]> git.karo-electronics.de Git - mv-sheeva.git/blob - tools/perf/util/session.c
9c806ab565eaf997c2c9c0adb68d4dc97f2a01cc
[mv-sheeva.git] / tools / perf / util / session.c
1 #define _FILE_OFFSET_BITS 64
2
3 #include <linux/kernel.h>
4
5 #include <byteswap.h>
6 #include <unistd.h>
7 #include <sys/types.h>
8 #include <sys/mman.h>
9
10 #include "session.h"
11 #include "sort.h"
12 #include "util.h"
13
14 static int perf_session__open(struct perf_session *self, bool force)
15 {
16         struct stat input_stat;
17
18         if (!strcmp(self->filename, "-")) {
19                 self->fd_pipe = true;
20                 self->fd = STDIN_FILENO;
21
22                 if (perf_header__read(self, self->fd) < 0)
23                         pr_err("incompatible file format");
24
25                 return 0;
26         }
27
28         self->fd = open(self->filename, O_RDONLY);
29         if (self->fd < 0) {
30                 int err = errno;
31
32                 pr_err("failed to open %s: %s", self->filename, strerror(err));
33                 if (err == ENOENT && !strcmp(self->filename, "perf.data"))
34                         pr_err("  (try 'perf record' first)");
35                 pr_err("\n");
36                 return -errno;
37         }
38
39         if (fstat(self->fd, &input_stat) < 0)
40                 goto out_close;
41
42         if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
43                 pr_err("file %s not owned by current user or root\n",
44                        self->filename);
45                 goto out_close;
46         }
47
48         if (!input_stat.st_size) {
49                 pr_info("zero-sized file (%s), nothing to do!\n",
50                         self->filename);
51                 goto out_close;
52         }
53
54         if (perf_header__read(self, self->fd) < 0) {
55                 pr_err("incompatible file format");
56                 goto out_close;
57         }
58
59         self->size = input_stat.st_size;
60         return 0;
61
62 out_close:
63         close(self->fd);
64         self->fd = -1;
65         return -1;
66 }
67
68 void perf_session__update_sample_type(struct perf_session *self)
69 {
70         self->sample_type = perf_header__sample_type(&self->header);
71 }
72
73 int perf_session__create_kernel_maps(struct perf_session *self)
74 {
75         int ret = machine__create_kernel_maps(&self->host_machine);
76
77         if (ret >= 0)
78                 ret = machines__create_guest_kernel_maps(&self->machines);
79         return ret;
80 }
81
82 static void perf_session__destroy_kernel_maps(struct perf_session *self)
83 {
84         machine__destroy_kernel_maps(&self->host_machine);
85         machines__destroy_guest_kernel_maps(&self->machines);
86 }
87
88 struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
89 {
90         size_t len = filename ? strlen(filename) + 1 : 0;
91         struct perf_session *self = zalloc(sizeof(*self) + len);
92
93         if (self == NULL)
94                 goto out;
95
96         if (perf_header__init(&self->header) < 0)
97                 goto out_free;
98
99         memcpy(self->filename, filename, len);
100         self->threads = RB_ROOT;
101         INIT_LIST_HEAD(&self->dead_threads);
102         self->hists_tree = RB_ROOT;
103         self->last_match = NULL;
104         self->mmap_window = 32;
105         self->machines = RB_ROOT;
106         self->repipe = repipe;
107         INIT_LIST_HEAD(&self->ordered_samples.samples);
108         machine__init(&self->host_machine, "", HOST_KERNEL_ID);
109
110         if (mode == O_RDONLY) {
111                 if (perf_session__open(self, force) < 0)
112                         goto out_delete;
113         } else if (mode == O_WRONLY) {
114                 /*
115                  * In O_RDONLY mode this will be performed when reading the
116                  * kernel MMAP event, in event__process_mmap().
