]> git.karo-electronics.de Git - mv-sheeva.git/blob - virt/kvm/kvm_main.c
KVM: Disable pagefaults during copy_from_user_inatomic()
[mv-sheeva.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43
44 #include <asm/processor.h>
45 #include <asm/io.h>
46 #include <asm/uaccess.h>
47 #include <asm/pgtable.h>
48
49 MODULE_AUTHOR("Qumranet");
50 MODULE_LICENSE("GPL");
51
52 DEFINE_SPINLOCK(kvm_lock);
53 LIST_HEAD(vm_list);
54
55 static cpumask_t cpus_hardware_enabled;
56
57 struct kmem_cache *kvm_vcpu_cache;
58 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
59
60 static __read_mostly struct preempt_ops kvm_preempt_ops;
61
62 static struct dentry *debugfs_dir;
63
64 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
65                            unsigned long arg);
66
67 static inline int valid_vcpu(int n)
68 {
69         return likely(n >= 0 && n < KVM_MAX_VCPUS);
70 }
71
72 /*
73  * Switches to specified vcpu, until a matching vcpu_put()
74  */
75 void vcpu_load(struct kvm_vcpu *vcpu)
76 {
77         int cpu;
78
79         mutex_lock(&vcpu->mutex);
80         cpu = get_cpu();
81         preempt_notifier_register(&vcpu->preempt_notifier);
82         kvm_arch_vcpu_load(vcpu, cpu);
83         put_cpu();
84 }
85
86 void vcpu_put(struct kvm_vcpu *vcpu)
87 {
88         preempt_disable();
89         kvm_arch_vcpu_put(vcpu);
90         preempt_notifier_unregister(&vcpu->preempt_notifier);
91         preempt_enable();
92         mutex_unlock(&vcpu->mutex);
93 }
94
95 static void ack_flush(void *_completed)
96 {
97 }
98
99 void kvm_flush_remote_tlbs(struct kvm *kvm)
100 {
101         int i, cpu;
102         cpumask_t cpus;
103         struct kvm_vcpu *vcpu;
104
105         cpus_clear(cpus);
106         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
107                 vcpu = kvm->vcpus[i];
108                 if (!vcpu)
109                         continue;
110                 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
111                         continue;
112                 cpu = vcpu->cpu;
113                 if (cpu != -1 && cpu != raw_smp_processor_id())
114                         cpu_set(cpu, cpus);
115         }
116         if (cpus_empty(cpus))
117                 return;
118         ++kvm->stat.remote_tlb_flush;
119         smp_call_function_mask(cpus, ack_flush, NULL, 1);
120 }
121
122 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
123 {
124         struct page *page;
125         int r;
126
127         mutex_init(&vcpu->mutex);
128         vcpu->cpu = -1;
129         vcpu->kvm = kvm;
130         vcpu->vcpu_id = id;
131         init_waitqueue_head(&vcpu->wq);
132
133         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
134         if (!page) {
135                 r = -ENOMEM;
136                 goto fail;
137         }
138         vcpu->run = page_address(page);
139
140         r = kvm_arch_vcpu_init(vcpu);
141         if (r < 0)
142                 goto fail_free_run;
143         return 0;
144
145 fail_free_run:
146         free_page((unsigned long)vcpu->run);
147 fail:
148         return r;
149 }
150 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
151
152 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
153 {
154         kvm_arch_vcpu_uninit(vcpu);
155         free_page((unsigned long)vcpu->run);
156 }
157 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
158
159 static struct kvm *kvm_create_vm(void)
160 {
161         struct kvm *kvm = kvm_arch_create_vm();
162
163         if (IS_ERR(kvm))
164                 goto out;
165
166         kvm->mm = current->mm;
167         atomic_inc(&kvm->mm->mm_count);
168         spin_lock_init(&kvm->mmu_lock);
169         kvm_io_bus_init(&kvm->pio_bus);
170         mutex_init(&kvm->lock);
171         kvm_io_bus_init(&kvm->mmio_bus);
172         init_rwsem(&kvm->slots_lock);
173         spin_lock(&kvm_lock);
174         list_add(&kvm->vm_list, &vm_list);
175         spin_unlock(&kvm_lock);
176 out:
177         return kvm;
178 }
179
180 /*
181  * Free any memory in @free but not in @dont.
