 }
3435 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3436
3437 static u64 codec_format_map[] = {
3438         SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3439         SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3440         SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3441         SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3442         SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3443         SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3444         SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3445         SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3446         SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3447         SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3448         SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3449         SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3450         SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3451         SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3452         SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3453         | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3454 };
3455
3456 /* Fix up the DAI formats for endianness: codecs don't actually see
3457  * the endianness of the data but we're using the CPU format
3458  * definitions which do need to include endianness so we ensure that
3459  * codec DAIs always have both big and little endian variants set.
3460  */
3461 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3462 {
3463         int i;
3464
3465         for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3466                 if (stream->formats & codec_format_map[i])
3467                         stream->formats |= codec_format_map[i];
3468 }
3469
3470 /**
3471  * snd_soc_register_codec - Register a codec with the ASoC core
3472  *
3473  * @codec: codec to register
3474  */
3475 int snd_soc_register_codec(struct device *dev,
3476                            const struct snd_soc_codec_driver *codec_drv,
3477                            struct snd_soc_dai_driver *dai_drv,
3478                            int num_dai)
3479 {
3480         size_t reg_size;
3481         struct snd_soc_codec *codec;
3482         int ret, i;
3483
3484         dev_dbg(dev, "codec register %s\n", dev_name(dev));
3485
3486         codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3487         if (codec == NULL)
3488                 return -ENOMEM;
3489
3490         /* create CODEC component name */
3491         codec->name = fmt_single_name(dev, &codec->id);
3492         if (codec->name == NULL) {
3493                 kfree(codec);
3494                 return -ENOMEM;
3495         }
3496
3497         if (codec_drv->compress_type)
3498                 codec->compress_type = codec_drv->compress_type;
3499         else
3500                 codec->compress_type = SND_SOC_FLAT_COMPRESSION;
3501
3502         INIT_LIST_HEAD(&codec->dapm.widgets);
3503         INIT_LIST_HEAD(&codec->dapm.paths);
3504         codec->write = codec_drv->write;
3505         codec->read = codec_drv->read;
3506         codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3507         codec->dapm.dev = dev;
3508         codec->dapm.codec = codec;
3509         codec->dev = dev;
3510         codec->driver = codec_drv;
3511         codec->num_dai = num_dai;
3512         mutex_init(&codec->mutex);
3513
3514         /* allocate CODEC register cache */
3515         if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3516                 reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
3517                 /* it is necessary to make a copy of the default register cache
3518                  * because in the case of using a compression type that requires
3519                  * the default register cache to be marked as __devinitconst the
3520                  * kernel might have freed the array by the time we initialize
3521                  * the cache.
3522                  */
3523                 codec->reg_def_copy = kmemdup(codec_drv->reg_cache_default,
3524                                               reg_size, GFP_KERNEL);
3525                 if (!codec->reg_def_copy) {
3526                         ret = -ENOMEM;
3527                         goto fail;
3528                 }
3529         }
3530
3531         for (i = 0; i < num_dai; i++) {
3532                 fixup_codec_formats(&dai_drv[i].playback);
3533                 fixup_codec_formats(&dai_drv[i].capture);
3534         }
3535
3536         /* register any DAIs */
3537         if (num_dai) {
3538                 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3539                 if (ret < 0)
3540                         goto fail;
3541         }
3542
3543         mutex_lock(&client_mutex);
3544         list_add(&codec->list, &codec_list);
3545         snd_soc_instantiate_cards();
3546         mutex_unlock(&client_mutex);
3547
3548         pr_debug("Registered codec '%s'\n", codec->name);
3549         return 0;
3550
3551 fail:
3552         kfree(codec->reg_def_copy);
3553         codec->reg_def_copy = NULL;
3554         kfree(codec->name);
3555         kfree(codec);
3556         return ret;
3557 }
3558 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3559
3560 /**
3561  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3562  *
3563  * @codec: codec to unregister
3564  */
3565 void snd_soc_unregister_codec(struct device *dev)
3566 {
3567         struct snd_soc_codec *codec;
3568         int i;
3569
3570         list_for_each_entry(codec, &codec_list, list) {
3571                 if (dev == codec->dev)
3572                         goto found;
3573         }
3574         return;
3575
3576 found:
3577         if (codec->num_dai)
3578                 for (i = 0; i < codec->num_dai; i++)
3579                         snd_soc_unregister_dai(dev);
3580
3581         mutex_lock(&client_mutex);
3582         list_del(&codec->list);
3583         mutex_unlock(&client_mutex);
3584
3585         pr_debug("Unregistered codec '%s'\n", codec->name);
3586
3587         snd_soc_cache_exit(codec);
3588         kfree(codec->reg_def_copy);
3589         kfree(codec->name);
3590         kfree(codec);
3591 }
3592 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3593
3594 static int __init snd_soc_init(void)
3595 {
3596 #ifdef CONFIG_DEBUG_FS
3597         debugfs_root = debugfs_create_dir("asoc", NULL);
3598         if (IS_ERR(debugfs_root) || !debugfs_root) {
3599                 printk(KERN_WARNING
3600                        "ASoC: Failed to create debugfs directory\n");
3601                 debugfs_root = NULL;
3602         }
3603
3604         if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL,
3605                                  &codec_list_fops))
3606                 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3607
3608         if (!debugfs_create_file("dais", 0444, debugfs_root, NULL,
3609                                  &dai_list_fops))
3610                 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3611
3612         if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL,
3613                                  &platform_list_fops))
3614                 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3615 #endif
3616
3617         return platform_driver_register(&soc_driver);
3618 }
3619 module_init(snd_soc_init);
3620
3621 static void __exit snd_soc_exit(void)
3622 {
3623 #ifdef CONFIG_DEBUG_FS
3624         debugfs_remove_recursive(debugfs_root);
3625 #endif
3626         platform_driver_unregister(&soc_driver);
3627 }
3628 module_exit(snd_soc_exit);
3629
3630 /* Module information */
3631 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3632 MODULE_DESCRIPTION("ALSA SoC Core");
3633 MODULE_LICENSE("GPL");
3634 MODULE_ALIAS("platform:soc-audio");