117                  */
118                 if (perf_session__create_kernel_maps(self) < 0)
119                         goto out_delete;
120         }
121
122         perf_session__update_sample_type(self);
123 out:
124         return self;
125 out_free:
126         free(self);
127         return NULL;
128 out_delete:
129         perf_session__delete(self);
130         return NULL;
131 }
132
133 static void perf_session__delete_dead_threads(struct perf_session *self)
134 {
135         struct thread *n, *t;
136
137         list_for_each_entry_safe(t, n, &self->dead_threads, node) {
138                 list_del(&t->node);
139                 thread__delete(t);
140         }
141 }
142
143 static void perf_session__delete_threads(struct perf_session *self)
144 {
145         struct rb_node *nd = rb_first(&self->threads);
146
147         while (nd) {
148                 struct thread *t = rb_entry(nd, struct thread, rb_node);
149
150                 rb_erase(&t->rb_node, &self->threads);
151                 nd = rb_next(nd);
152                 thread__delete(t);
153         }
154 }
155
156 void perf_session__delete(struct perf_session *self)
157 {
158         perf_header__exit(&self->header);
159         perf_session__destroy_kernel_maps(self);
160         perf_session__delete_dead_threads(self);
161         perf_session__delete_threads(self);
162         machine__exit(&self->host_machine);
163         close(self->fd);
164         free(self);
165 }
166
167 void perf_session__remove_thread(struct perf_session *self, struct thread *th)
168 {
169         self->last_match = NULL;
170         rb_erase(&th->rb_node, &self->threads);
171         /*
172          * We may have references to this thread, for instance in some hist_entry
173          * instances, so just move them to a separate list.
174          */
175         list_add_tail(&th->node, &self->dead_threads);
176 }
177
178 static bool symbol__match_parent_regex(struct symbol *sym)
179 {
180         if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
181                 return 1;
182
183         return 0;
184 }
185
186 struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
187                                                    struct thread *thread,
188                                                    struct ip_callchain *chain,
189                                                    struct symbol **parent)
190 {
191         u8 cpumode = PERF_RECORD_MISC_USER;
192         unsigned int i;
193         struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
194
195         if (!syms)
196                 return NULL;
197
198         for (i = 0; i < chain->nr; i++) {
199                 u64 ip = chain->ips[i];
200                 struct addr_location al;
201
202                 if (ip >= PERF_CONTEXT_MAX) {
203                         switch (ip) {
204                         case PERF_CONTEXT_HV:
205                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;  break;
206                         case PERF_CONTEXT_KERNEL:
207                                 cpumode = PERF_RECORD_MISC_KERNEL;      break;
208                         case PERF_CONTEXT_USER:
209                                 cpumode = PERF_RECORD_MISC_USER;        break;
210                         default:
211                                 break;
212                         }
213                         continue;
214                 }
215
216                 al.filtered = false;
217                 thread__find_addr_location(thread, self, cpumode,
218                                 MAP__FUNCTION, thread->pid, ip, &al, NULL);
219                 if (al.sym != NULL) {
220                         if (sort__has_parent && !*parent &&
221                             symbol__match_parent_regex(al.sym))
222                                 *parent = al.sym;
223                         if (!symbol_conf.use_callchain)
224                                 break;
225                         syms[i].map = al.map;
226                         syms[i].sym = al.sym;
227                 }
228         }
229
230         return syms;
231 }
232
233 static int process_event_stub(event_t *event __used,
234                               struct perf_session *session __used)
235 {
236         dump_printf(": unhandled!\n");
237         return 0;
238 }
239
240 static int process_finished_round_stub(event_t *event __used,
241                                        struct perf_session *session __used,
242                                        struct perf_event_ops *ops __used)
243 {
244         dump_printf(": unhandled!\n");
245         return 0;
246 }
247
248 static int process_finished_round(event_t *event,
249                                   struct perf_session *session,
250                                   struct perf_event_ops *ops);