182  */
183 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
184                                   struct kvm_memory_slot *dont)
185 {
186         if (!dont || free->rmap != dont->rmap)
187                 vfree(free->rmap);
188
189         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
190                 vfree(free->dirty_bitmap);
191
192         free->npages = 0;
193         free->dirty_bitmap = NULL;
194         free->rmap = NULL;
195 }
196
197 void kvm_free_physmem(struct kvm *kvm)
198 {
199         int i;
200
201         for (i = 0; i < kvm->nmemslots; ++i)
202                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
203 }
204
205 static void kvm_destroy_vm(struct kvm *kvm)
206 {
207         struct mm_struct *mm = kvm->mm;
208
209         spin_lock(&kvm_lock);
210         list_del(&kvm->vm_list);
211         spin_unlock(&kvm_lock);
212         kvm_io_bus_destroy(&kvm->pio_bus);
213         kvm_io_bus_destroy(&kvm->mmio_bus);
214         kvm_arch_destroy_vm(kvm);
215         mmdrop(mm);
216 }
217
218 static int kvm_vm_release(struct inode *inode, struct file *filp)
219 {
220         struct kvm *kvm = filp->private_data;
221
222         kvm_destroy_vm(kvm);
223         return 0;
224 }
225
226 /*
227  * Allocate some memory and give it an address in the guest physical address
228  * space.
229  *
230  * Discontiguous memory is allowed, mostly for framebuffers.
231  *
232  * Must be called holding mmap_sem for write.
233  */
234 int __kvm_set_memory_region(struct kvm *kvm,
235                             struct kvm_userspace_memory_region *mem,
236                             int user_alloc)
237 {
238         int r;
239         gfn_t base_gfn;
240         unsigned long npages;
241         unsigned long i;
242         struct kvm_memory_slot *memslot;
243         struct kvm_memory_slot old, new;
244
245         r = -EINVAL;
246         /* General sanity checks */
247         if (mem->memory_size & (PAGE_SIZE - 1))
248                 goto out;
249         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
250                 goto out;
251         if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
252                 goto out;
253         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
254                 goto out;
255
256         memslot = &kvm->memslots[mem->slot];
257         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
258         npages = mem->memory_size >> PAGE_SHIFT;
259
260         if (!npages)
261                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
262
263         new = old = *memslot;
264
265         new.base_gfn = base_gfn;
266         new.npages = npages;
267         new.flags = mem->flags;
268
269         /* Disallow changing a memory slot's size. */
270         r = -EINVAL;
271         if (npages && old.npages && npages != old.npages)
272                 goto out_free;
273
274         /* Check for overlaps */
275         r = -EEXIST;
276         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
277                 struct kvm_memory_slot *s = &kvm->memslots[i];
278
279                 if (s == memslot)
280                         continue;
281                 if (!((base_gfn + npages <= s->base_gfn) ||
282                       (base_gfn >= s->base_gfn + s->npages)))
283                         goto out_free;
284         }
285
286         /* Free page dirty bitmap if unneeded */
287         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
288                 new.dirty_bitmap = NULL;
289
290         r = -ENOMEM;
291
292         /* Allocate if a slot is being created */
293         if (npages && !new.rmap) {
294                 new.rmap = vmalloc(npages * sizeof(struct page *));
295
296                 if (!new.rmap)
297                         goto out_free;
298
299                 memset(new.rmap, 0, npages * sizeof(*new.rmap));
300
301                 new.user_alloc = user_alloc;
302                 new.userspace_addr = mem->userspace_addr;
303         }
304
305         /* Allocate page dirty bitmap if needed */
306         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
307                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
308
309                 new.dirty_bitmap = vmalloc(dirty_bytes);
310                 if (!new.dirty_bitmap)
311                         goto out_free;
312                 memset(new.dirty_bitmap, 0, dirty_bytes);
313         }
314
315         if (mem->slot >= kvm->nmemslots)
316                 kvm->nmemslots = mem->slot + 1;
317
318         *memslot = new;
319
320         r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
321         if (r) {
322                 *memslot = old;
323                 goto out_free;
324         }
325
326         kvm_free_physmem_slot(&old, &new);
327         return 0;
328
329 out_free:
330         kvm_free_physmem_slot(&new, &old);
331 out:
332         return r;
333
334 }
335 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
336
337 int kvm_set_memory_region(struct kvm *kvm,
338                           struct kvm_userspace_memory_region *mem,
339                           int user_alloc)
340 {
341         int r;
342
343         down_write(&kvm->slots_lock);
344         r = __kvm_set_memory_region(kvm, mem, user_alloc);
345         up_write(&kvm->slots_lock);
346         return r;
347 }
348 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
349
350 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
351                                    struct
352                                    kvm_userspace_memory_region *mem,
353                                    int user_alloc)