251
252 static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
253 {
254         if (handler->sample == NULL)
255                 handler->sample = process_event_stub;
256         if (handler->mmap == NULL)
257                 handler->mmap = process_event_stub;
258         if (handler->comm == NULL)
259                 handler->comm = process_event_stub;
260         if (handler->fork == NULL)
261                 handler->fork = process_event_stub;
262         if (handler->exit == NULL)
263                 handler->exit = process_event_stub;
264         if (handler->lost == NULL)
265                 handler->lost = event__process_lost;
266         if (handler->read == NULL)
267                 handler->read = process_event_stub;
268         if (handler->throttle == NULL)
269                 handler->throttle = process_event_stub;
270         if (handler->unthrottle == NULL)
271                 handler->unthrottle = process_event_stub;
272         if (handler->attr == NULL)
273                 handler->attr = process_event_stub;
274         if (handler->event_type == NULL)
275                 handler->event_type = process_event_stub;
276         if (handler->tracing_data == NULL)
277                 handler->tracing_data = process_event_stub;
278         if (handler->build_id == NULL)
279                 handler->build_id = process_event_stub;
280         if (handler->finished_round == NULL) {
281                 if (handler->ordered_samples)
282                         handler->finished_round = process_finished_round;
283                 else
284                         handler->finished_round = process_finished_round_stub;
285         }
286 }
287
288 void mem_bswap_64(void *src, int byte_size)
289 {
290         u64 *m = src;
291
292         while (byte_size > 0) {
293                 *m = bswap_64(*m);
294                 byte_size -= sizeof(u64);
295                 ++m;
296         }
297 }
298
299 static void event__all64_swap(event_t *self)
300 {
301         struct perf_event_header *hdr = &self->header;
302         mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
303 }
304
305 static void event__comm_swap(event_t *self)
306 {
307         self->comm.pid = bswap_32(self->comm.pid);
308         self->comm.tid = bswap_32(self->comm.tid);
309 }
310
311 static void event__mmap_swap(event_t *self)
312 {
313         self->mmap.pid   = bswap_32(self->mmap.pid);
314         self->mmap.tid   = bswap_32(self->mmap.tid);
315         self->mmap.start = bswap_64(self->mmap.start);
316         self->mmap.len   = bswap_64(self->mmap.len);
317         self->mmap.pgoff = bswap_64(self->mmap.pgoff);
318 }
319
320 static void event__task_swap(event_t *self)
321 {
322         self->fork.pid  = bswap_32(self->fork.pid);
323         self->fork.tid  = bswap_32(self->fork.tid);
324         self->fork.ppid = bswap_32(self->fork.ppid);
325         self->fork.ptid = bswap_32(self->fork.ptid);
326         self->fork.time = bswap_64(self->fork.time);
327 }
328
329 static void event__read_swap(event_t *self)
330 {
331         self->read.pid          = bswap_32(self->read.pid);
332         self->read.tid          = bswap_32(self->read.tid);
333         self->read.value        = bswap_64(self->read.value);
334         self->read.time_enabled = bswap_64(self->read.time_enabled);
335         self->read.time_running = bswap_64(self->read.time_running);
336         self->read.id           = bswap_64(self->read.id);
337 }
338
339 static void event__attr_swap(event_t *self)
340 {
341         size_t size;
342
343         self->attr.attr.type            = bswap_32(self->attr.attr.type);
344         self->attr.attr.size            = bswap_32(self->attr.attr.size);
345         self->attr.attr.config          = bswap_64(self->attr.attr.config);
346         self->attr.attr.sample_period   = bswap_64(self->attr.attr.sample_period);
347         self->attr.attr.sample_type     = bswap_64(self->attr.attr.sample_type);
348         self->attr.attr.read_format     = bswap_64(self->attr.attr.read_format);
349         self->attr.attr.wakeup_events   = bswap_32(self->attr.attr.wakeup_events);
350         self->attr.attr.bp_type         = bswap_32(self->attr.attr.bp_type);
351         self->attr.attr.bp_addr         = bswap_64(self->attr.attr.bp_addr);
352         self->attr.attr.bp_len          = bswap_64(self->attr.attr.bp_len);
353
354         size = self->header.size;
355         size -= (void *)&self->attr.id - (void *)self;
356         mem_bswap_64(self->attr.id, size);
357 }
358
359 static void event__event_type_swap(event_t *self)
360 {
361         self->event_type.event_type.event_id =
362                 bswap_64(self->event_type.event_type.event_id);
363 }
364
365 static void event__tracing_data_swap(event_t *self)
366 {
367         self->tracing_data.size = bswap_32(self->tracing_data.size);
368 }
369
370 typedef void (*event__swap_op)(event_t *self);
371
372 static event__swap_op event__swap_ops[] = {
373         [PERF_RECORD_MMAP]   = event__mmap_swap,
374         [PERF_RECORD_COMM]   = event__comm_swap,
375         [PERF_RECORD_FORK]   = event__task_swap,
376         [PERF_RECORD_EXIT]   = event__task_swap,
377         [PERF_RECORD_LOST]   = event__all64_swap,
378         [PERF_RECORD_READ]   = event__read_swap,
379         [PERF_RECORD_SAMPLE] = event__all64_swap,
380         [PERF_RECORD_HEADER_ATTR]   = event__attr_swap,
381         [PERF_RECORD_HEADER_EVENT_TYPE]   = event__event_type_swap,
382         [PERF_RECORD_HEADER_TRACING_DATA]   = event__tracing_data_swap,
383         [PERF_RECORD_HEADER_BUILD_ID]   = NULL,
384         [PERF_RECORD_HEADER_MAX]    = NULL,
385 };
386
387 struct sample_queue {
388         u64                     timestamp;
389         event_t                 *event;
390         struct list_head        list;
391 };
392
393 static void flush_sample_queue(struct perf_session *s,
394                                struct perf_event_ops *ops)
395 {
396         struct ordered_samples *os = &s->ordered_samples;
397         struct list_head *head = &os->samples;
398         struct sample_queue *tmp, *iter;
399         u64 limit = os->next_flush;
400         u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
401
402         if (!ops->ordered_samples || !limit)
403                 return;
404
405         list_for_each_entry_safe(iter, tmp, head, list) {
406                 if (iter->timestamp > limit)
407                         break;
408
409                 ops->sample(iter->event, s);
410
411                 os->last_flush = iter->timestamp;
412                 list_del(&iter->list);
413                 free(iter->event);
414                 free(iter);
415         }
416
417         if (list_empty(head)) {
418                 os->last_sample = NULL;
419         } else if (last_ts <= limit) {
420                 os->last_sample =
421                         list_entry(head->prev, struct sample_queue, list);
422         }
423 }
424
425 /*
426  * When perf record finishes a pass on every buffers, it records this pseudo
427  * event.
428  * We record the max timestamp t found in the pass n.
429  * Assuming these timestamps are monotonic across cpus, we know that if
430  * a buffer still has events with timestamps below t, they will be all
431  * available and then read in the pass n + 1.
432  * Hence when we start to read the pass n + 2, we can safely flush every
433  * events with timestamps below t.
434  *
435  *    ============ PASS n =================
436  *       CPU 0         |   CPU 1
437  *                     |
438  *    cnt1 timestamps  |   cnt2 timestamps
439  *          1          |         2
440  *          2          |         3
441  *          -          |         4  <--- max recorded
442  *
443  *    ============ PASS n + 1 ==============
444  *       CPU 0         |   CPU 1
445  *                     |
446  *    cnt1 timestamps  |   cnt2 timestamps
447  *          3          |         5
448  *          4          |         6
449  *          5          |         7 <---- max recorded
450  *
451  *      Flush every events below timestamp 4
452  *
453  *    ============ PASS n + 2 ==============
454  *       CPU 0         |   CPU 1
455  *                     |
456  *    cnt1 timestamps  |   cnt2 timestamps
457  *          6          |         8
458  *          7          |         9
459  *          -          |         10
460  *
461  *      Flush every events below timestamp 7
462  *      etc...
463  */
464 static int process_finished_round(event_t *event __used,
465                                   struct perf_session *session,
466                                   struct perf_event_ops *ops)
467 {
468         flush_sample_queue(session, ops);
469         session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
470
471         return 0;
472 }
473
474 /* The queue is ordered by time */
475 static void __queue_sample_event(struct sample_queue *new,
476                                  struct perf_session *s)
477 {
478         struct ordered_samples *os = &s->ordered_samples;
479         struct sample_queue *sample = os->last_sample;
480         u64 timestamp = new->timestamp;
481         struct list_head *p;
482
483         os->last_sample = new;
484
485         if (!sample) {
486                 list_add(&new->list, &os->samples);
487                 os->max_timestamp = timestamp;
488                 return;
489         }
490
491         /*
492          * last_sample might point to some random place in the list as it's
493          * the last queued event. We expect that the new event is close to
494          * this.