354 {
355         if (mem->slot >= KVM_MEMORY_SLOTS)
356                 return -EINVAL;
357         return kvm_set_memory_region(kvm, mem, user_alloc);
358 }
359
360 int kvm_get_dirty_log(struct kvm *kvm,
361                         struct kvm_dirty_log *log, int *is_dirty)
362 {
363         struct kvm_memory_slot *memslot;
364         int r, i;
365         int n;
366         unsigned long any = 0;
367
368         r = -EINVAL;
369         if (log->slot >= KVM_MEMORY_SLOTS)
370                 goto out;
371
372         memslot = &kvm->memslots[log->slot];
373         r = -ENOENT;
374         if (!memslot->dirty_bitmap)
375                 goto out;
376
377         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
378
379         for (i = 0; !any && i < n/sizeof(long); ++i)
380                 any = memslot->dirty_bitmap[i];
381
382         r = -EFAULT;
383         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
384                 goto out;
385
386         if (any)
387                 *is_dirty = 1;
388
389         r = 0;
390 out:
391         return r;
392 }
393
394 int is_error_page(struct page *page)
395 {
396         return page == bad_page;
397 }
398 EXPORT_SYMBOL_GPL(is_error_page);
399
400 static inline unsigned long bad_hva(void)
401 {
402         return PAGE_OFFSET;
403 }
404
405 int kvm_is_error_hva(unsigned long addr)
406 {
407         return addr == bad_hva();
408 }
409 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
410
411 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
412 {
413         int i;
414
415         for (i = 0; i < kvm->nmemslots; ++i) {
416                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
417
418                 if (gfn >= memslot->base_gfn
419                     && gfn < memslot->base_gfn + memslot->npages)
420                         return memslot;
421         }
422         return NULL;
423 }
424
425 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
426 {
427         gfn = unalias_gfn(kvm, gfn);
428         return __gfn_to_memslot(kvm, gfn);
429 }
430
431 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
432 {
433         int i;
434
435         gfn = unalias_gfn(kvm, gfn);
436         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
437                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
438
439                 if (gfn >= memslot->base_gfn
440                     && gfn < memslot->base_gfn + memslot->npages)
441                         return 1;
442         }
443         return 0;
444 }
445 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
446
447 static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
448 {
449         struct kvm_memory_slot *slot;
450
451         gfn = unalias_gfn(kvm, gfn);
452         slot = __gfn_to_memslot(kvm, gfn);
453         if (!slot)
454                 return bad_hva();
455         return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
456 }
457
458 /*
459  * Requires current->mm->mmap_sem to be held
460  */
461 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
462 {
463         struct page *page[1];
464         unsigned long addr;
465         int npages;
466
467         might_sleep();
468
469         addr = gfn_to_hva(kvm, gfn);
470         if (kvm_is_error_hva(addr)) {
471                 get_page(bad_page);
472                 return bad_page;
473         }
474
475         npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
476                                 NULL);
477
478         if (npages != 1) {
479                 get_page(bad_page);
480                 return bad_page;
481         }
482
483         return page[0];
484 }
485
486 EXPORT_SYMBOL_GPL(gfn_to_page);
487
488 void kvm_release_page_clean(struct page *page)
489 {
490         put_page(page);
491 }
492 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
493
494 void kvm_release_page_dirty(struct page *page)
495 {
496         if (!PageReserved(page))
497                 SetPageDirty(page);
498         put_page(page);
499 }
500 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
501
502 static int next_segment(unsigned long len, int offset)
503 {
504         if (len > PAGE_SIZE - offset)
505                 return PAGE_SIZE - offset;
506         else
507                 return len;
508 }
509
510 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
511                         int len)
512 {
513         int r;
514         unsigned long addr;
515
516         addr = gfn_to_hva(kvm, gfn);
517         if (kvm_is_error_hva(addr))
518                 return -EFAULT;
519         r = copy_from_user(data, (void __user *)addr + offset, len);
520         if (r)
521                 return -EFAULT;
522         return 0;
523 }
524 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
525
526 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
527 {
528         gfn_t gfn = gpa >> PAGE_SHIFT;
529         int seg;
530         int offset = offset_in_page(gpa);
531         int ret;
532
533         while ((seg = next_segment(len, offset)) != 0) {
534                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
535                 if (ret < 0)
536                         return ret;
537                 offset = 0;
538                 len -= seg;
539                 data += seg;
540                 ++gfn;
541         }
542         return 0;
543 }
544 EXPORT_SYMBOL_GPL(kvm_read_guest);
545
546 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
547                           unsigned long len)
548 {
549         int r;
550         unsigned long addr;
551         gfn_t gfn = gpa >> PAGE_SHIFT;
552         int offset = offset_in_page(gpa);
553
554         addr = gfn_to_hva(kvm, gfn);
555         if (kvm_is_error_hva(addr))
556                 return -EFAULT;
557         pagefault_disable();
558         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
559         pagefault_enable();
560         if (r)
561                 return -EFAULT;
562         return 0;
563 }
564 EXPORT_SYMBOL(kvm_read_guest_atomic);
565
566 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
567                          int offset, int len)
568 {
569         int r;
570         unsigned long addr;
571
572         addr = gfn_to_hva(kvm, gfn);
573         if (kvm_is_error_hva(addr))
574                 return -EFAULT;
575         r = copy_to_user((void __user *)addr + offset, data, len);
576         if (r)
577                 return -EFAULT;
578         mark_page_dirty(kvm, gfn);
579         return 0;
580 }
581 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
582
583 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
584                     unsigned long len)
585 {
586         gfn_t gfn = gpa >> PAGE_SHIFT;
587         int seg;
588         int offset = offset_in_page(gpa);
589         int ret;
590
591         while ((seg = next_segment(len, offset)) != 0) {
592                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
593                 if (ret < 0)
594                         return ret;
595                 offset = 0;
596                 len -= seg;
597                 data += seg;
598                 ++gfn;
599         }
600         return 0;
601 }
602
603 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
604 {
605         return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
606 }
607 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
608
609 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
610 {
611         gfn_t gfn = gpa >> PAGE_SHIFT;
612         int seg;
613         int offset = offset_in_page(gpa);
614         int ret;
615
616         while ((seg = next_segment(len, offset)) != 0) {
617                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
618                 if (ret < 0)
619                         return ret;
620                 offset = 0;
621                 len -= seg;
622                 ++gfn;
623         }
624         return 0;
625 }
626 EXPORT_SYMBOL_GPL(kvm_clear_guest);
627
628 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
629 {
630         struct kvm_memory_slot *memslot;
631
632         gfn = unalias_gfn(kvm, gfn);
633         memslot = __gfn_to_memslot(kvm, gfn);
634         if (memslot && memslot->dirty_bitmap) {
635                 unsigned long rel_gfn = gfn - memslot->base_gfn;
636
637                 /* avoid RMW */
638                 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
639                         set_bit(rel_gfn, memslot->dirty_bitmap);
640         }
641 }
642
643 /*
644  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
645  */
646 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
647 {
648         DECLARE_WAITQUEUE(wait, current);
649
650         add_wait_queue(&vcpu->wq, &wait);
651
652         /*
653          * We will block until either an interrupt or a signal wakes us up
654          */
655         while (!kvm_cpu_has_interrupt(vcpu)
656                && !signal_pending(current)
657                && !kvm_arch_vcpu_runnable(vcpu)) {
658                 set_current_state(TASK_INTERRUPTIBLE);
659                 vcpu_put(vcpu);
660                 schedule();
661                 vcpu_load(vcpu);
662         }
663
664         __set_current_state(TASK_RUNNING);
665         remove_wait_queue(&vcpu->wq, &wait);
666 }
667
668 void kvm_resched(struct kvm_vcpu *vcpu)
669 {
670         if (!need_resched())
671                 return;
672         cond_resched();
673 }
674 EXPORT_SYMBOL_GPL(kvm_resched);
675
676 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
677 {
678         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
679         struct page *page;
680
681         if (vmf->pgoff == 0)
682                 page = virt_to_page(vcpu->run);
683 #ifdef CONFIG_X86
684         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
685                 page = virt_to_page(vcpu->arch.pio_data);
686 #endif
687         else
688                 return VM_FAULT_SIGBUS;
689         get_page(page);
690         vmf->page = page;
691         return 0;
692 }
693
694 static struct vm_operations_struct kvm_vcpu_vm_ops = {
695         .fault = kvm_vcpu_fault,
696 };
697
698 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
699 {
700         vma->vm_ops = &kvm_vcpu_vm_ops;
701         return 0;
702 }
703
704 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
705 {
706         struct kvm_vcpu *vcpu = filp->private_data;
707
708         fput(vcpu->kvm->filp);
709         return 0;
710 }
711
712 static const struct file_operations kvm_vcpu_fops = {
713         .release        = kvm_vcpu_release,
714         .unlocked_ioctl = kvm_vcpu_ioctl,
715         .compat_ioctl   = kvm_vcpu_ioctl,
716         .mmap           = kvm_vcpu_mmap,
717 };
718
719 /*
720  * Allocates an inode for the vcpu.
721  */
722 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
723 {
724         int fd, r;
725         struct inode *inode;
726         struct file *file;
727
728         r = anon_inode_getfd(&fd, &inode, &file,
729                              "kvm-vcpu", &kvm_vcpu_fops, vcpu);
730         if (r)
731                 return r;
732         atomic_inc(&vcpu->kvm->filp->f_count);
733         return fd;
734 }
735
736 /*
737  * Creates some virtual cpus.  Good luck creating more than one.