495          */
496         if (sample->timestamp <= timestamp) {
497                 while (sample->timestamp <= timestamp) {
498                         p = sample->list.next;
499                         if (p == &os->samples) {
500                                 list_add_tail(&new->list, &os->samples);
501                                 os->max_timestamp = timestamp;
502                                 return;
503                         }
504                         sample = list_entry(p, struct sample_queue, list);
505                 }
506                 list_add_tail(&new->list, &sample->list);
507         } else {
508                 while (sample->timestamp > timestamp) {
509                         p = sample->list.prev;
510                         if (p == &os->samples) {
511                                 list_add(&new->list, &os->samples);
512                                 return;
513                         }
514                         sample = list_entry(p, struct sample_queue, list);
515                 }
516                 list_add(&new->list, &sample->list);
517         }
518 }
519
520 static int queue_sample_event(event_t *event, struct sample_data *data,
521                               struct perf_session *s)
522 {
523         u64 timestamp = data->time;
524         struct sample_queue *new;
525
526
527         if (timestamp < s->ordered_samples.last_flush) {
528                 printf("Warning: Timestamp below last timeslice flush\n");
529                 return -EINVAL;
530         }
531
532         new = malloc(sizeof(*new));
533         if (!new)
534                 return -ENOMEM;
535
536         new->timestamp = timestamp;
537
538         new->event = malloc(event->header.size);
539         if (!new->event) {
540                 free(new);
541                 return -ENOMEM;
542         }
543
544         memcpy(new->event, event, event->header.size);
545
546         __queue_sample_event(new, s);
547
548         return 0;
549 }
550
551 static int perf_session__process_sample(event_t *event, struct perf_session *s,
552                                         struct perf_event_ops *ops)
553 {
554         struct sample_data data;
555
556         if (!ops->ordered_samples)
557                 return ops->sample(event, s);
558
559         bzero(&data, sizeof(struct sample_data));
560         event__parse_sample(event, s->sample_type, &data);
561
562         queue_sample_event(event, &data, s);
563
564         return 0;
565 }
566
567 static int perf_session__process_event(struct perf_session *self,
568                                        event_t *event,
569                                        struct perf_event_ops *ops,
570                                        u64 file_offset)
571 {
572         trace_event(event);
573
574         if (event->header.type < PERF_RECORD_HEADER_MAX) {
575                 dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
576                             file_offset, event->header.size,
577                             event__name[event->header.type]);
578                 hists__inc_nr_events(&self->hists, event->header.type);
579         }
580
581         if (self->header.needs_swap && event__swap_ops[event->header.type])
582                 event__swap_ops[event->header.type](event);
583
584         switch (event->header.type) {
585         case PERF_RECORD_SAMPLE:
586                 return perf_session__process_sample(event, self, ops);
587         case PERF_RECORD_MMAP:
588                 return ops->mmap(event, self);
589         case PERF_RECORD_COMM:
590                 return ops->comm(event, self);
591         case PERF_RECORD_FORK:
592                 return ops->fork(event, self);
593         case PERF_RECORD_EXIT:
594                 return ops->exit(event, self);
595         case PERF_RECORD_LOST:
596                 return ops->lost(event, self);
597         case PERF_RECORD_READ:
598                 return ops->read(event, self);
599         case PERF_RECORD_THROTTLE:
600                 return ops->throttle(event, self);
601         case PERF_RECORD_UNTHROTTLE:
602                 return ops->unthrottle(event, self);
603         case PERF_RECORD_HEADER_ATTR:
604                 return ops->attr(event, self);
605         case PERF_RECORD_HEADER_EVENT_TYPE:
606                 return ops->event_type(event, self);
607         case PERF_RECORD_HEADER_TRACING_DATA:
608                 /* setup for reading amidst mmap */
609                 lseek(self->fd, file_offset, SEEK_SET);
610                 return ops->tracing_data(event, self);
611         case PERF_RECORD_HEADER_BUILD_ID:
612                 return ops->build_id(event, self);
613         case PERF_RECORD_FINISHED_ROUND:
614                 return ops->finished_round(event, self, ops);
615         default:
616                 ++self->hists.stats.nr_unknown_events;
617                 return -1;
618         }
619 }
620
621 void perf_event_header__bswap(struct perf_event_header *self)
622 {
623         self->type = bswap_32(self->type);
624         self->misc = bswap_16(self->misc);
625         self->size = bswap_16(self->size);
626 }
627
628 static struct thread *perf_session__register_idle_thread(struct perf_session *self)
629 {
630         struct thread *thread = perf_session__findnew(self, 0);
631
632         if (thread == NULL || thread__set_comm(thread, "swapper")) {
633                 pr_err("problem inserting idle task.\n");
634                 thread = NULL;
635         }
636
637         return thread;
638 }
639
640 int do_read(int fd, void *buf, size_t size)
641 {
642         void *buf_start = buf;
643
644         while (size) {
645                 int ret = read(fd, buf, size);
646
647                 if (ret <= 0)
648                         return ret;