738  */
739 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
740 {
741         int r;
742         struct kvm_vcpu *vcpu;
743
744         if (!valid_vcpu(n))
745                 return -EINVAL;
746
747         vcpu = kvm_arch_vcpu_create(kvm, n);
748         if (IS_ERR(vcpu))
749                 return PTR_ERR(vcpu);
750
751         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
752
753         r = kvm_arch_vcpu_setup(vcpu);
754         if (r)
755                 goto vcpu_destroy;
756
757         mutex_lock(&kvm->lock);
758         if (kvm->vcpus[n]) {
759                 r = -EEXIST;
760                 mutex_unlock(&kvm->lock);
761                 goto vcpu_destroy;
762         }
763         kvm->vcpus[n] = vcpu;
764         mutex_unlock(&kvm->lock);
765
766         /* Now it's all set up, let userspace reach it */
767         r = create_vcpu_fd(vcpu);
768         if (r < 0)
769                 goto unlink;
770         return r;
771
772 unlink:
773         mutex_lock(&kvm->lock);
774         kvm->vcpus[n] = NULL;
775         mutex_unlock(&kvm->lock);
776 vcpu_destroy:
777         kvm_arch_vcpu_destroy(vcpu);
778         return r;
779 }
780
781 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
782 {
783         if (sigset) {
784                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
785                 vcpu->sigset_active = 1;
786                 vcpu->sigset = *sigset;
787         } else
788                 vcpu->sigset_active = 0;
789         return 0;
790 }
791
792 static long kvm_vcpu_ioctl(struct file *filp,
793                            unsigned int ioctl, unsigned long arg)
794 {
795         struct kvm_vcpu *vcpu = filp->private_data;
796         void __user *argp = (void __user *)arg;
797         int r;
798
799         if (vcpu->kvm->mm != current->mm)
800                 return -EIO;
801         switch (ioctl) {
802         case KVM_RUN:
803                 r = -EINVAL;
804                 if (arg)
805                         goto out;
806                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
807                 break;
808         case KVM_GET_REGS: {
809                 struct kvm_regs kvm_regs;
810
811                 memset(&kvm_regs, 0, sizeof kvm_regs);
812                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
813                 if (r)
814                         goto out;
815                 r = -EFAULT;
816                 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
817                         goto out;
818                 r = 0;
819                 break;
820         }
821         case KVM_SET_REGS: {
822                 struct kvm_regs kvm_regs;
823
824                 r = -EFAULT;
825                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
826                         goto out;
827                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
828                 if (r)
829                         goto out;
830                 r = 0;
831                 break;
832         }
833         case KVM_GET_SREGS: {
834                 struct kvm_sregs kvm_sregs;
835
836                 memset(&kvm_sregs, 0, sizeof kvm_sregs);
837                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
838                 if (r)
839                         goto out;
840                 r = -EFAULT;
841                 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
842                         goto out;
843                 r = 0;
844                 break;
845         }
846         case KVM_SET_SREGS: {
847                 struct kvm_sregs kvm_sregs;
848
849                 r = -EFAULT;
850                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
851                         goto out;
852                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
853                 if (r)
854                         goto out;
855                 r = 0;
856                 break;
857         }
858         case KVM_TRANSLATE: {
859                 struct kvm_translation tr;
860
861                 r = -EFAULT;
862                 if (copy_from_user(&tr, argp, sizeof tr))
863                         goto out;
864                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
865                 if (r)
866                         goto out;
867                 r = -EFAULT;
868                 if (copy_to_user(argp, &tr, sizeof tr))
869                         goto out;
870                 r = 0;
871                 break;
872         }
873         case KVM_DEBUG_GUEST: {
874                 struct kvm_debug_guest dbg;
875
876                 r = -EFAULT;
877                 if (copy_from_user(&dbg, argp, sizeof dbg))
878                         goto out;
879                 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
880                 if (r)
881                         goto out;
882                 r = 0;
883                 break;
884         }
885         case KVM_SET_SIGNAL_MASK: {
886                 struct kvm_signal_mask __user *sigmask_arg = argp;
887                 struct kvm_signal_mask kvm_sigmask;
888                 sigset_t sigset, *p;
889
890                 p = NULL;
891                 if (argp) {
892                         r = -EFAULT;
893                         if (copy_from_user(&kvm_sigmask, argp,
894                                            sizeof kvm_sigmask))
895                                 goto out;
896                         r = -EINVAL;
897                         if (kvm_sigmask.len != sizeof sigset)
898                                 goto out;
899                         r = -EFAULT;
900                         if (copy_from_user(&sigset, sigmask_arg->sigset,
901                                            sizeof sigset))
902                                 goto out;
903                         p = &sigset;
904                 }
905                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
906                 break;
907         }
908         case KVM_GET_FPU: {
909                 struct kvm_fpu fpu;
910
911                 memset(&fpu, 0, sizeof fpu);
912                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
913                 if (r)
914                         goto out;
915                 r = -EFAULT;
916                 if (copy_to_user(argp, &fpu, sizeof fpu))
917                         goto out;
918                 r = 0;
919                 break;
920         }
921         case KVM_SET_FPU: {
922                 struct kvm_fpu fpu;
923
924                 r = -EFAULT;
925                 if (copy_from_user(&fpu, argp, sizeof fpu))
926                         goto out;
927                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
928                 if (r)
929                         goto out;
930                 r = 0;
931                 break;
932         }
933         default:
934                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
935         }
936 out:
937         return r;
938 }
939
940 static long kvm_vm_ioctl(struct file *filp,
941                            unsigned int ioctl, unsigned long arg)
942 {
943         struct kvm *kvm = filp->private_data;
944         void __user *argp = (void __user *)arg;
945         int r;
946
947         if (kvm->mm != current->mm)
948                 return -EIO;
949         switch (ioctl) {
950         case KVM_CREATE_VCPU:
951                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
952                 if (r < 0)
953                         goto out;
954                 break;
955         case KVM_SET_USER_MEMORY_REGION: {
956                 struct kvm_userspace_memory_region kvm_userspace_mem;
957
958                 r = -EFAULT;
959                 if (copy_from_user(&kvm_userspace_mem, argp,
960                                                 sizeof kvm_userspace_mem))
961                         goto out;
962
963                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
964                 if (r)
965                         goto out;
966                 break;
967         }
968         case KVM_GET_DIRTY_LOG: {
969                 struct kvm_dirty_log log;
970
971                 r = -EFAULT;
972                 if (copy_from_user(&log, argp, sizeof log))
973                         goto out;
974                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
975                 if (r)
976                         goto out;
977                 break;
978         }
979         default:
980                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
981         }
982 out:
983         return r;
984 }
985
986 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
987 {
988         struct kvm *kvm = vma->vm_file->private_data;
989         struct page *page;
990
991         if (!kvm_is_visible_gfn(kvm, vmf->pgoff))
992                 return VM_FAULT_SIGBUS;
993         page = gfn_to_page(kvm, vmf->pgoff);
994         if (is_error_page(page)) {
995                 kvm_release_page_clean(page);
996                 return VM_FAULT_SIGBUS;
997         }
998         vmf->page = page;
999         return 0;
1000 }
1001
1002 static struct vm_operations_struct kvm_vm_vm_ops = {
1003         .fault = kvm_vm_fault,
1004 };
1005
1006 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1007 {
1008         vma->vm_ops = &kvm_vm_vm_ops;
1009         return 0;
1010 }
1011
1012 static const struct file_operations kvm_vm_fops = {
1013         .release        = kvm_vm_release,
1014         .unlocked_ioctl = kvm_vm_ioctl,
1015         .compat_ioctl   = kvm_vm_ioctl,
1016         .mmap           = kvm_vm_mmap,
1017 };
1018
1019 static int kvm_dev_ioctl_create_vm(void)
1020 {
1021         int fd, r;
1022         struct inode *inode;
1023         struct file *file;
1024         struct kvm *kvm;
1025
1026         kvm = kvm_create_vm();
1027         if (IS_ERR(kvm))
1028                 return PTR_ERR(kvm);
1029         r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
1030         if (r) {
1031                 kvm_destroy_vm(kvm);
1032                 return r;
1033         }
1034
1035         kvm->filp = file;
1036
1037         return fd;
1038 }
1039
1040 static long kvm_dev_ioctl(struct file *filp,
1041                           unsigned int ioctl, unsigned long arg)
1042 {
1043         void __user *argp = (void __user *)arg;
1044         long r = -EINVAL;
1045
1046         switch (ioctl) {
1047         case KVM_GET_API_VERSION:
1048                 r = -EINVAL;
1049                 if (arg)
1050                         goto out;
1051                 r = KVM_API_VERSION;
1052                 break;
1053         case KVM_CREATE_VM:
1054                 r = -EINVAL;
1055                 if (arg)
1056                         goto out;
1057                 r = kvm_dev_ioctl_create_vm();
1058                 break;
1059         case KVM_CHECK_EXTENSION:
1060                 r = kvm_dev_ioctl_check_extension((long)argp);
1061                 break;
1062         case KVM_GET_VCPU_MMAP_SIZE:
1063                 r = -EINVAL;
1064                 if (arg)
1065                         goto out;
1066                 r = PAGE_SIZE;     /* struct kvm_run */
1067 #ifdef CONFIG_X86
1068                 r += PAGE_SIZE;    /* pio data page */
1069 #endif
1070                 break;
1071         default:
1072                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1073         }
1074 out:
1075         return r;
1076 }
1077
1078 static struct file_operations kvm_chardev_ops = {
1079         .unlocked_ioctl = kvm_dev_ioctl,
1080         .compat_ioctl   = kvm_dev_ioctl,
1081 };
1082
1083 static struct miscdevice kvm_dev = {
1084         KVM_MINOR,
1085         "kvm",
1086         &kvm_chardev_ops,
1087 };
1088
1089 static void hardware_enable(void *junk)
1090 {
1091         int cpu = raw_smp_processor_id();
1092
1093         if (cpu_isset(cpu, cpus_hardware_enabled))
1094                 return;
1095         cpu_set(cpu, cpus_hardware_enabled);
1096         kvm_arch_hardware_enable(NULL);
1097 }
1098
1099 static void hardware_disable(void *junk)
1100 {
1101         int cpu = raw_smp_processor_id();
1102
1103         if (!cpu_isset(cpu, cpus_hardware_enabled))
1104                 return;
1105         cpu_clear(cpu, cpus_hardware_enabled);
1106         decache_vcpus_on_cpu(cpu);
1107         kvm_arch_hardware_disable(NULL);
1108 }
1109
1110 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1111                            void *v)
1112 {
1113         int cpu = (long)v;
1114
1115         val &= ~CPU_TASKS_FROZEN;
1116         switch (val) {
1117         case CPU_DYING:
1118                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1119                        cpu);
1120                 hardware_disable(NULL);
1121                 break;
1122         case CPU_UP_CANCELED:
1123                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1124                        cpu);
1125                 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
1126                 break;
1127         case CPU_ONLINE:
1128                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1129                        cpu);
1130                 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
1131                 break;
1132         }
1133         return NOTIFY_OK;
1134 }
1135
1136 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1137                       void *v)
1138 {
1139         if (val == SYS_RESTART) {
1140                 /*
1141                  * Some (well, at least mine) BIOSes hang on reboot if
1142                  * in vmx root mode.