649
650                 size -= ret;
651                 buf += ret;
652         }
653
654         return buf - buf_start;
655 }
656
657 #define session_done()  (*(volatile int *)(&session_done))
658 volatile int session_done;
659
660 static int __perf_session__process_pipe_events(struct perf_session *self,
661                                                struct perf_event_ops *ops)
662 {
663         event_t event;
664         uint32_t size;
665         int skip = 0;
666         u64 head;
667         int err;
668         void *p;
669
670         perf_event_ops__fill_defaults(ops);
671
672         head = 0;
673 more:
674         err = do_read(self->fd, &event, sizeof(struct perf_event_header));
675         if (err <= 0) {
676                 if (err == 0)
677                         goto done;
678
679                 pr_err("failed to read event header\n");
680                 goto out_err;
681         }
682
683         if (self->header.needs_swap)
684                 perf_event_header__bswap(&event.header);
685
686         size = event.header.size;
687         if (size == 0)
688                 size = 8;
689
690         p = &event;
691         p += sizeof(struct perf_event_header);
692
693         if (size - sizeof(struct perf_event_header)) {
694                 err = do_read(self->fd, p,
695                               size - sizeof(struct perf_event_header));
696                 if (err <= 0) {
697                         if (err == 0) {
698                                 pr_err("unexpected end of event stream\n");
699                                 goto done;
700                         }
701
702                         pr_err("failed to read event data\n");
703                         goto out_err;
704                 }
705         }
706
707         if (size == 0 ||
708             (skip = perf_session__process_event(self, &event, ops, head)) < 0) {
709                 dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
710                             head, event.header.size, event.header.type);
711                 /*
712                  * assume we lost track of the stream, check alignment, and
713                  * increment a single u64 in the hope to catch on again 'soon'.
714                  */
715                 if (unlikely(head & 7))
716                         head &= ~7ULL;
717
718                 size = 8;
719         }
720
721         head += size;
722
723         dump_printf("\n%#Lx [%#x]: event: %d\n",
724                     head, event.header.size, event.header.type);
725
726         if (skip > 0)
727                 head += skip;
728
729         if (!session_done())
730                 goto more;
731 done:
732         err = 0;
733 out_err:
734         return err;
735 }
736
737 int __perf_session__process_events(struct perf_session *session,
738                                    u64 data_offset, u64 data_size,
739                                    u64 file_size, struct perf_event_ops *ops)
740 {
741         u64 head, page_offset, file_offset, file_pos;
742         int err, mmap_prot, mmap_flags;
743         struct ui_progress *progress;
744         size_t  page_size;
745         event_t *event;
746         uint32_t size;
747         char *buf;
748
749         progress = ui_progress__new("Processing events...", session->size);
750         if (progress == NULL)
751                 return -1;
752
753         perf_event_ops__fill_defaults(ops);
754
755         page_size = sysconf(_SC_PAGESIZE);
756
757         page_offset = page_size * (data_offset / page_size);
758         file_offset = page_offset;
759         head = data_offset - page_offset;
760
761         if (data_offset + data_size < file_size)
762                 file_size = data_offset + data_size;
763
764         mmap_prot  = PROT_READ;
765         mmap_flags = MAP_SHARED;
766
767         if (session->header.needs_swap) {
768                 mmap_prot  |= PROT_WRITE;
769                 mmap_flags = MAP_PRIVATE;
770         }
771 remap:
772         buf = mmap(NULL, page_size * session->mmap_window, mmap_prot,
773                    mmap_flags, session->fd, file_offset);
774         if (buf == MAP_FAILED) {
775                 pr_err("failed to mmap file\n");
776                 err = -errno;
777                 goto out_err;
778         }
779         file_pos = file_offset + head;
780         ui_progress__update(progress, file_offset);
781
782 more:
783         event = (event_t *)(buf + head);
784
785         if (session->header.needs_swap)
786                 perf_event_header__bswap(&event->header);
787         size = event->header.size;
788         if (size == 0)
789                 size = 8;
790
791         if (head + event->header.size >= page_size * session->mmap_window) {
792                 int munmap_ret;
793
794                 munmap_ret = munmap(buf, page_size * session->mmap_window);
795                 assert(munmap_ret == 0);
796
797                 page_offset = page_size * (head / page_size);
798                 file_offset += page_offset;
799                 head -= page_offset;
800                 goto remap;
801         }
802
803         size = event->header.size;
804
805         dump_printf("\n%#Lx [%#x]: event: %d\n",
806                     file_pos, event->header.size, event->header.type);
807
808         if (size == 0 ||
809             perf_session__process_event(session, event, ops, file_pos) < 0) {
810                 dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
811                             file_offset + head, event->header.size,
812                             event->header.type);
813                 /*
814                  * assume we lost track of the stream, check alignment, and
815                  * increment a single u64 in the hope to catch on again 'soon'.