1143                  */
1144                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1145                 on_each_cpu(hardware_disable, NULL, 0, 1);
1146         }
1147         return NOTIFY_OK;
1148 }
1149
1150 static struct notifier_block kvm_reboot_notifier = {
1151         .notifier_call = kvm_reboot,
1152         .priority = 0,
1153 };
1154
1155 void kvm_io_bus_init(struct kvm_io_bus *bus)
1156 {
1157         memset(bus, 0, sizeof(*bus));
1158 }
1159
1160 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1161 {
1162         int i;
1163
1164         for (i = 0; i < bus->dev_count; i++) {
1165                 struct kvm_io_device *pos = bus->devs[i];
1166
1167                 kvm_iodevice_destructor(pos);
1168         }
1169 }
1170
1171 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
1172 {
1173         int i;
1174
1175         for (i = 0; i < bus->dev_count; i++) {
1176                 struct kvm_io_device *pos = bus->devs[i];
1177
1178                 if (pos->in_range(pos, addr))
1179                         return pos;
1180         }
1181
1182         return NULL;
1183 }
1184
1185 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1186 {
1187         BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1188
1189         bus->devs[bus->dev_count++] = dev;
1190 }
1191
1192 static struct notifier_block kvm_cpu_notifier = {
1193         .notifier_call = kvm_cpu_hotplug,
1194         .priority = 20, /* must be > scheduler priority */
1195 };
1196
1197 static int vm_stat_get(void *_offset, u64 *val)
1198 {
1199         unsigned offset = (long)_offset;
1200         struct kvm *kvm;
1201
1202         *val = 0;
1203         spin_lock(&kvm_lock);
1204         list_for_each_entry(kvm, &vm_list, vm_list)
1205                 *val += *(u32 *)((void *)kvm + offset);
1206         spin_unlock(&kvm_lock);
1207         return 0;
1208 }
1209
1210 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1211
1212 static int vcpu_stat_get(void *_offset, u64 *val)
1213 {
1214         unsigned offset = (long)_offset;
1215         struct kvm *kvm;
1216         struct kvm_vcpu *vcpu;
1217         int i;
1218
1219         *val = 0;
1220         spin_lock(&kvm_lock);
1221         list_for_each_entry(kvm, &vm_list, vm_list)
1222                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1223                         vcpu = kvm->vcpus[i];
1224                         if (vcpu)
1225                                 *val += *(u32 *)((void *)vcpu + offset);
1226                 }
1227         spin_unlock(&kvm_lock);
1228         return 0;
1229 }
1230
1231 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1232
1233 static struct file_operations *stat_fops[] = {
1234         [KVM_STAT_VCPU] = &vcpu_stat_fops,
1235         [KVM_STAT_VM]   = &vm_stat_fops,
1236 };
1237
1238 static void kvm_init_debug(void)
1239 {
1240         struct kvm_stats_debugfs_item *p;
1241
1242         debugfs_dir = debugfs_create_dir("kvm", NULL);
1243         for (p = debugfs_entries; p->name; ++p)
1244                 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
1245                                                 (void *)(long)p->offset,
1246                                                 stat_fops[p->kind]);
1247 }
1248
1249 static void kvm_exit_debug(void)
1250 {
1251         struct kvm_stats_debugfs_item *p;
1252
1253         for (p = debugfs_entries; p->name; ++p)
1254                 debugfs_remove(p->dentry);
1255         debugfs_remove(debugfs_dir);
1256 }
1257
1258 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1259 {
1260         hardware_disable(NULL);
1261         return 0;
1262 }
1263
1264 static int kvm_resume(struct sys_device *dev)
1265 {
1266         hardware_enable(NULL);
1267         return 0;
1268 }
1269
1270 static struct sysdev_class kvm_sysdev_class = {
1271         .name = "kvm",
1272         .suspend = kvm_suspend,
1273         .resume = kvm_resume,
1274 };
1275
1276 static struct sys_device kvm_sysdev = {
1277         .id = 0,
1278         .cls = &kvm_sysdev_class,
1279 };
1280