816                  */
817                 if (unlikely(head & 7))
818                         head &= ~7ULL;
819
820                 size = 8;
821         }
822
823         head += size;
824         file_pos += size;
825
826         if (file_pos < file_size)
827                 goto more;
828
829         err = 0;
830         /* do the final flush for ordered samples */
831         session->ordered_samples.next_flush = ULLONG_MAX;
832         flush_sample_queue(session, ops);
833 out_err:
834         ui_progress__delete(progress);
835
836         if (ops->lost == event__process_lost &&
837             session->hists.stats.total_lost != 0) {
838                 ui__warning("Processed %Lu events and LOST %Lu!\n\n"
839                             "Check IO/CPU overload!\n\n",
840                             session->hists.stats.total_period,
841                             session->hists.stats.total_lost);
842         }
843
844         if (session->hists.stats.nr_unknown_events != 0) {
845                 ui__warning("Found %u unknown events!\n\n"
846                             "Is this an older tool processing a perf.data "
847                             "file generated by a more recent tool?\n\n"
848                             "If that is not the case, consider "
849                             "reporting to linux-kernel@vger.kernel.org.\n\n",
850                             session->hists.stats.nr_unknown_events);
851         }
852
853         return err;
854 }
855
856 int perf_session__process_events(struct perf_session *self,
857                                  struct perf_event_ops *ops)
858 {
859         int err;
860
861         if (perf_session__register_idle_thread(self) == NULL)
862                 return -ENOMEM;
863
864         if (!self->fd_pipe)
865                 err = __perf_session__process_events(self,
866                                                      self->header.data_offset,
867                                                      self->header.data_size,
868                                                      self->size, ops);
869         else
870                 err = __perf_session__process_pipe_events(self, ops);
871
872         return err;
873 }
874
875 bool perf_session__has_traces(struct perf_session *self, const char *msg)
876 {
877         if (!(self->sample_type & PERF_SAMPLE_RAW)) {
878                 pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
879                 return false;
880         }
881
882         return true;
883 }
884
885 int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
886                                              const char *symbol_name,
887                                              u64 addr)
888 {
889         char *bracket;
890         enum map_type i;
891         struct ref_reloc_sym *ref;
892
893         ref = zalloc(sizeof(struct ref_reloc_sym));
894         if (ref == NULL)
895                 return -ENOMEM;
896
897         ref->name = strdup(symbol_name);
898         if (ref->name == NULL) {
899                 free(ref);
900                 return -ENOMEM;
901         }
902
903         bracket = strchr(ref->name, ']');
904         if (bracket)
905                 *bracket = '\0';
906
907         ref->addr = addr;
908
909         for (i = 0; i < MAP__NR_TYPES; ++i) {
910                 struct kmap *kmap = map__kmap(maps[i]);
911                 kmap->ref_reloc_sym = ref;
912         }
913
914         return 0;
915 }
916
917 size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
918 {
919         return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
920                __dsos__fprintf(&self->host_machine.user_dsos, fp) +
921                machines__fprintf_dsos(&self->machines, fp);
922 }
923
924 size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
925                                           bool with_hits)
926 {
927         size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
928         return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
929 }