1281 struct page *bad_page;
1282
1283 static inline
1284 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
1285 {
1286         return container_of(pn, struct kvm_vcpu, preempt_notifier);
1287 }
1288
1289 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
1290 {
1291         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1292
1293         kvm_arch_vcpu_load(vcpu, cpu);
1294 }
1295
1296 static void kvm_sched_out(struct preempt_notifier *pn,
1297                           struct task_struct *next)
1298 {
1299         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1300
1301         kvm_arch_vcpu_put(vcpu);
1302 }
1303
1304 int kvm_init(void *opaque, unsigned int vcpu_size,
1305                   struct module *module)
1306 {
1307         int r;
1308         int cpu;
1309
1310         kvm_init_debug();
1311
1312         r = kvm_arch_init(opaque);
1313         if (r)
1314                 goto out_fail;
1315
1316         bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1317
1318         if (bad_page == NULL) {
1319                 r = -ENOMEM;
1320                 goto out;
1321         }
1322
1323         r = kvm_arch_hardware_setup();
1324         if (r < 0)
1325                 goto out_free_0;
1326
1327         for_each_online_cpu(cpu) {
1328                 smp_call_function_single(cpu,
1329                                 kvm_arch_check_processor_compat,
1330                                 &r, 0, 1);
1331                 if (r < 0)
1332                         goto out_free_1;
1333         }
1334
1335         on_each_cpu(hardware_enable, NULL, 0, 1);
1336         r = register_cpu_notifier(&kvm_cpu_notifier);
1337         if (r)
1338                 goto out_free_2;
1339         register_reboot_notifier(&kvm_reboot_notifier);
1340
1341         r = sysdev_class_register(&kvm_sysdev_class);
1342         if (r)
1343                 goto out_free_3;
1344
1345         r = sysdev_register(&kvm_sysdev);
1346         if (r)
1347                 goto out_free_4;
1348
1349         /* A kmem cache lets us meet the alignment requirements of fx_save. */
1350         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
1351                                            __alignof__(struct kvm_vcpu),
1352                                            0, NULL);
1353         if (!kvm_vcpu_cache) {
1354                 r = -ENOMEM;
1355                 goto out_free_5;
1356         }
1357
1358         kvm_chardev_ops.owner = module;
1359
1360         r = misc_register(&kvm_dev);
1361         if (r) {
1362                 printk(KERN_ERR "kvm: misc device register failed\n");
1363                 goto out_free;
1364         }
1365
1366         kvm_preempt_ops.sched_in = kvm_sched_in;
1367         kvm_preempt_ops.sched_out = kvm_sched_out;
1368
1369         return 0;
1370
1371 out_free:
1372         kmem_cache_destroy(kvm_vcpu_cache);
1373 out_free_5:
1374         sysdev_unregister(&kvm_sysdev);
1375 out_free_4:
1376         sysdev_class_unregister(&kvm_sysdev_class);
1377 out_free_3:
1378         unregister_reboot_notifier(&kvm_reboot_notifier);
1379         unregister_cpu_notifier(&kvm_cpu_notifier);
1380 out_free_2:
1381         on_each_cpu(hardware_disable, NULL, 0, 1);
1382 out_free_1:
1383         kvm_arch_hardware_unsetup();
1384 out_free_0:
1385         __free_page(bad_page);
1386 out:
1387         kvm_arch_exit();
1388         kvm_exit_debug();
1389 out_fail:
1390         return r;
1391 }
1392 EXPORT_SYMBOL_GPL(kvm_init);
1393
1394 void kvm_exit(void)
1395 {
1396         misc_deregister(&kvm_dev);
1397         kmem_cache_destroy(kvm_vcpu_cache);
1398         sysdev_unregister(&kvm_sysdev);
1399         sysdev_class_unregister(&kvm_sysdev_class);
1400         unregister_reboot_notifier(&kvm_reboot_notifier);
1401         unregister_cpu_notifier(&kvm_cpu_notifier);
1402         on_each_cpu(hardware_disable, NULL, 0, 1);
1403         kvm_arch_hardware_unsetup();
1404         kvm_arch_exit();
1405         kvm_exit_debug();
1406         __free_page(bad_page);
1407 }
1408 EXPORT_SYMBOL_GPL(kvm_exit);